1
|
Tiedemann R, Hrit J, Du Q, Wiseman A, Eden H, Dickson B, Kong X, Chomiak A, Vaughan R, Tibben B, Hebert J, David Y, Zhou W, Baylin S, Jones P, Clark S, Rothbart S. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. Nucleic Acids Res 2024; 52:13733-13756. [PMID: 39607687 PMCID: PMC11662662 DOI: 10.1093/nar/gkae1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. The model posits that nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). However, the extent to which DNMT1 relies on ubiquitin signaling through UHRF1 in support of DNA methylation maintenance remains unclear. Here, with integrative epigenomic and biochemical analyses, we reveal that DNA methylation maintenance at low-density cytosine-guanine dinucleotides (CpGs) is particularly vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMDs), a methylation signature observed across human cancers. In contrast, UIM2 disruption completely abolishes the DNA methylation maintenance function of DNMT1 in a CpG density-independent manner. In the context of DNA methylation recovery following acute DNMT1 depletion, we further reveal a 'bookmarking' function for UHRF1 ubiquitin ligase activity in support of DNA re-methylation. Collectively, these studies show that DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process that is partially reliant on UHRF1 and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to PMD formation in cancers.
Collapse
Affiliation(s)
- Rochelle L Tiedemann
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Qian Du
- Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Ashley K Wiseman
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Hope E Eden
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Xiangqian Kong
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, USA
| | - Alison A Chomiak
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Robert M Vaughan
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Jakob M Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY, NY 10065, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY, NY 10065, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA19104, USA
| | - Stephen B Baylin
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan J Clark
- Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
2
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
3
|
Toh H, Sasaki H. Spatiotemporal DNA methylation dynamics shape megabase-scale methylome landscapes. Life Sci Alliance 2024; 7:e202302403. [PMID: 38233073 PMCID: PMC10794778 DOI: 10.26508/lsa.202302403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
DNA methylation is an essential epigenetic mechanism that regulates cellular reprogramming and development. Studies using whole-genome bisulfite sequencing have revealed distinct DNA methylome landscapes in human and mouse cells and tissues. However, the factors responsible for the differences in megabase-scale methylome patterns between cell types remain poorly understood. By analyzing publicly available 258 human and 301 mouse whole-genome bisulfite sequencing datasets, we reveal that genomic regions rich in guanine and cytosine, when located near the nuclear center, are highly susceptible to both global DNA demethylation and methylation events during embryonic and germline reprogramming. Furthermore, we found that regions that generate partially methylated domains during global DNA methylation are more likely to resist global DNA demethylation, contain high levels of adenine and thymine, and are adjacent to the nuclear lamina. The spatial properties of genomic regions, influenced by their guanine-cytosine content, are likely to affect the accessibility of molecules involved in DNA (de)methylation. These properties shape megabase-scale DNA methylation patterns and change as cells differentiate, leading to the emergence of different megabase-scale methylome patterns across cell types.
Collapse
Affiliation(s)
- Hidehiro Toh
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Tiedemann RL, Hrit J, Du Q, Wiseman AK, Eden HE, Dickson BM, Kong X, Chomiak AA, Vaughan RM, Hebert JM, David Y, Zhou W, Baylin SB, Jones PA, Clark SJ, Rothbart SB. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580169. [PMID: 38405904 PMCID: PMC10888769 DOI: 10.1101/2024.02.13.580169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.
Collapse
|
5
|
Flint J, Heffel MG, Chen Z, Mefford J, Marcus E, Chen PB, Ernst J, Luo C. Single-cell methylation analysis of brain tissue prioritizes mutations that alter transcription. CELL GENOMICS 2023; 3:100454. [PMID: 38116123 PMCID: PMC10726494 DOI: 10.1016/j.xgen.2023.100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Relating genetic variants to behavior remains a fundamental challenge. To assess the utility of DNA methylation marks in discovering causative variants, we examined their relationship to genetic variation by generating single-nucleus methylomes from the hippocampus of eight inbred mouse strains. At CpG sequence densities under 40 CpG/Kb, cells compensate for loss of methylated sites by methylating additional sites to maintain methylation levels. At higher CpG sequence densities, the exact location of a methylated site becomes more important, suggesting that variants affecting methylation will have a greater effect when occurring in higher CpG densities than in lower. We found this to be true for a variant's effect on transcript abundance, indicating that candidate variants can be prioritized based on CpG sequence density. Our findings imply that DNA methylation influences the likelihood that mutations occur at specific sites in the genome, supporting the view that the distribution of mutations is not random.
Collapse
Affiliation(s)
- Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Matthew G Heffel
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Zeyuan Chen
- Department of Computer Science, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Joel Mefford
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emilie Marcus
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick B Chen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Ernst
- Department of Computer Science, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Kerr L, Kafetzopoulos I, Grima R, Sproul D. Genome-wide single-molecule analysis of long-read DNA methylation reveals heterogeneous patterns at heterochromatin that reflect nucleosome organisation. PLoS Genet 2023; 19:e1010958. [PMID: 37782664 PMCID: PMC10569558 DOI: 10.1371/journal.pgen.1010958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/12/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
High-throughput sequencing technology is central to our current understanding of the human methylome. The vast majority of studies use chemical conversion to analyse bulk-level patterns of DNA methylation across the genome from a population of cells. While this technology has been used to probe single-molecule methylation patterns, such analyses are limited to short reads of a few hundred basepairs. DNA methylation can also be directly detected using Nanopore sequencing which can generate reads measuring megabases in length. However, thus far these analyses have largely focused on bulk-level assessment of DNA methylation. Here, we analyse DNA methylation in single Nanopore reads from human lymphoblastoid cells, to show that bulk-level metrics underestimate large-scale heterogeneity in the methylome. We use the correlation in methylation state between neighbouring sites to quantify single-molecule heterogeneity and find that heterogeneity varies significantly across the human genome, with some regions having heterogeneous methylation patterns at the single-molecule level and others possessing more homogeneous methylation patterns. By comparing the genomic distribution of the correlation to epigenomic annotations, we find that the greatest heterogeneity in single-molecule patterns is observed within heterochromatic partially methylated domains (PMDs). In contrast, reads originating from euchromatic regions and gene bodies have more ordered DNA methylation patterns. By analysing the patterns of single molecules in more detail, we show the existence of a nucleosome-scale periodicity in DNA methylation that accounts for some of the heterogeneity we uncover in long single-molecule DNA methylation patterns. We find that this periodic structure is partially masked in bulk data and correlates with DNA accessibility as measured by nanoNOMe-seq, suggesting that it could be generated by nucleosomes. Our findings demonstrate the power of single-molecule analysis of long-read data to understand the structure of the human methylome.
Collapse
Affiliation(s)
- Lyndsay Kerr
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit and CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Current address: Altos Labs Cambridge Institute, Cambridge, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Duncan Sproul
- MRC Human Genetics Unit and CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Higham J, Kerr L, Zhang Q, Walker RM, Harris SE, Howard DM, Hawkins EL, Sandu AL, Steele JD, Waiter GD, Murray AD, Evans KL, McIntosh AM, Visscher PM, Deary IJ, Cox SR, Sproul D. Local CpG density affects the trajectory and variance of age-associated DNA methylation changes. Genome Biol 2022; 23:216. [PMID: 36253871 PMCID: PMC9575273 DOI: 10.1186/s13059-022-02787-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is an epigenetic mark associated with the repression of gene promoters. Its pattern in the genome is disrupted with age and these changes can be used to statistically predict age with epigenetic clocks. Altered rates of aging inferred from these clocks are observed in human disease. However, the molecular mechanisms underpinning age-associated DNA methylation changes remain unknown. Local DNA sequence can program steady-state DNA methylation levels, but how it influences age-associated methylation changes is unknown. RESULTS We analyze longitudinal human DNA methylation trajectories at 345,895 CpGs from 600 individuals aged between 67 and 80 to understand the factors responsible for age-associated epigenetic changes at individual CpGs. We show that changes in methylation with age occur at 182,760 loci largely independently of variation in cell type proportions. These changes are especially apparent at 8322 low CpG density loci. Using SNP data from the same individuals, we demonstrate that methylation trajectories are affected by local sequence polymorphisms at 1487 low CpG density loci. More generally, we find that low CpG density regions are particularly prone to change and do so variably between individuals in people aged over 65. This differs from the behavior of these regions in younger individuals where they predominantly lose methylation. CONCLUSIONS Our results, which we reproduce in two independent groups of individuals, demonstrate that local DNA sequence influences age-associated DNA methylation changes in humans in vivo. We suggest that this occurs because interactions between CpGs reinforce maintenance of methylation patterns in CpG dense regions.
