1
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
2
|
Song L, Su X, Lu Y, Hua D, Gao Z. An Inflammation-Associated Prognosis Model for Hepatocellular Carcinoma Based on Adenylate Uridylate- (AU-) Rich Element Genes. Mediators Inflamm 2023; 2023:2613492. [PMID: 37181805 PMCID: PMC10169245 DOI: 10.1155/2023/2613492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer and ranks sixth in the incidence rate worldwide. The role of adenylate uridylate- (AU-) rich element genes (AREGs) in HCC remains unclear. HCC-related datasets were acquired from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Differentially expressed AREGs (DE-AREGs) between HCC samples and healthy controls were identified. The univariate Cox and LASSO analyses were performed to determine the prognostic genes. Furthermore, a signature and corresponding nomogram were configured for the clinical prediction of HCC. The potential signature-related biological significance was explored using functional and pathway enrichment analysis. Additionally, immune infiltration analysis was also performed. Finally, the expression of prognostic genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR). A total of 189 DE-AREGs between normal and HCC samples were identified, wherein CENPA, TXNRD1, RABIF, UGT2B15, and SERPINE1 were selected to generate an AREG-related signature. Moreover, the prognostic accuracy of the AREG-related signature was also confirmed. Functional analysis indicated that the high-risk score was related to various functions and pathways. Inflammation and immune-related analyses indicated that the difference of T cell and B cell receptor abundance, microvascular endothelial cells (MVE), lymphatic endothelial cells (lye), pericytes, stromal cells, and the six immune checkpoints was statistically significant between the different risk groups. Similarly, RT-qPCR outcomes of these signature genes were also significant. In conclusion, an inflammation-associated signature based on five DE-AREGs was constructed, which could act as a prognostic indicator of patients with HCC.
Collapse
Affiliation(s)
- Li Song
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiangzheng Su
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Lu
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Dongliang Hua
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ziren Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
3
|
Ravi A, Chowdhury S, Dijkhuis A, Dierdorp BS, Dekker T, Kruize R, Sabogal Piñeros YS, Majoor CJ, Sterk PJ, Lutter R. Imprinting of bronchial epithelial cells upon in vivo rhinovirus infection in people with asthma. ERJ Open Res 2022; 8:00522-2021. [PMID: 35449758 PMCID: PMC9016171 DOI: 10.1183/23120541.00522-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Defective translocation of the translational repressor TIAR (T-cell internal antigen receptor) in bronchial epithelial cells (BECs) from asthma patients underlies epithelial hyperresponsiveness, reflected by an exaggerated production of a select panel of inflammatory cytokines such as CXCL-8, interleukin (IL)-6, granulocyte colony-stimulating factor, CXCL-10, upon exposure to tumour necrosis factor (TNF) and IL-17A. With this study we aimed to clarify whether epithelial hyperresponsiveness is a consistent finding, is changed upon in vivo exposure to rhinovirus (RV)-A16 and applies to the bronchoconstrictor endothelin-1. Methods BECs were obtained from asthma patients (n=18) and healthy individuals (n=11), 1 day before and 6 days post-RV-A16 exposure. BECs were cultured and stimulated with TNF and IL-17A and inflammatory mediators were analysed. The bronchoalveolar lavage fluid (BALF) was obtained in parallel with BECs to correlate differential cell counts and inflammatory mediators with epithelial hyperresponsiveness. Results Epithelial hyperresponsiveness was confirmed in sequential samples and even increased in BECs from asthma patients after RV-A16 exposure, but not in BECs from healthy individuals. Endothelin-1 tended to increase in BECs from asthma patients collected after RV-A16 exposure, but not in BECs from healthy individuals. In vitro CXCL-8 and endothelin-1 production correlated. In vivo relevance for in vitro CXCL-8 and endothelin-1 production was shown by correlations with forced expiratory volume in 1 s % predicted and CXCL-8 BALF levels. Conclusion Epithelial hyperresponsiveness is an intrinsic defect in BECs from asthma patients, which increases upon viral exposure, but not in BECs from healthy individuals. This epithelial hyperresponsiveness also applies to the bronchoconstrictor endothelin-1, which could be involved in airway obstruction. Epithelial hyperresponsiveness is an intrinsic defect in bronchial epithelium from asthma patients, which increases upon rhinovirus exposure, but not in healthy individualshttps://bit.ly/3xLhjuj
