1
|
Freeman SA, Ayoub I, Dauvilliers Y, Liblau RS. Unraveling the pathophysiology of narcolepsy type 1 through hypothesis-driven and hypothesis-generating approaches. Semin Immunol 2025; 78:101962. [PMID: 40373365 DOI: 10.1016/j.smim.2025.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/17/2025]
Abstract
Narcolepsy type 1 (NT1) is a chronic orphan neurological sleep disorder characterized by the loss of hypocretin-producing neurons in the lateral hypothalamus, which play a crucial role in wakefulness. Given the genetic association with the HLA-DQB1 * 06:02 allele and environmental links with the 2009 influenza pandemic, many lines of evidence point towards an immune mechanism, notably autoimmunity, underlying the disease pathophysiology. Autoreactive T cells are found in the blood of NT1 patients, and mouse models demonstrate their migratory capacity and contribution in the selective destruction of hypocretin-producing neurons. However, direct evidence for their role in human NT1 pathophysiology remains elusive. In complementing these findings, hypothesis-generating approaches-including multiparametric immune profiling, transcriptomic sequencing and large-scale proteomic of blood and cerebrospinal fluid-have uncovered promising new avenues into the immune system's involvement in NT1. In this review, we explore the mechanisms driving NT1 pathogenesis, emphasizing both hypothesis-driven and hypothesis-generating approaches, and discuss potential future directions that could pave the way for targeted immunotherapies.
Collapse
Affiliation(s)
- Sean A Freeman
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Neurology, Toulouse University Hospitals, Toulouse, France
| | - Ikram Ayoub
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yves Dauvilliers
- Institute of Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France; Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| |
Collapse
|
2
|
Ortega-Robles E, Guerra-Crespo M, Ezzeldin S, Santana-Román E, Pałasz A, Salama M, Arias-Carrión O. Orexin Restoration in Narcolepsy: Breakthroughs in Cellular Therapy. J Sleep Res 2025:e70083. [PMID: 40325840 DOI: 10.1111/jsr.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Narcolepsy is a chronic neurodegenerative disorder defined by the selective loss of orexin-producing neurons in the lateral hypothalamus, leading to excessive daytime sleepiness and cataplexy. While pharmacological therapies have evolved to mitigate symptoms, they fail to address the core pathology-orexin deficiency. This narrative review examines the potential of orexin cell transplantation as an innovative therapeutic approach to restore orexin signalling and treat the root cause of narcolepsy. We begin by examining the clinical features, pathophysiology, and diagnostic criteria of narcolepsy, focusing on the essential role of orexins in regulating the sleep-wake cycle and the neurobiological mechanisms underlying cataplexy. The review then explores experimental therapeutic approaches, including hypothalamic tissue grafts, gene therapy, and immortalised orexin-expressing cell lines, highlighting their potential to address the orexin deficit in narcolepsy. While preclinical studies show that transplanted orexin cells can integrate into host neural networks, enhance sleep stability, and decrease the frequency of cataplexy in animal models, several challenges remain. Immortalised orexin cell lines offer a scalable and consistent option for transplantation therapies. However, immune rejection, long-term cell survival, and complete functional integration persist. These translational hurdles must be addressed to bring these therapies to clinical practice. This review underscores the need for continued research to overcome these barriers and optimise cell-based therapies for narcolepsy.
Collapse
Affiliation(s)
- Emmanuel Ortega-Robles
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
| | - Magdalena Guerra-Crespo
- Departamento de Fisiología, Facultad de Medicina, Laboratorio de Medicina Regenerativa y Canales Iónicos, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Shahd Ezzeldin
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Estefanía Santana-Román
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
- Experimental Neurology, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
3
|
Eghtedarian R, Tervi AM, Jones SE, Partinen M, Viippola E, Ollila HM. Narcolepsy as a potential risk factor for Schizophrenia. Transl Psychiatry 2025; 15:55. [PMID: 39962082 PMCID: PMC11832773 DOI: 10.1038/s41398-025-03259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/07/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Narcolepsy is a severe sleep disorder with characteristics of fatigue, fragmented sleep, cataplexy and hypnagogic hallucinations. Earlier clinical studies have reported the onset of schizophrenia after narcolepsy but the causality behind narcolepsy and schizophrenia is unknown. Our goal was to understand the causality between narcolepsy and schizophrenia. To estimate the comorbidity between narcolepsy and schizophrenia, we employed data from the FinRegistry that contains data for the total population of Finland in total 7.2 million individuals (N = 1664 individuals with narcolepsy and 55,372 with schizophrenia). We then used Mendelian randomization and previously published genome-wide association data to test the causality between narcolepsy and schizophrenia. We observed a robust causal association from narcolepsy to schizophrenia using the HLA-independent lead variants (P-value = 6.0 × 10-4), which was accentuated when including the HLA locus (P-value = 4.48 × 10-7). Furthermore, we observed a modest bidirectional causality from schizophrenia to narcolepsy (P-value = 0.015). There was no evidence of pleiotropy. Our findings indicate a causal relationship where narcolepsy may increase the risk for schizophrenia, and a bidirectional causality from schizophrenia to narcolepsy. Additionally, our results clarify the psychiatric burden in narcolepsy.
Collapse
Affiliation(s)
- Reyhane Eghtedarian
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anniina M Tervi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuel E Jones
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markku Partinen
- Helsinki Sleep Clinic, Terveystalo Healthcare, Helsinki, Finland
| | - Essi Viippola
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Conti M, Cirillo F, Maio S, Fernandes M, Bovenzi R, Placidi F, Izzi F, Mercuri NB, Liguori C. Increased neutrophil-to-lymphocyte ratio as a possible marker to detect neuroinflammation in patients with narcolepsy type 1. J Clin Sleep Med 2025; 21:101-107. [PMID: 39297540 DOI: 10.5664/jcsm.11368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1) is an autoimmune disease caused by the selective immune attack against orexin-producing neurons. However, the pathophysiology of narcolepsy type 2 (NT2) and idiopathic hypersomnia (IH) remains controversial. The neutrophil-to-lymphocyte ratio (NLR) is an easily calculated parameter from the white blood cell count, which has already been extensively used as an inflammatory marker in immunological disorders. In this study, we examined the white blood cell count of patients with NT1, NT2, and IH compared to healthy controls (HC) and evaluated the NLR to test the possibility of identifying an easy biofluid marker for detecting inflammation and distinguishing patients from HC. METHODS White blood cell count and NLR were compared between 28 patients with NT1, 17 with NT2, 11 with IH, and 21 sex/age-matched HC. These parameters were correlated with cerebrospinal fluid levels of orexin-A, the cerebrospinal fluid/serum albumin ratio (as a marker of blood-brain barrier integrity), and polysomnographic parameters. RESULTS Patients with NT1 (NLR 2.01 ± 0.44) showed significantly higher NLR than those with NT2 (NLR 1.59 ± 0.53) or IH (NLR 1.48 ± 0.37) and HC (NLR 1.48 ± 0.43). Correlation analysis did not document significant associations between NLR and the other biological markers in each group of patients. The receiver operating characteristic curve analysis detected an optimal cutoff value to discriminate patients with NT1 from those with NT2, IH, and HC for values of NLR ≥ 1.60, 1.62, and 1.59, respectively. CONCLUSIONS Patients with NT1 showed a higher NLR than those with NT2, IH, and HC, possibly reflecting lymphocyte migration within the central nervous system, supporting the hypothesis of a neuroinflammatory attack of lymphocytes against orexin-producing neurons. Considering its sensitivity, this easily obtainable biofluid marker could help to screen patients with NT1. CITATION Conti M, Cirillo F, Maio S, et al. Increased neutrophil-to-lymphocyte ratio as a possible marker to detect neuroinflammation in patients with narcolepsy type 1. J Clin Sleep Med. 2025;21(1):101-107.
Collapse
Affiliation(s)
- Matteo Conti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Cirillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Maio
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Bovenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Vringer M, Zhou J, Gool JK, Bijlenga D, Lammers GJ, Fronczek R, Schinkelshoek MS. Recent insights into the pathophysiology of narcolepsy type 1. Sleep Med Rev 2024; 78:101993. [PMID: 39241492 DOI: 10.1016/j.smrv.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Narcolepsy type 1 (NT1) is a sleep-wake disorder in which people typically experience excessive daytime sleepiness, cataplexy and other sleep-wake disturbances impairing daily life activities. NT1 symptoms are due to hypocretin deficiency. The cause for the observed hypocretin deficiency remains unclear, even though the most likely hypothesis is that this is due to an auto-immune process. The search for autoantibodies and autoreactive T-cells has not yet produced conclusive evidence for or against the auto-immune hypothesis. Other mechanisms, such as reduced corticotrophin-releasing hormone production in the paraventricular nucleus have recently been suggested. There is no reversive treatment, and the therapeutic approach is symptomatic. Early diagnosis and appropriate NT1 treatment is essential, especially in children to prevent impaired cognitive, emotional and social development. Hypocretin receptor agonists have been designed to replace the attenuated hypocretin signalling. Pre-clinical and clinical trials have shown encouraging initial results. A better understanding of NT1 pathophysiology may contribute to faster diagnosis or treatments, which may cure or prevent it.
Collapse
Affiliation(s)
- Marieke Vringer
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jingru Zhou
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jari K Gool
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Anatomy & Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Denise Bijlenga
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert Jan Lammers
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rolf Fronczek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mink S Schinkelshoek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
6
|
Xu W, Ding W, Zhang Y, Wang S, Yan X, Xu Y, Zhi X, Liu R. The Role of T Cells in the Pathogenesis of Narcolepsy Type 1: A Narrative Review. Int J Mol Sci 2024; 25:11914. [PMID: 39595997 PMCID: PMC11593411 DOI: 10.3390/ijms252211914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Narcolepsy type 1 (NT1) is an uncommon, persistent sleep disorder distinguished by significant daytime sleepiness, episodes of cataplexy, and irregularities in rapid eye movement sleep. The etiology of NT1 is linked to the destruction of hypothalamic neurons responsible for the synthesis of the wake-promoting neuropeptide known as hypothalamic orexin. The pathophysiological mechanisms underlying NT1 remain inadequately elucidated; however, a model that incorporates the interplay of genetic predisposition, environmental influences, immune system factors, and a deficiency in hypocretin (HCRT) provides a framework for elucidating the pathogenesis of NT1. The prevalence of NT1 has been observed to rise following influenza A (H1N1) pdm09 and the administration of the Pandemrix influenza vaccine. The strong association between narcolepsy and the HLA-DQB1*06:02 allele strongly indicates an autoimmune etiology for this condition. Increasing evidence suggests that T cells play a critical role in this autoimmune-mediated HCRT neuronal loss. Studies have identified specific T cell subsets, including CD4+ and CD8+ T cells, that target HCRT neurons, contributing to their destruction. Clarifying the pathogenesis of NT1 driven by autoimmune T cells is crucial for the development of effective therapeutic interventions for this disorder. This review examines the risk factors associated with the pathogenesis of NT1, explores the role of T cells within the immune system in the progression of NT1, and evaluates immune-mediated animal models alongside prospective immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rongzeng Liu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
7
|
Zhong X, Yuan Y, Zhan Q, Yin T, Ku C, Liu Y, Wang F, Ding Y, Deng L, Wu W, Xie L. Cell-based vs enzyme-linked immunosorbent assay for detection of anti-Tribbles homolog 2 autoantibodies in Chinese patients with narcolepsy. J Clin Sleep Med 2024; 20:941-946. [PMID: 38318919 PMCID: PMC11145039 DOI: 10.5664/jcsm.11056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
STUDY OBJECTIVES Narcolepsy type 1 is attributed to a deficiency in cerebrospinal fluid orexin and is considered linked to autoimmunity. The levels of anti-Tribbles homolog 2 (TRIB2) autoantibodies are elevated in the sera of some patients with narcolepsy with cataplexy. Additionally, injecting mice with serum immunoglobulin from patients with narcolepsy with positive anti-TRIB2 antibodies can induce hypothalamic neuron loss and alterations in sleep patterns. Consequently, we hypothesized the existence of a potential association between anti-TRIB2 antibodies and narcolepsy. To test this possibility, we used cell-based assays (CBAs) and enzyme-linked immunosorbent assays (ELISAs) to detect the presence of anti-TRIB2 antibodies in Chinese patients with narcolepsy. METHODS We included 68 patients with narcolepsy type 1, 39 patients with other central disorders of hypersomnolence, and 43 healthy controls. A CBA and a conventional ELISA were used to detect anti-TRIB2 antibody levels in patients' sera. RESULTS CBA was used to detect serum anti-TRIB2 antibodies in Chinese patients with narcolepsy, and the results were negative. However, when the ELISA was used, only 2 patients with narcolepsy type 1 had TRIB2 antibody titers higher than the mean titer plus 2 standard deviations of the healthy controls. CONCLUSIONS In our study, ELISA identified TRIB2 autoantibodies in sera of patients with narcolepsy where CBA failed to demonstrate them. Contrary to our hypothesis, this intriguing finding deserves further research to elucidate the potential association between TRIB2 and narcolepsy type 1. Exploring the implications of TRIB2 autoantibodies in narcolepsy and disparate outcomes between ELISA and CBA could provide crucial insights. CITATION Zhong X, Yuan Y, Zhan Q, et al. Cell-based vs enzyme-linked immunosorbent assay for detection of anti-Tribbles homolog 2 autoantibodies in Chinese patients with narcolepsy. J Clin Sleep Med. 2024;20(6):941-946.
