1
|
Amezquita J, Desbois M, Opperman KJ, Pak JS, Christensen EL, Nguyen NT, Diaz-Garcia K, Borgen MA, Grill B. Integrin adhesome axis inhibits the RPM-1 ubiquitin ligase signaling hub to regulate growth cone and axon development. PLoS Genet 2024; 20:e1011496. [PMID: 39671436 PMCID: PMC11642917 DOI: 10.1371/journal.pgen.1011496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024] Open
Abstract
Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin (TLN-1), Kindlin (UNC-112) and β-integrin (PAT-3). C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development recently associated with a neurodevelopmental disorder. After curating and updating the conserved C. elegans adhesome, we identified an adhesome subnetwork physically associated with RPM-1 that has extensive links to human neurobehavioral abnormalities. Using neuron-specific, CRISPR loss-of-function strategies, we demonstrate that a PAT-3/UNC-112/TLN-1 adhesome axis regulates axon termination in mechanosensory neurons by inhibiting RPM-1. Developmental time-course studies and pharmacological results suggest TLN-1 inhibition of RPM-1 affects growth cone collapse and microtubule dynamics during axon outgrowth. These results indicate the PAT-3/UNC-112/TLN-1 adhesome axis restricts RPM-1 signaling to ensure axon outgrowth is terminated in a spatially and temporally accurate manner. Thus, our findings orthogonally validate the adhesome using an organismal setting, identify an adhesome axis that inhibits RPM-1 (MYCBP2), and highlight important new links between the adhesome and brain disorders.
Collapse
Affiliation(s)
- Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Joseph S. Pak
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Elyse L. Christensen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Nikki T. Nguyen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karen Diaz-Garcia
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Melissa A. Borgen
- Florida Institute of Technology, Department of Biomedical Engineering and Sciences, Melbourne, United States of America
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
3
|
Köster KA, Dethlefs M, Duque Escobar J, Oetjen E. Regulation of the Activity of the Dual Leucine Zipper Kinase by Distinct Mechanisms. Cells 2024; 13:333. [PMID: 38391946 PMCID: PMC10886912 DOI: 10.3390/cells13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The dual leucine zipper kinase (DLK) alias mitogen-activated protein 3 kinase 12 (MAP3K12) has gained much attention in recent years. DLK belongs to the mixed lineage kinases, characterized by homology to serine/threonine and tyrosine kinase, but exerts serine/threonine kinase activity. DLK has been implicated in many diseases, including several neurodegenerative diseases, glaucoma, and diabetes mellitus. As a MAP3K, it is generally assumed that DLK becomes phosphorylated and activated by upstream signals and phosphorylates and activates itself, the downstream serine/threonine MAP2K, and, ultimately, MAPK. In addition, other mechanisms such as protein-protein interactions, proteasomal degradation, dephosphorylation by various phosphatases, palmitoylation, and subcellular localization have been shown to be involved in the regulation of DLK activity or its fine-tuning. In the present review, the diverse mechanisms regulating DLK activity will be summarized to provide better insights into DLK action and, possibly, new targets to modulate DLK function.
Collapse
Affiliation(s)
- Kyra-Alexandra Köster
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Marten Dethlefs
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Jorge Duque Escobar
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- University Center of Cardiovascular Science, Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Chang C, Banerjee SL, Park SS, Zhang XL, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. eLife 2024; 12:RP89176. [PMID: 38289221 PMCID: PMC10945567 DOI: 10.7554/elife.89176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Sara L Banerjee
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Xiao Lei Zhang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
| | | | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- School of Life Sciences, Keele UniversityKeeleUnited Kingdom
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of Washington School of MedicineSeattleUnited States
- Department of Pharmacology, University of Washington School of MedicineSeattleUnited States
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| |
Collapse
|
5
|
Amezquita J, Desbois M, Opperman KJ, Pak JS, Christensen EL, Nguyen NT, Diaz-Garcia K, Borgen MA, Grill B. Axon development is regulated at genetic and proteomic interfaces between the integrin adhesome and the RPM-1 ubiquitin ligase signaling hub. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.566604. [PMID: 38014183 PMCID: PMC10680716 DOI: 10.1101/2023.11.15.566604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin, Kindlin and beta-integrin. C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development associated with a neurodevelopmental disorder. Using neuron-specific, CRISPR loss-of-function strategies, we show that core adhesome components affect axon development and interact genetically with RPM-1. Mechanistically, Talin opposes RPM-1 in a functional 'tug-of-war' on growth cones that is required for accurate axon termination. Thus, our findings orthogonally validate the adhesome via multi-component genetic and physical interfaces with a key neuronal signaling hub and identify new links between the adhesome and brain disorders.