Collapse
Affiliation(s)
- Jonathan Higham
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lyndsay Kerr
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Qian Zhang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Present address: Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Present address: School of Psychology, University of Exeter, Edinburgh, UK
| | - Sarah E Harris
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Ian J Deary
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, Edinburgh, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Zhou W, Hinoue T, Barnes B, Mitchell O, Iqbal W, Lee SM, Foy KK, Lee KH, Moyer EJ, VanderArk A, Koeman JM, Ding W, Kalkat M, Spix NJ, Eagleson B, Pospisilik JA, Szabó PE, Bartolomei MS, Vander Schaaf NA, Kang L, Wiseman AK, Jones PA, Krawczyk CM, Adams M, Porecha R, Chen BH, Shen H, Laird PW. DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. CELL GENOMICS 2022; 2:100144. [PMID: 35873672 PMCID: PMC9306256 DOI: 10.1016/j.xgen.2022.100144] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 05/20/2022] [Indexed: 05/21/2023]
Abstract
We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| | - Toshinori Hinoue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bret Barnes
- Illumina, Inc., Bioinformatics and Instrument Software Department, San Diego, CA 92122, USA
| | - Owen Mitchell
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Waleed Iqbal
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kelly K. Foy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kwang-Ho Lee
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ethan J. Moyer
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra VanderArk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Julie M. Koeman
- Genomics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wubin Ding
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Manpreet Kalkat
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nathan J. Spix
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bryn Eagleson
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Liang Kang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ashley K. Wiseman
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter A. Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rishi Porecha
- Illumina, Inc., Bioinformatics and Instrument Software Department, San Diego, CA 92122, USA
| | | | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Corresponding author
| | - Peter W. Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Corresponding author
| |
Collapse
|
9
|
Merkel A, Esteller M. Experimental and Bioinformatic Approaches to Studying DNA Methylation in Cancer. Cancers (Basel) 2022; 14:349. [PMID: 35053511 PMCID: PMC8773752 DOI: 10.3390/cancers14020349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methylation is an essential epigenetic mark. Alterations of normal DNA methylation are a defining feature of cancer. Here, we review experimental and bioinformatic approaches to showcase the breadth and depth of information that this epigenetic mark provides for cancer research. First, we describe classical approaches for interrogating bulk DNA from cell populations as well as more recently developed approaches for single cells and multi-Omics. Second, we focus on the computational analysis from primary data processing to the identification of unique methylation signatures. Additionally, we discuss challenges such as sparse data and cellular heterogeneity.
Collapse
Affiliation(s)
- Angelika Merkel
- Bioinformatics Unit, Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Institucio Catalana de Recerca Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Catalonia, 08017 Barcelona, Spain
| |
Collapse
|
10
|
Grand RS, Burger L, Gräwe C, Michael AK, Isbel L, Hess D, Hoerner L, Iesmantavicius V, Durdu S, Pregnolato M, Krebs AR, Smallwood SA, Thomä N, Vermeulen M, Schübeler D. BANP opens chromatin and activates CpG-island-regulated genes. Nature 2021; 596:133-137. [PMID: 34234345 DOI: 10.1038/s41586-021-03689-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.
Collapse
Affiliation(s)
- Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Nicolas Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Fong J, Gardner JR, Andrews JM, Cashen AF, Payton JE, Weinberger KQ, Edwards JR. Determining subpopulation methylation profiles from bisulfite sequencing data of heterogeneous samples using DXM. Nucleic Acids Res 2021; 49:e93. [PMID: 34157105 PMCID: PMC8450090 DOI: 10.1093/nar/gkab516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Epigenetic changes, such as aberrant DNA methylation, contribute to cancer clonal expansion and disease progression. However, identifying subpopulation-level changes in a heterogeneous sample remains challenging. Thus, we have developed a computational approach, DXM, to deconvolve the methylation profiles of major allelic subpopulations from the bisulfite sequencing data of a heterogeneous sample. DXM does not require prior knowledge of the number of subpopulations or types of cells to expect. We benchmark DXM's performance and demonstrate improvement over existing methods. We further experimentally validate DXM predicted allelic subpopulation-methylation profiles in four Diffuse Large B-Cell Lymphomas (DLBCLs). Lastly, as proof-of-concept, we apply DXM to a cohort of 31 DLBCLs and relate allelic subpopulation methylation profiles to relapse. We thus demonstrate that DXM can robustly find allelic subpopulation methylation profiles that may contribute to disease progression using bisulfite sequencing data of any heterogeneous sample.
Collapse
Affiliation(s)
- Jerry Fong
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob R Gardner
- Center for Data Science for Improved Decision Making, Department of Computer Science, Cornell University, Ithaca, NY, USA
| | - Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda F Cashen
- Oncology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kilian Q Weinberger
- Center for Data Science for Improved Decision Making, Department of Computer Science, Cornell University, Ithaca, NY, USA
| | - John R Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Epigenomically Bistable Regions across Neuron-Specific Genes Govern Neuron Eligibility to a Coding Ensemble in the Hippocampus. Cell Rep 2021; 31:107789. [PMID: 32579919 PMCID: PMC7440841 DOI: 10.1016/j.celrep.2020.107789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Sensory inputs activate sparse neuronal ensembles in the dentate gyrus of the hippocampus, but how eligibility of individual neurons to recruitment is determined remains elusive. We identify thousands of largely bistable (CpG methylated or unmethylated) regions within neuronal gene bodies, established during mouse dentate gyrus development. Reducing DNA methylation and the proportion of the methylated epialleles at bistable regions compromises novel context-induced neuronal activation. Conversely, increasing methylation and the frequency of the methylated epialleles at bistable regions enhances intrinsic excitability. Single-nucleus profiling reveals enrichment of specific epialleles related to a subset of primarily exonic, bistable regions in activated neurons. Genes displaying both differential methylation and expression in activated neurons define a network of proteins regulating neuronal excitability and structural plasticity. We propose a model in which bistable regions create neuron heterogeneity and constellations of exonic methylation, which may contribute to cell-specific gene expression, excitability, and eligibility to a coding ensemble. Odell et al. show regions within neuronal genes with bistable DNA methylation states that are associated with gene expression, excitability, and activation in the dentate gyrus of the hippocampus. These data suggest that the methylation state of bistable regions dictates, via modulating gene expression, neuron eligibility to a coding ensemble.
Collapse
|
13
|
Hu X, Estecio MR, Chen R, Reuben A, Wang L, Fujimoto J, Carrot-Zhang J, McGranahan N, Ying L, Fukuoka J, Chow CW, Pham HHN, Godoy MCB, Carter BW, Behrens C, Zhang J, Antonoff MB, Sepesi B, Lu Y, Pass HI, Kadara H, Scheet P, Vaporciyan AA, Heymach JV, Wistuba II, Lee JJ, Futreal PA, Su D, Issa JPJ, Zhang J. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat Commun 2021; 12:687. [PMID: 33514726 PMCID: PMC7846738 DOI: 10.1038/s41467-021-20907-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
The evolution of DNA methylome and methylation intra-tumor heterogeneity (ITH) during early carcinogenesis of lung adenocarcinoma has not been systematically studied. We perform reduced representation bisulfite sequencing of invasive lung adenocarcinoma and its precursors, atypical adenomatous hyperplasia, adenocarcinoma in situ and minimally invasive adenocarcinoma. We observe gradual increase of methylation aberrations and significantly higher level of methylation ITH in later-stage lesions. The phylogenetic patterns inferred from methylation aberrations resemble those based on somatic mutations suggesting parallel methylation and genetic evolution. De-convolution reveal higher ratio of T regulatory cells (Tregs) versus CD8 + T cells in later-stage diseases, implying progressive immunosuppression with neoplastic progression. Furthermore, increased global hypomethylation is associated with higher mutation burden, copy number variation burden and AI burden as well as higher Treg/CD8 ratio, highlighting the potential impact of methylation on chromosomal instability, mutagenesis and tumor immune microenvironment during early carcinogenesis of lung adenocarcinomas.
