1
|
Takahashi M, Hiraoka S, Matsumoto Y, Shibagaki R, Ujihara T, Maeda H, Seo S, Nagasaki K, Takeuchi H, Matsuzaki S. Host-encoded DNA methyltransferases modify the epigenome and host tropism of invading phages. iScience 2025; 28:112264. [PMID: 40241747 PMCID: PMC12003011 DOI: 10.1016/j.isci.2025.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/09/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Restriction modification (RM) systems are ubiquitous bacterial defense systems; however, some phages evade RM system and adapt to their bacterial hosts. In such cases, phages are thought to stochastically acquire DNA methylation from host-encoded DNA methyltransferases (MTases), facilitating host adaptation. However, no studies have directly compared the methylomes of host bacteria and their infecting phages. Here, we demonstrate the epigenetic landscape of adapted phages with diverse infection histories, focusing on the broad host-range phage KHP30T as its adapts to three Helicobacter pylori strains. Using a multistage infection system, we observed that the adapted phages displayed significantly high titers against the last infected H. pylori strain, suggesting an attendant change in host tropism. Single-molecule real-time sequencing revealed that methylated motifs were predominantly shared between the adapted phages and their most recent host. Our findings enhance our understanding of epigenetic phage-host interactions, which have significant implications for microbial ecology.
Collapse
Affiliation(s)
- Michiko Takahashi
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yuki Matsumoto
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Rikako Shibagaki
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Takako Ujihara
- Science Research Center, Kochi University, Nankoku, Kochi, Japan
| | - Hiromichi Maeda
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Satoru Seo
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Keizo Nagasaki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Hiroaki Takeuchi
- Department of Medical Laboratory Sciences, Health and Science, International University of Health and Welfare Graduate School, Narita, Chiba, Japan
| | | |
Collapse
|
2
|
Zhao H, Dufour D, Zhong J, Gong S, Roy PH, Lévesque CM. Decoding Adenine DNA Methylation Effects in Streptococcus Mutans: Insights Into Self-DNA Protection and Autoaggregation. Mol Oral Microbiol 2025; 40:82-93. [PMID: 39624001 PMCID: PMC11904264 DOI: 10.1111/omi.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 03/14/2025]
Abstract
Streptococcus mutans, a key player in dental caries, faces multiple environmental challenges within the oral cavity, including oxidative stress, nutrient scarcity, and acidic pH. To survive and thrive, S. mutans has evolved intricate mechanisms, including the CSP-ComDE quorum sensing system, which coordinates responses to environmental cues. The CSP-ComDE system enables S. mutans to communicate with neighboring cells via its CSP pheromone. Under stress conditions, the CSP pheromone production increases, triggering a cascade of events. Notably, our research demonstrated that the CSP pheromone activates the expression of a Type II restriction-modification (R-M) system. Type II R-M systems are well-known tools in molecular biology and genetic engineering and consist of two distinct enzymes: a restriction enzyme and a methyltransferase. An increasing number of studies have revealed that bacterial adenine methylation (Dam methylation) has a broader role beyond mere DNA protection. In fact, the marks introduced into the DNA provide signals for a variety of physiological processes. Our results highlight a conserved chromosomal locus in S. mutans encoding the DpnII R-M system. DpnII R-M methylates DNA at 5'-GATC target sites within the S. mutans genome and cleaves unmarked DNA. Furthermore, our findings suggest that Dam methylation significantly impacts foreign DNA acquisition via natural transformation and modulates mutanobactin expression-a secondary metabolite linked to oxidative stress tolerance. Collectively, our findings suggest that Dam methylation bridges epigenetics and bacterial fitness, potentially opening new avenues in bacterial epigenetics. As we explore this intricate biological process, we may uncover novel therapeutic strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Haowei Zhao
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Delphine Dufour
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Jamie Zhong
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Siew‐Ging Gong
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Paul H. Roy
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de QuébecUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
3
|
Won C, Yim SS. Emerging methylation-based approaches in microbiome engineering. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:96. [PMID: 38987811 PMCID: PMC11238421 DOI: 10.1186/s13068-024-02529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Bacterial epigenetics, particularly through DNA methylation, exerts significant influence over various biological processes such as DNA replication, uptake, and gene regulation in bacteria. In this review, we explore recent advances in characterizing bacterial epigenomes, accompanied by emerging strategies that harness bacterial epigenetics to elucidate and engineer diverse bacterial species with precision and effectiveness. Furthermore, we delve into the potential of epigenetic modifications to steer microbial functions and influence community dynamics, offering promising opportunities for understanding and modulating microbiomes. Additionally, we investigate the extensive diversity of DNA methyltransferases and emphasize their potential utility in the context of the human microbiome. In summary, this review highlights the potential of DNA methylation as a powerful toolkit for engineering microbiomes.
Collapse
Affiliation(s)
- Changhee Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung Sun Yim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Gulati P, Singh A, Patra S, Bhat S, Verma A. Restriction modification systems in archaea: A panoramic outlook. Heliyon 2024; 10:e27382. [PMID: 38644887 PMCID: PMC11033074 DOI: 10.1016/j.heliyon.2024.e27382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024] Open
Abstract
Restriction modification (RM) systems are one of the ubiquitous yet primitive defense responses employed by bacteria and archaea with the primary role of safeguarding themselves against invading bacteriophages. Protection of the host occurs by the cleavage of the invading foreign DNA via restriction endonucleases with concomitant methylation of host DNA with the aid of a methyltransferase counterpart. RM systems have been extensively studied in bacteria, however, in the case of archaea there are limited reports of RM enzymes that are investigated to date owing to their inhospitable growth demands. This review aims to broaden the knowledge about what is known about the diversity of RM systems in archaea and encapsulate the current knowledge on restriction and modification enzymes characterized in archaea so far and the role of RM systems in the milieu of archaeal biology.
Collapse
Affiliation(s)
- Pallavi Gulati
- Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus, New Delhi 110021, India
| | - Ashish Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus, New Delhi 110021, India
| | - Shreyas Bhat
- Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Verma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA-15213, USA
| |
Collapse
|
5
|
Zimmerman EH, Ramsey EL, Hunter KE, Villadelgado SM, Phillips CM, Shipman RT, Forsyth MH. The Helicobacter pylori methylome is acid-responsive due to regulation by the two-component system ArsRS and the type I DNA methyltransferase HsdM1 (HP0463). J Bacteriol 2024; 206:e0030923. [PMID: 38179929 PMCID: PMC10810217 DOI: 10.1128/jb.00309-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
In addition to its role in genome protection, DNA methylation can regulate gene expression. In this study, we characterized the impact of acidity, phase variation, and the ArsRS TCS on the expression of the Type I m6A DNA methyltransferase HsdM1 (HP0463) of Helicobacter pylori 26695 and their subsequent effects on the methylome. Transcription of hsdM1 increases at least fourfold in the absence of the sensory histidine kinase ArsS, the major acid-sensing protein of H. pylori. hsdM1 exists in the phase-variable operon hsdR1-hsdM1. Phase-locking hsdR1 (HP0464), the restriction endonuclease gene, has significant impacts on the transcription of hsdM1. To determine the impacts of methyltransferase transcription patterns on the methylome, we conducted methylome sequencing on samples cultured at pH 7 or pH 5. We found differentially methylated motifs between these growth conditions and that deletions of arsS and/or hsdM1 interfere with the epigenetic acid response. Deletion of arsS leads to altered activity of HsdM1 and multiple other methyltransferases under both pH conditions indicating that the ArsRS TCS, in addition to direct effects on regulon transcription during acid acclimation, may also indirectly impact gene expression via regulation of the methylome. We determined the target motif of HsdM1 (HP0463) to be the complementary bipartite sequence pair 5'-TCAm6AVN6TGY-3' and 3'-AGTN6GAm6ACA-5'. This complex regulation of DNA methyltransferases, and thus differential methylation patterns, may have implications for the decades-long persistent infection by H. pylori. IMPORTANCE This study expands the possibilities for complex, epigenomic regulation in Helicobacter pylori. We demonstrate that the H. pylori methylome is plastic and acid sensitive via the two-component system ArsRS and the DNA methyltransferase HsdM1. The control of a methyltransferase by ArsRS may allow for a layered response to changing acidity. Likely, an early response whereby ArsR~P affects regulon expression, including the methyltransferase hsdM1. Then, a somewhat later effect as the altered methylome, due to altered HsdM1 expression, subsequently alters the expression of other genes involved in acclimation. The intermediate methylation of certain motifs supports the hypothesis that methyltransferases play a regulatory role. Untangling this additional web of regulation could play a key role in understanding H. pylori colonization and persistence.
Collapse
Affiliation(s)
| | - Erin L. Ramsey
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | | | | | - Ryan T. Shipman
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Mark H. Forsyth
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
6
|
Vale FF, Roberts RJ, Kobayashi I, Camargo MC, Rabkin CS. Gene content, phage cycle regulation model and prophage inactivation disclosed by prophage genomics in the Helicobacter pylori Genome Project. Gut Microbes 2024; 16:2379440. [PMID: 39132840 PMCID: PMC11321410 DOI: 10.1080/19490976.2024.2379440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Prophages can have major clinical implications through their ability to change pathogenic bacterial traits. There is limited understanding of the prophage role in ecological, evolutionary, adaptive processes and pathogenicity of Helicobacter pylori, a widespread bacterium causally associated with gastric cancer. Inferring the exact prophage genomic location and completeness requires complete genomes. The international Helicobacter pylori Genome Project (HpGP) dataset comprises 1011 H. pylori complete clinical genomes enriched with epigenetic data. We thoroughly evaluated the H. pylori prophage genomic content in the HpGP dataset. We investigated population evolutionary dynamics through phylogenetic and pangenome analyses. Additionally, we identified genome rearrangements and assessed the impact of prophage presence on bacterial gene disruption and methylome. We found that 29.5% (298) of the HpGP genomes contain prophages, of which only 32.2% (96) were complete, minimizing the burden of prophage carriage. The prevalence of H. pylori prophage sequences was variable by geography and ancestry, but not by disease status of the human host. Prophage insertion occasionally results in gene disruption that can change the global bacterial epigenome. Gene function prediction allowed the development of the first model for lysogenic-lytic cycle regulation in H. pylori. We have disclosed new prophage inactivation mechanisms that appear to occur by genome rearrangement, merger with other mobile elements, and pseudogene accumulation. Our analysis provides a comprehensive framework for H. pylori prophage biological and genomics, offering insights into lysogeny regulation and bacterial adaptation to prophages.
