1
|
Benigno V, Carraro N, Sarton-Lohéac G, Romano-Bertrand S, Blanc DS, van der Meer JR. Diversity and evolution of an abundant ICE clc family of integrative and conjugative elements in Pseudomonas aeruginosa. mSphere 2023; 8:e0051723. [PMID: 37902330 PMCID: PMC10732049 DOI: 10.1128/msphere.00517-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Microbial populations swiftly adapt to changing environments through horizontal gene transfer. While the mechanisms of gene transfer are well known, the impact of environmental conditions on the selection of transferred gene functions remains less clear. We investigated ICEs, specifically the ICEclc-type, in Pseudomonas aeruginosa clinical isolates. Our findings revealed co-evolution between ICEs and their hosts, with ICE transfers occurring within strains. Gene functions carried by ICEs are positively selected, including potential virulence factors and heavy metal resistance. Comparison to publicly available P. aeruginosa genomes unveiled widespread antibiotic-resistance determinants within ICEclc clades. Thus, the ubiquitous ICEclc family significantly contributes to P. aeruginosa's adaptation and fitness in diverse environments.
Collapse
Affiliation(s)
- Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Garance Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sara Romano-Bertrand
- Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, Montpellier, France
| | - Dominique S. Blanc
- Prevention and Infection Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
2
|
Wiehlmann L, Klockgether J, Hammerbacher AS, Salunkhe P, Horatzek S, Munder A, Peilert JF, Gulbins E, Eberl L, Tümmler B. A VirB4 ATPase of the mobile accessory genome orchestrates core genome-encoded features of physiology, metabolism, and virulence of Pseudomonas aeruginosa TBCF10839. Front Cell Infect Microbiol 2023; 13:1234420. [PMID: 37577372 PMCID: PMC10413270 DOI: 10.3389/fcimb.2023.1234420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pseudomonas aeruginosa TBCF10839 is a highly virulent strain that can persist and replicate in human neutrophils. Screening of a signature-tagged mutagenesis (STM) TBCF10839 transposon library in phagocytosis tests identified a mutant that carried the transposon in the VirB4 homolog 5PG21 of an integrative and conjugative element (ICE)-associated type IV secretion system of the pKLC102 subtype. 5P21 TBCF10839 insertion mutants were deficient in metabolic versatility, secretion, quorum sensing, and virulence. The mutants were efficiently killed in phagocytosis tests in vitro and were avirulent in an acute murine airway infection model in vivo. The inactivation of 5PG21 silenced the rhl, las, and pqs operons and the gene expression for the synthesis of hydrogen cyanide, the antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid, and the H2- and H3-type VI secretion systems and their associated effectors. The mutants were impaired in the utilization of carbon sources and stored compounds that are not funneled into intermediary metabolism. This showcase demonstrates that a single gene of the mobile accessory genome can become an essential element to operate the core genome-encoded features of metabolism and virulence.
Collapse
Affiliation(s)
- Lutz Wiehlmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anna-Silke Hammerbacher
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Prabhakar Salunkhe
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sonja Horatzek
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | | | - Erich Gulbins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
3
|
Fitness-Conditional Genes for Soil Adaptation in the Bioaugmentation Agent Pseudomonas veronii 1YdBTEX2. mSystems 2023; 8:e0117422. [PMID: 36786610 PMCID: PMC10134887 DOI: 10.1128/msystems.01174-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Strain inoculation (bioaugmentation) is a potentially useful technology to provide microbiomes with new functionalities. However, there is limited understanding of the genetic factors contributing to successful establishment of inoculants. This work aimed to characterize the genes implicated in proliferation of the monoaromatic compound-degrading Pseudomonas veronii 1YdBTEX2 in nonsterile polluted soils. We generated two independent mutant libraries by random minitransposon-delivered marker insertion followed by deep sequencing (Tn-seq) with a total of 5.0 × 105 unique insertions. Libraries were grown in multiple successive cycles for up to 50 generations either in batch liquid medium or in two types of soil microcosms with different resident microbial content (sand or silt) in the presence of toluene. Analysis of gene insertion abundances at different time points (passed generations of metapopulation growth), in comparison to proportions at start and to in silico generated randomized insertion distributions, allowed to define ~800 essential genes common to both libraries and ~2,700 genes with conditional fitness effects in either liquid or soil (195 of which resulted in fitness gain). Conditional fitness genes largely overlapped among all growth conditions but affected approximately twice as many functions in liquid than in soil. This indicates soil to be a more promiscuous environment for mutant growth, probably because of additional nutrient availability. Commonly depleted genes covered a wide range of biological functions and metabolic pathways, such as inorganic ion transport, fatty acid metabolism, amino acid biosynthesis, or nucleotide and cofactor metabolism. Only sparse gene sets were uncovered whose insertion caused fitness decrease exclusive for soils, which were different between silt and sand. Despite detectable higher resident bacteria and potential protist predatory counts in silt, we were, therefore, unable to detect any immediately obvious candidate genes affecting P. veronii biological competitiveness. In contrast to liquid growth conditions, mutants inactivating flagella biosynthesis and motility consistently gained strong fitness advantage in soils and displayed higher growth rates than wild type. In conclusion, although many