Collapse
Affiliation(s)
- Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Center of Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Runzhe Chen
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexandre Reuben
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junya Fujimoto
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Carrot-Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Nicholas McGranahan
- Cancer Research United Kingdom-University College London Lung Cancer Centre of Excellence, London, SW73RP, UK
| | - Lisha Ying
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
- Zhejiang Cancer Research Institute, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, Hangzhou, China
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 8528523, Japan
| | - Chi-Wan Chow
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hoa H N Pham
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 8528523, Japan
| | - Myrna C B Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Brett W Carter
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carmen Behrens
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mara B Antonoff
- Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boris Sepesi
- Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Center of Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Humam Kadara
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ara A Vaporciyan
- Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John V Heymach
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ignacio I Wistuba
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Dan Su
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, Hangzhou, China.
| | | | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Chen H, Liang H. A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in Cancer. Cancer Cell 2020; 38:701-715.e5. [PMID: 33007258 PMCID: PMC7658066 DOI: 10.1016/j.ccell.2020.08.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Although enhancers play critical roles in cancer, quantifying enhancer activities in clinical samples remains challenging, especially for super-enhancers. Enhancer activities can be inferred from enhancer RNA (eRNA) signals, which requires enhancer transcription loci definition. Only a small proportion of human eRNA loci has been precisely identified, limiting investigations of enhancer-mediated oncogenic mechanisms. Here, we characterize super-enhancer regions using aggregated RNA sequencing (RNA-seq) data from large cohorts. Super-enhancers usually contain discrete loci featuring sharp eRNA expression peaks. We identify >300,000 eRNA loci in ∼377 Mb super-enhancer regions that are regulated by evolutionarily conserved, well-positioned nucleosomes and are frequently dysregulated in cancer. The eRNAs provide explanatory power for cancer phenotypes beyond that provided by mRNA expression through resolving intratumoral heterogeneity with enhancer cell-type specificity. Our study provides a high-resolution map of eRNA loci through which super-enhancer activities can be quantified by RNA-seq and a user-friendly data portal, enabling a broad range of biomedical investigations.
Collapse
Affiliation(s)
- Han Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Decato BE, Qu J, Ji X, Wagenblast E, Knott SRV, Hannon GJ, Smith AD. Characterization of universal features of partially methylated domains across tissues and species. Epigenetics Chromatin 2020; 13:39. [PMID: 33008446 PMCID: PMC7532633 DOI: 10.1186/s13072-020-00363-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Partially methylated domains (PMDs) are a hallmark of epigenomes in reproducible and specific biological contexts, including cancer cells, the placenta, and cultured cell lines. Existing methods for deciding whether PMDs exist in a sample, as well as their identification, are few, often tailored to specific biological questions, and require high coverage samples for accurate identification. RESULTS In this study, we outline a set of axioms that take a step towards a functional definition for PMDs, describe an improved method for comparable PMD detection across samples with substantially differing sequencing depths, and refine the decision criteria for whether a sample contains PMDs using a data-driven approach. Applying our method to 267 methylomes from 7 species, we corroborated recent results regarding the general association between replication timing and PMD state, and report identification of several reproducibly "escapee" genes within late-replicating domains that escape the reduced expression and hypomethylation of their immediate genomic neighborhood. We also explored the discordant PMD state of orthologous genes between human and mouse, and observed a directional association of PMD state with gene expression and local gene density. CONCLUSIONS Our improved method makes low sequencing depth, population-level studies of PMD variation possible and our results further refine the model of PMD formation as one where sequence context and regional epigenomic features both play a role in gradual genome-wide hypomethylation.
Collapse
Affiliation(s)
- Benjamin E. Decato
- Quantitative and Computational Biology Section, University of Southern California, Childs Way, Los Angeles, California USA
| | - Jianghan Qu
- Quantitative and Computational Biology Section, University of Southern California, Childs Way, Los Angeles, California USA
| | - Xiaojing Ji
- Quantitative and Computational Biology Section, University of Southern California, Childs Way, Los Angeles, California USA
| | - Elvin Wagenblast
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724 USA
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5G 1L7 Canada
| | - Simon R. V. Knott
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724 USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048 USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724 USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- New York Genome Center, 101 6th Avenue, New York, NY 10013 USA
| | - Andrew D. Smith
- Quantitative and Computational Biology Section, University of Southern California, Childs Way, Los Angeles, California USA
| |
Collapse
|
16
|
Shi X, Radhakrishnan S, Wen J, Chen JY, Chen J, Lam BA, Mills RE, Stranger BE, Lee C, Setlur SR. Association of CNVs with methylation variation. NPJ Genom Med 2020; 5:41. [PMID: 33062306 PMCID: PMC7519119 DOI: 10.1038/s41525-020-00145-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/04/2020] [Indexed: 12/03/2022] Open
Abstract
Germline copy number variants (CNVs) and single-nucleotide polymorphisms (SNPs) form the basis of inter-individual genetic variation. Although the phenotypic effects of SNPs have been extensively investigated, the effects of CNVs is relatively less understood. To better characterize mechanisms by which CNVs affect cellular phenotype, we tested their association with variable CpG methylation in a genome-wide manner. Using paired CNV and methylation data from the 1000 genomes and HapMap projects, we identified genome-wide associations by methylation quantitative trait locus (mQTL) analysis. We found individual CNVs being associated with methylation of multiple CpGs and vice versa. CNV-associated methylation changes were correlated with gene expression. CNV-mQTLs were enriched for regulatory regions, transcription factor-binding sites (TFBSs), and were involved in long-range physical interactions with associated CpGs. Some CNV-mQTLs were associated with methylation of imprinted genes. Several CNV-mQTLs and/or associated genes were among those previously reported by genome-wide association studies (GWASs). We demonstrate that germline CNVs in the genome are associated with CpG methylation. Our findings suggest that structural variation together with methylation may affect cellular phenotype.
Collapse
Affiliation(s)
- Xinghua Shi
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina, Charlotte, North Carolina 28223 USA.,Present Address: Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122 USA
| | - Saranya Radhakrishnan
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Jia Wen
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina, Charlotte, North Carolina 28223 USA
| | - Jin Yun Chen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Junjie Chen
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina, Charlotte, North Carolina 28223 USA.,Present Address: Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122 USA
| | - Brianna Ashlyn Lam
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina, Charlotte, North Carolina 28223 USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109 USA
| | - Barbara E Stranger
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611 USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032 USA.,Department of Life Sciences, Ewha Womans University, Seoul, 03760 South Korea.,Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Sunita R Setlur
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115 USA
| |
Collapse
|
17
|
Shridhar V, Chu T, Simhan H, Shaw PA, Peters DG. High‐resolution analysis of the human placental DNA methylome in early gestation. Prenat Diagn 2020; 40:481-491. [DOI: 10.1002/pd.5618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Varsha Shridhar
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh Pittsburgh Pennsylvania
- Magee‐Womens Research Institute Pittsburgh Pennsylvania
| | - Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh Pittsburgh Pennsylvania
- Magee‐Womens Research Institute Pittsburgh Pennsylvania
| | - Hyagriv Simhan
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh Pittsburgh Pennsylvania
- Magee‐Womens Research Institute Pittsburgh Pennsylvania
| | | | - David G. Peters
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh Pittsburgh Pennsylvania
- Magee‐Womens Research Institute Pittsburgh Pennsylvania
| |
Collapse
|
18
|
Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S, Ideker T, Issa JPJ, Kelsey KT, Marioni RE, Reik W, Relton CL, Schalkwyk LC, Teschendorff AE, Wagner W, Zhang K, Rakyan VK. DNA methylation aging clocks: challenges and recommendations. Genome Biol 2019; 20:249. [PMID: 31767039 PMCID: PMC6876109 DOI: 10.1186/s13059-019-1824-y] [Citation(s) in RCA: 554] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic clocks comprise a set of CpG sites whose DNA methylation levels measure subject age. These clocks are acknowledged as a highly accurate molecular correlate of chronological age in humans and other vertebrates. Also, extensive research is aimed at their potential to quantify biological aging rates and test longevity or rejuvenating interventions. Here, we discuss key challenges to understand clock mechanisms and biomarker utility. This requires dissecting the drivers and regulators of age-related changes in single-cell, tissue- and disease-specific models, as well as exploring other epigenomic marks, longitudinal and diverse population studies, and non-human models. We also highlight important ethical issues in forensic age determination and predicting the trajectory of biological aging in an individual.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Robert Lowe
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- Beatson Institute for Cancer Research and University of Glasgow, Glasgow, UK.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Stephan Beck
- Medical Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, London, UK.