Collapse
Affiliation(s)
- Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yuqing Yuan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Qingqing Zhan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Tiantian Yin
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Chengxin Ku
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yuxin Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Fen Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Yongmin Ding
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Liying Deng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
8
|
Jervis S, Payton A, Verma A, Thomasson R, Poulton K. Homozygous HLA-DQB1*06:02 combined with T-cell receptor alpha polymorphism results in narcolepsy onset - A familial case report. Int J Immunogenet 2024; 51:187-191. [PMID: 38462594 DOI: 10.1111/iji.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Narcolepsy is a life-long neurological disorder with well-established genetic risk factors. Human leukocyte antigen-DQB1*06:02 remains the strongest genetic predeterminant; however, polymorphisms in genes encoding the T-cell receptor alpha chain are also strongly linked. This case report shows the inheritance pathway of these genetic markers contributing to narcolepsy onset in a 17-year-old female.
Collapse
Affiliation(s)
- Steven Jervis
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Faculty of Biology, Medicine and Health, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, University of Manchester, Manchester, UK
| | - Antony Payton
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Arpana Verma
- Faculty of Biology, Medicine and Health, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rachel Thomasson
- Manchester Centre for Clinical Neurosciences, Department of Neurology, Salford Royal Hospital, Salford, UK
| | - Kay Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Faculty of Biology, Medicine and Health, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Zhao W, Zhang B, Yan Z, Zhao M, Zhang X, Zhang X, Liu X, Tang J. Correlation analysis between HLA-DQA1*0102/DQB1*0602 genotypes and narcolepsy patients in China. Front Neurol 2024; 15:1379723. [PMID: 38725645 PMCID: PMC11079304 DOI: 10.3389/fneur.2024.1379723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Background and objective At present, the etiology of narcolepsy is not fully understood, and it is generally believed to be an autoimmune reaction caused by interactions between environmental and genetic factors. Human leukocyte antigen (HLA) class II genes are strongly associated with this gene, especially HLA-DQB1*0602/DQA1*0102. In this study, we mainly analyzed the correlation between different genotypes of HLA-DQB1*0602/DQA1*0102 and clinical manifestations in Chinese patients with narcolepsy. Experimental method Narcolepsy patients who were treated at the Department of Neurology, The First Affiliated Hospital of Shandong First Medical University from January 2021 to September 2023 were selected. General information, sleep monitoring data, cerebrospinal fluid (CSF) orexin levels, and human leukocyte antigen gene typing data were collected. The statistical analysis was performed using SPSS 26.0, and the graphs were drawn using GraphPad Prism 9.5. Main results A total of 78 patients were included in this study. The DQA1 and DQB1 gene loci were detected in 54 patients, and only the DQB1 gene locus was detected in 24 narcoleptic patients. The most common allele at the HLA-DQB1 locus was *0602 (89.7%), and the most common genotype at this locus was *0602*0301 (19.2%), followed by *0602*0602 (17.9%). The most common phenotype of the HLA-DQA1 locus is *0102 (92.6%), and the most common genotype of this locus is *0102*0102 (27.8%), followed by *0102*0505 (14.8%). There were significant differences (p < 0.05) between HLA-DQB1*0602-positive and HLA-DQB1*0602-negative patients in terms of orexin-A levels, presence or absence of cataplexy, UNS, PSG sleep latency, REM sleep latency, N1 sleep percentage, oxygen depletion index, and average REM latency on the MSLT. The HLA-DQA1*0102-positive and HLA-DQA1*0102-negative patients showed significant differences (p < 0.05) in disease course, presence or absence of sudden onset, PSG REM sleep latency, N1 sleep percentage, and average REM latency on the MSLT. There were significant differences in the average REM latency of the MSLT between HLA-DQB1*0602/DQA1*0102 homozygous and heterozygous patients p < 0.05, and no differences were found in the baseline data, orexin-A levels, scale scores, or other sleep parameters. Conclusion Different genotypes of HLA-DQA1*0102/DQB1*0602 are associated with symptoms of cataplexy in Chinese narcoleptic patients. Homozygous individuals have a shorter mean REM latency in the MSLT, greater genetic susceptibility, and relatively more severe sleepiness.
Collapse
Affiliation(s)
- Wanyu Zhao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Baokun Zhang
- Department of Neurology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zian Yan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Mengke Zhao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaomin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jiyou Tang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
11
|
Miano S, Barateau L, De Pieri M, Riccardi S, Thevenin C, Manconi M, Dauvilliers Y. A series of 7 cases of patients with narcolepsy with hypocretin deficiency without the HLA DQB1*06:02 allele. J Clin Sleep Med 2023; 19:2053-2057. [PMID: 37539640 PMCID: PMC10692923 DOI: 10.5664/jcsm.10748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
STUDY OBJECTIVES We report data collected from 2 reference European sleep centers on a series of patients with narcolepsy with hypocretin-1 deficiency and absence of the human leukocyte antigens (HLA) DQB1*06:02 allele. METHODS Clinical data, HLA DQ markers, and cerebrospinal fluid assessments were collected retrospectively from Caucasian patients with a diagnosis of narcolepsy type 1 with cerebrospinal fluid hypocretin-1 deficiency (< 110 pg/ml) and absence of the HLA DQB1*06:02 allele, with follow-up with at least 1 visit within the last 4 years, consecutively admitted to 2 European sleep centers (Lugano, Switzerland and Montpellier, France). RESULTS Seven patients (3 of 29 patients in Lugano and 4 of 328 in Montpellier) were diagnosed with narcolepsy with hypocretin-1 deficiency and absence of HLA DQB1*06:02 (ie, 2% of patients with narcolepsy type 1). Regarding the HLA-DQB1 genotyping, 4 cases were positive for HLA DQB1*03:01, 1 for DQB1*03:02, and 3 for DQB1*02:01. Three patients had atypical cataplexy and 1 had no cataplexy. Only 2 patients had both a mean sleep latency of less than 8 minutes and more than 2 sleep onset rapid eye movement periods on the Multiple Sleep Latency Test, indicative of a less severe condition. CONCLUSIONS Although rare, this series of 7 cases confirms that hypocretin-deficient narcolepsy should not be excluded in the absence of HLA DQB1*06:02, especially if patients are carriers of other high-risk HLA-DQB1 alleles (DQB1*03:01, *03:02, *02:01). These data support the hypothesis that narcolepsy type 1 is a wider disease spectrum linked to the loss of hypocretin peptide. CITATION Miano S, Barateau L, De Pieri M, et al. A series of 7 cases of patients with narcolepsy with hypocretin deficiency without the HLA DQB1*06:02 allele. J Clin Sleep Med. 2023;19(12):2053-2057.
Collapse
Affiliation(s)
- Silvia Miano
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
- National Reference Network for Narcolepsy, Montpellier, Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier, France
| | - Marco De Pieri
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- General Psychiatry Service, Hopitaux Universitaires de Genève, Geneva, Switzerland
| | - Silvia Riccardi
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Celine Thevenin
- Département d’Immunologie, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Mauro Manconi
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
12
|
Ollila HM, Sharon E, Lin L, Sinnott-Armstrong N, Ambati A, Yogeshwar SM, Hillary RP, Jolanki O, Faraco J, Einen M, Luo G, Zhang J, Han F, Yan H, Dong XS, Li J, Zhang J, Hong SC, Kim TW, Dauvilliers Y, Barateau L, Lammers GJ, Fronczek R, Mayer G, Santamaria J, Arnulf I, Knudsen-Heier S, Bredahl MKL, Thorsby PM, Plazzi G, Pizza F, Moresco M, Crowe C, Van den Eeden SK, Lecendreux M, Bourgin P, Kanbayashi T, Martínez-Orozco FJ, Peraita-Adrados R, Benetó A, Montplaisir J, Desautels A, Huang YS, Jennum P, Nevsimalova S, Kemlink D, Iranzo A, Overeem S, Wierzbicka A, Geisler P, Sonka K, Honda M, Högl B, Stefani A, Coelho FM, Mantovani V, Feketeova E, Wadelius M, Eriksson N, Smedje H, Hallberg P, Hesla PE, Rye D, Pelin Z, Ferini-Strambi L, Bassetti CL, Mathis J, Khatami R, Aran A, Nampoothiri S, Olsson T, Kockum I, Partinen M, Perola M, Kornum BR, Rueger S, Winkelmann J, Miyagawa T, Toyoda H, Khor SS, Shimada M, Tokunaga K, Rivas M, Pritchard JK, Risch N, Kutalik Z, O'Hara R, Hallmayer J, Ye CJ, Mignot EJ. Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy. Nat Commun 2023; 14:2709. [PMID: 37188663 PMCID: PMC10185546 DOI: 10.1038/s41467-023-36120-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/17/2023] [Indexed: 05/17/2023] Open
Abstract
Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix®. Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix®.