Collapse
Affiliation(s)
- Filipa F. Vale
- BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ichizo Kobayashi
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - M. Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles S. Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
7
|
Ma J, Zhao H, Mo S, Li J, Ma X, Tang Y, Li H, Liu Z. Acquisition of Type I methyltransferase via horizontal gene transfer increases the drug resistance of Aeromonas veronii. Microb Genom 2023; 9:001107. [PMID: 37754275 PMCID: PMC10569733 DOI: 10.1099/mgen.0.001107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Aeromonas veronii is an opportunistic pathogen that affects both fish and mammals, including humans, leading to bacteraemia, sepsis, meningitis and even death. The increasing virulence and drug resistance of A. veronii are of significant concern and pose a severe risk to public safety. The Type I restriction-modification (RM) system, which functions as a bacterial defence mechanism, can influence gene expression through DNA methylation. However, little research has been conducted to explore its origin, evolutionary path, and relationship to virulence and drug resistance in A. veronii. In this study, we analysed the pan-genome of 233 A. veronii strains, and the results indicated that it was 'open', meaning that A. veronii has acquired additional genes from other species. This suggested that A. veronii had the potential to adapt and evolve rapidly, which might have contributed to its drug resistance. One Type I methyltransferase (MTase) and two complete Type I RM systems were identified, namely AveC4I, AveC4II and AveC4III in A. veronii strain C4, respectively. Notably, AveC4I was exclusive to A. veronii C4. Phylogenetic analysis revealed that AveC4I was derived from horizontal gene transfer from Thiocystis violascens and exchanged genes with the human pathogen Comamonas kerstersii. Single molecule real-time sequencing was applied to identify the motif methylated by AveC4I, which was unique and not recognized by any reported MTases in the REBASE database. We also annotated the functions and pathways of the genes containing the motif, revealing that AveC4I may control drug resistance in A. veronii C4. Our findings provide new insight on the mechanisms underlying drug resistance in pathogenic bacteria. By identifying the specific genes and pathways affected by AveC4I, this study may aid in the development of new therapeutic approaches to combat A. veronii infections.
Collapse
Affiliation(s)
- Jiayue Ma
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Honghao Zhao
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Shuangyi Mo
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou, PR China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, PR China
| |
Collapse
|
8
|
Ailloud F, Gottschall W, Suerbaum S. Methylome evolution suggests lineage-dependent selection in the gastric pathogen Helicobacter pylori. Commun Biol 2023; 6:839. [PMID: 37573385 PMCID: PMC10423294 DOI: 10.1038/s42003-023-05218-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
The bacterial pathogen Helicobacter pylori, the leading cause of gastric cancer, is genetically highly diverse and harbours a large and variable portfolio of restriction-modification systems. Our understanding of the evolution and function of DNA methylation in bacteria is limited. Here, we performed a comprehensive analysis of the methylome diversity in H. pylori, using a dataset of 541 genomes that included all known phylogeographic populations. The frequency of 96 methyltransferases and the abundance of their cognate recognition sequences were strongly influenced by phylogeographic structure and were inter-correlated, positively or negatively, for 20% of type II methyltransferases. Low density motifs were more likely to be affected by natural selection, as reflected by higher genomic instability and compositional bias. Importantly, direct correlation implied that methylation patterns can be actively enriched by positive selection and suggests that specific sites have important functions in methylation-dependent phenotypes. Finally, we identified lineage-specific selective pressures modulating the contraction and expansion of the motif ACGT, revealing that the genetic load of methylation could be dependent on local ecological factors. Taken together, natural selection may shape both the abundance and distribution of methyltransferases and their specific recognition sequences, likely permitting a fine-tuning of genome-encoded functions not achievable by genetic variation alone.
Collapse
Affiliation(s)
- Florent Ailloud
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Wilhelm Gottschall
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sebastian Suerbaum
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
9
|
Nishimura M, Tanaka T, Murata S, Miyabe A, Ishige T, Kawasaki K, Yokoyama M, Hashimoto N, Yamagata K, Nagano H, Tojo-Nishimura S, Matsushita K. Extension of bacterial rDNA sequencing for simultaneous methylation detection and its application in microflora analysis. Sci Rep 2023; 13:5731. [PMID: 37029177 PMCID: PMC10082018 DOI: 10.1038/s41598-023-28706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/23/2023] [Indexed: 04/09/2023] Open
Abstract
Although polymerase chain reaction (PCR) amplification and sequencing of the bacterial 16S rDNA region has numerous scientific applications, it does not provide DNA methylation information. Herein, we propose a simple extension for bisulfite sequencing to investigate 5-methylcytosine residues in the bacterial 16S rDNA region from clinical isolates or flora. Multiple displacement amplification without DNA denaturation was used to preferentially pre-amplify single-stranded bacterial DNA after bisulfite conversion. Following the pre-amplification, the 16S rDNA region was analyzed using nested bisulfite PCR and sequencing, enabling the simultaneous identification of DNA methylation status and sequence data. We used this approach (termed sm16S rDNA PCR/sequencing) to identify novel methylation sites and a methyltransferase (M. MmnI) in Morganella morganii and different methylation motifs among Enterococcus faecalis strains from small volumes of clinical specimens. Further, our analysis suggested that M. MmnI may be correlated to erythromycin resistance. Thus, sm16S rDNA PCR/sequencing is a useful extension method for analyzing the DNA methylation of 16S rDNA regions in a microflora, providing additional information not provided by conventional PCR. Given the relationship between DNA methylation status and drug resistance in bacteria, we believe this technique can be effectively applied in clinical sample testing.
Collapse
Affiliation(s)
- Motoi Nishimura
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Syota Murata
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Akiko Miyabe
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Masataka Yokoyama
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Yamagata
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satomi Tojo-Nishimura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
10
|
Schiffer CJ, Grätz C, Pfaffl MW, Vogel RF, Ehrmann MA. Characterization of the Staphylococcus xylosus methylome reveals a new variant of type I restriction modification system in staphylococci. Front Microbiol 2023; 14:946189. [PMID: 36970683 PMCID: PMC10030836 DOI: 10.3389/fmicb.2023.946189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Restriction modification (RM) systems are known to provide a strong barrier to the exchange of DNA between and within bacterial species. Likewise, DNA methylation is known to have an important function in bacterial epigenetics regulating essential pathways such as DNA replication and the phase variable expression of prokaryotic phenotypes. To date, research on staphylococcal DNA methylation focused mainly on the two species Staphylococcus aureus and S. epidermidis. Less is known about other members of the genus such as S. xylosus, a coagulase-negative commensal of mammalian skin. The species is commonly used as starter organism in food fermentations but is also increasingly considered to have an as yet elusive function in bovine mastitis infections. We analyzed the methylomes of 14 S. xylosus strains using single-molecular, real-time (SMRT) sequencing. Subsequent in silico sequence analysis allowed identification of the RM systems and assignment of the respective enzymes to the discovered modification patterns. Hereby the presence of type I, II, III and IV RM systems in varying numbers and combinations among the different strains was revealed, clearly distinguishing the species from what is known for other members of the genus so far. In addition, the study characterizes a newly discovered type I RM system, encoded by S. xylosus but also by a variety of other staphylococcal species, with a hitherto unknown gene arrangement that involves two specificity units instead of one (hsdRSMS). Expression of different versions of the operon in E. coli showed proper base modification only when genes encoding both hsdS subunits were present. This study provides new insights into the general understanding of the versatility and function of RM systems as well as the distribution and variations in the genus Staphylococcus.
Collapse
Affiliation(s)
- Carolin J. Schiffer
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- *Correspondence: Carolin J. Schiffer,
| | - Christian Grätz
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Rudi F. Vogel
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Matthias A. Ehrmann
- Chair of Technical Microbiology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022; 9:1067406. [PMID: 36533073 PMCID: PMC9755597 DOI: 10.3389/fmolb.2022.1067406] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation. On one hand, transcription of lncRNAs are controlled by the promoter methylation, which is similar to protein coding genes, on the other hand, lncRNA could interact with enzymes involved in DNA methylation to affect the methylation pattern of downstream genes, thus regulating their expression. In addition, circular RNAs (circRNAs) being an important class of noncoding RNA are also found to participate in this complex regulatory network. In this review, we summarize recent research progress on this crosstalk between lncRNA, circRNA, and DNA methylation as well as their potential functions in complex diseases including cancer. This work reveals a hidden layer for gene transcriptional regulation and enhances our understanding for epigenetics regarding detailed mechanisms on lncRNA regulatory function in human cancers.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Li
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yungang He
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Semashko TA, Arzamasov AA, Evsyutina DV, Garanina IA, Matyushkina DS, Ladygina VG, Pobeguts OV, Fisunov GY, Govorun VM. Role of DNA modifications in Mycoplasma gallisepticum. PLoS One 2022; 17:e0277819. [PMID: 36413541 PMCID: PMC9681074 DOI: 10.1371/journal.pone.0277819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The epigenetics of bacteria, and bacteria with a reduced genome in particular, is of great interest, but is still poorly understood. Mycoplasma gallisepticum, a representative of the class Mollicutes, is an excellent model of a minimal cell because of its reduced genome size, lack of a cell wall, and primitive cell organization. In this study we investigated DNA modifications of the model object Mycoplasma gallisepticum and their roles. We identified DNA modifications and methylation motifs in M. gallisepticum S6 at the genome level using single molecule real time (SMRT) sequencing. Only the ANCNNNNCCT methylation motif was found in the M. gallisepticum S6 genome. The studied bacteria have one functional system for DNA modifications, the Type I restriction-modification (RM) system, MgaS6I. We characterized its activity, affinity, protection and epigenetic functions. We demonstrated the protective effects of this RM system. A common epigenetic signal for bacteria is the m6A modification we found, which can cause changes in DNA-protein interactions and affect the cell phenotype. Native methylation sites are underrepresented in promoter regions and located only near the -35 box of the promoter, which does not have a significant effect on gene expression in mycoplasmas. To study the epigenetics effect of m6A for genome-reduced bacteria, we constructed a series of M. gallisepticum strains expressing EGFP under promoters with the methylation motifs in their different elements. We demonstrated that m6A modifications of the promoter located only in the -10-box affected gene expression and downregulated the expression of the corresponding gene.