Collapse
|
4
|
Ramakrishnan RK, Bajbouj K, Al Heialy S, Mahboub B, Ansari AW, Hachim IY, Rawat S, Salameh L, Hachim MY, Olivenstein R, Halwani R, Hamoudi R, Hamid Q. IL-17 Induced Autophagy Regulates Mitochondrial Dysfunction and Fibrosis in Severe Asthmatic Bronchial Fibroblasts. Front Immunol 2020; 11:1002. [PMID: 32670268 PMCID: PMC7326148 DOI: 10.3389/fimmu.2020.01002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/27/2020] [Indexed: 01/15/2023] Open
Abstract
The accumulation of fibroblasts, their synthesis of extracellular matrix (ECM) proteins and their innate resistance to apoptosis are characteristics of subepithelial fibrosis observed in severe asthma. Interleukin-17 (IL-17) is an important regulator of airway remodeling in asthma. However, the contribution of IL-17 to the pro-fibrotic phenotype of bronchial fibroblasts is not well-characterized. In this study, we investigated whether IL-17 induced autophagy regulates mitochondrial and pro-fibrotic function in bronchial fibroblasts. The primary cultured bronchial fibroblasts isolated from non-asthmatic (NHBF) and severe asthmatic (DHBF) subjects were treated with IL-17 in order to ascertain its effect on mitochondrial function, mitochondrial quality control, and apoptosis using immunoblotting and flow cytometric analyses. At baseline, DHBF exhibited higher levels of mitophagy and mitochondrial biogenesis compared to NHBF. Immunohistochemical evaluation of bronchial biopsies showed intense PINK1 immunoreactivity in severe asthma than in control. IL-17 intensified the mitochondrial dysfunction and impaired the mitochondrial quality control machinery in NHBF and DHBF. Moreover, IL-17 augmented a pro-fibrotic and anti-apoptotic response in both group of fibroblasts. Inhibition of autophagy using bafilomycin-A1 reduced PINK1 expression in NHBF and restored the IL-17 mediated changes in PINK1 to their basal levels in DHBF. Bafilomycin-A1 also reversed the IL-17 associated fibrotic response in these fibroblasts, suggesting a role for IL-17 induced autophagy in the induction of fibrosis in bronchial fibroblasts. Taken together, our findings suggest that IL-17 induced autophagy promotes mitochondrial dysfunction and fibrosis in bronchial fibroblasts from both non-asthmatic and severe asthmatic subjects. Our study provides insights into the therapeutic potential of targeting autophagy in ameliorating fibrosis, particularly in severe asthmatic individuals.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University, Dubai, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Bassam Mahboub
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Abdul Wahid Ansari
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ibrahim Y Hachim
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Surendra Rawat
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Mahmood Y Hachim
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Shenoy AT, Wasserman GA, Arafa EI, Wooten AK, Smith NM, Martin IM, Jones MR, Quinton LJ, Mizgerd JP. Lung CD4 + resident memory T cells remodel epithelial responses to accelerate neutrophil recruitment during pneumonia. Mucosal Immunol 2020; 13:334-343. [PMID: 31748706 PMCID: PMC7044037 DOI: 10.1038/s41385-019-0229-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
Previous pneumococcal experience establishes lung-resident IL-17A-producing CD4+ memory TRM cells that accelerate neutrophil recruitment against heterotypic pneumococci. Herein, we unravel a novel crosstalk between CD4+ TRM cells and lung epithelial cells underlying this protective immunity. Depletion of CD4+ cells in pneumococcus-experienced mice diminished CXCL5 (but not CXCL1 or CXCL2) and downstream neutrophil accumulation in the lungs. Epithelial cells from experienced lungs exhibited elevated mRNA for CXCL5 but not other epithelial products such as GM-CSF or CCL20, suggesting a skewing by CD4+ TRM cells. Genome-wide expression analyses revealed a significant remodeling of the epithelial transcriptome of infected lungs due to infection history, ~80% of which was CD4+ cell-dependent. The CD4+ TRM cell product IL-17A stabilized CXCL5 but not GM-CSF or CCL20 mRNA in cultured lung epithelial cells, implicating posttranscriptional regulation as a mechanism for altered epithelial responses. These results suggest that epithelial cells in experienced lungs are effectively different, owing to their communication with TRM cells. Our study highlights the role of tissue-resident adaptive immune cells in fine-tuning epithelial functions to hasten innate immune responses and optimize defense in experienced lungs, a concept that may apply broadly to mucosal immunology.