Collapse
Affiliation(s)
- Hanna M Ollila
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Eilon Sharon
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Ling Lin
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Nasa Sinnott-Armstrong
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Aditya Ambati
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Selina M Yogeshwar
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
- Department of Neurology, Charité-Universitätsmedizin, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
| | - Ryan P Hillary
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Otto Jolanki
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Juliette Faraco
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Mali Einen
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Guo Luo
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Jing Zhang
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Fang Han
- Division of Sleep Medicine, The Peking University People's Hospital, Beijing, China
| | - Han Yan
- Division of Sleep Medicine, The Peking University People's Hospital, Beijing, China
| | - Xiao Song Dong
- Division of Sleep Medicine, The Peking University People's Hospital, Beijing, China
| | - Jing Li
- Division of Sleep Medicine, The Peking University People's Hospital, Beijing, China
| | - Jun Zhang
- Department of Neurology, The Peking University People's Hospital, Beijing, China
| | - Seung-Chul Hong
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Tae Won Kim
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, National Reference Network for Narcolepsy, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; Institute for Neurosciences of Montpellier (INM), INSERM, Université Montpellier 1, Montpellier, France
| | - Lucie Barateau
- Sleep-Wake Disorders Center, National Reference Network for Narcolepsy, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; Institute for Neurosciences of Montpellier (INM), INSERM, Université Montpellier 1, Montpellier, France
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Centre, Heemstede, The Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Centre, Heemstede, The Netherlands
| | - Geert Mayer
- Hephata Klinik, Schimmelpfengstr. 6, 34613, Schwalmstadt, Germany
- Philipps Universität Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Joan Santamaria
- Neurology Service, Institut de Neurociències Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Isabelle Arnulf
- Sleep Disorder Unit, Pitié-Salpêtrière Hospital, Assistance Publique-Hopitaux de Paris, 75013, Paris, France
| | - Stine Knudsen-Heier
- Norwegian Centre of Expertise for Neurodevelopment Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - May Kristin Lyamouri Bredahl
- Norwegian Centre of Expertise for Neurodevelopment Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital and University of Oslo, Oslo, Norway
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Per Medbøe Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Monica Moresco
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | | | - Michel Lecendreux
- Pediatric Sleep Center and National Reference Center for Narcolepsy and Idiopathic Hypersomnia Hospital Robert Debre, Paris, France
| | - Patrice Bourgin
- Department of Sleep Medicine, Strasbourg University Hospital, Strasbourg University, Strasbourg, France
| | - Takashi Kanbayashi
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Akita, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Francisco J Martínez-Orozco
- Sleep Unit. Clinical Neurophysiology Service. San Carlos University Hospital. University Complutense of Madrid, Madrid, Spain
| | - Rosa Peraita-Adrados
- Sleep and Epilepsy Unit, Clinical Neurophysiology Service, Gregorio Marañón University General Hospital and Research Institute, University Complutense of Madrid (UCM), Madrid, Spain
| | | | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur and Department of Neurosciences, University of Montréal, Montréal, QC, Canada
| | - Alex Desautels
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur and Department of Neurosciences, University of Montréal, Montréal, QC, Canada
| | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and University, Taoyuan, Taiwan
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, University of Copenhagen, Glostrup Hospital, Glostrup, Denmark
| | - Sona Nevsimalova
- Department of Neurology and Centre of Clinical Neurosciences, First Faculty of Medicine, Charles University and General University Hosptal, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Centre of Clinical Neurosciences, First Faculty of Medicine, Charles University and General University Hosptal, Prague, Czech Republic
| | - Alex Iranzo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neurology, Barcelona, Spain
- Multidisciplinary Sleep Disorders Unit, Barcelona, Spain
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, P.O. Box 61, 5590 AB, Heeze, The Netherlands
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aleksandra Wierzbicka
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Peter Geisler
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Karel Sonka
- Department of Neurology and Centre of Clinical Neurosciences, First Faculty of Medicine, Charles University and General University Hosptal, Prague, Czech Republic
| | - Makoto Honda
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Seiwa Hospital, Neuropsychiatric Research Institute, Tokyo, Japan
| | - Birgit Högl
- Department of Neurology, Medical University Innsbruck (MUI), Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University Innsbruck (MUI), Innsbruck, Austria
| | | | - Vilma Mantovani
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Eva Feketeova
- Neurology Department, Medical Faculty of P. J. Safarik University, University Hospital of L. Pasteur Kosice, Kosice, Slovak Republic
| | - Mia Wadelius
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niclas Eriksson
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala, Sweden
| | - Hans Smedje
- Division of Child and Adolescent Psychiatry, Karolinska Institutet, Stockholm, Sweden
| | - Pär Hallberg
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zerrin Pelin
- Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Ospedale San Raffaele, Università Vita-Salute, Milan, Italy
| | - Claudio L Bassetti
- Neurology Department, EOC, Ospedale Regionale di Lugano, Lugano, Ticino, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Johannes Mathis
- Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Ramin Khatami
- Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Center for Sleep Medicine and Sleep Research, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Adi Aran
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kerala, India
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Centre, Helsinki, Finland
- Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Markus Perola
- University of Helsinki, Institute for Molecular Medicine, Finland (FIMM) and Diabetes and Obesity Research Program. University of Tartu, Estonian Genome Center, Tartu, Estonia
| | - Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sina Rueger
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Taku Miyagawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Toyoda
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Shimada
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manuel Rivas
- Department of Biomedical Data Science-Administration, Stanford University, Palo Alto, CA, USA
| | | | - Neil Risch
- Dept. Epidemiology and Biostatistics, UCSF, 513 Parnassus Avenue, San Francisco, CA, 94117, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland, Lausanne, 1010, Switzerland
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
- Mental Illness Research Education Clinical Centers (MIRECC), VA Palo Alto, Palo Alto, CA, USA
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
- Mental Illness Research Education Clinical Centers (MIRECC), VA Palo Alto, Palo Alto, CA, USA
| | - Chun Jimmie Ye
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel J Mignot
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA.
| |
Collapse
|
13
|
Mogavero MP, DelRosso LM, Bruni O, Salemi M, Salsone M, Novellino F, Zucconi M, Ferini Strambi L, Ferri R. Genetics and epigenetics of rare hypersomnia. Trends Genet 2023; 39:415-429. [PMID: 36842900 DOI: 10.1016/j.tig.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/28/2023]
Abstract
Herein we focus on connections between genetics and some central disorders of hypersomnolence - narcolepsy types 1 and 2 (NT1, NT2), idiopathic hypersomnia (IH), and Kleine-Levin syndrome (KLS) - for a better understanding of their etiopathogenetic mechanisms and a better diagnostic and therapeutic definition. Gene pleiotropism influences neurological and sleep disorders such as hypersomnia; therefore, genetics allows us to uncover common pathways to different pathologies, with potential new therapeutic perspectives. An important body of evidence has accumulated on NT1 and IH, allowing a better understanding of etiopathogenesis, disease biomarkers, and possible new therapeutic approaches. Further studies are needed in the field of epigenetics, which has a potential role in the modulation of biological specific hypersomnia pathways.
Collapse
Affiliation(s)
- Maria Paola Mogavero
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Lourdes M DelRosso
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Oliviero Bruni
- Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Maria Salsone
- Vita-Salute San Raffaele University, Milan, Italy; Institute of Molecular Bioimaging and Physiology, National Research Council, Milan, Italy
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Marco Zucconi
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Ferini Strambi
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
14
|
Lane JM, Qian J, Mignot E, Redline S, Scheer FAJL, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 2023; 24:4-20. [PMID: 36028773 PMCID: PMC10947799 DOI: 10.1038/s41576-022-00519-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.
Collapse
Affiliation(s)
- Jacqueline M Lane
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Mignot
- Center for Narcolepsy, Stanford University, Palo Alto, California, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
15
|
Rodriguez OL, Silver CA, Shields K, Smith ML, Watson CT. Targeted long-read sequencing facilitates phased diploid assembly and genotyping of the human T cell receptor alpha, delta, and beta loci. CELL GENOMICS 2022; 2:100228. [PMID: 36778049 PMCID: PMC9903726 DOI: 10.1016/j.xgen.2022.100228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/25/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022]
Abstract
T cell receptors (TCRs) recognize peptide fragments presented by the major histocompatibility complex (MHC) and are critical to T cell-mediated immunity. Recent data have indicated that genetic diversity within TCR-encoding gene regions is underexplored, limiting understanding of the impact of TCR loci polymorphisms on TCR function in disease, even though TCR repertoire signatures (1) are heritable and (2) associate with disease phenotypes. To address this, we developed a targeted long-read sequencing approach to generate highly accurate haplotype resolved assemblies of the TCR beta (TRB) and alpha/delta (TRA/D) loci, facilitating the genotyping of all variant types, including structural variants. We validate our approach using two mother-father-child trios and 5 unrelated donors representing multiple populations. This resulted in improved genotyping accuracy and the discovery of 84 undocumented V, D, J, and C alleles, demonstrating the utility of this framework for improving our understanding of TCR diversity and function in disease.
Collapse
Affiliation(s)
- Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Catherine A. Silver
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA,Corresponding author
| |
Collapse
|
16
|
Whole-genome analysis of monozygotic Brazilian twins discordant for type 1 narcolepsy: a case report. BMC Neurol 2022; 22:439. [DOI: 10.1186/s12883-022-02921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Narcolepsy type 1 (NT1) is a rare and chronic neurological disease characterized by sudden sleep attacks, overwhelming daytime drowsiness, and cataplexy. When associated with a sudden loss of muscle tone (cataplexy) narcolepsy is classified as type 1, while the absence of cataplexy indicates type 2. Genetic, degenerative, and immunological hypotheses to explain the pathophysiology of NT1 are still a matter of debate. To contribute to the understanding of NT1 genetic basis, here we describe, for the first time, a whole genome analysis of a monozygotic twin pair discordant for NT1.
Case presentation
We present the case of a pair of 17-year-old male, monozygotic twins discordant for NT1. The affected twin had Epworth Sleepiness Scale (ESS) of 20 (can range from 0 to 24), cataplexy, hypnagogic hallucinations, polysomnography without abnormalities, multiple sleep latency tests (MSLT) positive for narcolepsy, a mean sleep latency of 3 min, sleep-onset REM periods SOREMPs of 5, presence of allele HLA-DQB1*06:02, and Hypocretin-1 level of zero pg/mL (normal values are > 200 pg/mL). The other twin had no narcolepsy symptoms (ESS of 4), normal polysomnography, MSLT without abnormalities, presence of allele HLA-DQB1*06:02, and Hypocretin-1 level of 396,74 pg/mL. To describe the genetic background for the NT1 discordant manifestations in this case, we present the whole-genome analysis of this monozygotic twin pair. The whole-genome comparison revealed that both twins have identical NT1 pathogenic mutations in known genes, such as HLA-DQB1*06:02:01, HLA-DRB1*11:01:02/*15:03:01. The affected twin has the expected clinical manifestation while the unaffected twin has an unexpected phenotype. The unaffected twin has significantly more frameshift mutations as compared to the affected twin (108 versus 75) and mutations that affect stop codons (61 versus 5 in stop gain, 26 versus 2 in start lost).
Conclusions
The differences observed in frameshift and stop codon mutations in the unaffected twin are consistent with loss-of-function effects and protective alleles, that are almost always associated with loss-of-function rare alleles. Also, overrepresentation analysis of genes containing variants with potential clinical relevance in the unaffected twin shows that most mutations are in genes related to immune regulation function, Golgi apparatus, MHC, and olfactory receptor. These observations support the hypothesis that NT1 has an immunological basis although protective mutations in non-HLA alleles might interfere with the expression of the NT1 phenotype and consequently, with the clinical manifestation of the disease.
Collapse
|
17
|
Chavda V, Chaurasia B, Umana GE, Tomasi SO, Lu B, Montemurro N. Narcolepsy-A Neuropathological Obscure Sleep Disorder: A Narrative Review of Current Literature. Brain Sci 2022; 12:1473. [PMID: 36358399 PMCID: PMC9688775 DOI: 10.3390/brainsci12111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 08/29/2023] Open
Abstract
Narcolepsy is a chronic, long-term neurological disorder characterized by a decreased ability to regulate sleep-wake cycles. Some clinical symptoms enter into differential diagnosis with other neurological diseases. Excessive daytime sleepiness and brief involuntary sleep episodes are the main clinical symptoms. The majority of people with narcolepsy experience cataplexy, which is a loss of muscle tone. Many people experience neurological complications such as sleep cycle disruption, hallucinations or sleep paralysis. Because of the associated neurological conditions, the exact pathophysiology of narcolepsy is unknown. The differential diagnosis is essential because relatively clinical symptoms of narcolepsy are easy to diagnose when all symptoms are present, but it becomes much more complicated when sleep attacks are isolated and cataplexy is episodic or absent. Treatment is tailored to the patient's symptoms and clinical diagnosis. To facilitate the diagnosis and treatment of sleep disorders and to better understand the neuropathological mechanisms of this sleep disorder, this review summarizes current knowledge on narcolepsy, in particular, genetic and non-genetic associations of narcolepsy, the pathophysiology up to the inflammatory response, the neuromorphological hallmarks of narcolepsy, and possible links with other diseases, such as diabetes, ischemic stroke and Alzheimer's disease. This review also reports all of the most recent updated research and therapeutic advances in narcolepsy. There have been significant advances in highlighting the pathogenesis of narcolepsy, with substantial evidence for an autoimmune response against hypocretin neurons; however, there are some gaps that need to be filled. To treat narcolepsy, more research should be focused on identifying molecular targets and novel autoantigens. In addition to therapeutic advances, standardized criteria for narcolepsy and diagnostic measures are widely accepted, but they may be reviewed and updated in the future with comprehension. Tailored treatment to the patient's symptoms and clinical diagnosis and future treatment modalities with hypocretin agonists, GABA agonists, histamine receptor antagonists and immunomodulatory drugs should be aimed at addressing the underlying cause of narcolepsy.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal
| | - Giuseppe E. Umana
- Department of Neurosurgery, Associate Fellow of American College of Surgeons, Trauma and Gamma-Knife Centre, Cannizzaro Hospital Catania, 95100 Catania, Italy
| | | | - Bingwei Lu
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
18
|
Buonocore SM, van der Most RG. Narcolepsy and H1N1 influenza immunology a decade later: What have we learned? Front Immunol 2022; 13:902840. [PMID: 36311717 PMCID: PMC9601309 DOI: 10.3389/fimmu.2022.902840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022] Open
Abstract
In the wake of the A/California/7/2009 H1N1 influenza pandemic vaccination campaigns in 2009-2010, an increased incidence of the chronic sleep-wake disorder narcolepsy was detected in children and adolescents in several European countries. Over the last decade, in-depth epidemiological and immunological studies have been conducted to investigate this association, which have advanced our understanding of the events underpinning the observed risk. Narcolepsy with cataplexy (defined as type-1 narcolepsy, NT1) is characterized by an irreversible and chronic deficiency of hypocretin peptides in the hypothalamus. The multifactorial etiology is thought to include genetic predisposition, head trauma, environmental triggers, and/or infections (including influenza virus infections), and an increased risk was observed following administration of the A/California/7/2009 H1N1 vaccine Pandemrix (GSK). An autoimmune origin of NT1 is broadly assumed. This is based on its strong association with a predisposing allele (the human leucocyte antigen DQB1*0602) carried by the large majority of NT1 patients, and on links with other immune-related genetic markers affecting the risk of NT1. Presently, hypotheses on the underlying potential immunological mechanisms center on molecular mimicry between hypocretin and peptides within the A/California/7/2009 H1N1 virus antigen. This molecular mimicry may instigate a cross-reactive autoimmune response targeting hypocretin-producing neurons. Local CD4+ T-cell responses recognizing peptides from hypocretin are thought to play a central role in the response. In this model, cross-reactive DQB1*0602-restricted T cells from the periphery would be activated to cross the blood-brain barrier by rare, and possibly pathogen-instigated, inflammatory processes in the brain. Current hypotheses suggest that activation and expansion of cross-reactive T-cells by H1N1/09 influenza infection could have been amplified following the administration of the adjuvanted vaccine, giving rise to a “two-hit” hypothesis. The collective in silico, in vitro, and preclinical in vivo data from recent and ongoing research have progressively refined the hypothetical model of sequential immunological events, and filled multiple knowledge gaps. Though no definitive conclusions can be drawn, the mechanistical model plausibly explains the increased risk of NT1 observed following the 2009-2010 H1N1 pandemic and subsequent vaccination campaign, as outlined in this review.