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, CA, USA.
- Department of Biostatistics, School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Trey Ideker
- San Diego Center for Systems Biology, University of California-San Diego, San Diego, CA, USA.
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
- The Wellcome Trust Sanger Institute, Cambridge, UK.
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK.
| | | | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen Faculty of Medicine, Aachen, Germany.
| | - Kang Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Vardhman K Rakyan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
19
|
Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency. Cell Syst 2019; 7:63-76.e12. [PMID: 30031774 PMCID: PMC6066359 DOI: 10.1016/j.cels.2018.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/17/2017] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Pluripotency is accompanied by the erasure of parental epigenetic memory, with naïve pluripotent cells exhibiting global DNA hypomethylation both in vitro and in vivo. Exit from pluripotency and priming for differentiation into somatic lineages is associated with genome-wide de novo DNA methylation. We show that during this phase, co-expression of enzymes required for DNA methylation turnover, DNMT3s and TETs, promotes cell-to-cell variability in this epigenetic mark. Using a combination of single-cell sequencing and quantitative biophysical modeling, we show that this variability is associated with coherent, genome-scale oscillations in DNA methylation with an amplitude dependent on CpG density. Analysis of parallel single-cell transcriptional and epigenetic profiling provides evidence for oscillatory dynamics both in vitro and in vivo. These observations provide insights into the emergence of epigenetic heterogeneity during early embryo development, indicating that dynamic changes in DNA methylation might influence early cell fate decisions. Co-expression of DNMT3s and TETs promotes genome-scale oscillations in DNA methylation Oscillation amplitude is greatest at a CpG density characteristic of enhancers Cell synchronization reveals oscillation period and link with primary transcripts Multi-omic single-cell profiling provides evidence for oscillatory dynamics in vivo
Collapse
|
20
|
Rodger EJ, Chatterjee A, Stockwell PA, Eccles MR. Characterisation of DNA methylation changes in EBF3 and TBC1D16 associated with tumour progression and metastasis in multiple cancer types. Clin Epigenetics 2019; 11:114. [PMID: 31383000 PMCID: PMC6683458 DOI: 10.1186/s13148-019-0710-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Characteristic DNA methylation differences have been identified between primary and metastatic melanomas at EBF3 and/or TBC1D16 gene loci. To further evaluate whether these epigenetic changes may act more generally as drivers of tumour onset and metastasis, we have investigated DNA methylation changes involving EBF3 and TBC1D16 in additional publicly available data of multiple different tumour types. Results Promoter hypermethylation and gene body hypomethylation of EBF3 were observed in a number of metastatic tumour types, when compared to normal or primary tumour tissues, as well as in tumour vs normal tissues and in a colorectal primary/metastasis pair, although not all tumour samples or primary/metastasis cancer pairs exhibited altered patterns of EBF3 methylation. In addition, hypomethylation of TBC1D16 was observed in multiple tumours, including a breast cancer primary/metastasis pair, and to a lesser degree in melanoma, although again not all tumours or cancer primary/metastasis pairs exhibited altered patterns of methylation. Conclusions These findings suggest characteristic DNA methylation changes in EBF3 and TBC1D16 are relatively common tumour-associated epigenetic events in multiple tumour types, which is consistent with a potential role as more general drivers of tumour progression.
Collapse
Affiliation(s)
- Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
21
|
Sato H, Wu B, Delahaye F, Singer RH, Greally JM. Retargeting of macroH2A following mitosis to cytogenetic-scale heterochromatic domains. J Cell Biol 2019; 218:1810-1823. [PMID: 31110057 PMCID: PMC6548134 DOI: 10.1083/jcb.201811109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/20/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
How macroH2A, a histone variant involved in silencing gene expression, is inherited from parent to daughter cells is unclear. Using a combination of imaging, biochemical, and genomic approaches, Sato et al. describe how newly synthesized macroH2A is incorporated predominantly in the G1 phase of human mitosis, targeting heterochromatic regions. The heritability of chromatin states through cell division is a potential contributor to the epigenetic maintenance of cellular memory of prior states. The macroH2A histone variant has properties of a regulator of epigenetic cell memory, including roles controlling gene silencing and cell differentiation. Its mechanisms of regional genomic targeting and maintenance through cell division are unknown. Here, we combined in vivo imaging with biochemical and genomic approaches to show that human macroH2A is incorporated into chromatin in the G1 phase of the cell cycle following DNA replication. The newly incorporated macroH2A retargets the same large heterochromatic domains where macroH2A was already enriched in the previous cell cycle. It remains heterotypic, targeting individual nucleosomes that do not already contain a macroH2A molecule. The pattern observed resembles that of a new deposition of centromeric histone variants during the cell cycle, indicating mechanistic similarities for macrodomain-scale regulation of epigenetic properties of the cell.
Collapse
Affiliation(s)
- Hanae Sato
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Bin Wu
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Fabien Delahaye
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY .,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - John M Greally
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
22
|
Mechanisms of establishment and functional significance of DNA demethylation during erythroid differentiation. Blood Adv 2019; 2:1833-1852. [PMID: 30061308 DOI: 10.1182/bloodadvances.2018015651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Erythroid differentiation is associated with global DNA demethylation, but a complete methylome was lacking in the erythroid lineage. We have generated allele-specific base resolution methylomes of primary basophilic erythroblasts (BasoEs) and compared these with 8 other cell types. We found that DNA demethylation during differentiation from hematopoietic stem/progenitor cells (HSPCs) to BasoEs occurred predominantly in intergenic sequences and in inactive gene bodies causing the formation of partially methylated domains (PMDs) in 74% of the BasoE methylome. Moreover, differentially methylated regions (DMRs) between HSPCs and BasoEs occurred mostly in putative enhancer regions and were most often associated with GATA, EKLF, and AP1 binding motifs. Surprisingly, promoters silent in both HSPCs and BasoEs exhibited much more dramatic chromatin changes during differentiation than activated promoters. Unmethylated silent promoters were often associated with active chromatin states in highly methylated domains (HMDs) but with polycomb-repression in PMDs, indicating that silent promoters are generally regulated differently in HMDs and PMDs. We show that long PMDs replicate late, but that short PMDs replicate early and therefore that the partial methylation of DNA after replication during erythroid expansion occurs throughout S phase of the cell cycle. We propose that baseline maintenance methylation following replication decreases during erythroid differentiation resulting in PMD formation and that the presence of HMDs in the BasoE methylome results from transcription-associated DNA methylation of gene bodies. We detected ∼700 large allele-specific DMRs that were enriched in single-nucleotide polymorphisms, suggesting that primary DNA sequence might be a determinant of DNA methylation levels within PMDs.