gene functions were found to be important for growth in soils, most of these are not specific as they affect growth in liquid minimal medium more in general. This indicates that P. veronii does not need major metabolic reprogramming for proliferation in soil with accessible carbon and generally favorable growth conditions. IMPORTANCE Restoring damaged microbiomes is still a formidable challenge. Classical widely adopted approaches consist of augmenting communities with pure or mixed cultures in the hope that these display their intended selected properties under in situ conditions. Ecological theory, however, dictates that introduction of a nonresident microbe is unlikely to lead to its successful proliferation in a foreign system such as a soil microbiome. In an effort to study this systematically, we used random transposon insertion scanning to identify genes and possibly, metabolic subsystems, that are crucial for growth and survival of a bacterial inoculant (Pseudomonas veronii) for targeted degradation of monoaromatic compounds in contaminated nonsterile soils. Our results indicate that although many gene functions are important for proliferation in soil, they are general factors for growth and not exclusive for soil. In other words, P. veronii is a generalist that is not a priori hindered by the soil for its proliferation and would make a good bioaugmentation candidate.
Collapse
|
4
|
Hirose J. Diversity and Evolution of Integrative and Conjugative Elements Involved in Bacterial Aromatic Compound Degradation and Their Utility in Environmental Remediation. Microorganisms 2023; 11:microorganisms11020438. [PMID: 36838403 PMCID: PMC9960961 DOI: 10.3390/microorganisms11020438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile DNA molecules that can be transferred through excision, conjugation, and integration into chromosomes. They contribute to the horizontal transfer of genomic islands across bacterial species. ICEs carrying genes encoding aromatic compound degradation pathways are of interest because of their contribution to environmental remediation. Recent advances in DNA sequencing technology have increased the number of newly discovered ICEs in bacterial genomes and have enabled comparative analysis of their evolution. The two different families of ICEs carry various aromatic compound degradation pathway genes. ICEclc and its related ICEs contain a number of members with diverse catabolic capabilities. In addition, the Tn4371 family, which includes ICEs that carry the chlorinated biphenyl catabolic pathway, has been identified. It is apparent that they underwent evolution through the acquisition, deletion, or exchange of modules to adapt to an environmental niche. ICEs have the property of both stability and mobility in the chromosome. Perspectives on the use of ICEs in environmental remediation are also discussed.
Collapse
Affiliation(s)
- Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
5
|
Sulser S, Vucicevic A, Bellini V, Moritz R, Delavat F, Sentchilo V, Carraro N, van der Meer JR. A bistable prokaryotic differentiation system underlying development of conjugative transfer competence. PLoS Genet 2022; 18:e1010286. [PMID: 35763548 PMCID: PMC9286271 DOI: 10.1371/journal.pgen.1010286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The mechanisms and impact of horizontal gene transfer processes to distribute gene functions with potential adaptive benefit among prokaryotes have been well documented. In contrast, little is known about the life-style of mobile elements mediating horizontal gene transfer, whereas this is the ultimate determinant for their transfer fitness. Here, we investigate the life-style of an integrative and conjugative element (ICE) within the genus Pseudomonas that is a model for a widespread family transmitting genes for xenobiotic compound metabolism and antibiotic resistances. Previous work showed bimodal ICE activation, but by using single cell time-lapse microscopy coupled to combinations of chromosomally integrated single copy ICE promoter-driven fluorescence reporters, RNA sequencing and mutant analysis, we now describe the complete regulon leading to the arisal of differentiated dedicated transfer competent cells. The regulon encompasses at least three regulatory nodes and five (possibly six) further conserved gene clusters on the ICE that all become expressed under stationary phase conditions. Time-lapse microscopy indicated expression of two regulatory nodes (i.e., bisR and alpA-bisDC) to precede that of the other clusters. Notably, expression of all clusters except of bisR was confined to the same cell subpopulation, and was dependent on the same key ICE regulatory factors. The ICE thus only transfers from a small fraction of cells in a population, with an estimated proportion of between 1.7–4%, which express various components of a dedicated transfer competence program imposed by the ICE, and form the centerpiece of ICE conjugation. The components mediating transfer competence are widely conserved, underscoring their selected fitness for efficient transfer of this class of mobile elements. Horizontal gene transfer processes among prokaryotes have raised wide interest, which is attested by broad public health concern of rapid spread of antibiotic resistances. However, we typically take for granted that horizontal transfer is the result of some underlying spontaneous low frequency event, but this is not necessarily the case. As we show here, mobile genetic elements from the class of integrative and conjugative elements (ICEs) impose a coordinated program on the host cell in order to transfer, leading to an exclusive differentiated set of transfer competent cells. We base our conclusions on single cell microscopy studies to compare the rare activation of ICE promoters in individual cells in bacterial populations, and on mutant and RNA-seq analysis to show their dependency on ICE factors. This is an important finding because it implies that conjugation itself is subject to natural selection, which would lead to selection of fitter elements that transfer better or become more widespread.