Collapse
Affiliation(s)
- Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
- School of Life Sciences, Keele University, Keele, Staffordshire, UK
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Joseph S. Pak
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Elyse L. Christensen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Nikki T. Nguyen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Karen Diaz-Garcia
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Melissa A. Borgen
- Florida Institute of Technology, Department of Biomedical Engineering and Sciences, Melbourne, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
6
|
Chang C, Banerjee SL, Park SS, Zhang X, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544638. [PMID: 37693478 PMCID: PMC10491099 DOI: 10.1101/2023.06.12.544638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in C. elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signaling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Sara L. Banerjee
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Xiaolei Zhang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - David Cotnoir-White
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| |
Collapse
|
7
|
Nadel G, Maik-Rachline G, Seger R. JNK Cascade-Induced Apoptosis-A Unique Role in GqPCR Signaling. Int J Mol Sci 2023; 24:13527. [PMID: 37686335 PMCID: PMC10487481 DOI: 10.3390/ijms241713527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via a sequential activation of protein kinases, organized into three to five tiers. Proper regulation is essential for securing a proper cell fate after stimulation, and the mechanisms that regulate this cascade may involve the following: (1) Activatory or inhibitory phosphorylations, which induce or abolish signal transmission. (2) Regulatory dephosphorylation by various phosphatases. (3) Scaffold proteins that bring distinct components of the cascade in close proximity to each other. (4) Dynamic change of subcellular localization of the cascade's components. (5) Degradation of some of the components. In this review, we cover these regulatory mechanisms and emphasize the mechanism by which the JNK cascade transmits apoptotic signals. We also describe the newly discovered PP2A switch, which is an important mechanism for JNK activation that induces apoptosis downstream of the Gq protein coupled receptors. Since the JNK cascade is involved in many cellular processes that determine cell fate, addressing its regulatory mechanisms might reveal new ways to treat JNK-dependent pathologies.
Collapse
Affiliation(s)
| | | | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (G.N.); (G.M.-R.)
| |
Collapse
|
8
|
Desbois M, Pak JS, Opperman KJ, Giles AC, Grill B. Optimized protocol for in vivo affinity purification proteomics and biochemistry using C. elegans. STAR Protoc 2023; 4:102262. [PMID: 37294631 PMCID: PMC10323129 DOI: 10.1016/j.xpro.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/11/2023] Open
Abstract
We present an optimized protocol for in vivo affinity purification proteomics and biochemistry using the model organism C. elegans. We describe steps for target tagging, large-scale culture, affinity purification using a cryomill, mass spectrometry and validation of candidate binding proteins. Our approach has proven successful for identifying protein-protein interactions and signaling networks with verified functional relevance. Our protocol is also suitable for biochemical evaluation of protein-protein interactions in vivo. For complete details on the use and execution of this protocol, please refer to Crawley et al.,1 Giles et al.,2 and Desbois et al.3.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Joseph S Pak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew C Giles
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC V2N 4Z9 Canada
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington Medical School, Seattle, WA 98101, USA; Department of Pharmacology, University of Washington Medical School, Seattle, WA 98101, USA.
| |
Collapse
|
9
|
AlAbdi L, Desbois M, Rusnac DV, Sulaiman RA, Rosenfeld JA, Lalani S, Murdock DR, Burrage LC, Undiagnosed Diseases Network, Billie Au PY, Towner S, Wilson WG, Wong L, Brunet T, Strobl-Wildemann G, Burton JE, Hoganson G, McWalter K, Begtrup A, Zarate YA, Christensen EL, Opperman KJ, Giles AC, Helaby R, Kania A, Zheng N, Grill B, Alkuraya FS. Loss-of-function variants in MYCBP2 cause neurobehavioural phenotypes and corpus callosum defects. Brain 2023; 146:1373-1387. [PMID: 36200388 PMCID: PMC10319777 DOI: 10.1093/brain/awac364] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Domniţa-Valeria Rusnac
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shelley Towner
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - William G Wilson
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lawrence Wong
- Department of Genetics, Northern California Kaiser Permanente, Oakland, CA 94611, USA
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Jennifer E Burton
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - George Hoganson
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Kirsty McWalter
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Amber Begtrup
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Yuri A Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Elyse L Christensen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Andrew C Giles
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
10
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
11
|
Zhang X, Liu J, Pan T, Ward A, Liu J, Xu XZS. A cilia-independent function of BBSome mediated by DLK-MAPK signaling in C. elegans photosensation. Dev Cell 2022; 57:1545-1557.e4. [PMID: 35649417 DOI: 10.1016/j.devcel.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/03/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder that affects primary cilia. BBSome, a protein complex composed of eight BBS proteins, regulates the structure and function of cilia, and its malfunction causes BBS in humans. Here, we report a cilia-independent function of BBSome. To identify genes that regulate the C. elegans photoreceptor protein LITE-1 in ciliated ASH photosensory neurons, we performed a genetic screen and isolated bbs mutants. Functional analysis revealed that BBSome regulates LITE-1 protein stability independently of cilia. Through another round of genetic screening, we found that this cilia-independent function of BBSome is mediated by DLK-MAPK signaling, which acts downstream of BBSome to control LITE-1 stability via Rab5-mediated endocytosis. BBSome exerts its function by regulating the expression of DLK. BBSome also regulates the expression of LZK, a mammalian DLK in human cells. These studies identify a cilia-independent function of BBSome and uncover DLK as an evolutionarily conserved BBSome effector.