Collapse
|
19
|
Sonti S, Grant SFA. Leveraging genetic discoveries for sleep to determine causal relationships with common complex traits. Sleep 2022; 45:zsac180. [PMID: 35908176 PMCID: PMC9548675 DOI: 10.1093/sleep/zsac180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/16/2022] [Indexed: 01/04/2023] Open
Abstract
Sleep occurs universally and is a biological necessity for human functioning. The consequences of diminished sleep quality impact physical and physiological systems such as neurological, cardiovascular, and metabolic processes. In fact, people impacted by common complex diseases experience a wide range of sleep disturbances. It is challenging to uncover the underlying molecular mechanisms responsible for decreased sleep quality in many disease systems owing to the lack of suitable sleep biomarkers. However, the discovery of a genetic component to sleep patterns has opened a new opportunity to examine and understand the involvement of sleep in many disease states. It is now possible to use major genomic resources and technologies to uncover genetic contributions to many common diseases. Large scale prospective studies such as the genome wide association studies (GWAS) have successfully revealed many robust genetic signals associated with sleep-related traits. With the discovery of these genetic variants, a major objective of the community has been to investigate whether sleep-related traits are associated with disease pathogenesis and other health complications. Mendelian Randomization (MR) represents an analytical method that leverages genetic loci as proxy indicators to establish causal effect between sleep traits and disease outcomes. Given such variants are randomly inherited at birth, confounding bias is eliminated with MR analysis, thus demonstrating evidence of causal relationships that can be used for drug development and to prioritize clinical trials. In this review, we outline the results of MR analyses performed to date on sleep traits in relation to a multitude of common complex diseases.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics and Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
20
|
Klaus S, Carolan A, O'Rourke D, Kennedy B. What respiratory physicians should know about narcolepsy and other hypersomnias. Breathe (Sheff) 2022; 18:220157. [PMID: 36865656 PMCID: PMC9973529 DOI: 10.1183/20734735.0157-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Narcolepsy and related central disorders of hypersomnolence may present to the sleep clinic with excessive daytime sleepiness. A strong clinical suspicion and awareness of the diagnostic clues, such as cataplexy, are essential to avoid unnecessary diagnostic delay. This review provides an overview of the epidemiology, pathophysiology, clinical features, diagnostic criteria and management of narcolepsy and related disorders, including idiopathic hypersomnia, Kleine-Levin syndrome (recurrent episodic hypersomnia) and secondary central disorders of hypersomnolence.
Collapse
Affiliation(s)
- Stephen Klaus
- Department of Sleep Medicine, St James's Hospital, Dublin, Ireland
| | - Aoife Carolan
- Department of Sleep Medicine, St James's Hospital, Dublin, Ireland
| | - Deirdre O'Rourke
- Department of Sleep Medicine, St James's Hospital, Dublin, Ireland
| | - Barry Kennedy
- Department of Sleep Medicine, St James's Hospital, Dublin, Ireland,Corresponding author: Barry Kennedy ()
| |
Collapse
|
21
|
Characterization of T cell receptors reactive to HCRT NH2, pHA 273-287, and NP 17-31 in control and narcolepsy patients. Proc Natl Acad Sci U S A 2022; 119:e2205797119. [PMID: 35914171 PMCID: PMC9371724 DOI: 10.1073/pnas.2205797119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Narcolepsy type 1 (NT1), a disorder caused by hypocretin/orexin (HCRT) cell loss, is associated with human leukocyte antigen (HLA)-DQ0602 (98%) and T cell receptor (TCR) polymorphisms. Increased CD4+ T cell reactivity to HCRT, especially DQ0602-presented amidated C-terminal HCRT (HCRTNH2), has been reported, and homology with pHA273-287 flu antigens from pandemic 2009 H1N1, an established trigger of the disease, suggests molecular mimicry. In this work, we extended DQ0602 tetramer and dextramer data to 77 cases and 44 controls, replicating our prior finding and testing 709 TCRs in Jurkat 76 T cells for functional activation. We found that fewer TCRs isolated with HCRTNH2 (∼11%) versus pHA273-287 or NP17-31 antigens (∼50%) were activated by their ligand. Single-cell characterization did not reveal phenotype differences in influenza versus HCRTNH2-reactive T cells, and analysis of TCR CDR3αβ sequences showed TCR clustering by responses to antigens but no cross-peptide class reactivity. Our results do not support the existence of molecular mimicry between HCRT and pHA273-287 or NP17-31.
Collapse
|
22
|
Chung IH, Chin WC, Huang YS, Wang CH. Pediatric Narcolepsy-A Practical Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:974. [PMID: 35883958 PMCID: PMC9320719 DOI: 10.3390/children9070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Pediatric narcolepsy is a chronic sleep-wakefulness disorder. Its symptoms frequently begin in childhood. This review article examined the literature for research reporting on the effects of treatment of pediatric narcolepsy, as well as proposed etiology and diagnostic tools. Symptoms of pediatric narcolepsy include excessive sleepiness and cataplexy. In addition, rapid-eye-movement-related phenomena such as sleep paralysis, sleep terror, and hypnagogic or hypnapompic hallucinations can also occur. These symptoms impaired children's function and negatively influenced their social interaction, studying, quality of life, and may further lead to emotional and behavioral problems. Therefore, early diagnosis and intervention are essential for children's development. Moreover, there are differences in clinical experiences between Asian and Western population. The treatment of pediatric narcolepsy should be comprehensive. In this article, we review pediatric narcolepsy and its treatment approach: medication, behavioral modification, and education/mental support. Pharmacological treatment including some promising newly-developed medication can decrease cataplexy and daytime sleepiness in children with narcolepsy. Other forms of management such as psychosocial interventions involve close cooperation between children, school, family, medical personnel, and can further assist their adjustment.
Collapse
Affiliation(s)
- I-Hang Chung
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 333, Taiwan; (I.-H.C.); (W.-C.C.)
| | - Wei-Chih Chin
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 333, Taiwan; (I.-H.C.); (W.-C.C.)
| | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 333, Taiwan; (I.-H.C.); (W.-C.C.)
| | - Chih-Huan Wang
- Department of Psychology, Zhejiang Normal University, Jinhua 321004, China;
| |
Collapse
|
23
|
Bernard-Valnet R, Frieser D, Nguyen XH, Khajavi L, Quériault C, Arthaud S, Melzi S, Fusade-Boyer M, Masson F, Zytnicki M, Saoudi A, Dauvilliers Y, Peyron C, Bauer J, Liblau RS. Influenza vaccination induces autoimmunity against orexinergic neurons in a mouse model for narcolepsy. Brain 2022; 145:2018-2030. [PMID: 35552381 DOI: 10.1093/brain/awab455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Narcolepsy with cataplexy or narcolepsy type 1 is a disabling chronic sleep disorder resulting from the destruction of orexinergic neurons in the hypothalamus. The tight association of narcolepsy with HLA-DQB1*06:02 strongly suggest an autoimmune origin to this disease. Furthermore, converging epidemiological studies have identified an increased incidence for narcolepsy in Europe following Pandemrix® vaccination against the 2009-2010 pandemic 'influenza' virus strain. The potential immunological link between the Pandemrix® vaccination and narcolepsy remains, however, unknown. Deciphering these mechanisms may reveal pathways potentially at play in most cases of narcolepsy. Here, we developed a mouse model allowing to track and study the T-cell response against 'influenza' virus haemagglutinin, which was selectively expressed in the orexinergic neurons as a new self-antigen. Pandemrix® vaccination in this mouse model resulted in hypothalamic inflammation and selective destruction of orexin-producing neurons. Further investigations on the relative contribution of T-cell subsets in this process revealed that haemagglutinin-specific CD4 T cells were necessary for the development of hypothalamic inflammation, but insufficient for killing orexinergic neurons. Conversely, haemagglutinin-specific CD8 T cells could not initiate inflammation but were the effectors of the destruction of orexinergic neurons. Additional studies revealed pathways potentially involved in the disease process. Notably, the interferon-γ pathway was proven essential, as interferon-γ-deficient CD8 T cells were unable to elicit the loss of orexinergic neurons. Our work demonstrates that an immunopathological process mimicking narcolepsy can be elicited by immune cross-reactivity between a vaccine antigen and a neuronal self-antigen. This process relies on a synergy between autoreactive CD4 and CD8 T cells for disease development. This work furthers our understanding of the mechanisms and pathways potentially involved in the development of a neurological side effect due to a vaccine and, likely, to narcolepsy in general.
Collapse
Affiliation(s)
- Raphaël Bernard-Valnet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Service of Neurology, Clinical Neurosciences Department, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - David Frieser
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System, Hanoi, Vietnam
| | - Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Clémence Quériault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Sébastien Arthaud
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | - Silvia Melzi
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | | | - Frederick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Matthias Zytnicki
- Unité de Mathématiques et Informatique Appliquées, INRAE, Castanet-Tolosan, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, INSERM U1061, Montpellier, France
| | - Christelle Peyron
- INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience, University of Lyon 1, Bron, France
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.,Department of Immunology, Toulouse University Hospitals, Toulouse, France
| |
Collapse
|
24
|
Latorre D, Federica S, Bassetti CLA, Kallweit U. Narcolepsy: a model interaction between immune system, nervous system, and sleep-wake regulation. Semin Immunopathol 2022; 44:611-623. [PMID: 35445831 PMCID: PMC9519713 DOI: 10.1007/s00281-022-00933-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a rare chronic neurological disorder characterized by an irresistible excessive daytime sleepiness and cataplexy. The disease is considered to be the result of the selective disruption of neuronal cells in the lateral hypothalamus expressing the neuropeptide hypocretin, which controls the sleep-wake cycle. Diagnosis and management of narcolepsy represent still a substantial medical challenge due to the large heterogeneity in the clinical manifestation of the disease as well as to the lack of understanding of the underlying pathophysiological mechanisms. However, significant advances have been made in the last years, thus opening new perspective in the field. This review describes the current knowledge of clinical presentation and pathology of narcolepsy as well as the existing diagnostic criteria and therapeutic intervention for the disease management. Recent evidence on the potential immune-mediated mechanisms that may underpin the disease establishment and progression are also highlighted.