Collapse
Affiliation(s)
- Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Andrea Vucicevic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Veronica Bellini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Roxane Moritz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Ramsay JP, Bastholm TR, Verdonk CJ, Tambalo DD, Sullivan JT, Harold LK, Panganiban BA, Colombi E, Perry BJ, Jowsey W, Morris C, Hynes MF, Bond CS, Cameron ADS, Yost CK, Ronson CW. An epigenetic switch activates bacterial quorum sensing and horizontal transfer of an integrative and conjugative element. Nucleic Acids Res 2021; 50:975-988. [PMID: 34904658 PMCID: PMC8789080 DOI: 10.1093/nar/gkab1217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Horizontal transfer of the integrative and conjugative element ICEMlSymR7A converts non-symbiotic Mesorhizobium spp. into nitrogen-fixing legume symbionts. Here, we discover subpopulations of Mesorhizobium japonicum R7A become epigenetically primed for quorum-sensing (QS) and QS-activated horizontal transfer. Isolated populations in this state termed R7A* maintained these phenotypes in laboratory culture but did not transfer the R7A* state to recipients of ICEMlSymR7A following conjugation. We previously demonstrated ICEMlSymR7A transfer and QS are repressed by the antiactivator QseM in R7A populations and that the adjacently-coded DNA-binding protein QseC represses qseM transcription. Here RNA-sequencing revealed qseM expression was repressed in R7A* cells and that RNA antisense to qseC was abundant in R7A but not R7A*. Deletion of the antisense-qseC promoter converted cells into an R7A*-like state. An adjacently coded QseC2 protein bound two operator sites and repressed antisense-qseC transcription. Plasmid overexpression of QseC2 stimulated the R7A* state, which persisted following curing of this plasmid. The epigenetic maintenance of the R7A* state required ICEMlSymR7A-encoded copies of both qseC and qseC2. Therefore, QseC and QseC2, together with their DNA-binding sites and overlapping promoters, form a stable epigenetic switch that establishes binary control over qseM transcription and primes a subpopulation of R7A cells for QS and horizontal transfer.
Collapse
Affiliation(s)
- Joshua P Ramsay
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Tahlia R Bastholm
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Callum J Verdonk
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.,Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Dinah D Tambalo
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Beatrice A Panganiban
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Elena Colombi
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Benjamin J Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Calum Morris
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Michael F Hynes
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4V8, Canada
| | - Charles S Bond
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | | | | | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
7
|
Carraro N, Richard X, Sulser S, Delavat F, Mazza C, van der Meer JR. An analog to digital converter controls bistable transfer competence development of a widespread bacterial integrative and conjugative element. eLife 2020; 9:57915. [PMID: 32720896 PMCID: PMC7423338 DOI: 10.7554/elife.57915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Conjugative transfer of the integrative and conjugative element ICEclc in Pseudomonas requires development of a transfer competence state in stationary phase, which arises only in 3–5% of individual cells. The mechanisms controlling this bistable switch between non-active and transfer competent cells have long remained enigmatic. Using a variety of genetic tools and epistasis experiments in P. putida, we uncovered an ‘upstream’ cascade of three consecutive transcription factor-nodes, which controls transfer competence initiation. One of the uncovered transcription factors (named BisR) is representative for a new regulator family. Initiation activates a feedback loop, controlled by a second hitherto unrecognized heteromeric transcription factor named BisDC. Stochastic modelling and experimental data demonstrated the feedback loop to act as a scalable converter of unimodal (population-wide or ‘analog’) input to bistable (subpopulation-specific or ‘digital’) output. The feedback loop further enables prolonged production of BisDC, which ensures expression of the ‘downstream’ functions mediating ICE transfer competence in activated cells. Phylogenetic analyses showed that the ICEclc regulatory constellation