Collapse
Affiliation(s)
- Tatiana A. Semashko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
- * E-mail:
| | - Alexander A. Arzamasov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Daria V. Evsyutina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
| | - Irina A. Garanina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Daria S. Matyushkina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
| | - Valentina G. Ladygina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Olga V. Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Gleb Y. Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
| | - Vadim M. Govorun
- Research Institute for Systems Biology and Medicine, Moscow, Russian Federation
| |
Collapse
|
13
|
Adamczyk-Poplawska M, Bacal P, Mrozek A, Matczynska N, Piekarowicz A, Kwiatek A. Phase-variable Type I methyltransferase M.NgoAV from Neisseria gonorrhoeae FA1090 regulates phasevarion expression and gonococcal phenotype. Front Microbiol 2022; 13:917639. [PMID: 36267167 PMCID: PMC9577141 DOI: 10.3389/fmicb.2022.917639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The restriction-modification (RM) systems are compared to a primitive, innate, prokaryotic immune system, controlling the invasion by foreign DNA, composed of methyltransferase (MTase) and restriction endonuclease. The biological significance of RM systems extends beyond their defensive function, but the data on the regulatory role of Type I MTases are limited. We have previously characterized molecularly a non-canonical Type I RM system, NgoAV, with phase-variable specificity, encoded by Neisseria gonorrhoeae FA1090. In the current work, we have investigated the impact of methyltransferase NgoAV (M.NgoAV) activity on gonococcal phenotype and on epigenetic control of gene expression. For this purpose, we have constructed and studied genetic variants (concerning activity and specificity) within M.NgoAV locus. Deletion of M.NgoAV or switch of its specificity had an impact on phenotype of N. gonorrhoeae. Biofilm formation and planktonic growth, the resistance to antibiotics, which target bacterial peptidoglycan or other antimicrobials, and invasion of human epithelial host cells were affected. The expression of genes was deregulated in gonococcal cells with knockout M.NgoAV gene and the variant with new specificity. For the first time, the existence of a phasevarion (phase-variable regulon), directed by phase-variable Type I MTase, is demonstrated.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Adamczyk-Poplawska,
| | - Pawel Bacal
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Mrozek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Natalia Matczynska
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Piekarowicz
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Hiraoka S, Sumida T, Hirai M, Toyoda A, Kawagucci S, Yokokawa T, Nunoura T. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Res 2022; 50:1531-1550. [PMID: 35051998 PMCID: PMC8919816 DOI: 10.1093/nar/gkab1292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
DNA chemical modifications, including methylation, are widespread and play important roles in prokaryotes and viruses. However, current knowledge of these modification systems is severely biased towards a limited number of culturable prokaryotes, despite the fact that a vast majority of microorganisms have not yet been cultured. Here, using single-molecule real-time sequencing, we conducted culture-independent 'metaepigenomic' analyses (an integrated analysis of metagenomics and epigenomics) of marine microbial communities. A total of 233 and 163 metagenomic-assembled genomes (MAGs) were constructed from diverse prokaryotes and viruses, respectively, and 220 modified motifs and 276 DNA methyltransferases (MTases) were identified. Most of the MTase genes were not genetically linked with the endonuclease genes predicted to be involved in defense mechanisms against extracellular DNA. The MTase-motif correspondence found in the MAGs revealed 10 novel pairs, 5 of which showed novel specificities and experimentally confirmed the catalytic specificities of the MTases. We revealed novel alternative specificities in MTases that are highly conserved in Alphaproteobacteria, which may enhance our understanding of the co-evolutionary history of the methylation systems and the genomes. Our findings highlight diverse unexplored DNA modifications that potentially affect the ecology and evolution of prokaryotes and viruses in nature.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Tomomi Sumida
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of
Genetics, Mishima,
Shizuoka 411-8540,
Japan
| | - Shinsuke Kawagucci
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
- Marine Biodiversity and Environmental Assessment Research
Center (BioEnv), Research Institute for Global Change (RIGC), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Taichi Yokokawa
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| |
Collapse
|
15
|
Meng B, Epp N, Wijaya W, Mrázek J, Hoover TR. Methylation Motifs in Promoter Sequences May Contribute to the Maintenance of a Conserved m5C Methyltransferase in Helicobacter pylori. Microorganisms 2021; 9:microorganisms9122474. [PMID: 34946076 PMCID: PMC8706393 DOI: 10.3390/microorganisms9122474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023] Open
Abstract
DNA methylomes of Helicobacter pylori strains are complex due to the large number of DNA methyltransferases (MTases) they possess. H. pylori J99 M.Hpy99III is a 5-methylcytosine (m5C) MTase that converts GCGC motifs to Gm5CGC. Homologs of M.Hpy99III are found in essentially all H. pylori strains. Most of these homologs are orphan MTases that lack a cognate restriction endonuclease, and their retention in H. pylori strains suggest they have roles in gene regulation. To address this hypothesis, green fluorescent protein (GFP) reporter genes were constructed with six putative promoters that had a GCGC motif in the extended −10 region, and the expression of the reporter genes was compared in wild-type H. pylori G27 and a mutant lacking the M.Hpy99III homolog (M.HpyGIII). The expression of three of the GFP reporter genes was decreased significantly in the mutant lacking M.HpyGIII. In addition, the growth rate of the H. pylori G27 mutant lacking M.HpyGIII was reduced markedly compared to that of the wild type. These findings suggest that the methylation of the GCGC motif in many H. pylori GCGC-containing promoters is required for the robust expression of genes controlled by these promoters, which may account for the universal retention of M.Hpy99III homologs in H. pylori strains.
Collapse
Affiliation(s)
- Bowen Meng
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (B.M.); (N.E.); (W.W.)
| | - Naomi Epp
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (B.M.); (N.E.); (W.W.)
| | - Winsen Wijaya
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (B.M.); (N.E.); (W.W.)
| | - Jan Mrázek
- Department of Microbiology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (B.M.); (N.E.); (W.W.)
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
16
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
17
|
Mehershahi KS, Chen SL. DNA methylation by three Type I restriction modification systems of Escherichia coli does not influence gene regulation of the host bacterium. Nucleic Acids Res 2021; 49:7375-7388. [PMID: 34181709 PMCID: PMC8287963 DOI: 10.1093/nar/gkab530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a common epigenetic mark that influences transcriptional regulation, and therefore cellular phenotype, across all domains of life. In particular, both orphan methyltransferases and those from phasevariable restriction modification systems (RMSs) have been co-opted to regulate virulence epigenetically in many bacteria. We now show that three distinct non-phasevariable Type I RMSs in Escherichia coli have no measurable impact on gene expression, in vivo virulence, or any of 1190 in vitro growth phenotypes. We demonstrated this using both Type I RMS knockout mutants as well as heterologous installation of Type I RMSs into two E. coli strains. These data provide three clear and currently rare examples of restriction modification systems that have no impact on their host organism’s gene regulation. This leads to the possibility that other such nonregulatory methylation systems may exist, broadening our view of the potential role that RMSs may play in bacterial evolution.
Collapse
Affiliation(s)
- Kurosh S Mehershahi
- NUHS Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, Singapore 119228
| | - Swaine L Chen
- NUHS Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, Singapore 119228.,Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore 138672
| |
Collapse
|
18
|
Wachter J, Martens C, Barbian K, Rego ROM, Rosa P. Epigenomic Landscape of Lyme Disease Spirochetes Reveals Novel Motifs. mBio 2021; 12:e0128821. [PMID: 34156261 PMCID: PMC8262957 DOI: 10.1128/mbio.01288-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the etiological agent of Lyme disease, persists in nature through an enzootic cycle consisting of a vertebrate host and an Ixodes tick vector. The sequence motifs modified by two well-characterized restriction/modification (R/M) loci of B. burgdorferi type strain B31 were recently described, but the methylation profiles of other Lyme disease Borrelia bacteria have not been characterized. Here, the methylomes of B. burgdorferi type strain B31 and 7 clonal derivatives, along with B. burgdorferi N40, B. burgdorferi 297, B. burgdorferi CA-11, B. afzelii PKo, B. afzelii BO23, and B. garinii PBr, were defined through PacBio single-molecule real-time (SMRT) sequencing. This analysis revealed 9 novel sequence motifs methylated by the plasmid-encoded restriction/modification enzymes of these Borrelia strains. Furthermore, while a previous analysis of B. burgdorferi B31 revealed an epigenetic impact of methylation on the global transcriptome, the current data contradict those findings; our analyses of wild-type B. burgdorferi B31 revealed no consistent differences in gene expression among isogenic derivatives lacking one or more restriction/modification enzymes. IMPORTANCE The principal causative agent of Lyme disease in humans in the United States is Borrelia burgdorferi, while B. burgdorferi, B. afzelii, and B. garinii, collectively members of the Borrelia burgdorferi sensu lato species complex, cause Lyme disease in Europe and Asia. Two plasmid-encoded restriction/modification systems have been shown to limit the genetic transformation of B. burgdorferi type strain B31 with foreign DNA, but little is known about the restriction/modification systems of other Lyme disease Borrelia bacteria. This paper describes the methylation motifs present on genomic DNAs of multiple B. burgdorferi, B. afzelii, and B. garinii strains. Contrary to a previous report, we did not find evidence for an epigenetic impact on gene expression by methylation. Knowledge of the motifs recognized and methylated by the restriction/modification enzymes of Lyme disease Borrelia will facilitate molecular genetic investigations of these important human pathogens. Additionally, the similar motifs methylated by orthologous restriction/modification systems of Lyme disease Borrelia bacteria and the presence of these motifs within recombinogenic loci suggest a biological role for these ubiquitous restriction/modification systems in horizontal gene transfer.
Collapse
Affiliation(s)
- Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kent Barbian
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ryan O. M. Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Patricia Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
19
|
Park HJ, Seong HJ, Lee J, Heo L, Sul WJ, Han SW. Two DNA Methyltransferases for Site-Specific 6mA and 5mC DNA Modification in Xanthomonas euvesicatoria. FRONTIERS IN PLANT SCIENCE 2021; 12:621466. [PMID: 33841456 PMCID: PMC8025778 DOI: 10.3389/fpls.2021.621466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/25/2021] [Indexed: 05/08/2023]
Abstract
Xanthomonas euvesicatoria (Xe) is a gram-negative phytopathogenic bacterium that causes bacterial spot disease in tomato/pepper leading to economic losses in plantations. DNA methyltransferases (MTases) are critical for the survival of prokaryotes; however, their functions in phytopathogenic bacteria remain unclear. In this study, we characterized the functions of two putative DNA MTases, XvDMT1 and XvDMT2, in Xe by generating XvDMT1- and XvDMT2-overexpressing strains, Xe(XvDMT1) and Xe(XvDMT2), respectively. Virulence of Xe(XvDMT2), but not Xe(XvDMT1), on tomato was dramatically reduced. To postulate the biological processes involving XvDMTs, we performed a label-free shotgun comparative proteomic analysis, and results suggest that XvDMT1 and XvDMT2 have distinct roles in Xe. We further characterized the functions of XvDMTs using diverse phenotypic assays. Notably, both Xe(XvDMT1) and Xe(XvDMT2) showed growth retardation in the presence of sucrose and fructose as the sole carbon source, with Xe(XvDMT2) being the most severely affected. In addition, biofilm formation and production of exopolysaccharides were declined in Xe(XvDMT2), but not Xe(XvDMT1). Xe(XvDMT2) was more tolerant to EtOH than Xe(XvDMT1), which had enhanced tolerance to sorbitol but decreased tolerance to polymyxin B. Using single-molecule real-time sequencing and methylation-sensitive restriction enzymes, we successfully predicted putative motifs methylated by XvDMT1 and XvDMT2, which are previously uncharacterized 6mA and 5mC DNA MTases, respectively. This study provided new insights into the biological functions of DNA MTases in prokaryotic organisms.