Collapse
Affiliation(s)
| | - Sallusto Federica
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, Institute of Immunology, University Witten/Herdecke, Witten, Germany.,Center for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany
| |
Collapse
|
25
|
Peris Sempere V, Muñiz-Castrillo S, Ambati A, Binks S, Pinto AL, Rogemond V, Pittock SJ, Dubey D, Geschwind MD, Gelfand JM, Dilwali S, Lee ST, Knight J, Elliott KS, Irani S, Honnorat J, Mignot E. Human Leukocyte Antigen Association Study Reveals DRB1*04:02 Effects Additional to DRB1*07:01 in Anti-LGI1 Encephalitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e1140. [PMID: 35115410 PMCID: PMC8815287 DOI: 10.1212/nxi.0000000000001140] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES To study human leukocyte antigen (HLA) allele associations in anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis. METHODS A multiethnic cohort of 269 patients with anti-LGI1 encephalitis and 1,359 controls was included. Four-digit HLA sequencing and genome wide association single-nucleotide polymorphism typing imputation (0.99 concordance) were used for HLA typing. Significance of primary and secondary associations was tested using χ2, Fisher exact tests, or logistic regression with the control of population stratification covariates when applicable. RESULTS DRB1*07:01 and DQA1*02:01, 2 alleles in strong linkage disequilibrium, were associated with the disease (90% vs 24%, OR = 27.8, p < 10e-50) across ethnicity independent of variation at DRB3 and DQB1, 2 flanking HLA loci. DRB1*07:01 homozygosity was associated with a doubling of risk (OR = 2.1, p = 0.010), suggesting causality. DRB1*07:01 negative subjects were younger (p = 0.003) and more frequently female (p = 0.015). Three patients with malignant thymomas did not carry DRB1*07:01, whereas patients with other tumors had high DRB1*07:01 frequency, suggesting that the presence of tumors other than thymomas may be coincidental and not causal. In both DRB1*07:01 heterozygous individuals and DRB1*07:01 negative subjects, DRB1*04:02 was associated with anti-LGI1 encephalitis, indicating an independent effect of this allele (OR = 6.85, p = 4.57 × 10-6 and OR = 8.93, p = 2.50 × 10-3, respectively). DRB1*04:02 was also independently associated with younger age at onset (β = -6.68, p = 9.78 × 10-3). Major histocompatibility complex peptide-binding predictions using LGI1-derived peptides revealed divergent binding propensities for DRB1*04:02 and DRB1*07:01 alleles, suggesting independent pathogenic mechanisms. DISCUSSION In addition to the established primary DRB1*07:01 association in anti-LGI1 encephalitis, we observe a secondary effect of DRB1*04:02 with lower age at onset. Our study provides evidence for secondary effects within HLA locus that correlate with clinical phenotypes in anti-LGI1 encephalitis.
Collapse
Affiliation(s)
| | | | - Aditya Ambati
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Sophie Binks
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Anne-Laurie Pinto
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Veronique Rogemond
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Sean J. Pittock
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Divyanshu Dubey
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Michael D. Geschwind
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Jeffrey Marc Gelfand
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Sonam Dilwali
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Soon-Tae Lee
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Julian Knight
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Katherine S. Elliott
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Sarosh Irani
- From the Stanford University Center for Sleep Sciences (V.P.S., A.A., and E.M.), Stanford University School of Medicine, Palo Alto, CA; French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis (S.M.-C., A.-L.P., V.R., and J.H.), Hospices Civils de Lyon, Hôpital Neurologique; Synatac Team (S.M.-C., A.-L.P., V.R., and J.H.), NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, Université Claude Bernard Lyon 1, Université de Lyon, France; Oxford Autoimmune Neurology Group (S.B. and S.I.), Nuffield Department of Clinical Neurosciences, University of Oxford; Department of Neurology (S.B. and S.I.), John Radcliffe Hospital, Oxford, United Kingdom; Department of Laboratory Medicine and Pathology (S.J.P. and D.D.), and Department of Neurology (S.J.P. and D.D.), Mayo Clinic, Rochester, MN; Department of Neurology (M.D.G., J.M.G., and S.D.), University of California, San Francisco; Department of Neurology (S.-T.L.), Seoul National University Hospital, South Korea; and Wellcome Centre for Human Genetics (J.K. and K.S.E.), Nuffield Department of Medicine, University of Oxford, United Kingdom
| | | | | |
Collapse
|
26
|
Guo J, Xu L, Wang J, Li C, Zhang C, Dong X, Zuo Y, Wen Y, Xiao F, Spruyt K, Han F. The month of birth has a seasonal effect in Chinese patients with narcolepsy and cataplexy. J Clin Sleep Med 2022; 18:461-467. [PMID: 34432630 PMCID: PMC8804987 DOI: 10.5664/jcsm.9626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES We assessed the yearly seasonal, environmental effects on birth pattern in Chinese patients later diagnosed with narcolepsy and cataplexy and explored if this effect persisted in patients with symptoms onset date before, following, and after the 2009 H1N1 pandemic. METHODS A total of 1,942 patients with birth data information and diagnosed narcolepsy with cataplexy were included in this study. The birth month and seasonal effect of 1,064 patients born from 1970 to 2000 were compared to controls (n = 2,028,714) from the general population. Furthermore, birth season effect in 1,373 patients with definite disease onset month were compared among patients with onset date before (n = 595), following (from January 2010 to December 2010) (n = 325), and after (n = 453) the H1N1 pandemic. RESULTS Patients with narcolepsy and cataplexy had a significantly different seasonality from the general population (P = .027). The monthly distribution of birth month yielded a peak in November (odds ratio = 1.23 [95% confidence interval, 1.01-1.49], P = .042) and a trough in April (odds ratio = 0.68 [95% confidence interval, 0.52-0.88], P = .004). No significant difference was observed in the birth month across patients with symptom onset dates before, following, and after the 2009 H1N1 pandemic (P = .603). CONCLUSIONS This finding across many years of seasonal effect in Chinese narcolepsy cataplexy supports a role for early-life environmental influences on disease development. CITATION Guo J, Xu L, Wang J, et al. The month of birth has a seasonal effect in Chinese patients with narcolepsy and cataplexy. J Clin Sleep Med. 2022;18(2):461-467.
Collapse
Affiliation(s)
- Jingjing Guo
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Liyue Xu
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Jingyu Wang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Chenyang Li
- Peking University School of Nursing, Beijing, China
| | - Chi Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiaosong Dong
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yuhua Zuo
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yongfei Wen
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Fulong Xiao
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | | | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China,Address correspondence to: Fang Han, MD, Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, 100044, China;
| |
Collapse
|
27
|
Hsu CW, Tseng PT, Tu YK, Lin PY, Wang LJ, Hung CF, Yang YH, Kao HY, Yeh CB, Lai HC, Chen TY. Month of birth and the risk of narcolepsy: a systematic review and meta-analysis. J Clin Sleep Med 2021; 18:1113-1120. [PMID: 34893148 DOI: 10.5664/jcsm.9816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES The aim of this study is to evaluate the relationship between the month of birth (MOB) and the risk of narcolepsy. METHODS We conducted a systematic review of electronic databases, namely PubMed, Embase, and Cochrane CENTRAL, from their inception to September 30, 2021. We also added data on narcolepsy from the National Database in Taiwan. Then we extracted the relative risk ratios (RR) of narcolepsy in each month of birth to that of the general population and transformed them from month of birth to season. A random-effects model was used to calculate pooled RRs from the meta-analysis and 95% confidence interval (CI). RESULTS The current meta-analysis analyzed seven studies and included 3776 patients from eight areas. The RR was highest in March (RR 1.11 [95% CI 0.99-1.26]) or August (1.11 [0.98-1.26]) and lowest in April (0.90 [0.78-1.03]). However, none of the MOBs reached statistical significance. Moreover, the patterns of the three continents were different. In North America, the highest and lowest significant risks were found in March (1.47 [1.20-1.79]) and September (0.75 [95% CI 0.56-0.99]). In Asia, the notable lowest risk was in April (0.80 [0.66-0.97]). In Europe, the risk of narcolepsy is not significantly related to any MOB. In terms of seasons, only spring births in North America had a significantly higher risk (1.21 [1.06-1.38]). CONCLUSIONS The findings indicated that the risk of narcolepsy and MOB differed across the three continents. This study indicates the important role of environmental factors in narcolepsy. SYSTEMATIC REVIEW REGISTRATION Registry: PROSPERO; Identifier: CRD42020186660.
Collapse
Affiliation(s)
- Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Fa Hung
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Hsu Yang
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Yu Kao
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Ching Lai
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
28
|
Warren RL, Birol I. HLA alleles measured from COVID-19 patient transcriptomes reveal associations with disease prognosis in a New York cohort. PeerJ 2021; 9:e12368. [PMID: 34722002 PMCID: PMC8522641 DOI: 10.7717/peerj.12368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Human Leukocyte Antigen (HLA) gene locus plays a fundamental role in human immunity, and it is established that certain HLA alleles are disease determinants. Previously, we have identified prevalent HLA class I and class II alleles, including DPA1*02:02, in two small patient cohorts at the COVID-19 pandemic onset. METHODS We have since analyzed a larger public patient cohort data (n = 126 patients) with controls, associated demographic and clinical data. By combining the predictive power of multiple in silico HLA predictors, we report on HLA-I and HLA-II alleles, along with their associated risk significance. RESULTS We observe HLA-II DPA1*02:02 at a higher frequency in the COVID-19 positive cohort (29%) when compared to the COVID-negative control group (Fisher's exact test [FET] p = 0.0174). Having this allele, however, does not appear to put this cohort's patients at an increased risk of hospitalization. Inspection of COVID-19 disease severity outcomes, including admission to intensive care, reveal nominally significant risk associations with A*11:01 (FET p = 0.0078) and C*04:01 (FET p = 0.0087). The association with severe disease outcome is especially evident for patients with C*04:01, where disease prognosis measured by mechanical ventilation-free days was statistically significant after multiple hypothesis correction (Bonferroni p = 0.0323). While prevalence of some of these alleles falls below statistical significance after Bonferroni correction, COVID-19 patients with HLA-I C*04:01 tend to fare worse overall. This HLA allele may hold potential clinical value.
Collapse
Affiliation(s)
- René L. Warren
- Genome Sciences Centre, BC Cancer, Vancouver, CA-BC, Canada
| | - Inanc Birol
- Genome Sciences Centre, BC Cancer, Vancouver, CA-BC, Canada
| |
Collapse
|
29
|
Justino JR, Reis CFD, Fonseca AL, Souza SJD, Stransky B. An integrated approach to identify bimodal genes associated with prognosis in câncer. Genet Mol Biol 2021; 44:e20210109. [PMID: 34617951 PMCID: PMC8495773 DOI: 10.1590/1678-4685-gmb-2021-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Bimodal gene expression (where a gene expression distribution has two maxima) is
associated with phenotypic diversity in different biological systems. A critical
issue, thus, is the integration of expression and phenotype data to identify
genuine associations. Here, we developed tools that allow both: i) the
identification of genes with bimodal gene expression and ii) their association
with prognosis in cancer patients from The Cancer Genome Atlas (TCGA).
Bimodality was observed for 554 genes in expression data from 25 tumor types.
Furthermore, 96 of these genes presented different prognosis when patients
belonging to the two expression peaks were compared. The software to execute the
method and the corresponding documentation are available at the Data access
section.
Collapse
Affiliation(s)
- Josivan Ribeiro Justino
- Universidade Federal do Rio Grande do Norte (UFRN), Metrópole Digital, Centro Multiusuário de Bioinformática, Natal, RN, Brazil.,Universidade Federal de Rondônia, Departamento de Matemática e Estatística, Ji-Parana, RO, Brazil
| | - Clovis Ferreira Dos Reis
- Universidade Federal do Rio Grande do Norte (UFRN), Metrópole Digital, Centro Multiusuário de Bioinformática, Natal, RN, Brazil
| | - Andre Luis Fonseca
- Universidade de São Paulo, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Sandro Jose de Souza
- Universidade Federal do Rio Grande do Norte (UFRN), Metrópole Digital, Centro Multiusuário de Bioinformática, Natal, RN, Brazil.,Universidade Federal do Rio Grande do Norte (UFRN), Instituto do Cérebro, Natal, RN, Brazil.,Sichuan University, West China Hospital, Institutes for Systems Genetics, Chengdu, China
| | - Beatriz Stransky
- Universidade Federal do Rio Grande do Norte (UFRN), Metrópole Digital, Centro Multiusuário de Bioinformática, Natal, RN, Brazil.,Universidade Federal do Rio Grande do Norte (UFRN), Centro de Tecnologia, Departamento de Engenharia Biomédica, Natal, RN, Brazil
| |
Collapse
|
30
|
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The Genetics of Sleep Disorders in Children: A Narrative Review. Brain Sci 2021; 11:1259. [PMID: 34679324 PMCID: PMC8534132 DOI: 10.3390/brainsci11101259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep is a universal, highly preserved process, essential for human and animal life, whose complete functions are yet to be unravelled. Familial recurrence is acknowledged for some sleep disorders, but definite data are lacking for many of them. Genetic studies on sleep disorders have progressed from twin and family studies to candidate gene approaches to culminate in genome-wide association studies (GWAS). Several works disclosed that sleep-wake characteristics, in addition to electroencephalographic (EEG) sleep patterns, have a certain degree of heritability. Notwithstanding, it is rare for sleep disorders to be attributed to single gene defects because of the complexity of the brain network/pathways involved. Besides, the advancing insights in epigenetic gene-environment interactions add further complexity to understanding the genetic control of sleep and its disorders. This narrative review explores the current genetic knowledge in sleep disorders in children, following the International Classification of Sleep Disorders-Third Edition (ICSD-3) categorisation.