Collapse
|
23
|
Dvoriantchikova G, Seemungal RJ, Ivanov D. The epigenetic basis for the impaired ability of adult murine retinal pigment epithelium cells to regenerate retinal tissue. Sci Rep 2019; 9:3860. [PMID: 30846751 PMCID: PMC6405859 DOI: 10.1038/s41598-019-40262-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/12/2019] [Indexed: 11/12/2022] Open
Abstract
The epigenetic plasticity of amphibian retinal pigment epithelium (RPE) allows them to regenerate the entire retina, a trait known to be absent in mammals. In this study, we investigated the epigenetic plasticity of adult murine RPE to identify possible mechanisms that prevent mammalian RPE from regenerating retinal tissue. RPE were analyzed using microarray, ChIP-seq, and whole-genome bisulfite sequencing approaches. We found that the majority of key genes required for progenitor phenotypes were in a permissive chromatin state and unmethylated in RPE. We observed that the majority of non-photoreceptor genes had promoters in a repressive chromatin state, but these promoters were in unmethylated or low-methylated regions. Meanwhile, the majority of promoters for photoreceptor genes were found in a permissive chromatin state, but were highly-methylated. Methylome states of photoreceptor-related genes in adult RPE and embryonic retina (which mostly contain progenitors) were very similar. However, promoters of these genes were demethylated and activated during retinal development. Our data suggest that, epigenetically, adult murine RPE cells are a progenitor-like cell type. Most likely two mechanisms prevent adult RPE from reprogramming and differentiating into retinal neurons: 1) repressive chromatin in the promoter regions of non-photoreceptor retinal neuron genes; 2) highly-methylated promoters of photoreceptor-related genes.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rajeev J Seemungal
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
24
|
Liu Y, Huang R, Liu Y, Song W, Wang Y, Yang Y, Dong S, Yang X. Insights from multidimensional analyses of the pan-cancer DNA methylome heterogeneity and the uncanonical CpG-gene associations. Int J Cancer 2018; 143:2814-2827. [PMID: 30121964 DOI: 10.1002/ijc.31810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/18/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022]
Abstract
Although the DNA methylome profiles have been available in large cancer cohorts such as The Cancer Genome Atlas (TCGA), integrative analysis of the DNA methylome architectures in a pan-cancer manner remains limited. In the present study, we aimed to systematically dissect the insightful features related to the inter-tumoral DNA methylome heterogeneity in a pan-cancer context of 21 cancers in TCGA. First, pan-cancer clustering of the DNA methylomes revealed convergence of cancers and, meanwhile, new classifications of cancer subtypes, which are often associated to prognostic differences. Next, within each type of cancer, we showed that the transcription factor (TF) genes tend to bear more dynamic promoter DNA methylation profiles than the other genes, which serves as a potential source of the transcriptome heterogeneity in cancers. Finally, we found unanticipated significant numbers of the non-canonical promoter CpG sites that are positively correlated with the gene expression. Distribution patterns of these CpG sites in the CpG islands, ChIP-seq, DNaseI-seq, PMD regions and histone modification landscapes suggested against a pervasive mechanism of transcriptional activation due to mCpG-dependent binding of TFs, which is not in complete agreement with previous hypothesis. In summary, our deep mining of the highly heterogeneous DNA methylome data in a pan-cancer context generated novel insights into the architecture of cancer epigenetics and provided a series of resources for further investigations in the related fields of cancer genomics and epigenetics.
Collapse
Affiliation(s)
- Yang Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China
| | - Rongyao Huang
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
| | - Wanlu Song
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
| | - Yuting Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shengcheng Dong
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Choukrallah MA, Sewer A, Talikka M, Sierro N, Peitsch MC, Hoeng J, Ivanov NV. Epigenomics in tobacco risk assessment: Opportunities for integrated new approaches. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2019.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Umeyama T, Ito T. DMS-Seq for In Vivo Genome-wide Mapping of Protein-DNA Interactions and Nucleosome Centers. Cell Rep 2018; 21:289-300. [PMID: 28978481 DOI: 10.1016/j.celrep.2017.09.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/31/2017] [Accepted: 09/08/2017] [Indexed: 01/05/2023] Open
Abstract
Protein-DNA interactions provide the basis for chromatin structure and gene regulation. Comprehensive identification of protein-occupied sites is thus vital to an in-depth understanding of genome function. Dimethyl sulfate (DMS) is a chemical probe that has long been used to detect footprints of DNA-bound proteins in vitro and in vivo. Here, we describe a genomic footprinting method, dimethyl sulfate sequencing (DMS-seq), which exploits the cell-permeable nature of DMS to obviate the need for nuclear isolation. This feature makes DMS-seq simple in practice and removes the potential risk of protein re-localization during nuclear isolation. DMS-seq successfully detects transcription factors bound to cis-regulatory elements and non-canonical chromatin particles in nucleosome-free regions. Furthermore, an unexpected preference of DMS confers on DMS-seq a unique potential to directly detect nucleosome centers without using genetic manipulation. We expect that DMS-seq will serve as a characteristic method for genome-wide interrogation of in vivo protein-DNA interactions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan; Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
27
|
Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM, Shen H, Laird PW, Berman BP. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet 2018; 50:591-602. [PMID: 29610480 PMCID: PMC5893360 DOI: 10.1038/s41588-018-0073-4] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
DNA methylation loss occurs frequently in cancer genomes, primarily within lamina-associated, late-replicating regions termed Partially Methylated Domains (PMDs). We profiled 39 diverse primary tumors and 8 matched adjacent tissues using Whole-Genome Bisulfite Sequencing (WGBS), and analyzed them alongside 343 additional human and 206 mouse WGBS datasets. We identified a local CpG sequence context associated with preferential hypomethylation in PMDs. Analysis of CpGs in this context (“Solo-WCGWs”) revealed previously undetected PMD hypomethylation in almost all healthy tissue types. PMD hypomethylation increased with age, beginning during fetal development, and appeared to track the accumulation of cell divisions. In cancer, PMD hypomethylation depth correlated with somatic mutation density and cell-cycle gene expression, consistent with its reflection of mitotic history, and suggesting its application as a mitotic clock. We propose that late replication leads to lifelong progressive methylation loss, which acts as a biomarker for cellular aging and which may contribute to oncogenesis.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Huy Q Dinh
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Daniel J Weisenberger
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Charles M Nicolet
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Yi SV. Insights into Epigenome Evolution from Animal and Plant Methylomes. Genome Biol Evol 2018; 9:3189-3201. [PMID: 29036466 PMCID: PMC5721340 DOI: 10.1093/gbe/evx203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2017] [Indexed: 12/14/2022] Open
Abstract
Evolutionary studies of DNA methylation offer insights into the mechanisms governing the variation of genomic DNA methylation across different species. Comparisons of gross levels of DNA methylation between distantly related species indicate that the size of the genome and the level of genomic DNA methylation are positively correlated. In plant genomes, this can be reliably explained by the genomic contents of repetitive sequences. In animal genomes, the role of repetitive sequences on genomic DNA methylation is less clear. On a shorter timescale, population-level comparisons demonstrate that genetic variation can explain the observed variability of DNA methylation to some degree. The amount of DNA methylation variation that has been attributed to genetic variation in the human population studies so far is substantially lower than that from Arabidopsis population studies, but this disparity might reflect the differences in the computational and experimental techniques used. The effect of genetic variation on DNA methylation has been directly examined in mammalian systems, revealing several causative factors that govern DNA methylation. On the other hand, studies from Arabidopsis have furthered our understanding of spontaneous mutations of DNA methylation, termed “epimutations.” Arabidopsis has an extremely high rate of spontaneous epimutations, which may play a major role in shaping the global DNA methylation landscape in this genome. Key missing information includes the frequencies of spontaneous epimutations in other lineages, in particular animal genomes, and how population-level variation of DNA methylation leads to species-level differences.