Collapse
Affiliation(s)
- Xinxing Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical, School, Ann Arbor, MI 48109, USA
| | - Jinzhi Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical, School, Ann Arbor, MI 48109, USA; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tong Pan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical, School, Ann Arbor, MI 48109, USA
| | - Alex Ward
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical, School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Tossing G, Livernoche R, Maios C, Bretonneau C, Labarre A, Parker JA. Genetic and pharmacological PARP inhibition reduces axonal degeneration in C. elegans models of ALS. Hum Mol Genet 2022; 31:3313-3324. [PMID: 35594544 DOI: 10.1093/hmg/ddac116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Axonal degeneration is observed in early stages of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). This degeneration generally precedes apoptosis and therefore may be a promising therapeutic target. An increasing number of genes have been identified to actively regulate axonal degeneration and regeneration, however, only a few potential therapeutic targets have been identified in the context of neurodegenerative diseases. Here we investigate DLK-1, a major axonal regeneration pathway and its contribution to axonal degeneration phenotypes in several C. elegans ALS models. From this pathway, we identified the PAR polymerases (PARP) PARP-1 and PARP-2 as the most consistent modifiers of axonal degeneration in our models of ALS. Genetic and pharmacological inhibition of PARP-1 and PARP-2 reduces axonal degeneration and improves related motor phenotypes.
Collapse
Affiliation(s)
- Gilles Tossing
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | | | - Claudia Maios
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Constantin Bretonneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - Audrey Labarre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| |
Collapse
|
13
|
Desbois M, Opperman KJ, Amezquita J, Gaglio G, Crawley O, Grill B. Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genet 2022; 18:e1010152. [PMID: 35421092 PMCID: PMC9041834 DOI: 10.1371/journal.pgen.1010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 01/29/2023] Open
Abstract
The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate ‘trap’ enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system. Cdk5 is an atypical cyclin dependent kinase and an important player in nervous system development, plasticity, and disease. Decades of research has focused on understanding how Cdk5 is activated. In contrast, we know much less about the genetic and molecular mechanisms that restrict Cdk5 activity. Here, we examined how Cdk5 is inhibited in the nervous system using the model organism C. elegans. Our results indicate that the RPM-1/FSN-1 E3 ubiquitin ligase complex inhibits Cdk5 to control termination of axon growth. Our finding that ubiquitin ligase activity restricts Cdk5 in the nervous system in vivo now opens up the interesting possibility that ubiquitin ligase activity might regulate Cdk5 in other cellular contexts and disease settings.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gabriel Gaglio
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Oliver Crawley
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington M1-A303/305 Behnke Conference Room, Arnold building, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Suthakaran N, Wiggins J, Giles A, Opperman KJ, Grill B, Dawson-Scully K. O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 modulate seizure susceptibility in C. elegans. PLoS One 2021; 16:e0260072. [PMID: 34797853 PMCID: PMC8604358 DOI: 10.1371/journal.pone.0260072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neurodevelopmental disorders such as epilepsy and autism have been linked to an imbalance of excitation and inhibition (E/I) in the central nervous system. The simplicity and tractability of C. elegans allows our electroconvulsive seizure (ES) assay to be used as a behavioral readout of the locomotor circuit and neuronal function. C. elegans possess conserved nervous system features such as gamma-aminobutyric acid (GABA) and GABA receptors in inhibitory neurotransmission, and acetylcholine (Ach) and acetylcholine receptors in excitatory neurotransmission. Our previously published data has shown that decreasing inhibition in the motor circuit, via GABAergic manipulation, will extend the time of locomotor recovery following electroshock. Similarly, mutations in a HECT E3 ubiquitin ligase called EEL-1 leads to impaired GABAergic transmission, E/I imbalance and altered sensitivity to electroshock. Mutations in the human ortholog of EEL-1, called HUWE1, are associated with both syndromic and non-syndromic intellectual disability. Both EEL-1 and its previously established binding protein, OGT-1, are expressed in GABAergic motor neurons, localize to GABAergic presynaptic terminals, and function in parallel to regulate GABA neuron function. In this study, we tested behavioral responses to electroshock in wildtype, ogt-1, eel-1 and ogt-1; eel-1 double mutants. Both ogt-1 and eel-1 null mutants have decreased inhibitory GABAergic neuron function and increased electroshock sensitivity. Consistent with EEL-1 and OGT-1 functioning in parallel pathways, ogt-1; eel-1 double mutants showed enhanced electroshock susceptibility. Expression of OGT-1 in the C. elegans nervous system rescued enhanced electroshock defects in ogt-1; eel-1 double mutants. Application of a GABA agonist, Baclofen, decreased electroshock susceptibility in all animals. Our C. elegans electroconvulsive seizure assay was the first to model a human X-linked Intellectual Disability (XLID) associated with epilepsy and suggests a potential novel role for the OGT-1/EEL-1 complex in seizure susceptibility.
Collapse
Affiliation(s)
- Nirthieca Suthakaran
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Jonathan Wiggins
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Andrew Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Giles AC, Grill B. Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease. Neural Dev 2020; 15:6. [PMID: 32336296 PMCID: PMC7184716 DOI: 10.1186/s13064-020-00143-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Huwe1 is a highly conserved member of the HECT E3 ubiquitin ligase family. Here, we explore the growing importance of Huwe1 in nervous system development, function and disease. We discuss extensive progress made in deciphering how Huwe1 regulates neural progenitor proliferation and differentiation, cell migration, and axon development. We highlight recent evidence indicating that Huwe1 regulates inhibitory neurotransmission. In covering these topics, we focus on findings made using both vertebrate and invertebrate in vivo model systems. Finally, we discuss extensive human genetic studies that strongly implicate HUWE1 in intellectual disability, and heighten the importance of continuing to unravel how Huwe1 affects the nervous system.