Collapse
Affiliation(s)
- Greta Mainieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
| | - Angelica Montini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
| | - Antonio Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.N.); (G.D.R.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.N.); (G.D.R.)
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (G.M.); (A.M.)
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | | |
Collapse
|
31
|
Viste R, Viken MK, Lie BA, Juvodden HT, Nordstrand SEH, Thorsby PM, Rootwelt T, Kornum BR, Knudsen-Heier S. High nocturnal sleep fragmentation is associated with low T lymphocyte P2Y11 protein levels in narcolepsy type 1. Sleep 2021; 44:zsab062. [PMID: 33710305 PMCID: PMC8361345 DOI: 10.1093/sleep/zsab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/31/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1) is associated with hypocretin neuron loss. However, there are still unexplained phenotypic NT1 features. We investigated the associations between clinical and sleep phenotypic characteristics, the NT1-associated P2RY11 polymorphism rs2305795, and P2Y11 protein levels in T lymphocytes in patients with NT1, their first-degree relatives and unrelated controls. METHODS The P2RY11 SNP was genotyped in 100 patients (90/100 H1N1-(Pandemrix)-vaccinated), 119 related and 123 non-related controls. CD4 and CD8 T lymphocyte P2Y11 protein levels were quantified using flow cytometry in 167 patients and relatives. Symptoms and sleep recording parameters were also collected. RESULTS We found an association between NT1 and the rs2305795 A allele (OR = 2, 95% CI (1.3, 3.0), p = 0.001). T lymphocyte P2Y11 protein levels were significantly lower in patients and relatives homozygous for the rs2305795 risk A allele (CD4: p = 0.012; CD8: p = 0.007). The nocturnal sleep fragmentation index was significantly negatively correlated with patients' P2Y11 protein levels (CD4: p = 0.004; CD8: p = 0.006). Mean MSLT sleep latency, REM-sleep latency, and core clinical symptoms were not associated with P2Y11 protein levels. CONCLUSIONS We confirmed that the P2RY11 polymorphism rs2305795 is associated with NT1 also in a mainly H1N1-(Pandemrix)-vaccinated cohort. We demonstrated that homozygosity for the A risk allele is associated with lower P2Y11 protein levels. A high level of nocturnal sleep fragmentation was associated with low P2Y11 levels in patients. This suggests that P2Y11 has a previously unknown function in sleep-wake stabilization that affects the severity of NT1.
Collapse
Affiliation(s)
- Rannveig Viste
- Norwegian Center of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marte K Viken
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Benedicte A Lie
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Hilde T Juvodden
- Norwegian Center of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Sebjørg E H Nordstrand
- Norwegian Center of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Terje Rootwelt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Knudsen-Heier
- Norwegian Center of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Wiendl H, Gross CC, Bauer J, Merkler D, Prat A, Liblau R. Fundamental mechanistic insights from rare but paradigmatic neuroimmunological diseases. Nat Rev Neurol 2021; 17:433-447. [PMID: 34050331 DOI: 10.1038/s41582-021-00496-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/04/2023]
Abstract
The pathophysiology of complex neuroimmunological diseases, such as multiple sclerosis and autoimmune encephalitis, remains puzzling - various mechanisms that are difficult to dissect seem to contribute, hampering the understanding of the processes involved. Some rare neuroimmunological diseases are easier to study because their presentation and pathogenesis are more homogeneous. The investigation of these diseases can provide fundamental insights into neuroimmunological pathomechanisms that can in turn be applied to more complex diseases. In this Review, we summarize key mechanistic insights into three such rare but paradigmatic neuroimmunological diseases - Susac syndrome, Rasmussen encephalitis and narcolepsy type 1 - and consider the implications of these insights for the study of other neuroimmunological diseases. In these diseases, the combination of findings in humans, different modalities of investigation and animal models has enabled the triangulation of evidence to validate and consolidate the pathomechanistic features and to develop diagnostic and therapeutic strategies; this approach has provided insights that are directly relevant to other neuroimmunological diseases and applicable in other contexts. We also outline how next-generation technologies and refined animal models can further improve our understanding of pathomechanisms, including cell-specific and antigen-specific CNS immune responses, thereby paving the way for the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany.
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Alexandre Prat
- Department of Neuroscience, University of Montreal, Montreal, Canada
| | - Roland Liblau
- Infinity, Université Toulouse, CNRS, Inserm, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Immunology Department, Toulouse, France
| |
Collapse
|
33
|
Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021; 44:6031626. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Indexed: 11/12/2022] Open
Abstract
Animal models have advanced not only our understanding of the etiology and phenotype of the sleep disorder narcolepsy but have also informed sleep/wake regulation more generally. The identification of an inheritable narcolepsy phenotype in dogs in the 1970s allowed the establishment of a breeding colony at Stanford University, resulting in studies that provided the first insights into the genetics and neurotransmitter systems that underlie cataplexy and rapid-eye movement sleep atonia. Although the discovery of the hypocretin/orexin neuropeptides in 1998 initially seemed unrelated to sleep/wake control, the description of the phenotype of the prepro-orexin knockout (KO) mouse as strongly resembling cataplexy, the pathognomonic symptom of narcolepsy, along with identification of a mutation in hypocretin receptor-2 gene as the source of canine narcolepsy, unequivocally established the relationship between this system and narcolepsy. The subsequent discovery of hypocretin neuron degeneration in human narcolepsy demystified a disorder whose etiology had been unknown since its initial description 120 years earlier. These breakthroughs prompted the development of numerous other animal models that have allowed manipulation of the hypocretin/orexin system, thereby advancing our understanding of sleep/wake circuitry. While animal models have greatly informed understanding of this fascinating disorder and the role of the hypocretin/orexin system in sleep/wake control, the question of why these neurons degenerate in human narcolepsy is only beginning to be understood. The development of new immune-mediated narcolepsy models are likely to further inform the etiology of this sleep disorder and animal models will undoubtedly play a critical role in the development of novel narcolepsy therapeutics.
Collapse
Affiliation(s)
- Ryan K Tisdale
- Center for Neuroscience, Biosciences Division, SRI International
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International
| |
Collapse
|
34
|
Vuorela A, Freitag TL, Leskinen K, Pessa H, Härkönen T, Stracenski I, Kirjavainen T, Olsen P, Saarenpää-Heikkilä O, Ilonen J, Knip M, Vaheri A, Partinen M, Saavalainen P, Meri S, Vaarala O. Enhanced influenza A H1N1 T cell epitope recognition and cross-reactivity to protein-O-mannosyltransferase 1 in Pandemrix-associated narcolepsy type 1. Nat Commun 2021; 12:2283. [PMID: 33863907 PMCID: PMC8052463 DOI: 10.1038/s41467-021-22637-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Narcolepsy type 1 (NT1) is a chronic neurological disorder having a strong association with HLA-DQB1*0602, thereby suggesting an immunological origin. Increased risk of NT1 has been reported among children or adolescents vaccinated with AS03 adjuvant-supplemented pandemic H1N1 influenza A vaccine, Pandemrix. Here we show that pediatric Pandemrix-associated NT1 patients have enhanced T-cell immunity against the viral epitopes, neuraminidase 175-189 (NA175-189) and nucleoprotein 214-228 (NP214-228), but also respond to a NA175-189-mimic, brain self-epitope, protein-O-mannosyltransferase 1 (POMT1675-689). A pathogenic role of influenza virus-specific T-cells and T-cell cross-reactivity in NT1 are supported by the up-regulation of IFN-γ, perforin 1 and granzyme B, and by the converging selection of T-cell receptor TRAV10/TRAJ17 and TRAV10/TRAJ24 clonotypes, in response to stimulation either with peptide NA175-189 or POMT1675-689. Moreover, anti-POMT1 serum autoantibodies are increased in Pandemrix-vaccinated children or adolescents. These results thus identify POMT1 as a potential autoantigen recognized by T- and B-cells in NT1.
Collapse
Affiliation(s)
- A Vuorela
- Clinicum, University of Helsinki, Helsinki, Finland
| | - T L Freitag
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.
| | - K Leskinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - H Pessa
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - T Härkönen
- Clinicum, University of Helsinki, Helsinki, Finland
| | - I Stracenski
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - T Kirjavainen
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - P Olsen
- Department of Child Neurology, Oulu University Hospital, Oulu, Finland
| | | | - J Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - M Knip
- Clinicum, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - A Vaheri
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - M Partinen
- Clinicum, University of Helsinki, Helsinki, Finland
- Department of Neurosciences, University of Helsinki, Helsinki, Finland
- Helsinki Sleep Clinic, Vitalmed Research Center, Helsinki, Finland
| | - P Saavalainen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - S Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - O Vaarala
- Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Ollila HM. Narcolepsy type 1: what have we learned from genetics? Sleep 2021; 43:5842137. [PMID: 32442260 PMCID: PMC7658635 DOI: 10.1093/sleep/zsaa099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Type-1 narcolepsy is a severe neurological disorder with distinct characteristic of loss of hypocretin neurotransmitter. Genetic analysis in type-1 narcolepsy have revealed a unique signal pointing toward autoimmune, rather than psychiatric origin. While type-1 narcolepsy has been intensively studied, the other subtypes of hypersomnolence, narcolepsy, and hypersomnia are less thoroughly understood. This review summarizes the latest breakthroughs in the field in narcolepsy. The goal of this article is to help the reader to understand better the risk from genetic factors and their interplay with immune, genetic, and epidemiological aspects in narcolepsy.
Collapse
Affiliation(s)
- Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA.,Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
36
|
Shimada M, Miyagawa T, Kodama T, Toyoda H, Tokunaga K, Honda M. Metabolome analysis using cerebrospinal fluid from narcolepsy type 1 patients. Sleep 2021; 43:5837570. [PMID: 32412602 DOI: 10.1093/sleep/zsaa095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a hypersomnia characterized by excessive daytime sleepiness and cataplexy. Inappropriate regulation of fatty acid metabolism has been suggested to be involved in the pathophysiology of NT1, but the detailed mechanisms remain uncertain. Here we performed a metabolomic analysis of cerebrospinal fluid samples from 14 NT1 and 17 control subjects using a novel capillary electrophoresis coupled with Fourier transform mass spectrometry. A total of 268 metabolites were identified and the amount of histidine was the most significantly increased in NT1 patients (p = 4.0 × 10-4). Validation analysis using high-performance liquid chromatography (HPLC) including independent replication samples also identified the association of histidine (p = 2.02 × 10-3). Further, levels of histamine, which is synthesized from histidine, were also examined using HPLC and were found to be significantly decreased in NT1 patients (p = 6.12 × 10-4). Pathway analysis with nominally significant metabolites identified several pathways related to the metabolism of glycogenic amino acids, suggesting that glycogenesis is enhanced in NT1 as a compensatory mechanism for fatty acid metabolism. We performed further exploratory analysis, searching for metabolites associated with sleep variables from polysomnography and the multiple sleep latency test. As a result, 5'-deoxy-5'-methylthioadenosine showed a significant association with apnea-hypopnea index (p = 2.66 ×10-6). Moreover, gamma aminobutyric acid displayed a negative correlation with rapid eye movement sleep latency (REML), and thus might represent an intriguing target for future studies to elucidate how the controlling circuit of REM sleep is associated with abnormally short REML in NT1.