Collapse
Affiliation(s)
- Anukul T. Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gregory A. Wasserman
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Emad I. Arafa
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alicia K. Wooten
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nicole M.S. Smith
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ian M.C. Martin
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Matthew R. Jones
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lee J. Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.,CORRESPONDING AUTHOR: Joseph P. Mizgerd, Sc.D., Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA, Phone: (617)-358-1186; Fax: (617)-638-5227,
| |
Collapse
|
6
|
Ravi A, Chowdhury S, Dijkhuis A, Bonta PI, Sterk PJ, Lutter R. Neutrophilic inflammation in asthma and defective epithelial translational control. Eur Respir J 2019; 54:13993003.00547-2019. [PMID: 31109984 DOI: 10.1183/13993003.00547-2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/10/2019] [Indexed: 01/25/2023]
Abstract
Neutrophilic inflammation in asthma is associated with interleukin (IL)-17A, corticosteroid-insensitivity and bronchodilator-induced forced expiratory volume in 1 s (FEV1) reversibility. IL-17A synergises with tumour necrosis factor (TNF)-α in the production of the neutrophil chemokine CXCL-8 by primary bronchial epithelial cells (PBECs).We hypothesised that local neutrophilic inflammation in asthma correlates with IL-17A and TNF-α-induced CXCL-8 production by PBECs from asthma patients.PBECs from most asthma patients displayed an exaggerated CXCL-8 production in response to TNF-α and IL-17A, but not to TNF-α alone, and which was also insensitive to corticosteroids. This hyperresponsiveness of PBECs strongly correlated with CXCL-8 levels and neutrophil numbers in bronchoalveolar lavage from the corresponding patients, but not with that of eosinophils. In addition, this hyperresponsiveness also correlated with bronchodilator-induced FEV1 % reversibility. At the molecular level, epithelial hyperresponsiveness was associated with failure of the translational repressor T-cell internal antigen-1 related protein (TiAR) to translocate to the cytoplasm to halt CXCL-8 production, as confirmed by TiAR knockdown. This is in line with the finding that hyperresponsive PBECs also produced enhanced levels of other inflammatory mediators.Hyperresponsive PBECs in asthma patients may underlie neutrophilic and corticosteroid-insensitive inflammation and a reduced FEV1, irrespective of eosinophilic inflammation. Normalising cytoplasmic translocation of TiAR is a potential therapeutic target in neutrophilic, corticosteroid-insensitive asthma.
Collapse
Affiliation(s)
- Abilash Ravi
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Saheli Chowdhury
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Annemiek Dijkhuis
- Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Peter I Bonta
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands
| | - Peter J Sterk
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands
| | - René Lutter
- Amsterdam UMC, University of Amsterdam, Dept of Respiratory Medicine, Amsterdam, The Netherlands .,Amsterdam UMC, University of Amsterdam, Dept of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|
8
|
Ricciardi L, Col JD, Casolari P, Memoli D, Conti V, Vatrella A, Vonakis BM, Papi A, Caramori G, Stellato C. Differential expression of RNA-binding proteins in bronchial epithelium of stable COPD patients. Int J Chron Obstruct Pulmon Dis 2018; 13:3173-3190. [PMID: 30349226 PMCID: PMC6190813 DOI: 10.2147/copd.s166284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Inflammatory gene expression is modulated by posttranscriptional regulation via RNA-binding proteins (RBPs), which regulate mRNA turnover and translation by binding to conserved mRNA sequences. Their role in COPD is only partially defined. This study evaluated RBPs tristetraprolin (TTP), human antigen R (HuR), and AU-rich element-binding factor 1 (AUF-1) expression using lung tissue from COPD patients and control subjects and probed their function in epithelial responses in vitro. Patients and methods RBPs were detected by immunohistochemistry in bronchial and peripheral lung samples from mild-to-moderate stable COPD patients and age/smoking history-matched controls; RBPs and RBP-regulated genes were evaluated by Western blot, ELISA, protein array, and real-time PCR in human airway epithelial BEAS-2B cell line stimulated with hydrogen peroxide, cytokine combination (cytomix), cigarette smoke extract (CSE), and following siRNA-mediated silencing. Results were verified in a microarray database from bronchial brushings of COPD patients and controls. RBP transcripts were measured in peripheral blood mononuclear cell samples from additional stable COPD patients and controls. Results Specific, primarily nuclear immunostaining for the RBPs was detected in structural and inflammatory cells in bronchial and lung tissues. Immunostaining for AUF-1, but not TTP or HuR, was significantly decreased in bronchial epithelium of COPD samples vs controls. In BEAS-2B cells, cytomix and CSE stimulation reproduced the RBP pattern while increasing expression of AUF-1-regulated genes, interleukin-6, CCL2, CXCL1, and CXCL8. Silencing expression of AUF-1 reproduced, but not enhanced, target upregulation induced by cytomix compared to controls. Analysis of bronchial brushing-derived transcriptomic confirmed the selective decrease of AUF-1 in COPD vs controls and revealed significant changes in AUF-1-regulated genes by genome ontology. Conclusion Downregulated AUF-1 may be pathogenic in stable COPD by altering posttranscriptional control of epithelial gene expression.