Collapse
Affiliation(s)
- Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA.
| |
Collapse
|
17
|
Autophagy is inhibited by ubiquitin ligase activity in the nervous system. Nat Commun 2019; 10:5017. [PMID: 31676756 PMCID: PMC6825199 DOI: 10.1038/s41467-019-12804-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an intracellular catabolic process prominent in starvation, aging and disease. Neuronal autophagy is particularly important, as it affects the development and function of the nervous system, and is heavily implicated in neurodegenerative disease. Nonetheless, how autophagy is regulated in neurons remains poorly understood. Using an unbiased proteomics approach, we demonstrate that the primary initiator of autophagy, the UNC-51/ULK kinase, is negatively regulated by the ubiquitin ligase RPM-1. RPM-1 ubiquitin ligase activity restricts UNC-51 and autophagosome formation within specific axonal compartments, and exerts effects broadly across the nervous system. By restraining UNC-51 activity, RPM-1 inhibits autophagosome formation to affect axon termination, synapse maintenance and behavioral habituation. These results demonstrate how UNC-51 and autophagy are regulated subcellularly in axons, and unveils a mechanism for restricting initiation of autophagy across the nervous system. Our findings have important implications beyond nervous system development, given growing links between altered autophagy regulation and neurodegenerative diseases.
Collapse
|
18
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
19
|
Park EC, Rongo C. RPM-1 and DLK-1 regulate pioneer axon outgrowth by controlling Wnt signaling. Development 2018; 145:dev.164897. [PMID: 30093552 DOI: 10.1242/dev.164897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022]
Abstract
Axons must correctly reach their targets for proper nervous system function, although we do not fully understand the underlying mechanism, particularly for the first 'pioneer' axons. In C. elegans, AVG is the first neuron to extend an axon along the ventral midline, and this pioneer axon facilitates the proper extension and guidance of follower axons that comprise the ventral nerve cord. Here, we show that the ubiquitin ligase RPM-1 prevents the overgrowth of the AVG axon by repressing the activity of the DLK-1/p38 MAPK pathway. Unlike in damaged neurons, where this pathway activates CEBP-1, we find that RPM-1 and the DLK-1 pathway instead regulate the response to extracellular Wnt cues in developing AVG axons. The Wnt LIN-44 promotes the posterior growth of the AVG axon. In the absence of RPM-1 activity, AVG becomes responsive to a different Wnt, EGL-20, through a mechanism that appears to be independent of canonical Fz-type receptors. Our results suggest that RPM-1 and the DLK-1 pathway regulate axon guidance and growth by preventing Wnt signaling crosstalk.
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Asghari Adib E, Smithson LJ, Collins CA. An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 2018; 53:110-119. [PMID: 30053694 DOI: 10.1016/j.conb.2018.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023]
Abstract
Signaling through the dual leucine zipper-bearing kinase (DLK) is required for injured neurons to initiate new axonal growth; however, activation of this kinase also leads to neuronal degeneration and death in multiple models of injury and neurodegenerative diseases. This has spurred current consideration of DLK as a candidate therapeutic target, and raises a vital question: in what context is DLK a friend or foe to neurons? Here, we review our current understanding of DLK's function and mechanisms in regulating both regenerative and degenerative responses to axonal damage and stress in the nervous system.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Laura J Smithson
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Catherine A Collins
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
21
|
Desbois M, Crawley O, Evans PR, Baker ST, Masuho I, Yasuda R, Grill B. PAM forms an atypical SCF ubiquitin ligase complex that ubiquitinates and degrades NMNAT2. J Biol Chem 2018; 293:13897-13909. [PMID: 29997255 DOI: 10.1074/jbc.ra118.002176] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
PHR (PAM/Highwire/RPM-1) proteins are conserved RING E3 ubiquitin ligases that function in developmental processes, such as axon termination and synapse formation, as well as axon degeneration. At present, our understanding of how PHR proteins form ubiquitin ligase complexes remains incomplete. Although genetic studies indicate NMNAT2 is an important mediator of PHR protein function in axon degeneration, it remains unknown how PHR proteins inhibit NMNAT2. Here, we decipher the biochemical basis for how the human PHR protein PAM, also called MYCBP2, forms a noncanonical Skp/Cullin/F-box (SCF) complex that contains the F-box protein FBXO45 and SKP1 but lacks CUL1. We show FBXO45 does not simply function in substrate recognition but is important for assembly of the PAM/FBXO45/SKP1 complex. Interestingly, we demonstrate a novel role for SKP1 as an auxiliary component of the target recognition module that enhances binding of FBXO45 to NMNAT2. Finally, we provide biochemical evidence that PAM polyubiquitinates NMNAT2 and regulates NMNAT2 protein stability and degradation by the proteasome.