Collapse
Affiliation(s)
- Hye-Jee Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
- R and D Innovation Center, Seoul Clinical Laboratories, Yongin, South Korea
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Lynn Heo
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
- *Correspondence: Sang-Wook Han
| |
Collapse
|
20
|
Modlin SJ, Conkle-Gutierrez D, Kim C, Mitchell SN, Morrissey C, Weinrick BC, Jacobs WR, Ramirez-Busby SM, Hoffner SE, Valafar F. Drivers and sites of diversity in the DNA adenine methylomes of 93 Mycobacterium tuberculosis complex clinical isolates. eLife 2020; 9:58542. [PMID: 33107429 PMCID: PMC7591249 DOI: 10.7554/elife.58542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as ‘intercellular mosaic methylation’ (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.
Collapse
Affiliation(s)
- Samuel J Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Derek Conkle-Gutierrez
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Calvin Kim
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Scott N Mitchell
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Christopher Morrissey
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | | | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Sarah M Ramirez-Busby
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Sven E Hoffner
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States.,Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| |
Collapse
|
21
|
Promiscuous DNA cleavage by HpyAII endonuclease is modulated by the HNH catalytic residues. Biosci Rep 2020; 40:226299. [PMID: 32880391 PMCID: PMC7494987 DOI: 10.1042/bsr20201633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a carcinogenic bacterium that is responsible for 5.5% of all human gastric cancers. H. pylori codes for an unusually large number of restriction-modification (R-M) systems and several of them are strain-specific and phase-variable. HpyAII is a novel Type IIs phase-variable restriction endonuclease present in 26695 strain of H. pylori. We show that HpyAII prefers two-site substrates over one-site substrates for maximal cleavage activity. HpyAII is less stringent in metal ion requirement and shows higher cleavage activity with Ni2+ over Mg2+. Mutational analysis of the putative residues of the HNH motif of HpyAII confirms that the protein has an active HNH site for the cleavage of DNA. However, mutation of the first Histidine residue of the HNH motif to Alanine does not abolish the enzymatic activity, but instead causes loss of fidelity compared with wildtype HpyAII. Previous studies have shown that mutation of the first Histidine residue of the HNH motif of all other known HNH motif motif-containing enzymes completely abolishes enzymatic activity. We found, in the case of HpyAII, mutation of an active site residue leads to the loss of endonuclease fidelity. The present study provides further insights into the evolution of restriction enzymes.
Collapse
|
22
|
Yano H, Alam MZ, Rimbara E, Shibata TF, Fukuyo M, Furuta Y, Nishiyama T, Shigenobu S, Hasebe M, Toyoda A, Suzuki Y, Sugano S, Shibayama K, Kobayashi I. Networking and Specificity-Changing DNA Methyltransferases in Helicobacter pylori. Front Microbiol 2020; 11:1628. [PMID: 32765461 PMCID: PMC7379913 DOI: 10.3389/fmicb.2020.01628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic DNA base methylation plays important roles in gene expression regulation. We here describe a gene expression regulation network consisting of many DNA methyltransferases each frequently changing its target sequence-specificity. Our object Helicobacter pylori, a bacterium responsible for most incidence of stomach cancer, carries a large and variable repertoire of sequence-specific DNA methyltransferases. By creating a dozen of single-gene knockout strains for the methyltransferases, we revealed that they form a network controlling methylome, transcriptome and adaptive phenotype sets. The methyltransferases interact with each other in a hierarchical way, sometimes regulated positively by one methyltransferase but negatively with another. Motility, oxidative stress tolerance and DNA damage repair are likewise regulated by multiple methyltransferases. Their regulation sometimes involves translation start and stop codons suggesting coupling of methylation, transcription and translation. The methyltransferases frequently change their sequence-specificity through gene conversion of their target recognition domain and switch their target sets to remodel the network. The emerging picture of a metamorphosing gene regulation network, or firework, consisting of epigenetic systems ever-changing their specificity in search for adaptation, provides a new paradigm in understanding global gene regulation and adaptive evolution.
Collapse
Affiliation(s)
- Hirokazu Yano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Md Zobaidul Alam
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Emiko Rimbara
- Department of Bacteriology II, National Institute of Infectious Diseases (NIID), Musashimurayama, Japan
| | | | | | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Mitsuyasu Hasebe
- National Institute for Basic Biology (NIBB), Okazaki, Japan.,Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases (NIID), Musashimurayama, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Diseases, School of Medicine, Kyorin University, Mitaka, Japan.,Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
23
|
Comparative Analysis of Whole-Genome and Methylome Profiles of a Smooth and a Rough Mycobacterium abscessus Clinical Strain. G3-GENES GENOMES GENETICS 2020; 10:13-22. [PMID: 31719113 PMCID: PMC6945021 DOI: 10.1534/g3.119.400737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mycobacterium abscessus is a fast growing Mycobacterium species mainly causing skin and respiratory infections in human. M. abscessus is resistant to numerous drugs, which is a major challenge for the treatment. In this study, we have sequenced the genomes of two clinical M. abscessus strains having rough and smooth morphology, using the single molecule real-time and Illumina HiSeq sequencing technology. In addition, we reported the first comparative methylome profiles of a rough and a smooth M. abscessus clinical strains. The number of N4-methylcytosine (4mC) and N6-methyladenine (6mA) modified bases obtained from smooth phenotype were two-fold and 1.6 fold respectively higher than that of rough phenotype. We have also identified 4 distinct novel motifs in two clinical strains and genes encoding antibiotic-modifying/targeting enzymes and genes associated with intracellular survivability having different methylation patterns. To our knowledge, this is the first report about genome-wide methylation profiles of M. abscessus strains and identification of a natural linear plasmid (15 kb) in this critical pathogen harboring methylated bases. The pan-genome analysis of 25 M. abscessus strains including two clinical strains revealed an open pan genome comprises of 7596 gene clusters. Likewise, structural variation analysis revealed that the genome of rough phenotype strain contains more insertions and deletions than the smooth phenotype and that of the reference strain. A total of 391 single nucleotide variations responsible for the non-synonymous mutations were detected in clinical strains compared to the reference genome. The comparative genomic analysis elucidates the genome plasticity in this emerging pathogen. Furthermore, the detection of genome-wide methylation profiles of M. abscessus clinical strains may provide insight into the significant role of DNA methylation in pathogenicity and drug resistance in this opportunistic pathogen.
Collapse
|
24
|
Negri A, Jąkalski M, Szczuka A, Pryszcz LP, Mruk I. Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor. Nucleic Acids Res 2019; 47:9542-9556. [PMID: 31372643 PMCID: PMC6765115 DOI: 10.1093/nar/gkz665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022] Open
Abstract
Restriction-modification (R–M) systems represent an effective mechanism of defence against invading bacteriophages, and are widely spread among bacteria and archaea. In acquiring a Type II R–M system via horizontal gene transfer, the new hosts become more resistant to phage infection, through the action of a restriction endonuclease (REase), which recognizes and cleaves specific target DNAs. To protect the host cell's DNA, there is also a methyltransferase (MTase), which prevents DNA cleavage by the cognate REase. In some R–M systems, the host also accepts a cis-acting transcription factor (C protein), which regulates the counteracting activities of REase and MTase to avoid host self-restriction. Our study characterized the unexpected phenotype of Escherichia coli cells, which manifested as extensive cell filamentation triggered by acquiring the Csp231I R–M system from Citrobacter sp. Surprisingly, we found that the cell morphology defect was solely dependent on the C regulator. Our transcriptome analysis supported by in vivo and in vitro assays showed that C protein directly silenced the expression of the RacR repressor to affect the Rac prophage-related genes. The rac locus ydaST genes, when derepressed, exerted a toxicity indicated by cell filamentation through an unknown mechanism. These results provide an apparent example of transcription factor cross-talk, which can have significant consequences for the host, and may represent a constraint on lateral gene transfer.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jąkalski
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Aleksandra Szczuka
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Leszek P Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Warsaw, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
25
|
Pohl D, Keller PM, Bordier V, Wagner K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J Gastroenterol 2019; 25:4629-4660. [PMID: 31528091 PMCID: PMC6718044 DOI: 10.3748/wjg.v25.i32.4629] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers, mucosa associated tissue lymphoma and gastric adenocarcinoma. In recent years, an alarming increase in antimicrobial resistance and subsequently failing empiric H. pylori eradication therapies have been noted worldwide, also in many European countries. Therefore, rapid and accurate determination of H. pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important. Traditionally, detection of H. pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time. Recent advances in diagnostics provide new tools, like real-time polymerase chain reaction (PCR) and line probe assays, to diagnose H. pylori infection and antimicrobial resistance to certain antibiotics, directly from clinical specimens. Moreover, high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome, thereby allowing identification of resistance mutations and associated antibiotic resistance. In the first part of this review, we will give an overview on currently available diagnostic methods for detection of H. pylori and its drug resistance and their implementation in H. pylori management. The second part of the review focusses on the use of next generation sequencing technology in H. pylori research. To this end, we conducted a literature search for original research articles in English using the terms “Helicobacter”, “transcriptomic”, “transcriptome”, “next generation sequencing” and “whole genome sequencing”. This review is aimed to bridge the gap between current diagnostic practice (histology, rapid urease test, H. pylori culture, PCR and line probe assays) and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H. pylori management guidelines and subsequently improve public health.