Collapse
Affiliation(s)
- Mihoko Shimada
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Miyagawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tohru Kodama
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiromi Toyoda
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Makoto Honda
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Seiwa Hospital, Institute of Neuropsychiatry, Tokyo, Japan
| |
Collapse
|
37
|
Luo G, Yogeshwar S, Lin L, Mignot EJM. T cell reactivity to regulatory factor X4 in type 1 narcolepsy. Sci Rep 2021; 11:7841. [PMID: 33837283 PMCID: PMC8035403 DOI: 10.1038/s41598-021-87481-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 11/11/2022] Open
Abstract
Type 1 narcolepsy is strongly (98%) associated with human leukocyte antigen (HLA) class II DQA1*01:02/DQB1*06:02 (DQ0602) and highly associated with T cell receptor (TCR) alpha locus polymorphism as well as other immune regulatory loci. Increased incidence of narcolepsy was detected following the 2009 H1N1 pandemic and linked to Pandemrix vaccination, strongly supporting that narcolepsy is an autoimmune disorder. Although recent results suggest CD4+ T cell reactivity to neuropeptide hypocretin/orexin and cross-reactive flu peptide is involved, identification of other autoantigens has remained elusive. Here we study whether autoimmunity directed against Regulatory Factor X4 (RFX4), a protein co-localized with hypocretin, is involved in some cases of narcolepsy. Studying human serum, we found that autoantibodies against RFX4 were rare. Using RFX4 peptides bound to DQ0602 tetramers, antigen RFX4-86, -95, and -60 specific human CD4+ T cells were detected in 4/10 patients and 2 unaffected siblings, but not in others. Following culture with each cognate peptide, enriched autoreactive TCRαβ clones were isolated by single-cell sorting and TCR sequenced. Homologous clones bearing TRBV4-2 and recognizing RFX4-86 in patients and one twin control of patient were identified. These results suggest the involvement of RFX4 CD4+ T cell autoreactivity in some cases of narcolepsy, but also in healthy donors.
Collapse
Affiliation(s)
- Guo Luo
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Selina Yogeshwar
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Biosciences, Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Emmanuel Jean-Marie Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
38
|
Abstract
Narcolepsy Type 1 (NT1) is hypothesized to be an autoimmune disease targeting the hypocretin/orexin neurons in the lateral hypothalamus. Ample genetic and epidemiologic evidence point in the direction of a pathogenesis involving the immune system. Many autoantibodies have been detected in blood samples from NT1 patients, but none in a consistent manner. Importantly, T cells directed toward hypocretin/orexin neurons have been detected in samples from NT1 patients. However, it remains to be seen if these potentially autoreactive T cells are also present in the hypothalamus and if they are pathogenic. For this reason, NT1 does still not fully meet the criteria for being classified as a genuine autoimmune disease, even though more and more results are pointing in that direction as will be described in this chapter. The autoimmune hypothesis has led to many attempts at slowing or stopping disease progression with immunomodulatory treatment, but so far the overall results have not been very encouraging. It is clear that more research into the pathogenesis of NT1 is needed to establish the precise role of the immune system in disease development.
Collapse
|
39
|
Giannoccaro MP, Liguori R, Plazzi G, Pizza F. Reviewing the Clinical Implications of Treating Narcolepsy as an Autoimmune Disorder. Nat Sci Sleep 2021; 13:557-577. [PMID: 34007229 PMCID: PMC8123964 DOI: 10.2147/nss.s275931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a lifelong sleep disorder, primarily characterized clinically by excessive daytime sleepiness and cataplexy and pathologically by the loss of hypocretinergic neurons in the lateral hypothalamus. Despite being a rare disorder, the NT1-related burden for patients and society is relevant due to the early onset and chronic nature of this condition. Although the etiology of narcolepsy is still unknown, mounting evidence supports a central role of autoimmunity. To date, no cure is available for this disorder and current treatment is symptomatic. Based on the hypothesis of the autoimmune etiology of this disease, immunotherapy could possibly represent a valid therapeutic option. However, contrasting and limited results have been provided so far. This review discusses the evidence supporting the use of immunotherapy in narcolepsy, the outcomes obtained so far, current issues and future directions.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
40
|
Warren RL, Birol I. Retrospective in silico HLA predictions from COVID-19 patients reveal alleles associated with disease prognosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.27.20220863. [PMID: 33140057 PMCID: PMC7605564 DOI: 10.1101/2020.10.27.20220863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The Human Leukocyte Antigen (HLA) gene locus plays a fundamental role in human immunity, and it is established that certain HLA alleles are disease determinants. METHODS By combining the predictive power of multiple in silico HLA predictors, we have previously identified prevalent HLA class I and class II alleles, including DPA1*02:02, in two small cohorts at the COVID-19 pandemic onset. Since then, newer and larger patient cohorts with controls and associated demographic and clinical data have been deposited in public repositories. Here, we report on HLA-I and HLA-II alleles, along with their associated risk significance in one such cohort of 126 patients, including COVID-19 positive (n=100) and negative patients (n=26). RESULTS We recapitulate an enrichment of DPA1*02:02 in the COVID-19 positive cohort (29%) when compared to the COVID-negative control group (Fisher's exact test [FET] p=0.0174). Having this allele, however, does not appear to put this cohort's patients at an increased risk of hospitalization. Inspection of COVID-19 disease severity outcomes reveal nominally significant risk associations with A*11:01 (FET p=0.0078), C*04:01 (FET p=0.0087) and DQA1*01:02 (FET p=0.0121). CONCLUSIONS While enrichment of these alleles falls below statistical significance after Bonferroni correction, COVID-19 patients with the latter three alleles tend to fare worse overall. This is especially evident for patients with C*04:01, where disease prognosis measured by mechanical ventilation-free days was statistically significant after multiple hypothesis correction (Bonferroni p = 0.0023), and may hold potential clinical value.
Collapse
Affiliation(s)
- René L Warren
- Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Inanç Birol
- Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| |
Collapse
|
41
|
Ambati A, Luo G, Pradhan E, Louis J, Lin L, Leib RD, Ollila HM, Poiret T, Adams C, Mignot E. Mass Spectrometric Characterization of Narcolepsy-Associated Pandemic 2009 Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8040630. [PMID: 33142956 PMCID: PMC7712488 DOI: 10.3390/vaccines8040630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
The onset of narcolepsy, an irreversible sleep disorder, has been associated with 2009 influenza pandemic (pH1N1) infections in China, and with ASO3-adjuvanted pH1N1 vaccinations using Pandemrix in Europe. Intriguingly, however, the increased incidence was only observed following vaccination with Pandemrix but not Arepanrix in Canada. In this study, the mutational burden of actual vaccine lots of Pandemrix (n = 6) and Arepanrix (n = 5) sourced from Canada, and Northern Europe were characterized by mass spectrometry. The four most abundant influenza proteins across both vaccines were nucleoprotein NP, hemagglutinin HA, matrix protein M1, with the exception that Pandemrix harbored a significantly increased proportion of neuraminidase NA (7.5%) as compared to Arepanrix (2.6%). Most significantly, 17 motifs in HA, NP, and M1 harbored mutations, which significantly differed in Pandemrix versus Arepanrix. Among these, a 6-fold higher deamidation of HA146 (p.Asn146Asp) in Arepanrix was found relative to Pandemrix, while NP257 (p.Thr257Ala) and NP424 (p.Thr424Ile) were increased in Pandemrix. DQ0602 binding and tetramer analysis with mutated epitopes were conducted in Pandemrix-vaccinated cases versus controls but were unremarkable. Pandemrix harbored lower mutational burden than Arepanrix, indicating higher similarity to wild-type 2009 pH1N1, which could explain differences in narcolepsy susceptibility amongst the vaccines.
Collapse
Affiliation(s)
- Aditya Ambati
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Guo Luo
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Elora Pradhan
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Jacob Louis
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Ling Lin
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Ryan D. Leib
- Stanford Mass Spectrometry Core, 333 Campus Drive, Mudd 175, Stanford University, Stanford, CA 94305, USA; (R.D.L.); (C.A.)
| | - Hanna Maria Ollila
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Thomas Poiret
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden;
| | - Christopher Adams
- Stanford Mass Spectrometry Core, 333 Campus Drive, Mudd 175, Stanford University, Stanford, CA 94305, USA; (R.D.L.); (C.A.)
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
- Correspondence:
| |
Collapse
|
42
|
Ouyang H, Han F, Zhou ZC, Zhang J. Differences in clinical and genetic characteristics between early- and late-onset narcolepsy in a Han Chinese cohort. Neural Regen Res 2020; 15:1887-1893. [PMID: 32246636 PMCID: PMC7513989 DOI: 10.4103/1673-5374.280322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 01/16/2023] Open
Abstract
Early- and late-onset narcolepsy constitutes two distinct diagnostic subgroups. However, it is not clear whether symptomology and genetic risk factors differ between early- and late-onset narcoleptics. This study compared clinical data and single-nucleotide polymorphisms (SNPs) between early- and late-onset patients in a large cohort of 899 Han Chinese narcolepsy patients. Blood, cerebrospinal fluid, and clinical data were prospectively collected from patients, and patients were genotyped for 40 previously reported narcolepsy risk-conferring SNPs. Genetic risk scores (GRSs), associations of five different sets of SNPs (GRS1-GRS5) with early- and late-onset narcolepsy, were evaluated using logistic regression and receiver operating characteristic curves. Mean sleep latency was significantly shorter in early-onset cases than in late-onset cases. Symptom severity was greater among late-onset patients, with higher rates of sleep paralysis, hypnagogic hallucinations, health-related quality of life impairment, and concurrent presentation with four or more symptoms. Hypocretin levels did not differ significantly between early- and late-onset cases. Only rs3181077 (CCR1/CCR3) and rs9274477 (HLA-DQB1) were more prevalent among early-onset cases. Only GRS1 (26 SNPs; OR = 1.513, 95% CI: 0.893-2.585; P < 0.05) and GRS5 (6 SNPs; OR = 1.893, 95% CI: 1.204-2.993; P < 0.05) were associated with early-onset narcolepsy, with areas under the receiver operating characteristic curves of 0.731 and 0.732, respectively. Neither GRS1 nor GRS5 included SNPs in HLA regions. Our results indicate that symptomology and genetic risk factors differ between early- and late-onset narcolepsy. This protocol was approved by the Institutional Review Board (IRB) Panels on Medical Human Subjects at Peking University People's Hospital, China (approval No. Yuanlunshenlinyi 86) in October 2011.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Clinical Neurology, Peking University People's Hospital, Beijing, China
| | - Fang Han
- Department of Clinical Pulmonology, Peking University People's Hospital, Beijing, China
| | - Ze-Chen Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Clinical Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
43
|
Ledderose C, Bromberger S, Slubowski CJ, Sueyoshi K, Aytan D, Shen Y, Junger WG. The purinergic receptor P2Y11 choreographs the polarization, mitochondrial metabolism, and migration of T lymphocytes. Sci Signal 2020; 13:13/651/eaba3300. [PMID: 32994212 DOI: 10.1126/scisignal.aba3300] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T cells must migrate to encounter antigen-presenting cells and perform their roles in host defense. Here, we found that autocrine stimulation of the purinergic receptor P2Y11 regulates the migration of human CD4 T cells. P2Y11 receptors redistributed from the front to the back of polarized cells where they triggered intracellular cAMP/PKA signals that attenuated mitochondrial metabolism at the back. The absence of P2Y11 receptors at the front of cells resulted in hotspots of mitochondrial metabolism and localized ATP production that stimulated P2X4 receptors, Ca2+ influx, and pseudopod protrusion at the front. This regulatory function of P2Y11 receptors depended on their subcellular redistribution and autocrine stimulation by cellular ATP release and was perturbed by indiscriminate global stimulation. We conclude that excessive extracellular ATP-such as in response to inflammation, sepsis, and cancer-disrupts this autocrine feedback mechanism, which results in defective T cell migration, impaired T cell function, and loss of host immune defense.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sophie Bromberger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian J Slubowski
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Koichiro Sueyoshi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dilan Aytan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yong Shen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
44
|
Ouyang H, Zhou Z, Zheng Q, Zhang J. Analyzing Functional Pathways and constructing gene-gene network for Narcolepsy based on candidate genes. Int J Med Sci 2020; 17:1508-1514. [PMID: 32669953 PMCID: PMC7359385 DOI: 10.7150/ijms.41812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/15/2020] [Indexed: 12/02/2022] Open
Abstract
Aims: To investigate the interactions among narcolepsy-associated genes and reveal the pathways these genes involved through bioinformatics analyses. Methods: The study was performed with the following steps: 1) Selected the previously discovered narcolepsy risk genes through literature review, 2) pathway enrichment analysis, and construction of gene-gene and protein-protein interaction (PPI) networks for narcolepsy. Results: 1) GO analysis revealed the positive regulation of interferon-gamma production as the most enriched terms in biological process, and C-C chemokine receptor activity as the most enriched term in molecular function, 2) KEGG pathway enrichment analysis revealed selective enrichment of genes in cytokine-cytokine receptor interaction signaling pathways, and 3) five hub genes were identified (IFNAR1, IL10RB, DNMT1, TNFSF4 and NFATC2). Conclusion: The bioinformatics results provide new insights into the molecular pathogenesis of narcolepsy and the identification of potential therapeutic targets for narcolepsy treatment.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| | - Zechen Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Qiwen Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