Collapse
Affiliation(s)
- Soojin V Yi
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
29
|
Gilsbach R, Schwaderer M, Preissl S, Grüning BA, Kranzhöfer D, Schneider P, Nührenberg TG, Mulero-Navarro S, Weichenhan D, Braun C, Dreßen M, Jacobs AR, Lahm H, Doenst T, Backofen R, Krane M, Gelb BD, Hein L. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat Commun 2018; 9:391. [PMID: 29374152 PMCID: PMC5786002 DOI: 10.1038/s41467-017-02762-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 12/22/2017] [Indexed: 02/04/2023] Open
Abstract
Epigenetic mechanisms and transcription factor networks essential for differentiation of cardiac myocytes have been uncovered. However, reshaping of the epigenome of these terminally differentiated cells during fetal development, postnatal maturation, and in disease remains unknown. Here, we investigate the dynamics of the cardiac myocyte epigenome during development and in chronic heart failure. We find that prenatal development and postnatal maturation are characterized by a cooperation of active CpG methylation and histone marks at cis-regulatory and genic regions to shape the cardiac myocyte transcriptome. In contrast, pathological gene expression in terminal heart failure is accompanied by changes in active histone marks without major alterations in CpG methylation and repressive chromatin marks. Notably, cis-regulatory regions in cardiac myocytes are significantly enriched for cardiovascular disease-associated variants. This study uncovers distinct layers of epigenetic regulation not only during prenatal development and postnatal maturation but also in diseased human cardiac myocytes.
Collapse
Affiliation(s)
- Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Schwaderer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Björn A Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - David Kranzhöfer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Pedro Schneider
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas G Nührenberg
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Department for Cardiology und Angiology II, University Heart Center Freiburg • Bad Krozingen, 79189, Bad Krozingen, Germany
| | - Sonia Mulero-Navarro
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6542, USA
| | - Dieter Weichenhan
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Christian Braun
- Forensic Institute, Ludwig-Maximilians-University, 80046, Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
| | - Adam R Jacobs
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Harald Lahm
- Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University, 07740, Jena, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
- Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, 80636, Munich, Germany
- DZHK (German Center for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, 60046, Germany
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6542, USA
- Department of Genetics and Genomic Sciences & Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
30
|
Luu PL, Gerovska D, Schöler HR, Araúzo-Bravo MJ. Rules governing the mechanism of epigenetic reprogramming memory. Epigenomics 2018; 10:149-174. [PMID: 29334780 DOI: 10.2217/epi-2017-0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Disclosing the mechanisms that regulate reprogramming memory. MATERIALS & METHODS We established computational procedure to find DNA methylation somatic memory sites (SMSs) at single CpGs and integrated them with genomics, epigenomics, transcriptomics and imprinting information. RESULTS & CONCLUSION Reprogramming memory persists at late passages in low methylated regions. Contrarily to hypomethylated, hypermethylated SMSs occur at evolutionary conserved sites overlapping active transcription loci in dynamic chromatin regions. The epigenetic-memory molecular origin is the expression of source-cell transcription factors protecting hypomethylated SMSs in euchromatin from de novo methylation, keeping source-cell lineage-specific loci in induced pluripotent stem (iPS) cells incompletely silenced. Sites in lineage-specific genes of different-from-those-of-the-source-cell lineages remain hypermethylated in heterochromatin regions becoming permanently silenced. SMSs cause differential expression between iPS cells and embryonic stem cells through two mechanisms: 'epigenetic/expression memory rule', the DNA unreprogramming methylation status coupled with chromatin states induces differentially expressed genes. 'Imprinting control', the change of DNA methylation status in imprinting control regions induces differential expression of imprinted genes.
Collapse
Affiliation(s)
- Phuc-Loi Luu
- Computational Biology & Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Daniela Gerovska
- Group of Computational Biology & Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Hans R Schöler
- Department of Cell & Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.,Medical Faculty, University of Münster, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology & Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.,Group of Computational Biology & Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
31
|
Thurner M, van de Bunt M, Torres JM, Mahajan A, Nylander V, Bennett AJ, Gaulton KJ, Barrett A, Burrows C, Bell CG, Lowe R, Beck S, Rakyan VK, Gloyn AL, McCarthy MI. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. eLife 2018; 7:31977. [PMID: 29412141 PMCID: PMC5828664 DOI: 10.7554/elife.31977] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022] Open
Abstract
Human genetic studies have emphasised the dominant contribution of pancreatic islet dysfunction to development of Type 2 Diabetes (T2D). However, limited annotation of the islet epigenome has constrained efforts to define the molecular mechanisms mediating the, largely regulatory, signals revealed by Genome-Wide Association Studies (GWAS). We characterised patterns of chromatin accessibility (ATAC-seq, n = 17) and DNA methylation (whole-genome bisulphite sequencing, n = 10) in human islets, generating high-resolution chromatin state maps through integration with established ChIP-seq marks. We found enrichment of GWAS signals for T2D and fasting glucose was concentrated in subsets of islet enhancers characterised by open chromatin and hypomethylation, with the former annotation predominant. At several loci (including CDC123, ADCY5, KLHDC5) the combination of fine-mapping genetic data and chromatin state enrichment maps, supplemented by allelic imbalance in chromatin accessibility pinpointed likely causal variants. The combination of increasingly-precise genetic and islet epigenomic information accelerates definition of causal mechanisms implicated in T2D pathogenesis.
Collapse
Affiliation(s)
- Matthias Thurner
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom,Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Martijn van de Bunt
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom,Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Jason M Torres
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Anubha Mahajan
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Vibe Nylander
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Amanda J Bennett
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Kyle J Gaulton
- Department of PediatricsUniversity of California, San DiegoSan DiegoUnited States
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Carla Burrows
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Christopher G Bell
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUnited Kingdom,MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Robert Lowe
- Centre for Genomics and Child Health, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUnited Kingdom
| | - Stephan Beck
- Department of Cancer Biology, UCL Cancer InstituteUniversity College LondonLondonUnited Kingdom
| | - Vardhman K Rakyan
- Centre for Genomics and Child Health, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUnited Kingdom
| | - Anna L Gloyn
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom,Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom,Oxford NIHR Biomedical Research CentreChurchill HospitalOxfordUnited Kingdom
| | - Mark I McCarthy
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom,Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom,Oxford NIHR Biomedical Research CentreChurchill HospitalOxfordUnited Kingdom
| |
Collapse
|
32
|
Zhang L, Xie WJ, Liu S, Meng L, Gu C, Gao YQ. DNA Methylation Landscape Reflects the Spatial Organization of Chromatin in Different Cells. Biophys J 2017; 113:1395-1404. [PMID: 28978434 DOI: 10.1016/j.bpj.2017.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022] Open
Abstract
The relationship between DNA methylation and chromatin structure is still largely unknown. By analyzing a large set of published sequencing data, we observed a long-range power law correlation of DNA methylation with cell class-specific scaling exponents in the range of tens of kilobases. We showed that such cell class-specific scaling exponents are caused by different patchiness of DNA methylation in different cells. By modeling the chromatin structure using high-resolution chromosome conformation capture data and mapping the methylation level onto the modeled structure, we demonstrated that the patchiness of DNA methylation is related to chromatin structure. The scaling exponents of the power law correlation are thus a display of the spatial organization of chromatin. Besides the long-range correlation, we also showed that the local correlation of DNA methylation is associated with nucleosome positioning. The local correlation of partially methylated domains is different from that of nonpartially methylated domains, suggesting that their chromatin structures differ at the scale of several hundred base pairs (covering a few nucleosomes). Our study provides a novel, to our knowledge, view of the spatial organization of chromatin structure from a perspective of DNA methylation, in which both long-range and local correlations of DNA methylation along the genome reflect the spatial organization of chromatin.