Collapse
Affiliation(s)
- Luca Ricciardi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy,
| | - Becky M Vonakis
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy, .,Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
9
|
Beringer A, Thiam N, Molle J, Bartosch B, Miossec P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin Exp Immunol 2018; 193:221-233. [PMID: 29676779 DOI: 10.1111/cei.13140] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokines interleukin (IL)-17 and tumour necrosis factor (TNF)-α are targets for treatment in many chronic inflammatory diseases. Here, we examined their role in liver inflammatory response compared to that of IL-6. Human hepatoma cells (HepaRG, Huh7.5 and HepG2 cells) and primary human hepatocytes (PHH) were cultured with IL-6, IL-17 and/or TNF-α. To determine the contribution of the IL-6 pathway in the IL-17/TNF-α-mediated effect, an anti-IL-6 receptor antibody was used. IL-17 and TNF-α increased in synergy IL-6 secretion by HepaRG cells and PHH but not by Huh7.5 and HepG2 cells. This IL-17/TNF-α synergistic cooperation enhanced the levels of C-reactive protein (CRP) and aspartate aminotransferase (ASAT) in HepaRG cell and PHH cultures through the induction of IL-6. IL-17/TNF-α also up-regulated IL-8, monocyte chemoattractant protein (MCP)-1 and chemokine (C-C motif) ligand 20 (CCL20) chemokines in synergy through an IL-6-independent pathway. Interestingly, first exposure to IL-17, but not to TNF-α, was crucial for the initiation of the IL-17/TNF-α synergistic effect on IL-6 and IL-8 production. In HepaRG cells, IL-17 enhanced IL-6 mRNA stability resulting in increased IL-6 protein levels. The IL-17A/TNF-α synergistic effect on IL-6 and IL-8 induction was mediated through the activation of extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase, nuclear factor-κB and/or protein kinase B (Akt)-phosphatidylinositol 3-kinase signalling pathways. Therefore, the IL-17/TNF-α synergistic interaction mediates systemic inflammation and cell damage in hepatocytes mainly through IL-6 for CRP and ASAT induction. Independently of IL-6, the IL-17A/TNF-α combination may also induce immune cell recruitment by chemokine up-regulation. IL-17 and/or TNF-α neutralization can be a promising therapeutic strategy to control both systemic inflammation and liver cell attraction.