45
|
Ledderose C, Bromberger S, Slubowski CJ, Sueyoshi K, Junger WG. Frontline Science: P2Y11 receptors support T cell activation by directing mitochondrial trafficking to the immune synapse. J Leukoc Biol 2020; 109:497-508. [PMID: 32531829 DOI: 10.1002/jlb.2hi0520-191r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/08/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022] Open
Abstract
T cells form an immune synapse (IS) with antigen-presenting cells (APCs) to detect antigens that match their TCR. Mitochondria, pannexin-1 (panx1) channels, and P2X4 receptors congregate at the IS where mitochondria produce the ATP that panx1 channels release in order to stimulate P2X4 receptors. P2X4 receptor stimulation causes cellular Ca2+ influx that up-regulates mitochondrial metabolism and localized ATP production at the IS. Here we show that P2Y11 receptors are essential players that sustain these T cell activation mechanisms. We found that P2Y11 receptors retract from the IS toward the back of cells where their stimulation by extracellular ATP induces cAMP/PKA signaling that redirects mitochondrial trafficking to the IS. P2Y11 receptors thus reinforce IS signaling by promoting the aggregation of mitochondria with panx1 ATP release channels and P2X4 receptors at the IS. This dual purinergic signaling mechanism involving P2X4 and P2Y11 receptors focuses mitochondrial metabolism to the IS where localized ATP production sustains synaptic activity in order to allow successful completion of T cell activation responses. Our findings have practical implications because rodents lack P2Y11 receptors, raising concerns as to the validity of rodent models to study treatment of infections and inflammatory conditions.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Bromberger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian J Slubowski
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Koichiro Sueyoshi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Ouyang H, Wang S, Zheng Q, Zhang J. Constructing gene network for type 1 narcolepsy based on genome-wide association study and differential gene expression analysis (STROBE). Medicine (Baltimore) 2020; 99:e19985. [PMID: 32358372 PMCID: PMC7440059 DOI: 10.1097/md.0000000000019985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although many genes that affect narcolepsy risk have been identified, the interactions among these genes are still unclear. Moreover, there is a lack of research on the construction of the genetic network of narcolepsy. To screen candidate genes related to the onset of narcolepsy type 1, the function and distribution of important genes related to narcolepsy type 1 were studied and a gene network was constructed to study the pathogenesis of narcolepsy type 1.A case-control study (observational study) of 1075 Chinese narcoleptic patients and 1997 controls was conducted. The gene-sequencing data was analyzed using genome-wide association analysis. The candidate genes related to narcolepsy were identified by differential gene expression analysis and literature research. Then, the 28 candidate genes were input into the KEGG database and 32 pathway data related to candidate genes were obtained. A gene network, with the pathways as links and the genes as nodes, was constructed. According to our results, TNF, MHC II, NFATC2, and CXCL8 were the top genes in the gene network.TNF, MHC II, NFATC2, and CXCL8 are closely related to narcolepsy type I and require further study. By analyzing the pathways of disease-related genes and the network of gene interaction, we can provide an outlinefor the study of specific mechanisms of and treatments for narcolepsy.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Clinical Neurology, Peking University, People's Hospital
| | - Shiying Wang
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing, China
| | - Qiwen Zheng
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Clinical Neurology, Peking University, People's Hospital
| |
Collapse
|
47
|
Muñiz-Castrillo S, Ambati A, Dubois V, Vogrig A, Joubert B, Rogemond V, Picard G, Lin L, Fabien N, Mignot E, Honnorat J. Primary DQ effect in the association between HLA and neurological syndromes with anti-GAD65 antibodies. J Neurol 2020; 267:1906-1911. [PMID: 32152690 DOI: 10.1007/s00415-020-09782-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/04/2023]
Abstract
The primary cause of neurological syndromes with antibodies against glutamic acid decarboxylase 65 (GAD65-Ab) is unknown, but genetic predisposition may exist as it is suggested by the co-occurrence in patients and their relatives of other organ-specific autoimmune diseases, notably type 1 diabetes mellitus (T1DM), and by the reports of a few familial cases. We analyzed the human leukocyte antigen (HLA) in 32 unrelated patients and compared them to an ethnically matched sample of 137 healthy controls. Four-digit resolution HLA alleles were imputed from available Genome Wide Association data, and full HLA next-generation sequencing-based typing was also performed. HLA DQA1*05:01-DQB1*02:01-DRB1*03:01 was the most frequent class II haplotype in patients (13/32, 41%). DQB1*02:01 was the only allele found to be significantly more common in patients than in controls (20/137, 15%, corrected p = 0.03, OR 3.96, 95% CI [1.54-10.09]). There was also a trend towards more frequent DQA1*05:01 among patients compared to controls (22/137, 16%; corrected p = 0.05, OR 3.54, 95% CI [1.40-8.91]) and towards a protective effect of DQB1*03:01 (2/32, 6% in patients vs. 42/137, 31% in control group; corrected p = 0.05, OR 0.15, 95% CI [0.02-0.65]). There was no significant demographic or clinical difference between DQ2 and non-DQ2 carriers (p > 0.05). Taken together, these findings suggest a primary DQ effect on GAD65-Ab neurological diseases, partially shared with other systemic organ-specific autoimmune diseases such as T1DM. However, it is likely that other non-HLA loci are involved in the genetic predisposition of GAD65-Ab neurological syndromes.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Aditya Ambati
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Valérie Dubois
- HLA Laboratory, French Blood Service, EFS Auvergne-Rhône-Alpes, Lyon, France
| | - Alberto Vogrig
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Geraldine Picard
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France
- SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Ling Lin
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Nicole Fabien
- Department of Immunology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Emmanuel Mignot
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Boulevard Pinel, 69677, Bron Cedex, France.
- SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
48
|
Schinkelshoek M, Fronczek R, Verduijn W, Haasnoot G, Overeem S, Donjacour C, van der Heide A, Roelen D, Claas F, Lammers GJ. HLA associations in narcolepsy type 1 persist after the 2009 H1N1 pandemic. J Neuroimmunol 2020; 342:577210. [PMID: 32179327 DOI: 10.1016/j.jneuroim.2020.577210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/27/2022]
Abstract
We aimed to compare HLA-DQB1-associations in narcolepsy type 1 (NT1) patients with disease onset before and after the 2009 H1N1 pandemic in a large Dutch cohort. 525 NT1 patients and 1272 HLA-DQB1*06:02-positive healthy controls were included. Because of the discussion that has arisen on the existence of sporadic and post-H1N1 NT1, HLA-DQB1-associations in pre- and post-H1N1 NT1 patients were compared. The associations between HLA-DQB1 alleles and NT1 were not significantly different between pre- and post-H1N1 NT1 patients. Both HLA-DQB1-associations with pre- and -post H1N1 NT1 reported in recent smaller studies were replicated. Our findings combine the results of studies in pre- and post-H1N1 NT1 and argue against considering post-H1N1 NT1 as a different entity.
Collapse
Affiliation(s)
- Mink Schinkelshoek
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300, RC, Leiden, The Netherlands; Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103, SW, Heemstede, The Netherlands.
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300, RC, Leiden, The Netherlands; Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103, SW, Heemstede, The Netherlands
| | - Willem Verduijn
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, PO Box 9600, 2300, RC, Leiden, The Netherlands
| | - Geert Haasnoot
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, PO Box 9600, 2300, RC, Leiden, The Netherlands
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, PO Box 61, 5590, AB, Heeze, The Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Claire Donjacour
- Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), Dokter Denekampweg 20, 8025, BV, Zwolle, The Netherlands
| | - Astrid van der Heide
- Department of Neurology and Neurosurgery, Brain Centre Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Dave Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, PO Box 9600, 2300, RC, Leiden, The Netherlands
| | - Frans Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, PO Box 9600, 2300, RC, Leiden, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300, RC, Leiden, The Netherlands; Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103, SW, Heemstede, The Netherlands
| |
Collapse
|
49
|
Sex and age differences in the association between anxiety disorders and narcolepsy: A nationwide population-based case control study. J Affect Disord 2020; 264:130-137. [PMID: 32056742 DOI: 10.1016/j.jad.2019.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND To examine the association between narcolepsy and anxiety disorders. METHODS This population-based, retrospective case-control study analyzed Taiwan's National Health Insurance Research Database between 2000 and 2013. We included narcoleptic patients aged at least 12 years, diagnosed according to the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) code 347. The cases and the propensity score-matched controls were selected in a 1:4 ratio. Each subject with anxiety disorders (ICD-9-CM code 300) was required to visit the outpatient clinic at least three times within a year. Multivariate logistic regression and interaction analyses were used to calculate the association between anxiety disorders and narcolepsy. RESULTS This study enrolled 478 and 1912 subjects with and without narcolepsy, respectively. After adjusting for covariates, patients with anxiety disorders had an approximately 2.7 odds ratio of developing narcolepsy when compared to the control subjects (adjusted odds ratio [aOR)] = 2.7; 95% confidence interval [CI] = 1.699-4.344). Interaction analysis and subgroup analysis showed a higher incidence of previously diagnosed anxiety disorders in narcoleptic patients aged 12 to 17 years and female patients (aOR = 25.9; 95% CI = 15.194-42.896; aOR = 3.6; 95% CI = 1.818-7.062, respectively). LIMITATIONS The narcolepsy and anxiety disorders were not distinguished by validated structural diagnostic instruments. CONCLUSIONS The results of this study revealed higher comorbidity rates of anxiety disorders in narcoleptic patients. The incidence of previously diagnosed anxiety disorders was higher in narcoleptic patients aged 12 to 17 years and female patients.
Collapse
|
50
|
Ravel JM, Mignot EJM. [Narcolepsy: From the discovery of a wake promoting peptide to autoimmune T cell biology and molecular mimicry with flu epitopes]. Biol Aujourdhui 2019; 213:87-108. [PMID: 31829930 DOI: 10.1051/jbio/2019026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/14/2022]
Abstract
Narcolepsy-cataplexy was first described in the late 19th century in Germany and France. Prevalence was established to be 0.05 % and a canine model was discovered in the 1970s. In 1983, a Japanese study found that all patients carried HLA-DR2, suggesting autoimmunity as the cause of the disease. Studies in the canine model established that dopaminergic stimulation underlies anti-narcoleptic action of psychostimulants, while antidepressants were found to suppress cataplexy through adrenergic reuptake inhibition. No HLA association was found in canines. A linkage study initiated in 1988 revealed in hypocretin (orexin) receptor two mutations as the cause of canine narcolepsy in 1999. In 1992, studies on African Americans showed that DQ0602 was a better marker than DR2 across all ethnic groups. In 2000, hypocretin-1/orexin A levels were measured in the cerebrospinal fluid (CSF) and found to be undetectable in most patients, establishing hypocretin deficiency as the cause of narcolepsy. Decreased CSF hypocretin-1 was then found to be secondary to the loss of the 70,000 neurons producing hypocretin in the hypothalamus, suggesting immune destruction of these cells as the cause of the disease. Additional genetic studies, notably genome wide associations (GWAS), found multiple genetic predisposing factors for narcolepsy. These were almost all involved in other autoimmune diseases, although a strong and unique association with T cell receptor (TCR) alpha and beta loci were observed. Nonetheless, all attempts to demonstrate presence of autoantibodies against hypocretin cells in narcolepsy failed, and the presumed autoimmune cause remained unproven. In 2009, association with strep throat infections were found, and narcolepsy onsets were found to occur more frequently in spring and summer, suggesting upper away infections as triggers. Following reports that narcolepsy cases were triggered by vaccinations and infections against influenza A 2009 pH1N1, a new pandemic strain that erupted in 2009, molecular mimicry with influenza A virus was suggested in 2010. This hypothesis was later confirmed by peptide screening showing higher activity of CD4+ T cell reactivity to a specific post-translationally amidated segment of hypocretin (HCRT-NH2) and cross-reactivity of specific TCRs with a pH1N1-specific segment of hemagglutinin that shares homology with HCRT-NH2. Strikingly, the most frequent TCR recognizing these antigens was found to carry sequences containing TRAJ24 or TRVB4-2, segments modulated by narcolepsy-associated genetic polymorphisms. Cross-reactive CD4+ T cells with these cross-reactive TCRs likely subsequently recruit CD8+ T cells that are then involved in hypocretin cell destruction. Additional flu mimics are also likely to be discovered since narcolepsy existed prior to 2009. The work that has been conducted over the years on narcolepsy offers a unique perspective on the conduct of research on the etiopathogeny of a specific disease.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| | - Emmanuel J M Mignot
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| |
Collapse
|