Collapse
Affiliation(s)
- Daniel Pohl
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern 3010, Switzerland
| | - Valentine Bordier
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Karoline Wagner
- Institute of Medical Microbiology, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
26
|
Jensen TØ, Tellgren-Roth C, Redl S, Maury J, Jacobsen SAB, Pedersen LE, Nielsen AT. Genome-wide systematic identification of methyltransferase recognition and modification patterns. Nat Commun 2019; 10:3311. [PMID: 31427571 PMCID: PMC6700114 DOI: 10.1038/s41467-019-11179-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/27/2019] [Indexed: 01/25/2023] Open
Abstract
Genome-wide analysis of DNA methylation patterns using single molecule real-time DNA sequencing has boosted the number of publicly available methylomes. However, there is a lack of tools coupling methylation patterns and the corresponding methyltransferase genes. Here we demonstrate a high-throughput method for coupling methyltransferases with their respective motifs, using automated cloning and analysing the methyltransferases in vectors carrying a strain-specific cassette containing all potential target sites. To validate the method, we analyse the genomes of the thermophile Moorella thermoacetica and the mesophile Acetobacterium woodii, two acetogenic bacteria having substantially modified genomes with 12 methylation motifs and a total of 23 methyltransferase genes. Using our method, we characterize the 23 methyltransferases, assign motifs to the respective enzymes and verify activity for 11 of the 12 motifs. Single molecule real-time DNA sequencing allows genome-wide identification of DNA methylation patterns. Here, Jensen et al. present a high-throughput method that allows rapid coupling of DNA methylation patterns with their corresponding methyltransferase genes in bacteria.
Collapse
Affiliation(s)
- Torbjørn Ølshøj Jensen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | - Christian Tellgren-Roth
- Uppsala Genome Center, National Genomics Infrastructure, SciLifeLab, SE-751 08, Uppsala, Sweden
| | - Stephanie Redl
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark.,Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | | | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark.
| |
Collapse
|
27
|
Kumar S, Karmakar BC, Nagarajan D, Mukhopadhyay AK, Morgan RD, Rao DN. N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori. Nucleic Acids Res 2019; 46:3429-3445. [PMID: 29481677 PMCID: PMC5909468 DOI: 10.1093/nar/gky126] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/13/2018] [Indexed: 01/08/2023] Open
Abstract
Many bacterial genomes exclusively display an N4-methyl cytosine base (m4C), whose physiological significance is not yet clear. Helicobacter pylori is a carcinogenic bacterium and the leading cause of gastric cancer in humans. Helicobacter pylori strain 26695 harbors a single m4C cytosine methyltransferase, M2.HpyAII which recognizes 5′ TCTTC 3′ sequence and methylates the first cytosine residue. To understand the role of m4C modification, M2.hpyAII deletion strain was constructed. Deletion strain displayed lower adherence to host AGS cells and reduced potential to induce inflammation and apoptosis. M2.hpyAII gene deletion strain exhibited reduced capacity for natural transformation, which was rescued in the complemented strain carrying an active copy of M2.hpyAII gene in the genome. Genome-wide gene expression and proteomic analysis were carried out to discern the possible reasons behind the altered phenotype of the M2.hpyAII gene deletion strain. Upon the loss of m4C modification a total of 102 genes belonging to virulence, ribosome assembly and cellular components were differentially expressed. The present study adds a functional role for the presence of m4C modification in H. pylori and provides the first evidence that m4C signal acts as a global epigenetic regulator in H. pylori.
Collapse
Affiliation(s)
- Sumith Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bipul C Karmakar
- Division of Bacteriology, National Institute for Cholera and Enteric Diseases, Kolkata 700010, India
| | - Deepesh Nagarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute for Cholera and Enteric Diseases, Kolkata 700010, India
| | | | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
28
|
Recombination of the Phase-Variable spnIII Locus Is Independent of All Known Pneumococcal Site-Specific Recombinases. J Bacteriol 2019; 201:JB.00233-19. [PMID: 31085693 PMCID: PMC6620402 DOI: 10.1128/jb.00233-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia, septicemia, and meningitis. The discovery that genetic rearrangements in a type I restriction-modification locus can impact gene regulation and colony morphology led to a new understanding of how this pathogen switches from harmless colonizer to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction-modification enzyme, occur across many different pneumococcal serotypes and sequence types and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site-specific recombination. Streptococcus pneumoniae is one of the world’s leading bacterial pathogens, causing pneumonia, septicemia, and meningitis. In recent years, it has been shown that genetic rearrangements in a type I restriction-modification system (SpnIII) can impact colony morphology and gene expression. By generating a large panel of mutant strains, we have confirmed a previously reported result that the CreX (also known as IvrR and PsrA) recombinase found within the locus is not essential for hsdS inversions. In addition, mutants of homologous recombination pathways also undergo hsdS inversions. In this work, we have shown that these genetic rearrangements, which result in different patterns of genome methylation, occur across a wide variety of serotypes and sequence types, including two strains (a 19F and a 6B strain) naturally lacking CreX. Our gene expression analysis, by transcriptome sequencing (RNAseq), confirms that the level of creX expression is impacted by these genomic rearrangements. In addition, we have shown that the frequency of hsdS recombination is temperature dependent. Most importantly, we have demonstrated that the other known pneumococcal site-specific recombinases XerD, XerS, and SPD_0921 are not involved in spnIII recombination, suggesting that a currently unknown mechanism is responsible for the recombination of these phase-variable type I systems. IMPORTANCEStreptococcus pneumoniae is a leading cause of pneumonia, septicemia, and meningitis. The discovery that genetic rearrangements in a type I restriction-modification locus can impact gene regulation and colony morphology led to a new understanding of how this pathogen switches from harmless colonizer to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction-modification enzyme, occur across many different pneumococcal serotypes and sequence types and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site-specific recombination.
Collapse
|
29
|
Nye TM, Jacob KM, Holley EK, Nevarez JM, Dawid S, Simmons LA, Watson ME. DNA methylation from a Type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes. PLoS Pathog 2019; 15:e1007841. [PMID: 31206562 PMCID: PMC6597129 DOI: 10.1371/journal.ppat.1007841] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/27/2019] [Accepted: 05/14/2019] [Indexed: 11/26/2022] Open
Abstract
DNA methylation is pervasive across all domains of life. In bacteria, the presence of N6-methyladenosine (m6A) has been detected among diverse species, yet the contribution of m6A to the regulation of gene expression is unclear in many organisms. Here we investigated the impact of DNA methylation on gene expression and virulence within the human pathogen Streptococcus pyogenes, or Group A Streptococcus. Single Molecule Real-Time sequencing and subsequent methylation analysis identified 412 putative m6A sites throughout the 1.8 Mb genome. Deletion of the Restriction, Specificity, and Methylation gene subunits (ΔRSM strain) of a putative Type I restriction modification system lost all detectable m6A at the recognition sites and failed to prevent transformation with foreign-methylated DNA. RNA-sequencing identified 20 genes out of 1,895 predicted coding regions with significantly different gene expression. All of the differentially expressed genes were down regulated in the ΔRSM strain relative to the parent strain. Importantly, we found that the presence of m6A DNA modifications affected expression of Mga, a master transcriptional regulator for multiple virulence genes, surface adhesins, and immune-evasion factors in S. pyogenes. Using a murine subcutaneous infection model, mice infected with the ΔRSM strain exhibited an enhanced host immune response with larger skin lesions and increased levels of pro-inflammatory cytokines compared to mice infected with the parent or complemented mutant strains, suggesting alterations in m6A methylation influence virulence. Further, we found that the ΔRSM strain showed poor survival within human neutrophils and reduced adherence to human epithelial cells. These results demonstrate that, in addition to restriction of foreign DNA, gram-positive bacteria also use restriction modification systems to regulate the expression of gene networks important for virulence. DNA methylation is common among many bacterial species, yet the contribution of DNA methylation to the regulation of gene expression is unclear outside of a limited number of gram-negative species. We characterized sites of DNA methylation throughout the genome of the gram-positive pathogen Streptococcus pyogenes or Group A Streptococcus. We determined that the gene products of a functional restriction modification system are responsible for genome-wide m6A. The mutant strain lacking DNA methylation showed altered gene expression compared to the parent strain, with several genes important for causing human disease down regulated. Furthermore, we showed that the mutant strain lacking DNA methylation exhibited altered virulence properties compared to the parent strain using various models of pathogenesis. The mutant strain was attenuated for both survival within human neutrophils and adherence to human epithelial cells, and was unable to suppress the host immune response in a murine subcutaneous infection model. Together, these results show that bacterial m6A contributes to differential gene expression and influences the ability of Group A Streptococcus to cause disease. DNA methylation is a conserved feature among bacteria and may represent a potential target for intervention in effort to interfere with the ability of bacteria to cause human disease.
Collapse
Affiliation(s)
- Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Kristin M. Jacob
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Elena K. Holley
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Juan M. Nevarez
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Suzanne Dawid
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael E. Watson
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
30
|
The Patchy Distribution of Restriction⁻Modification System Genes and the Conservation of Orphan Methyltransferases in Halobacteria. Genes (Basel) 2019; 10:genes10030233. [PMID: 30893937 PMCID: PMC6471742 DOI: 10.3390/genes10030233] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
Restriction⁻modification (RM) systems in bacteria are implicated in multiple biological roles ranging from defense against parasitic genetic elements, to selfish addiction cassettes, and barriers to gene transfer and lineage homogenization. In bacteria, DNA-methylation without cognate restriction also plays important roles in DNA replication, mismatch repair, protein expression, and in biasing DNA uptake. Little is known about archaeal RM systems and DNA methylation. To elucidate further understanding for the role of RM systems and DNA methylation in Archaea, we undertook a survey of the presence of RM system genes and related genes, including orphan DNA methylases, in the halophilic archaeal class Halobacteria. Our results reveal that some orphan DNA methyltransferase genes were highly conserved among lineages indicating an important functional constraint, whereas RM systems demonstrated patchy patterns of presence and absence. This irregular distribution is due to frequent horizontal gene transfer and gene loss, a finding suggesting that the evolution and life cycle of RM systems may be best described as that of a selfish genetic element. A putative target motif (CTAG) of one of the orphan methylases was underrepresented in all of the analyzed genomes, whereas another motif (GATC) was overrepresented in most of the haloarchaeal genomes, particularly in those that encoded the cognate orphan methylase.
Collapse
|
31
|
Estibariz I, Overmann A, Ailloud F, Krebes J, Josenhans C, Suerbaum S. The core genome m5C methyltransferase JHP1050 (M.Hpy99III) plays an important role in orchestrating gene expression in Helicobacter pylori. Nucleic Acids Res 2019; 47:2336-2348. [PMID: 30624738 PMCID: PMC6412003 DOI: 10.1093/nar/gky1307] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori encodes a large number of restriction-modification (R-M) systems despite its small genome. R-M systems have been described as 'primitive immune systems' in bacteria, but the role of methylation in bacterial gene regulation and other processes is increasingly accepted. Every H. pylori strain harbours a unique set of R-M systems resulting in a highly diverse methylome. We identified a highly conserved GCGC-specific m5C MTase (JHP1050) that was predicted to be active in all of 459 H. pylori genome sequences analyzed. Transcriptome analysis of two H. pylori strains and their respective MTase mutants showed that inactivation of the MTase led to changes in the expression of 225 genes in strain J99, and 29 genes in strain BCM-300. Ten genes were differentially expressed in both mutated strains. Combining bioinformatic analysis and site-directed mutagenesis, we demonstrated that motifs overlapping the promoter influence the expression of genes directly, while methylation of other motifs might cause secondary effects. Thus, m5C methylation modifies the transcription of multiple genes, affecting important phenotypic traits that include adherence to host cells, natural competence for DNA uptake, bacterial cell shape, and susceptibility to copper.