Collapse
Affiliation(s)
- A Beringer
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon
| | - N Thiam
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon
| | - J Molle
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, University of Lyon, Lyon, France
| | - B Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, University of Lyon, Lyon, France
| | - P Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon
| |
Collapse
|
10
|
Navratilova Z, Novosadova E, Hagemann-Jensen M, Kullberg S, Kolek V, Grunewald J, Petrek M. Expression Profile of Six RNA-Binding Proteins in Pulmonary Sarcoidosis. PLoS One 2016; 11:e0161669. [PMID: 27575817 PMCID: PMC5004853 DOI: 10.1371/journal.pone.0161669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sarcoidosis is characterised by up-regulation of cytokines and chemokine ligands/receptors and proteolytic enzymes. This pro-inflammatory profile is regulated post-transcriptionally by RNA-binding proteins (RBPs). We investigated in vivo expression of six RBPs (AUF1, HuR, NCL, TIA, TIAR, PCBP2) and two inhibitors of proteolytic enzymes (RECK, PTEN) in pulmonary sarcoidosis and compared it to the expression in four control groups of healthy individuals and patients with other respiratory diseases: chronic obstructive pulmonary disease (COPD), asthma and idiopathic interstitial pneumonias (IIPs). METHODS RT-PCR was used to quantify the mRNAs in bronchoalveolar (BA) cells obtained from 50 sarcoidosis patients, 23 healthy controls, 30 COPD, 19 asthmatic and 19 IIPs patients. Flow cytometry was used to assess intracellular protein expression of AUF1 and HuR in peripheral blood T lymphocytes (PBTLs) obtained from 9 sarcoidosis patients and 6 healthy controls. RESULTS Taking the stringent conditions for multiple comparisons into consideration, we consistently observed in the primary analysis including all patients regardless of smoking status as well as in the subsequent sub-analysis limited for never smokers that the BA mRNA expression of AUF1 (p<0.001), TIA (p<0.001), NCL (p<0.01) and RECK (p<0.05) was decreased in sarcoidosis compared to healthy controls. TIA mRNA was also decreased in sarcoidosis compared to both obstructive pulmonary diseases (COPD and asthma; p<0.001) but not compared to IIPs. There were several positive correlations between RECK mRNA and RBP mRNAs in BA cells. Also sarcoidosis CD3+, CD4+ and CD8+ PBTLs displayed lower mean fluorescence intensity of AUF1 (p≤0.02) and HuR (p≤0.03) proteins than control healthy PBTLs. CONCLUSION mRNA expressions of three RBPs (AUF1, TIA and NCL) and their potential target mRNA encoding RECK in BA cells and additionally protein expression of AUF1 and HuR in PBTLs were down-regulated in our sarcoidosis patients compared to healthy individuals. Its significance, e.g. for stability of mRNAs encoding pro-inflammatory factors, should be further explored in sarcoidosis.
Collapse
Affiliation(s)
- Zdenka Navratilova
- Laboratory of Immunogenomics and Immunoproteomics, Department of Pathological Physiology, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Novosadova
- Laboratory of Immunogenomics and Immunoproteomics, Department of Pathological Physiology, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
| | - Michael Hagemann-Jensen
- Respiratory Medicine Unit, Department of Medicine, Solna & Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kullberg
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vitezslav Kolek
- Department of Respiratory Medicine, Palacky University, Olomouc, Czech Republic
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Petrek
- Laboratory of Immunogenomics and Immunoproteomics, Department of Pathological Physiology, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
11
|
Sun Y, Yang X, Liu M, Tang H. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells. Cancer Lett 2016; 375:284-292. [PMID: 26987623 DOI: 10.1016/j.canlet.2016.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
Abstract
β-1,4-Galactosyltransferase III (B4GALT3) is an enzyme responsible for the generation of poly-N-acetyllactosamine and is involved in tumorigenesis. However, B4GALT3-dysregulation and its role in cervical cancer cells are unknown. Herein, we found that B4GALT3 was upregulated in cervical cancer tissues compared to adjacent non-tumor tissues. B4GALT3-overexpression promoted, whereas B4GALT3-knockdown suppressed the cellular migration, invasion and EMT of HeLa and C33A cervical cancer cells. To explore the mechanism of dysregulation, B4GALT3 was predicted to be a target of miR-27a. EGFP and pGL3-promoter reporter assay showed miR-27a binds to B4GALT3 3'UTR region but enhanced its expression. RT-qPCR showed miR-27a was also upregulated and presented positive correlation with B4GALT3-expression in cervical cancer tissues. miR-27a-overexpression promoted, but blocking-miR-27a repressed these malignancies in HeLa and C33A cells. Furthermore, shR-B4GALT3 counteracted the promotion of malignancies induced by miR-27a, suggesting miR-27a upregulates B4GALT3 to enhance tumorigenic activities. In addition, we found that B4GALT3 significantly enhances β1-integrin stability, thus mediating promotion of B4GALT3 on malignancy in cervical cancer cells. Altogether, our findings evidenced that B4GALT3 upregulated by miR-27a contributes to the tumorigenic activities by β1-integrin pathway and might provide potential biomarkers for cervical cancer.
Collapse
Affiliation(s)
- Yanrui Sun
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xi Yang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Min Liu
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
12
|
Elevated plasma inflammatory mediators in post-polio syndrome: No association with long-term functional decline. J Neuroimmunol 2015; 289:162-7. [DOI: 10.1016/j.jneuroim.2015.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 01/03/2023]
|