Collapse
Affiliation(s)
- Muriel Desbois
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458 and
| | - Oliver Crawley
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458 and
| | - Paul R Evans
- the Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Scott T Baker
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458 and
| | - Ikuo Masuho
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458 and
| | - Ryohei Yasuda
- the Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Brock Grill
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458 and
| |
Collapse
|
22
|
Li Y, Zhang F, Cong Y, Zhao Y. Identification of potential genes and miRNAs associated with sepsis based on microarray analysis. Mol Med Rep 2018; 17:6227-6234. [PMID: 29512785 PMCID: PMC5928603 DOI: 10.3892/mmr.2018.8668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a type of systemic inflammatory response syndrome caused by infection. The present study aimed to examine key genes and microRNAs (miRNAs) involved in the pathogenesis of sepsis. The GSE13205 microarray dataset, downloaded from the Gene Expression Omnibus was analyzed using bioinformatics tools, and included muscle biopsy specimens of 13 patients with sepsis and eight healthy controls. The differentially expressed genes (DEGs) in samples from patients with sepsis were identified using the Linear Models for Microarray package in R language. Using the Database for Annotation, Visualization and Integration Discovery tool, functional and pathway enrichment analyses were performed to examine the potential functions of the DEGs. The protein-protein interaction (PPI) network was constructed with the DEGs using the Search Tool for the Retrieval of Interacting Genes, and the network topology was analyzed using CytoNCA. Subsequently, MCODE in Cytoscape was used to identify modules in the PPI network. Finally, the integrated regulatory network was constructed based on the DEGs, miRNAs and transcription factors (TFs). A total of 259 upregulated DEGs (MYC and BYSL) and 204 downregulated DEGs were identified in the patients with sepsis. NOP14, NOP2, AATF, GTPBP4, BYSL and TRMT6 were key genes in the MCODE module. In the integrated DEG-miRNA-TF regulatory network, hsa-miR-150 (target gene MYLK3) and 21 TFs, comprising 14 upregulated DEGs (including MYC) and seven downregulated DEGs, were identified. The results suggested that NOP14, NOP2, AATF, GTPBP4, BYSL, MYC, MYLK3 and miR-150 may be involved in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yin Li
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Fengxia Zhang
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Yan Cong
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| | - Yun Zhao
- Emergency Department, Huadong Hospital, Shanghai 200040, P.R. China
| |
Collapse
|
23
|
Opperman KJ, Mulcahy B, Giles AC, Risley MG, Birnbaum RL, Tulgren ED, Dawson-Scully K, Zhen M, Grill B. The HECT Family Ubiquitin Ligase EEL-1 Regulates Neuronal Function and Development. Cell Rep 2018; 19:822-835. [PMID: 28445732 DOI: 10.1016/j.celrep.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
Genetic changes in the HECT ubiquitin ligase HUWE1 are associated with intellectual disability, but it remains unknown whether HUWE1 functions in post-mitotic neurons to affect circuit function. Using genetics, pharmacology, and electrophysiology, we show that EEL-1, the HUWE1 ortholog in C. elegans, preferentially regulates GABAergic presynaptic transmission. Decreasing or increasing EEL-1 function alters GABAergic transmission and the excitatory/inhibitory (E/I) balance in the worm motor circuit, which leads to impaired locomotion and increased sensitivity to electroshock. Furthermore, multiple mutations associated with intellectual disability impair EEL-1 function. Although synaptic transmission defects did not result from abnormal synapse formation, sensitizing genetic backgrounds revealed that EEL-1 functions in the same pathway as the RING family ubiquitin ligase RPM-1 to regulate synapse formation and axon termination. These findings from a simple model circuit provide insight into the molecular mechanisms required to obtain E/I balance and could have implications for the link between HUWE1 and intellectual disability.
Collapse
Affiliation(s)
- Karla J Opperman
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Monica G Risley
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Rayna L Birnbaum
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA; Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik D Tulgren
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
24
|
Crawley O, Giles AC, Desbois M, Kashyap S, Birnbaum R, Grill B. A MIG-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning. PLoS Genet 2017; 13:e1007095. [PMID: 29228003 PMCID: PMC5754208 DOI: 10.1371/journal.pgen.1007095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 01/04/2018] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.
Collapse
Affiliation(s)
- Oliver Crawley
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Andrew C. Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Muriel Desbois
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sudhanva Kashyap
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Rayna Birnbaum
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
25
|
Ivakhnitskaia E, Lin RW, Hamada K, Chang C. Timing of neuronal plasticity in development and aging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29139210 DOI: 10.1002/wdev.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Abstract
Molecular oscillators are well known for their roles in temporal control of some biological processes like cell proliferation, but molecular mechanisms that provide temporal control of differentiation and postdifferentiation events in cells are less understood. In the nervous system, establishment of neuronal connectivity during development and decline in neuronal plasticity during aging are regulated with temporal precision, but the timing mechanisms are largely unknown. Caenorhabditis elegans has been a preferred model for aging research and recently emerges as a new model for the study of developmental and postdevelopmental plasticity in neurons. In this review we discuss the emerging mechanisms in timing of developmental lineage progression, axon growth and pathfinding, synapse formation, and reorganization, and neuronal plasticity in development and aging. We also provide a current view on the conserved core axon regeneration molecules with the intention to point out potential regulatory points of temporal controls. We highlight recent progress in understanding timing mechanisms that regulate decline in regenerative capacity, including progressive changes of intrinsic timers and co-opting the aging pathway molecules. WIREs Dev Biol 2018, 7:e305. doi: 10.1002/wdev.305 This article is categorized under: Invertebrate Organogenesis > Worms Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Nervous System Development > Worms Gene Expression and Transcriptional Hierarchies > Regulatory RNA.