Collapse
Affiliation(s)
- Iratxe Estibariz
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Annemarie Overmann
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
| | - Florent Ailloud
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Sebastian Suerbaum
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| |
Collapse
|
32
|
Lamichhane B, Chua EG, Wise MJ, Laming C, Marshall BJ, Tay CY. The complete genome and methylome of Helicobacter pylori hpNEAfrica strain HP14039. Gut Pathog 2019; 11:7. [PMID: 30820249 PMCID: PMC6381644 DOI: 10.1186/s13099-019-0284-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
Background Helicobacter pylori is a Gram-negative bacterium which mainly causes peptic ulcer disease in human, but is also the predominant cause of stomach cancer. It has been coevolving with human since 120,000 years and, according to Multi-locus sequence typing (MLST), H. pylori can be classified into seven major population types, namely, hpAfrica1, hpAfrica2, hpNEAfrica, hpEastAsia, hpAsia2, hpEurope and hpSahul. Helicobacter pylori harbours a large number of restriction-modification (R-M) systems. The methyltransferase (MTase) unit plays a significant role in gene regulation and also possibly modulates pathogenicity. The diversity in MTase can act as geomarkers to correlate strains with the phylogeographic origins. This paper describes the complete genome sequence and methylome of gastric pathogen H. pylori belonging to the population hpNEAfrica. Results In this paper, we present the complete genome sequence and the methylome profile of H. pylori hpNEAfrica strain HP14039, isolated from a patient who was born in Somalia and likely to be infected locally during early childhood prior to migration. The genome of HP14039 consists of 1,678,260 bp with 1574 coding genes and 38.7% GC content. The sequence analysis showed that this strain lacks the cag pathogenicity island. The vacA gene is of S2M2 type. We have also identified 15 methylation motifs, including WCANHNNNNTG and CTANNNNNNNTAYG that were not previously described. Conclusions We have described the complete genome of H. pylori strain HP14039. The information regarding phylo-geography, methylome and associated metadata would help scientific community to study more about hpNEAfrica population type. Electronic supplementary material The online version of this article (10.1186/s13099-019-0284-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binit Lamichhane
- 1Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA Australia
| | - Eng-Guan Chua
- 1Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA Australia
| | - Michael J Wise
- 1Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA Australia.,2Department of Computer Science and Software Engineering, University of Western Australia, Perth, WA Australia
| | - Connor Laming
- 1Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA Australia
| | - Barry J Marshall
- 1Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA Australia.,Shenzhen Dapeng New District Kuichong People Hospital, Shenzhen City, 518119 Guangdong Province China
| | - Chin-Yen Tay
- 1Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA Australia.,Shenzhen Dapeng New District Kuichong People Hospital, Shenzhen City, 518119 Guangdong Province China
| |
Collapse
|
33
|
Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157-172. [PMID: 30546107 PMCID: PMC6555402 DOI: 10.1038/s41576-018-0081-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
34
|
Blakeway LV, Tan A, Lappan R, Ariff A, Pickering JL, Peacock CS, Blyth CC, Kahler CM, Chang BJ, Lehmann D, Kirkham LAS, Murphy TF, Jennings MP, Bakaletz LO, Atack JM, Peak IR, Seib KL. Moraxella catarrhalis Restriction-Modification Systems Are Associated with Phylogenetic Lineage and Disease. Genome Biol Evol 2018; 10:2932-2946. [PMID: 30335144 PMCID: PMC6241649 DOI: 10.1093/gbe/evy226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 01/25/2023] Open
Abstract
Moraxella catarrhalis is a human-adapted pathogen, and a major cause of otitis media (OM) and exacerbations of chronic obstructive pulmonary disease. The species is comprised of two main phylogenetic lineages, RB1 and RB2/3. Restriction–modification (R-M) systems are among the few lineage-associated genes identified in other bacterial genera and have multiple functions including defense against foreign invading DNA, maintenance of speciation, and epigenetic regulation of gene expression. Here, we define the repertoire of R-M systems in 51 publicly available M. catarrhalis genomes and report their distribution among M. catarrhalis phylogenetic lineages. An association with phylogenetic lineage (RB1 or RB2/3) was observed for six R-M systems, which may contribute to the evolution of the lineages by restricting DNA transformation. In addition, we observed a relationship between a mutually exclusive Type I R-M system and a Type III R-M system at a single locus conserved throughout a geographically and clinically diverse set of M. catarrhalis isolates. The Type III R-M system at this locus contains the phase-variable Type III DNA methyltransferase, modM, which controls a phasevarion (phase-variable regulon). We observed an association between modM presence and OM-associated middle ear isolates, indicating a potential role for ModM-mediated epigenetic regulation in OM pathobiology.
Collapse
Affiliation(s)
- Luke V Blakeway
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Rachael Lappan
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Amir Ariff
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Janessa L Pickering
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Christopher S Peacock
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Christopher C Blyth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Infectious Diseases, Perth Chilren's Hospital, Perth, Western Australia, Australia.,Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Western Australia, Australia
| | - Charlene M Kahler
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Barbara J Chang
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Deborah Lehmann
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ian R Peak
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
35
|
Grinkevich P, Sinha D, Iermak I, Guzanova A, Weiserova M, Ludwig J, Mesters JR, Ettrich RH. Crystal structure of a novel domain of the motor subunit of the Type I restriction enzyme EcoR124 involved in complex assembly and DNA binding. J Biol Chem 2018; 293:15043-15054. [PMID: 30054276 DOI: 10.1074/jbc.ra118.003978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/19/2018] [Indexed: 01/30/2023] Open
Abstract
Although EcoR124 is one of the better-studied Type I restriction-modification enzymes, it still presents many challenges to detailed analyses because of its structural and functional complexity and missing structural information. In all available structures of its motor subunit HsdR, responsible for DNA translocation and cleavage, a large part of the HsdR C terminus remains unresolved. The crystal structure of the C terminus of HsdR, obtained with a crystallization chaperone in the form of pHluorin fusion and refined to 2.45 Å, revealed that this part of the protein forms an independent domain with its own hydrophobic core and displays a unique α-helical fold. The full-length HsdR model, based on the WT structure and the C-terminal domain determined here, disclosed a proposed DNA-binding groove lined by positively charged residues. In vivo and in vitro assays with a C-terminal deletion mutant of HsdR supported the idea that this domain is involved in complex assembly and DNA binding. Conserved residues identified through sequence analysis of the C-terminal domain may play a key role in protein-protein and protein-DNA interactions. We conclude that the motor subunit of EcoR124 comprises five structural and functional domains, with the fifth, the C-terminal domain, revealing a unique fold characterized by four conserved motifs in the IC subfamily of Type I restriction-modification systems. In summary, the structural and biochemical results reported here support a model in which the C-terminal domain of the motor subunit HsdR of the endonuclease EcoR124 is involved in complex assembly and DNA binding.
Collapse
Affiliation(s)
- Pavel Grinkevich
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, 373 33 Nove Hrady, Czech Republic.,the Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Dhiraj Sinha
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, 373 33 Nove Hrady, Czech Republic
| | - Iuliia Iermak
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, 373 33 Nove Hrady, Czech Republic.,the Department of Structural Cell Biology, Molecular Mechanisms of DNA Repair, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alena Guzanova
- the Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Marie Weiserova
- the Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Jost Ludwig
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, 373 33 Nove Hrady, Czech Republic
| | - Jeroen R Mesters
- the Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany, and
| | - Rüdiger H Ettrich
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, 373 33 Nove Hrady, Czech Republic, .,the College of Biomedical Sciences, Larkin University, Miami, Florida 33169
| |
Collapse
|
36
|
Zhao L, Song Y, Li L, Gan N, Brand JJ, Song L. The highly heterogeneous methylated genomes and diverse restriction-modification systems of bloom-forming Microcystis. HARMFUL ALGAE 2018; 75:87-93. [PMID: 29778228 DOI: 10.1016/j.hal.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of harmful Microcystis blooms is increasing in frequency in a myriad of freshwater ecosystems. Despite considerable research pertaining to the cause and nature of these blooms, the molecular mechanisms behind the cosmopolitan distribution and phenotypic diversity in Microcystis are still unclear. We compared the patterns and extent of DNA methylation in three strains of Microcystis, PCC 7806SL, NIES-2549 and FACHB-1757, using Single Molecule Real-Time (SMRT) sequencing technology. Intact restriction-modification (R-M) systems were identified from the genomes of these strains, and from two previously sequenced strains of Microcystis, NIES-843 and TAIHU98. A large number of methylation motifs and R-M genes were identified in these strains, which differ substantially among different strains. Of the 35 motifs identified, eighteen had not previously been reported. Strain NIES-843 contains a larger number of total putative methyltransferase genes than have been reported previously from any bacterial genome. Genomic comparisons reveal that methyltransferases (some partial) may have been acquired from the environment through horizontal gene transfer.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yulong Song
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Jerry J Brand
- The UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
37
|
Nell S, Estibariz I, Krebes J, Bunk B, Graham DY, Overmann J, Song Y, Spröer C, Yang I, Wex T, Korlach J, Malfertheiner P, Suerbaum S. Genome and Methylome Variation in Helicobacter pylori With a cag Pathogenicity Island During Early Stages of Human Infection. Gastroenterology 2018; 154:612-623.e7. [PMID: 29066327 DOI: 10.1053/j.gastro.2017.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori is remarkable for its genetic variation; yet, little is known about its genetic changes during early stages of human infection, as the bacteria adapt to their new environment. We analyzed genome and methylome variations in a fully virulent strain of H pylori during experimental infection. METHODS We performed a randomized Phase I/II, observer-blind, placebo-controlled study of 12 healthy, H pylori-negative adults in Germany from October 2008 through March 2010. The volunteers were given a prophylactic vaccine candidate (n = 7) or placebo (n = 5) and then challenged with H pylori strain BCM-300. Biopsy samples were collected and H pylori were isolated. Genomes of the challenge strain and 12 reisolates, obtained 12 weeks after (or in 1 case, 62 weeks after) infection were sequenced by single-molecule, real-time technology, which, in parallel, permitted determination of genome-wide methylation patterns for all strains. Functional effects of genetic changes observed in H pylori strains during human infection were assessed by measuring release of interleukin 8 from AGS cells (to detect cag pathogenicity island function), neutral red uptake (to detect vacuolating cytotoxin activity), and adhesion assays. RESULTS The observed mutation rate was in agreement with rates previously determined from patients with chronic H pylori infections, without evidence of a mutation burst. A loss of cag pathogenicity island function was observed in 3 reisolates. In addition, 3 reisolates from the vaccine group acquired mutations in the vacuolating cytotoxin gene vacA, resulting in loss of vacuolization activity. We observed interstrain variation in methylomes due to phase variation in genes encoding methyltransferases. CONCLUSIONS We analyzed adaptation of a fully virulent strain of H pylori to 12 different volunteers to obtain a robust estimate of the frequency of genetic and epigenetic changes in the absence of interstrain recombination. Our findings indicate that the large amount of genetic variation in H pylori poses a challenge to vaccine development. ClinicalTrials.gov no: NCT00736476.