Collapse
Affiliation(s)
- Ling Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Wen Jun Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sirui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luming Meng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chan Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
33
|
Nothjunge S, Nührenberg TG, Grüning BA, Doppler SA, Preissl S, Schwaderer M, Rommel C, Krane M, Hein L, Gilsbach R. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. Nat Commun 2017; 8:1667. [PMID: 29162810 PMCID: PMC5698409 DOI: 10.1038/s41467-017-01724-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/10/2017] [Indexed: 12/29/2022] Open
Abstract
Storage of chromatin in restricted nuclear space requires dense packing while ensuring DNA accessibility. Thus, different layers of chromatin organization and epigenetic control mechanisms exist. Genome-wide chromatin interaction maps revealed large interaction domains (TADs) and higher order A and B compartments, reflecting active and inactive chromatin, respectively. The mutual dependencies between chromatin organization and patterns of epigenetic marks, including DNA methylation, remain poorly understood. Here, we demonstrate that establishment of A/B compartments precedes and defines DNA methylation signatures during differentiation and maturation of cardiac myocytes. Remarkably, dynamic CpG and non-CpG methylation in cardiac myocytes is confined to A compartments. Furthermore, genetic ablation or reduction of DNA methylation in embryonic stem cells or cardiac myocytes, respectively, does not alter genome-wide chromatin organization. Thus, DNA methylation appears to be established in preformed chromatin compartments and may be dispensable for the formation of higher order chromatin organization. Chromatin is organized in higher order A and B compartments, reflecting active and inactive chromatin. Here, the authors provide evidence that in cardiac myocytes DNA methylation is established in preformed chromatin compartments and may be dispensable for higher order chromatin organization.
Collapse
Affiliation(s)
- Stephan Nothjunge
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Thomas G Nührenberg
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,University Heart Center Freiburg-Bad Krozingen, Department for Cardiology und Angiology II, Südring 15, 79189, Bad Krozingen, Germany
| | - Björn A Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg, Germany
| | - Stefanie A Doppler
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center, Lazarettstraße 36, 80636, München, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,Ludwig Institute for Cancer Research, Gilman Drive 9500, La Jolla, CA, 92093, USA
| | - Martin Schwaderer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Carolin Rommel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center, Lazarettstraße 36, 80636, München, Germany.,DZHK (German Center for Cardiovascular Research)-Partner Site Munich Heart Alliance, Biedersteiner Strasse 29, 80802, München, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
34
|
Wiehle L, Raddatz G, Pusch S, Gutekunst J, von Deimling A, Rodríguez-Paredes M, Lyko F. mIDH-associated DNA hypermethylation in acute myeloid leukemia reflects differentiation blockage rather than inhibition of TET-mediated demethylation. Cell Stress 2017; 1:55-67. [PMID: 31225434 PMCID: PMC6551656 DOI: 10.15698/cst2017.10.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenases 1 and 2 (IDH1/2) are recurrently mutated in acute myeloid leukemia (AML), but their mechanistic role in leukemogenesis is poorly understood. The inhibition of TET enzymes by D-2-hydroxyglutarate (D-2-HG), which is produced by mutant IDH1/2 (mIDH1/2), has been suggested to promote epigenetic deregulation during tumorigenesis. In addition, mIDH also induces a differentiation block in various cell culture and mouse models. Here we analyze the genomic methylation patterns of AML patients with mIDH using Infinium 450K data from a large AML cohort and found that mIDH is associated with pronounced DNA hypermethylation at tens of thousands of CpGs. Interestingly, however, myeloid leukemia cells overexpressing mIDH, cells that were cultured in the presence of D-2-HG or TET2 mutant AML patients did not show similar methylation changes. In further analyses, we also characterized the methylation landscapes of myeloid progenitor cells and analyzed their relationship to mIDH-associated hypermethylation. Our findings identify the differentiation state of myeloid cells, rather than inhibition of TET-mediated DNA demethylation, as a major factor of mIDH-associated hypermethylation in AML. Furthermore, our results are also important for understanding the mode of action of currently developed mIDH inhibitors.
Collapse
Affiliation(s)
- Laura Wiehle
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Rinaldi G, Rossi M, Fendt SM. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1397] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| |
Collapse
|
36
|
Strategies for analyzing bisulfite sequencing data. J Biotechnol 2017; 261:105-115. [PMID: 28822795 DOI: 10.1016/j.jbiotec.2017.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/10/2023]
Abstract
DNA methylation is one of the main epigenetic modifications in the eukaryotic genome; it has been shown to play a role in cell-type specific regulation of gene expression, and therefore cell-type identity. Bisulfite sequencing is the gold-standard for measuring methylation over the genomes of interest. Here, we review several techniques used for the analysis of high-throughput bisulfite sequencing. We introduce specialized short-read alignment techniques as well as pre/post-alignment quality check methods to ensure data quality. Furthermore, we discuss subsequent analysis steps after alignment. We introduce various differential methylation methods and compare their performance using simulated and real bisulfite sequencing datasets. We also discuss the methods used to segment methylomes in order to pinpoint regulatory regions. We introduce annotation methods that can be used for further classification of regions returned by segmentation and differential methylation methods. Finally, we review software packages that implement strategies to efficiently deal with large bisulfite sequencing datasets locally and we discuss online analysis workflows that do not require any prior programming skills. The analysis strategies described in this review will guide researchers at any level to the best practices of bisulfite sequencing analysis.
Collapse
|
37
|
Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin 2017; 10:18. [PMID: 28413449 PMCID: PMC5387343 DOI: 10.1186/s13072-017-0125-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. Results The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Conclusions Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0125-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611 USA
| | - John N Anderson
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907 USA
| |
Collapse
|
38
|
Toh H, Shirane K, Miura F, Kubo N, Ichiyanagi K, Hayashi K, Saitou M, Suyama M, Ito T, Sasaki H. Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing. BMC Genomics 2017; 18:31. [PMID: 28056787 PMCID: PMC5217569 DOI: 10.1186/s12864-016-3392-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 12/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methylation of cytosine in genomic DNA is a well-characterized epigenetic modification involved in many cellular processes and diseases. Whole-genome bisulfite sequencing (WGBS), such as MethylC-seq and post-bisulfite adaptor tagging sequencing (PBAT-seq), uses the power of high-throughput DNA sequencers and provides genome-wide DNA methylation profiles at single-base resolution. However, the accuracy and consistency of WGBS outputs in relation to the operating conditions of high-throughput sequencers have not been explored. RESULTS We have used the Illumina HiSeq platform for our PBAT-based WGBS, and found that different versions of HiSeq Control Software (HCS) and Real-Time Analysis (RTA) installed on the system provided different global CpG methylation levels (approximately 5% overall difference) for the same libraries. This problem was reproduced multiple times with different WGBS libraries and likely to be associated with the low sequence diversity of bisulfite-converted DNA. We found that HCS was the major determinant in the observed differences. To determine which version of HCS is most suitable for WGBS, we used substrates with predetermined CpG methylation levels, and found that HCS v2.0.5 is the best among the examined versions. HCS v2.0.12 showed the poorest performance and provided artificially lower CpG methylation levels when 5-methylcytosine is read as guanine (first read of PBAT-seq and second read of MethylC-seq). In addition, paired-end sequencing of low diversity libraries using HCS v2.2.38 or the latest HCS v2.2.58 was greatly affected by cluster densities. CONCLUSIONS Software updates in the Illumina HiSeq platform can affect the outputs from low-diversity sequencing libraries such as WGBS libraries. More recent versions are not necessarily the better, and HCS v2.0.5 is currently the best for WGBS among the examined HCS versions. Thus, together with other experimental conditions, special care has to be taken on this point when CpG methylation levels are to be compared between different samples by WGBS.