Collapse
Affiliation(s)
- Evguenia Ivakhnitskaia
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan Weihsiang Lin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kana Hamada
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Borgen MA, Wang D, Grill B. RPM-1 regulates axon termination by affecting growth cone collapse and microtubule stability. Development 2017; 144:4658-4672. [PMID: 29084805 DOI: 10.1242/dev.154187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/21/2017] [Indexed: 12/14/2022]
Abstract
Axon termination is essential for efficient and accurate nervous system construction. At present, relatively little is known about how growth cone collapse occurs prior to axon termination in vivo Using the mechanosensory neurons of C. elegans, we found collapse prior to axon termination is protracted, with the growth cone transitioning from a dynamic to a static state. Growth cone collapse prior to termination is facilitated by the signaling hub RPM-1. Given the prominence of the cytoskeleton in growth cone collapse, we assessed the relationship between RPM-1 and regulators of actin dynamics and microtubule stability. Our results reveal several important findings about how axon termination is orchestrated: (1) RPM-1 functions in parallel to RHO-1 and CRMP/UNC-33, but is suppressed by the Rac isoform MIG-2; (2) RPM-1 opposes the function of microtubule stabilizers, including tubulin acetyltransferases; and (3) genetic epistasis suggests the microtubule-stabilizing protein Tau/PTL-1 potentially inhibits RPM-1. These findings provide insight into how growth cone collapse is regulated during axon termination in vivo, and suggest that RPM-1 signaling destabilizes microtubules to facilitate growth cone collapse and axon termination.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| |
Collapse
|
27
|
Tang H, Han M. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell 2017; 169:457-469.e13. [PMID: 28431246 DOI: 10.1016/j.cell.2017.03.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/03/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development.
Collapse
Affiliation(s)
- Hongyun Tang
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
28
|
Minnerly J, Zhang J, Parker T, Kaul T, Jia K. The cell non-autonomous function of ATG-18 is essential for neuroendocrine regulation of Caenorhabditis elegans lifespan. PLoS Genet 2017; 13:e1006764. [PMID: 28557996 PMCID: PMC5469504 DOI: 10.1371/journal.pgen.1006764] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 06/13/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Dietary restriction (DR) and reduced insulin growth factor (IGF) signaling extend lifespan in Caenorhabditis elegans and other eukaryotic organisms. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has emerged as a central pathway regulated by various longevity signals including DR and IGF signaling in promoting longevity in a variety of eukaryotic organisms. However, the mechanism remains unclear. Here we show that the autophagy protein ATG-18 acts cell non-autonomously in neuronal and intestinal tissues to maintain C. elegans wildtype lifespan and to respond to DR and IGF-mediated longevity signaling. Moreover, ATG-18 activity in chemosensory neurons that are involved in food detection sufficiently mediates the effect of these longevity pathways. Additionally, ATG-18-mediated cell non-autonomous signaling depends on the release of neurotransmitters and neuropeptides. Interestingly, our data suggest that neuronal and intestinal ATG-18 acts in parallel and converges on unidentified neurons that secrete neuropeptides to regulate C. elegans lifespan through the transcription factor DAF-16/FOXO in response to reduced IGF signaling.
Collapse
Affiliation(s)
- Justin Minnerly
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Jiuli Zhang
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Thomas Parker
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Tiffany Kaul
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Kailiang Jia
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
- * E-mail:
| |
Collapse
|
29
|
Baker ST, Grill B. Defining Minimal Binding Regions in Regulator of Presynaptic Morphology 1 (RPM-1) Using Caenorhabditis elegans Neurons Reveals Differential Signaling Complexes. J Biol Chem 2016; 292:2519-2530. [PMID: 27979965 DOI: 10.1074/jbc.m116.748004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/14/2016] [Indexed: 12/22/2022] Open
Abstract
The intracellular signaling protein regulator of presynaptic morphology 1 (RPM-1) is a conserved regulator of synapse formation and axon termination in Caenorhabditis elegans RPM-1 functions in a ubiquitin ligase complex with the F-box protein FSN-1 and functions through the microtubule binding protein RAE-1. Using a structure-function approach and positive selection for transgenic C. elegans, we explored the biochemical relationship between RPM-1, FSN-1, and RAE-1. This led to the identification of two new domains in RPM-1 that are sufficient for binding to FSN-1, called FSN-1 binding domain 2 (FBD2) and FBD3. Furthermore, we map the RAE-1 binding domain to a much smaller region of RPM-1. Point mutations in RPM-1 that reduce binding to RAE-1 did not affect FSN-1 binding, indicating that RPM-1 utilizes different biochemical mechanisms to bind these molecules. Analysis of RPM-1 protein complexes in the neurons of C. elegans elucidated two further discoveries: FSN-1 binds to RAE-1, and this interaction is not mediated by RPM-1, and RPM-1 binding to FSN-1 and RAE-1 reduces FSN-1·RAE-1 complex formation. These results indicate that RPM-1 uses different mechanisms to recruit FSN-1 and RAE-1 into independent signaling complexes in neurons.