Collapse
Affiliation(s)
- Sandra Nell
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Iratxe Estibariz
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany
| | - Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Boyke Bunk
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - David Y Graham
- Baylor College of Medicine, Michael E. DeBakey VAMC, Houston, Texas
| | - Jörg Overmann
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Yi Song
- Pacific Biosciences, Menlo Park, California
| | - Cathrin Spröer
- German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany
| | - Thomas Wex
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Hannover, Germany; Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, München, Germany; National Reference Center for Helicobacter pylori, München, Germany.
| |
Collapse
|
38
|
Srikhanta YN, Gorrell RJ, Power PM, Tsyganov K, Boitano M, Clark TA, Korlach J, Hartland EL, Jennings MP, Kwok T. Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori. Sci Rep 2017; 7:16140. [PMID: 29170397 PMCID: PMC5700931 DOI: 10.1038/s41598-017-15721-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
The Helicobacter pylori phase variable gene modH, typified by gene HP1522 in strain 26695, encodes a N6-adenosine type III DNA methyltransferase. Our previous studies identified multiple strain-specific modH variants (modH1 – modH19) and showed that phase variation of modH5 in H. pylori P12 influenced expression of motility-associated genes and outer membrane protein gene hopG. However, the ModH5 DNA recognition motif and the mechanism by which ModH5 controls gene expression were unknown. Here, using comparative single molecule real-time sequencing, we identify the DNA site methylated by ModH5 as 5′-Gm6ACC-3′. This motif is vastly underrepresented in H. pylori genomes, but overrepresented in a number of virulence genes, including motility-associated genes, and outer membrane protein genes. Motility and the number of flagella of H. pylori P12 wild-type were significantly higher than that of isogenic modH5 OFF or ΔmodH5 mutants, indicating that phase variable switching of modH5 expression plays a role in regulating H. pylori motility phenotypes. Using the flagellin A (flaA) gene as a model, we show that ModH5 modulates flaA promoter activity in a GACC methylation-dependent manner. These findings provide novel insights into the role of ModH5 in gene regulation and how it mediates epigenetic regulation of H. pylori motility.
Collapse
Affiliation(s)
- Yogitha N Srikhanta
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia
| | - Rebecca J Gorrell
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia.,Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia
| | - Peter M Power
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Kirill Tsyganov
- Bioinformatics Platform, Monash University, Clayton, 3800, Victoria, Australia
| | | | | | | | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010, Victoria, Australia.,Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, 3800, Victoria, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Terry Kwok
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia. .,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia. .,Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
39
|
Zhang Y, Matsuzaka T, Yano H, Furuta Y, Nakano T, Ishikawa K, Fukuyo M, Takahashi N, Suzuki Y, Sugano S, Ide H, Kobayashi I. Restriction glycosylases: involvement of endonuclease activities in the restriction process. Nucleic Acids Res 2017; 45:1392-1403. [PMID: 28180312 PMCID: PMC5388411 DOI: 10.1093/nar/gkw1250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
All restriction enzymes examined are phosphodiesterases generating 3΄-OH and 5΄-P ends, but one restriction enzyme (restriction glycosylase) excises unmethylated bases from its recognition sequence. Whether its restriction activity involves endonucleolytic cleavage remains unclear. One report on this enzyme, R.PabI from a hyperthermophile, ascribed the breakage to high temperature while another showed its weak AP lyase activity generates atypical ends. Here, we addressed this issue in mesophiles. We purified R.PabI homologs from Campylobacter coli (R.CcoLI) and Helicobacter pylori (R.HpyAXII) and demonstrated their DNA cleavage, DNA glycosylase and AP lyase activities in vitro at 37°C. The AP lyase activity is more coupled with glycosylase activity in R.CcoLI than in R.PabI. R.CcoLI/R.PabI expression caused restriction of incoming bacteriophage/plasmid DNA and endogenous chromosomal DNA within Escherichia coli at 37°C. The R.PabI-mediated restriction was promoted by AP endonuclease action in vivo or in vitro. These results reveal the role of endonucleolytic DNA cleavage in restriction and yet point to diversity among the endonucleases. The cleaved ends are difficult to repair in vivo, which may indicate their biological significance. These results support generalization of the concept of restriction–modification system to the concept of self-recognizing epigenetic system, which combines any epigenetic labeling and any DNA damaging.
Collapse
Affiliation(s)
- Yingbiao Zhang
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyuki Matsuzaka
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Hirokazu Yano
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Ken Ishikawa
- National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Noriko Takahashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
- Institut for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560 064, India
- To whom correspondence should be addressed. Tel: +81 90 2487 7510; ; ;
| |
Collapse
|
40
|
Erill I, Puigvert M, Legrand L, Guarischi-Sousa R, Vandecasteele C, Setubal JC, Genin S, Guidot A, Valls M. Comparative Analysis of Ralstonia solanacearum Methylomes. FRONTIERS IN PLANT SCIENCE 2017; 8:504. [PMID: 28450872 PMCID: PMC5390034 DOI: 10.3389/fpls.2017.00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/22/2017] [Indexed: 05/24/2023]
Abstract
Ralstonia solanacearum is an important soil-borne plant pathogen with broad geographical distribution and the ability to cause wilt disease in many agriculturally important crops. Genome sequencing of multiple R. solanacearum strains has identified both unique and shared genetic traits influencing their evolution and ability to colonize plant hosts. Previous research has shown that DNA methylation can drive speciation and modulate virulence in bacteria, but the impact of epigenetic modifications on the diversification and pathogenesis of R. solanacearum is unknown. Sequencing of R. solanacearum strains GMI1000 and UY031 using Single Molecule Real-Time technology allowed us to perform a comparative analysis of R. solanacearum methylomes. Our analysis identified a novel methylation motif associated with a DNA methylase that is conserved in all complete Ralstonia spp. genomes and across the Burkholderiaceae, as well as a methylation motif associated to a phage-borne methylase unique to R. solanacearum UY031. Comparative analysis of the conserved methylation motif revealed that it is most prevalent in gene promoter regions, where it displays a high degree of conservation detectable through phylogenetic footprinting. Analysis of hyper- and hypo-methylated loci identified several genes involved in global and virulence regulatory functions whose expression may be modulated by DNA methylation. Analysis of genome-wide modification patterns identified a significant correlation between DNA modification and transposase genes in R. solanacearum UY031, driven by the presence of a high copy number of ISrso3 insertion sequences in this genome and pointing to a novel mechanism for regulation of transposition. These results set a firm foundation for experimental investigations into the role of DNA methylation in R. solanacearum evolution and its adaptation to different plants.
Collapse
Affiliation(s)
- Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
- Center for Research in Agricultural Genomics, CSIC- IRTA- UAB -UBBarcelona, Spain
| | - Marina Puigvert
- Center for Research in Agricultural Genomics, CSIC- IRTA- UAB -UBBarcelona, Spain
- Department of Genetics, Universitat de BarcelonaBarcelona, Spain
| | - Ludovic Legrand
- Laboratoire des Interactions Plantes Micro-organismes, INRA, Centre National de la Recherche Scientifique, Université de ToulouseCastanet-Tolosan, France
| | - Rodrigo Guarischi-Sousa
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | | | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Stephane Genin
- Laboratoire des Interactions Plantes Micro-organismes, INRA, Centre National de la Recherche Scientifique, Université de ToulouseCastanet-Tolosan, France
| | - Alice Guidot
- Laboratoire des Interactions Plantes Micro-organismes, INRA, Centre National de la Recherche Scientifique, Université de ToulouseCastanet-Tolosan, France
| | - Marc Valls
- Center for Research in Agricultural Genomics, CSIC- IRTA- UAB -UBBarcelona, Spain
- Department of Genetics, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
41
|
Identification of a Pseudomonas aeruginosa PAO1 DNA Methyltransferase, Its Targets, and Physiological Roles. mBio 2017; 8:mBio.02312-16. [PMID: 28223461 PMCID: PMC5358918 DOI: 10.1128/mbio.02312-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N6-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa. Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats. With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria.
Collapse
|
42
|
Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins. Sci Rep 2017; 7:42471. [PMID: 28205536 PMCID: PMC5311958 DOI: 10.1038/srep42471] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori genetic diversity is known to be influenced by mobile genomic elements. Here we focused on prophages, the least characterized mobile elements of H. pylori. We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The genome sizes of these prophages range from 22.6–33.0 Kbp, consisting of 27–39 open reading frames. A 36.6% GC was found in prophages in contrast to 39% in H. pylori genome. Remarkably a conserved integration site was found in over 50% of the cases. Nearly 40% of the prophages harbored insertion sequences (IS) previously described in H. pylori. Tandem repeats were frequently found in the intergenic region between the prophage at the 3′ end and the bacterial gene. Furthermore, prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. Evidence of recombination was detected within the genome of some prophages, resulting in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes.