Collapse
Affiliation(s)
- Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenjiro Shirane
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Naoki Kubo
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenji Ichiyanagi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
39
|
Ehrlich KC, Paterson HL, Lacey M, Ehrlich M. DNA Hypomethylation in Intragenic and Intergenic Enhancer Chromatin of Muscle-Specific Genes Usually Correlates with their Expression. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:441-455. [PMID: 28018137 PMCID: PMC5168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tissue-specific enhancers are critical for gene regulation. In this study, we help elucidate the contribution of muscle-associated differential DNA methylation to the enhancer activity of highly muscle-specific genes. By bioinformatic analysis of 44 muscle-associated genes, we show that preferential gene expression in skeletal muscle (SkM) correlates with SkM-specific intragenic and intergenic enhancer chromatin and overlapping foci of DNA hypomethylation. Some genes, e.g., CASQ1 and FBXO32, displayed broad regions of both SkM- and heart-specific enhancer chromatin but exhibited focal SkM-specific DNA hypomethylation. Half of the genes had SkM-specific super-enhancers. In contrast to simple enhancer/gene-expression correlations, a super-enhancer was associated with the myogenic MYOD1 gene in both SkM and myoblasts even though SkM has < 1 percent as much MYOD1 expression. Local chromatin differences in this super-enhancer probably contribute to the SkM/myoblast differential expression. Transfection assays confirmed the tissue-specificity of the 0.3-kb core enhancer within MYOD1's super-enhancer and demonstrated its repression by methylation of its three CG dinucleotides. Our study suggests that DNA hypomethylation increases enhancer tissue-specificity and that SkM super-enhancers sometimes are poised for physiologically important, rapid up-regulation.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Program in Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA
| | | | - Michelle Lacey
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA,Mathematics Department, Tulane University, New Orleans, LA
| | - Melanie Ehrlich
- Program in Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA,Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA,Hayward Genetics Center, Tulane University Health Sciences Center, New Orleans, LA,To whom all correspondence should be addressed: Melanie Ehrlich, PhD, Hayward Genetics Center, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112; Tele: 504-988-2449; Fax: 504-988-1763;
| |
Collapse
|
40
|
Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism. Nat Commun 2016; 7:13666. [PMID: 27966532 PMCID: PMC5171841 DOI: 10.1038/ncomms13666] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022] Open
Abstract
Altered DNA methylation is common in cancer and often considered an early event in tumorigenesis. However, the sources of heterogeneity of DNA methylation among tumours remain poorly defined. Here we capitalize on the availability of multi-platform data on thousands of human tumours to build integrative models of DNA methylation. We quantify the contribution of clinical and molecular factors in explaining intertumoral variability in DNA methylation. We show that the levels of a set of metabolic genes involved in the methionine cycle is predictive of several features of DNA methylation in tumours, including the methylation of cancer genes. Finally, we demonstrate that patients whose DNA methylation can be predicted from the methionine cycle exhibited improved survival over cases where this regulation is disrupted. This study represents a comprehensive analysis of the determinants of methylation and demonstrates the surprisingly large interaction between metabolism and DNA methylation variation. Together, our results quantify links between tumour metabolism and epigenetics and outline clinical implications.
Altered DNA methylation is a feature of cancer and between-patient variability is prevalent. Here, the authors integrate data on thousands of human tumours, and find that expression levels of methionine metabolism genes are predictive of methylation features, and that the breakdown of this relationship is a negative prognostic marker.
Collapse
|
41
|
Gene-set Analysis with CGI Information for Differential DNA Methylation Profiling. Sci Rep 2016; 6:24666. [PMID: 27090937 PMCID: PMC4836301 DOI: 10.1038/srep24666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/30/2016] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a well-established epigenetic biomarker for many diseases. Studying the relationships among a group of genes and their methylations may help to unravel the etiology of diseases. Since CpG-islands (CGIs) play a crucial role in the regulation of transcription during methylation, including them in the analysis may provide further information in understanding the pathogenesis of cancers. Such CGI information, however, has usually been overlooked in existing gene-set analyses. Here we aimed to include both pathway information and CGI status to rank competing gene-sets and identify among them the genes most likely contributing to DNA methylation changes. To accomplish this, we devised a Bayesian model for matched case-control studies with parameters for CGI status and pathway associations, while incorporating intra-gene-set information. Three cancer studies with candidate pathways were analyzed to illustrate this approach. The strength of association for each candidate pathway and the influence of each gene were evaluated. Results show that, based on probabilities, the importance of pathways and genes can be determined. The findings confirm that some of these genes are cancer-related and may hold the potential to be targeted in drug development.
Collapse
|
42
|
Predicting CpG methylation levels by integrating Infinium HumanMethylation450 BeadChip array data. Genomics 2016; 107:132-7. [DOI: 10.1016/j.ygeno.2016.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
|
43
|
Maurano MT, Wang H, John S, Shafer A, Canfield T, Lee K, Stamatoyannopoulos JA. Role of DNA Methylation in Modulating Transcription Factor Occupancy. Cell Rep 2015; 12:1184-95. [PMID: 26257180 DOI: 10.1016/j.celrep.2015.07.024] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/14/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023] Open
Abstract
Although DNA methylation is commonly invoked as a mechanism for transcriptional repression, the extent to which it actively silences transcription factor (TF) occupancy sites in vivo is unknown. To study the role of DNA methylation in the active modulation of TF binding, we quantified the effect of DNA methylation depletion on the genomic occupancy patterns of CTCF, an abundant TF with known methylation sensitivity that is capable of autonomous binding to its target sites in chromatin. Here, we show that the vast majority (>98.5%) of the tens of thousands of unoccupied, methylated CTCF recognition sequences remain unbound upon abrogation of DNA methylation. The small fraction of sites that show methylation-dependent binding in vivo are in turn characterized by highly variable CTCF occupancy across cell types. Our results suggest that DNA methylation is not a primary groundskeeper of genomic TF landscapes, but rather a specialized mechanism for stabilizing intrinsically labile sites.
Collapse
Affiliation(s)
- Matthew T Maurano
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Hao Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sam John
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anthony Shafer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theresa Canfield
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kristen Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - John A Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
44
|
Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas. PLoS Genet 2015; 11:e1005442. [PMID: 26241857 PMCID: PMC4524645 DOI: 10.1371/journal.pgen.1005442] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo.
Collapse
|
45
|
Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. J Biotechnol 2015; 199:38-46. [DOI: 10.1016/j.jbiotec.2015.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
|
46
|
Aïssi D, Dennis J, Ladouceur M, Truong V, Zwingerman N, Rocanin-Arjo A, Germain M, Paton TA, Morange PE, Gagnon F, Trégouët DA. Genome-wide investigation of DNA methylation marks associated with FV Leiden mutation. PLoS One 2014; 9:e108087. [PMID: 25265411 PMCID: PMC4179266 DOI: 10.1371/journal.pone.0108087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022] Open
Abstract
In order to investigate whether DNA methylation marks could contribute to the incomplete penetrance of the FV Leiden mutation, a major genetic risk factor for venous thrombosis (VT), we measured genome-wide DNA methylation levels in peripheral blood samples of 98 VT patients carrying the mutation and 251 VT patients without the mutation using the dedicated Illumina HumanMethylation450 array. The genome-wide analysis of 388,120 CpG probes identified three sites mapping to the SLC19A2 locus whose DNA methylation levels differed significantly (p<3 10-8) between carriers and non-carriers. The three sites replicated (p<2 10-7) in an independent sample of 214 individuals from five large families ascertained on VT and FV Leiden mutation among which 53 were carriers and 161 were non-carriers of the mutation. In both studies, these three CpG sites were also associated (2.33 10-11 0.05). In conclusion, our work clearly illustrates some promises and pitfalls of DNA methylation investigations on peripheral blood DNA in large epidemiological cohorts. DNA methylation levels at SLC19A2 are influenced by SNPs in LD with FV Leiden, but these DNA methylation marks do not explain the incomplete penetrance of the FV Leiden mutation.
Collapse
Affiliation(s)
- Dylan Aïssi
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Jessica Dennis
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Martin Ladouceur
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Centre de Recherches du CHUM, Montréal, Canada
| | - Vinh Truong
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Nora Zwingerman
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Ares Rocanin-Arjo
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Marine Germain
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Tara A. Paton
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pierre-Emmanuel Morange
- Aix-Marseille University, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France
- INSERM, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| |
Collapse
|
47
|
Prendergast JGD, Chambers EV, Semple CAM. Sequence-level mechanisms of human epigenome evolution. Genome Biol Evol 2014; 6:1758-71. [PMID: 24966180 PMCID: PMC4122940 DOI: 10.1093/gbe/evu142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage.
Collapse
Affiliation(s)
| | - Emily V Chambers
- The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Colin A M Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, United Kingdom
| |
Collapse
|