Collapse
Affiliation(s)
- Scott T Baker
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Brock Grill
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|
30
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
31
|
Feoktistov AI, Herman TG. Wallenda/DLK protein levels are temporally downregulated by Tramtrack69 to allow R7 growth cones to become stationary boutons. Development 2016; 143:2983-93. [PMID: 27402706 DOI: 10.1242/dev.134403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/23/2016] [Indexed: 11/20/2022]
Abstract
Dual leucine zipper kinase (DLK) promotes growth cone motility and must be restrained to ensure normal development. PHR (Pam/Highwire/RPM-1) ubiquitin ligases therefore target DLK for degradation unless axon injury occurs. Overall DLK levels decrease during development, but how DLK levels are regulated within a developing growth cone has not been examined. We analyzed the expression of the fly DLK Wallenda (Wnd) in R7 photoreceptor growth cones as they halt at their targets and become presynaptic boutons. We found that Wnd protein levels are repressed by the PHR protein Highwire (Hiw) during R7 growth cone halting, as has been observed in other systems. However, as R7 growth cones become boutons, Wnd levels are further repressed by a temporally expressed transcription factor, Tramtrack69 (Ttk69). Previously unobserved negative feedback from JNK also contributes to Wnd repression at both time points. We conclude that neurons deploy additional mechanisms to downregulate DLK as they form stable, synaptic connections. We use live imaging to probe the effects of Wnd and Ttk69 on R7 bouton development and conclude that Ttk69 coordinates multiple regulators of this process.
Collapse
Affiliation(s)
- Alexander I Feoktistov
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Tory G Herman
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
32
|
Grill B, Murphey RK, Borgen MA. The PHR proteins: intracellular signaling hubs in neuronal development and axon degeneration. Neural Dev 2016; 11:8. [PMID: 27008623 PMCID: PMC4806438 DOI: 10.1186/s13064-016-0063-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
During development, a coordinated and integrated series of events must be accomplished in order to generate functional neural circuits. Axons must navigate toward target cells, build synaptic connections, and terminate outgrowth. The PHR proteins (consisting of mammalian Phr1/MYCBP2, Drosophila Highwire and C. elegans RPM-1) function in each of these events in development. Here, we review PHR function across species, as well as the myriad of signaling pathways PHR proteins regulate. These findings collectively suggest that the PHR proteins are intracellular signaling hubs, a concept we explore in depth. Consistent with prominent developmental functions, genetic links have begun to emerge between PHR signaling networks and neurodevelopmental disorders, such as autism, schizophrenia and intellectual disability. Finally, we discuss the recent and important finding that PHR proteins regulate axon degeneration, which has further heightened interest in this fascinating group of molecules.
Collapse
Affiliation(s)
- Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA.
| | - Rodney K Murphey
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
33
|
Giles AC, Opperman KJ, Rankin CH, Grill B. Developmental Function of the PHR Protein RPM-1 Is Required for Learning in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:2745-57. [PMID: 26464359 PMCID: PMC4683646 DOI: 10.1534/g3.115.021410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022]
Abstract
The PAM/Highwire/RPM-1 (PHR) proteins are signaling hubs that function as important regulators of neural development. Loss of function in Caenorhabditis elegans rpm-1 and Drosophila Highwire results in failed axon termination, inappropriate axon targeting, and abnormal synapse formation. Despite broad expression in the nervous system and relatively dramatic defects in synapse formation and axon development, very mild abnormalities in behavior have been found in animals lacking PHR protein function. Therefore, we hypothesized that large defects in behavior might only be detected in scenarios in which evoked, prolonged circuit function is required, or in which behavioral plasticity occurs. Using quantitative approaches in C. elegans, we found that rpm-1 loss-of-function mutants have relatively mild abnormalities in exploratory locomotion, but have large defects in evoked responses to harsh touch and learning associated with tap habituation. We explored the nature of the severe habituation defects in rpm-1 mutants further. To address what part of the habituation circuit was impaired in rpm-1 mutants, we performed rescue analysis with promoters for different neurons. Our findings indicate that RPM-1 function in the mechanosensory neurons affects habituation. Transgenic expression of RPM-1 in adult animals failed to rescue habituation defects, consistent with developmental defects in rpm-1 mutants resulting in impaired habituation. Genetic analysis showed that other regulators of neuronal development that function in the rpm-1 pathway (including glo-4, fsn-1, and dlk-1) also affected habituation. Overall, our findings suggest that developmental defects in rpm-1 mutants manifest most prominently in behaviors that require protracted or plastic circuit function, such as learning.