Collapse
|
43
|
Mahan MJ, Heithoff DM, Barnes V L, Sinsheimer RL. Epigenetic Programming by Microbial Pathogens and Impacts on Acute and Chronic Disease. EPIGENETICS AND HUMAN HEALTH 2017:89-112. [DOI: 10.1007/978-3-319-55021-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
Gorrell R, Kwok T. The Helicobacter pylori Methylome: Roles in Gene Regulation and Virulence. Curr Top Microbiol Immunol 2017; 400:105-127. [PMID: 28124151 DOI: 10.1007/978-3-319-50520-6_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The methylome is defined as a map of DNA methylation patterns at single-base resolution. DNA methylation in bacteria was first discovered as a function of restriction-modification (R-M) systems. R-M systems in Helicobacter pylori, like those in other bacteria, are important host-specificity determinants that provide protection against foreign DNA. Moreover, the gene regulatory role of the methyltransferase (Mtase) unit of various Helicobacter pylori R-M systems is being increasingly recognized. Recent advances in the application of single-molecule real-time (SMRT) DNA sequencing to analyse DNA methylation have revealed for the first time comprehensive pictures of the genome-wide distribution of methylation sites in various strains of H. pylori. The methylomic data published so far have not only confirmed the significant inter-strain diversity of H. pylori Mtases and their DNA methylation profiles, but also identified numerous novel Mtase target recognition sites. The precise knowledge of the nucleotide sequence of Mtase recognition sites and their distribution within the H. pylori genome will in turn enable researchers to more readily test hypotheses on how H. pylori Mtases function to orchestrate gene regulation and/or modulate virulence. Methylomic studies hold promise for providing a deeper understanding into the roles of H. pylori Mtase and R-M systems in the physiology, epigenetics and possibly also pathogenesis of this important human pathogen. Consequently, the knowledge gained will provide crucial insights into the potential application of H. pylori methylomes as novel biomarkers for the prediction of disease outcome and/or antibiotic susceptibility.
Collapse
Affiliation(s)
- Rebecca Gorrell
- Infection and Immunity, and Cancer Programs, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia.,Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Terry Kwok
- Infection and Immunity, and Cancer Programs, Monash Biomedicine Discovery Institute, Clayton, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia. .,Department of Microbiology, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
45
|
Comparative Genomics of H. pylori and Non-Pylori Helicobacter Species to Identify New Regions Associated with Its Pathogenicity and Adaptability. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6106029. [PMID: 28078297 PMCID: PMC5203880 DOI: 10.1155/2016/6106029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/17/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023]
Abstract
The genus Helicobacter is a group of Gram-negative, helical-shaped pathogens consisting of at least 36 bacterial species. Helicobacter pylori (H. pylori), infecting more than 50% of the human population, is considered as the major cause of gastritis, peptic ulcer, and gastric cancer. However, the genetic underpinnings of H. pylori that are responsible for its large scale epidemic and gastrointestinal environment adaption within human beings remain unclear. Core-pan genome analysis was performed among 75 representative H. pylori and 24 non-pylori Helicobacter genomes. There were 1173 conserved protein families of H. pylori and 673 of all 99 Helicobacter genus strains. We found 79 genome unique regions, a total of 202,359bp, shared by at least 80% of the H. pylori but lacked in non-pylori Helicobacter species. The operons, genes, and sRNAs within the H. pylori unique regions were considered as potential ones associated with its pathogenicity and adaptability, and the relativity among them has been partially confirmed by functional annotation analysis. However, functions of at least 54 genes and 10 sRNAs were still unclear. Our analysis of protein-protein interaction showed that 30 genes within them may have the cooperation relationship.
Collapse
|
46
|
Devi S, Ansari SA, Tenguria S, Kumar N, Ahmed N. Multipronged regulatory functions of a novel endonuclease (TieA) from Helicobacter pylori. Nucleic Acids Res 2016; 44:9393-9412. [PMID: 27550181 PMCID: PMC5100599 DOI: 10.1093/nar/gkw730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022] Open
Abstract
Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori. Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H. pylori. tieA expression is differentially regulated in response to environmental stress and post adherence to gastric epithelial cells. Studies with isogenic knockouts of tieA revealed it to be a secretory protein which translocates into the host gastric epithelial cells independent of a type IV secretion system, gets phosphorylated by DNA-PK kinase and auto-phosphorylates as serine kinase. Furthermore, TieA binds to and cleaves DNA in a non-specific manner and promotes Fas mediated apoptosis in AGS cells. Additionally, TieA induced pro-inflammatory cytokine secretion via activation of transcription factor AP-1 and signaled through MAP kinase pathway. Collectively, TieA with its multipronged and moonlighting functions could facilitate H. pylori in maintaining a balance of bacterial adaptation, and elimination by the host responses.
Collapse
Affiliation(s)
- Savita Devi
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Suhail A Ansari
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Shivendra Tenguria
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Naveen Kumar
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
47
|
Kojima KK, Furuta Y, Yahara K, Fukuyo M, Shiwa Y, Nishiumi S, Yoshida M, Azuma T, Yoshikawa H, Kobayashi I. Population Evolution of Helicobacter pylori through Diversification in DNA Methylation and Interstrain Sequence Homogenization. Mol Biol Evol 2016; 33:2848-2859. [PMID: 27604221 DOI: 10.1093/molbev/msw162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Decoding of closely related genomes is now revealing the process of population evolution. In bacteria, population divergence appears associated with a unique set of sequence-specific epigenetic DNA methylation systems, often within restriction-modification (RM) systems. They might define a unique gene expression pattern and limit genetic flux between lineages in population divergence. We addressed the contribution of methylation systems to population diversification in panmictic bacterial species, Helicobacter pylori, which shows an interconnected population structure through frequent mutual recombination. We analyzed complete genome sequences of 28 strains collected in Fukui, Japan. Their nucleotide sequences are closely related although fine-scale analyses revealed two subgroups likely reflecting human subpopulations. Their sequences are tightly connected by homologous recombination. Our extensive analysis of RM systems revealed an extreme variability in DNA methyltransferases, especially in their target recognition domains. Their diversity was, however, not immediately related to the genome sequence diversity, except for very closely related strains. An interesting exception is a hybrid strain, which likely has conserved the methylation gene repertoire from one parent but diversified in sequence by massive acquisition of fragmentary DNA sequences from the other parent. Our results demonstrate how a bacterial population can be extremely divergent in epigenetics and yet homogenized in sequence.
Collapse
Affiliation(s)
- Kenji K Kojima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan Institute of Medical Science, University of Tokyo, Tokyo, Japan Genetic Information Research Institute, Los Altos, CA Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yoshikazu Furuta
- Institute of Medical Science, University of Tokyo, Tokyo, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Koji Yahara
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan Institute of Medical Science, University of Tokyo, Tokyo, Japan Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaki Fukuyo
- Institute of Medical Science, University of Tokyo, Tokyo, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan Institute of Medical Science, University of Tokyo, Tokyo, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Comparative Methylome Analysis of the Occasional Ruminant Respiratory Pathogen Bibersteinia trehalosi. PLoS One 2016; 11:e0161499. [PMID: 27556252 PMCID: PMC4996451 DOI: 10.1371/journal.pone.0161499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/05/2016] [Indexed: 01/31/2023] Open
Abstract
We examined and compared both the methylomes and the modification-related gene content of four sequenced strains of Bibersteinia trehalosi isolated from the nasopharyngeal tracts of Nebraska cattle with symptoms of bovine respiratory disease complex. The methylation patterns and the encoded DNA methyltransferase (MTase) gene sets were different between each strain, with the only common pattern being that of Dam (GATC). Among the observed patterns were three novel motifs attributable to Type I restriction-modification systems. In some cases the differences in methylation patterns corresponded to the gain or loss of MTase genes, or to recombination at target recognition domains that resulted in changes of enzyme specificity. However, in other cases the differences could be attributed to differential expression of the same MTase gene across strains. The most obvious regulatory mechanism responsible for these differences was slipped strand mispairing within short sequence repeat regions. The combined action of these evolutionary forces allows for alteration of different parts of the methylome at different time scales. We hypothesize that pleiotropic transcriptional modulation resulting from the observed methylomic changes may be involved with the switch between the commensal and pathogenic states of this common member of ruminant microflora.
Collapse
|
49
|
Ershova AS, Rusinov IS, Spirin SA, Karyagina AS, Alexeevski AV. Role of Restriction-Modification Systems in Prokaryotic Evolution and Ecology. BIOCHEMISTRY (MOSCOW) 2016; 80:1373-86. [PMID: 26567582 DOI: 10.1134/s0006297915100193] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Restriction-modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution of the specificity of R-M systems. This review focuses on the influence of R-M systems on evolution and ecology of prokaryotes.
Collapse
Affiliation(s)
- A S Ershova
- Belozerksy Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
50
|
Uchiyama I, Albritton J, Fukuyo M, Kojima KK, Yahara K, Kobayashi I. A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands. PLoS One 2016; 11:e0159419. [PMID: 27504980 PMCID: PMC4978471 DOI: 10.1371/journal.pone.0159419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/01/2016] [Indexed: 01/03/2023] Open
Abstract
Genomes of a given bacterial species can show great variation in gene content and thus systematic analysis of the entire gene repertoire, termed the pan-genome, is important for understanding bacterial intra-species diversity, population genetics, and evolution. Here, we analyzed the pan-genome from 30 completely sequenced strains of the human gastric pathogen Helicobacter pylori belonging to various phylogeographic groups, focusing on 991 accessory (not fully conserved) orthologous groups (OGs). We developed a method to evaluate the mobility of genes within a genome, using the gene order in the syntenically conserved regions as a reference, and classified the 991 accessory OGs into five classes: Core, Stable, Intermediate, Mobile, and Unique. Phylogenetic networks based on the gene content of Core and Stable classes are highly congruent with that created from the concatenated alignment of fully conserved core genes, in contrast to those of Intermediate and Mobile classes, which show quite different topologies. By clustering the accessory OGs on the basis of phylogenetic pattern similarity and chromosomal proximity, we identified 60 co-occurring gene clusters (CGCs). In addition to known genomic islands, including cag pathogenicity island, bacteriophages, and integrating conjugative elements, we identified some novel ones. One island encodes TerY-phosphorylation triad, which includes the eukaryote-type protein kinase/phosphatase gene pair, and components of type VII secretion system. Another one contains a reverse-transcriptase homolog, which may be involved in the defense against phage infection through altruistic suicide. Many of the CGCs contained restriction-modification (RM) genes. Different RM systems sometimes occupied the same (orthologous) locus in the strains. We anticipate that our method will facilitate pan-genome studies in general and help identify novel genomic islands in various bacterial species.
Collapse
Affiliation(s)
- Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- * E-mail:
| | - Jacob Albritton
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Masaki Fukuyo
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kenji K. Kojima
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Sciences, the University of Tokyo, Minato-ku, Tokyo, Japan
- Genetic Information Research Institute, Los Altos, California, United States of America
| | - Koji Yahara
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Sciences, the University of Tokyo, Minato-ku, Tokyo, Japan
- Tohoku University, Graduate School of Life Sciences, Sendai, Japan
- Kyorin University, Faculty of Medicine, Mitaka, Japan
| |
Collapse
|