with BisR and BisDC is widespread among Gamma- and Beta-proteobacteria, including various pathogenic strains, highlighting its evolutionary conservation and prime importance to control the behaviour of this wide family of conjugative elements. Mobile DNA elements are pieces of genetic material that can jump from one bacterium to another, and even across species. They are often useful to their host, for example carrying genes that allow bacteria to resist antibiotics. One example of bacterial mobile DNA is the ICEclc element. Usually, ICEclc sits passively within the bacterium’s own DNA, but in a small number of cells, it takes over, hijacking its host to multiply and to get transferred to other bacteria. Cells that can pass on the elements cannot divide, and so this ability is ultimately harmful to individual bacteria. Carrying ICEclc can therefore be positive for a bacterium but passing it on is not in the cell’s best interest. On the other hand, mobile DNAs like ICEclc have evolved to be disseminated as efficiently as possible. To shed more light on this tense relationship, Carraro et al. set out to identify the molecular mechanisms ICEclc deploys to control its host. Experiments using mutant bacteria revealed that for ICEclc to successfully take over the cell, a number of proteins needed to be produced in the correct order. In particular, a protein called BisDC triggers a mechanism to make more of itself, creating a self-reinforcing ‘feedback loop’. Mathematical simulations of the feedback loop showed that it could result in two potential outcomes for the cell. In most of the ‘virtual cells’, ICEclc ultimately remained passive; however, in a few, ICEclc managed to take over its hosts. In this case, the feedback loop ensured that there was always enough BisDC to maintain ICEclc’s control over the cell. Further analyses suggested that this feedback mechanism is also common in many other mobile DNA elements, including some that help bacteria to resist drugs. These results are an important contribution to understand how mobile DNAs manipulate their bacterial host in order to propagate and disperse. In the future, this knowledge could help develop new strategies to combat the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Xavier Richard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,UMR CNRS 6286 UFIP, University of Nantes, Nantes, France
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
8
|
Takano S, Fukuda K, Koto A, Miyazaki R. A novel system of bacterial cell division arrest implicated in horizontal transmission of an integrative and conjugative element. PLoS Genet 2019; 15:e1008445. [PMID: 31609967 PMCID: PMC6812849 DOI: 10.1371/journal.pgen.1008445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA elements in the prokaryotic world. ICEs are usually retained within the bacterial chromosome, but can be excised and transferred from a donor to a new recipient cell, even of another species. Horizontal transmission of ICEclc, a prevalent ICE in proteobacteria, only occurs from developed specialized transfer competent (tc) cells in the donor population. tc cells become entirely dedicated to the ICE transmission at the cost of cell proliferation. The cell growth impairment is mediated by two ICEclc located genes, parA and shi, but the mechanistic and dynamic details of this process are unknown. To better understand the function of ParA and Shi, we followed their intracellular behavior from fluorescent protein fusions, and studied host cell division at single-cell level. Superresolution imaging revealed that ParA-mCherry colocalized with the host nucleoid while Shi-GFP was enriched at the membrane during the growth impairment. Despite being enriched at different cellular locations, the two proteins showed in vivo interactions, and mutations in the Walker A motif of ParA dislocalized both ParA and Shi. In addition, ParA mutations in the ATPase motif abolished the growth arrest on the host cell. Time-lapse microscopy revealed that ParA and Shi initially delay cell division, suggesting an extension of the S phase of cells, but eventually completely inhibit cell elongation. The parA-shi locus is highly conserved in other ICEclc-related elements, and expressing ParA-Shi from ICEclc in other proteobacterial species caused similar growth arrest, suggesting that the system functions similarly across hosts. The results of our study provide mechanistic insight into the novel and unique system on ICEs and help to understand such epistatic interaction between ICE genes and host physiology that entails efficient horizontal gene transfer.