Collapse
Affiliation(s)
- Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Karla J Opperman
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|
34
|
Valakh V, Frey E, Babetto E, Walker LJ, DiAntonio A. Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury. Neurobiol Dis 2015; 77:13-25. [PMID: 25726747 DOI: 10.1016/j.nbd.2015.02.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/12/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022] Open
Abstract
Nerve injury can lead to axonal regeneration, axonal degeneration, and/or neuronal cell death. Remarkably, the MAP3K dual leucine zipper kinase, DLK, promotes each of these responses, suggesting that DLK is a sensor of axon injury. In Drosophila, mutations in proteins that stabilize the actin and microtubule cytoskeletons activate the DLK pathway, suggesting that DLK may be activated by cytoskeletal disruption. Here we test this model in mammalian sensory neurons. We find that pharmacological agents designed to disrupt either the actin or microtubule cytoskeleton activate the DLK pathway, and that activation is independent of calcium influx or induction of the axon degeneration program. Moreover, activation of the DLK pathway by targeting the cytoskeleton induces a pro-regenerative state, enhancing axon regeneration in response to a subsequent injury in a process akin to preconditioning. This highlights the potential utility of activating the DLK pathway as a method to improve axon regeneration. Moreover, DLK is required for these responses to cytoskeletal perturbations, suggesting that DLK functions as a key neuronal sensor of cytoskeletal damage.
Collapse
Affiliation(s)
- Vera Valakh
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erin Frey
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Elisabetta Babetto
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lauren J Walker
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
35
|
Neuronal development in Caenorhabditis elegans is regulated by inhibition of an MLK MAP kinase pathway. Genetics 2014; 199:151-6. [PMID: 25339611 DOI: 10.1534/genetics.114.170589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show that loss-of-function mutations in kinases of the MLK-1 pathway (mlk-1, mek-1, and kgb-1/jnk) function cell-autonomously in neurons to suppress defects in synapse formation and axon termination caused by rpm-1 loss of function. Our genetic analysis also suggests that the phosphatase PPM-1, like RPM-1, is a potential inhibitor of kinases in the MLK-1 pathway.
Collapse
|
36
|
Sharma J, Baker ST, Turgeon SM, Gurney AM, Opperman KJ, Grill B. Identification of a peptide inhibitor of the RPM-1 · FSN-1 ubiquitin ligase complex. J Biol Chem 2014; 289:34654-66. [PMID: 25326385 DOI: 10.1074/jbc.m114.614065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins include: Caenorhabditis elegans RPM-1 (Regulator of Presynaptic Morphology 1), Drosophila Highwire, and murine Phr1. These important regulators of neuronal development function in synapse formation, axon guidance, and axon termination. In mature neurons the PHR proteins also regulate axon degeneration and regeneration. PHR proteins function, in part, through an ubiquitin ligase complex that includes the F-box protein FSN-1 in C. elegans and Fbxo45 in mammals. At present, the structure-function relationships that govern formation of this complex are poorly understood. We cloned 9 individual domains that compose the entire RPM-1 protein sequence and found a single domain centrally located in RPM-1 that is sufficient for binding to FSN-1. Deletion analysis further refined FSN-1 binding to a conserved 97-amino acid region of RPM-1. Mutagenesis identified several conserved motifs and individual amino acids that mediate this interaction. Transgenic overexpression of this recombinant peptide, which we refer to as the RPM-1·FSN-1 complex inhibitory peptide (RIP), yields similar phenotypes and enhancer effects to loss of function in fsn-1. Defects caused by transgenic RIP were suppressed by loss of function in the dlk-1 MAP3K and were alleviated by point mutations that reduce binding to FSN-1. These findings suggest that RIP specifically inhibits the interaction between RPM-1 and FSN-1 in vivo, thereby blocking formation of a functional ubiquitin ligase complex. Our results are consistent with the FSN-1 binding domain of RPM-1 recruiting FSN-1 and a target protein, such as DLK-1, whereas the RING-H2 domain of RPM-1 ubiquitinates the target.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, 33458 and
| | - Scott T Baker
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, 33458 and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Shane M Turgeon
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, 33458 and
| | - Allison M Gurney
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Karla J Opperman
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, 33458 and
| | - Brock Grill
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, 33458 and
| |
Collapse
|
37
|
The Nesprin family member ANC-1 regulates synapse formation and axon termination by functioning in a pathway with RPM-1 and β-Catenin. PLoS Genet 2014; 10:e1004481. [PMID: 25010424 PMCID: PMC4091705 DOI: 10.1371/journal.pgen.1004481] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 05/16/2014] [Indexed: 01/08/2023] Open
Abstract
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions. The molecular mechanisms that underpin synapse formation and axon termination are central to forming a functional, fully connected nervous system. The PHR proteins are important regulators of neuronal development that function in axon outgrowth and termination, as well as synapse formation. Here we describe the discovery of a novel, conserved pathway that is positively regulated by the C. elegans PHR protein, RPM-1. This pathway is composed of RPM-1, ANC-1 (a Nesprin family protein), and BAR-1 (a canonical β-catenin). Nesprins, such as ANC-1, regulate nuclear anchorage and positioning in multinuclear cells. We now show that in neurons, ANC-1 regulates neuronal development by positively regulating BAR-1. Thus, Nesprins are multi-functional proteins that act through β-catenin to regulate neuronal development, and link the nucleus to the actin cytoskeleton in order to mediate nuclear anchorage and positioning in multi-nuclear cells.
Collapse
|