Collapse
Affiliation(s)
- Sotaro Takano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kohei Fukuda
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
9
|
Transient Replication in Specialized Cells Favors Transfer of an Integrative and Conjugative Element. mBio 2019; 10:mBio.01133-19. [PMID: 31186329 PMCID: PMC6561031 DOI: 10.1128/mbio.01133-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial evolution is driven to a large extent by horizontal gene transfer (HGT)—the processes that distribute genetic material between species rather than by vertical descent. The different elements and processes mediating HGT have been characterized in great molecular detail. In contrast, very little is known on adaptive features selecting HGT evolvability and fitness optimization. By studying the molecular behavior of an integrated mobile DNA of the class of integrative and conjugative elements in individual Pseudomonas putida donor bacteria, we report here how transient replication of the element after its excision from the chromosome is favorable for its transfer success. Since successful transfer into a new recipient is a measure of the element’s fitness, transient replication may have been selected as an adaptive benefit for more-optimal transfer. Integrative and conjugative elements (ICEs) are widespread mobile DNA within bacterial genomes, whose lifestyle is relatively poorly understood. ICEs transmit vertically through donor cell chromosome replication, but in order to transfer, they have to excise from the chromosome. The excision step makes ICEs prone to loss, in case the donor cell divides and the ICE is not replicated. By adapting the system of LacI-cyan fluorescent protein (CFP) binding to lacO operator arrays, we analyze here the process of excision and transfer of the ICE for 3-chlorobenzoate degradation (ICEclc) in individual cells of the bacterium Pseudomonas putida. We provide evidence that ICEclc excises exclusively in a subset of specialized transfer-competent cells. ICEclc copy numbers in transfer-competent cells were higher than in regular nontransferring cells but were reduced in mutants lacking the ICE oriT1 origin of transfer, the ICE DNA relaxase, or the excision recombination sites. Consistently, transfer-competent cells showed a higher proportion without any observable LacI-CFP foci, suggesting ICEclc loss, but this proportion was independent of the ICE relaxase or the ICE origins of transfer. Our results thus indicated that the excised ICE becomes transiently replicated in transfer-competent cells, with up to six observable copies from LacI-CFP fluorescent focus measurements. Most of the observed ICEclc transfer to ICE-free P. putida recipients occurred from donors displaying 3 to 4 ICE copies, which constitute a minority among all transfer-competent cells. This finding suggests, therefore, that replication of the excised ICEclc in donors is beneficial for transfer fitness to recipient cells.
Collapse
|
10
|
Obi CC, Vayla S, de Gannes V, Berres ME, Walker J, Pavelec D, Hyman J, Hickey WJ. The Integrative Conjugative Element clc (ICEclc) of Pseudomonas aeruginosa JB2. Front Microbiol 2018; 9:1532. [PMID: 30050515 PMCID: PMC6050381 DOI: 10.3389/fmicb.2018.01532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
Integrative conjugative elements (ICE) are a diverse group of chromosomally integrated, self-transmissible mobile genetic elements (MGE) that are active in shaping the functions of bacteria and bacterial communities. Each type of ICE carries a characteristic set of core genes encoding functions essential for maintenance and self-transmission, and cargo genes that endow on hosts phenotypes beneficial for niche adaptation. An important area to which ICE can contribute beneficial functions is the biodegradation of xenobiotic compounds. In the biodegradation realm, the best-characterized ICE is ICEclc, which carries cargo genes encoding for ortho-cleavage of chlorocatechols (clc genes) and aminophenol metabolism (amn genes). The element was originally identified in the 3-chlorobenzoate-degrader Pseudomonas knackmussii B13, and the closest relative is a nearly identical element in Burkholderia xenovorans LB400 (designated ICEclc-B13 and ICEclc-LB400, respectively). In the present report, genome sequencing of the o-chlorobenzoate degrader Pseudomonas aeruginosa JB2 was used to identify a new member of the ICEclc family, ICEclc-JB2. The cargo of ICEclc-JB2 differs from that of ICEclc-B13 and ICEclc-LB400 in consisting of a unique combination of genes that encode for the utilization of o-halobenzoates and o-hydroxybenzoate as growth substrates (ohb genes and hyb genes, respectively) and which are duplicated in a tandem repeat. Also, ICEclc-JB2 lacks an operon of regulatory genes (tciR-marR-mfsR) that is present in the other two ICEclc, and which controls excision from the host. Thus, the mechanisms regulating intracellular behavior of ICEclc-JB2 may differ from that of its close relatives. The entire tandem repeat in ICEclc-JB2 can excise independently from the element in a process apparently involving transposases/insertion sequence associated with the repeats. Excision of the repeats removes important niche adaptation genes from ICEclc-JB2, rendering it less beneficial to the host. However, the reduced version of ICEclc-JB2 could now acquire new genes that might be beneficial to a future host and, consequently, to the survival of ICEclc-JB2. Collectively, the present identification and characterization of ICEclc-JB2 provides insights into roles of MGE in bacterial niche adaptation and the evolution of catabolic pathways for biodegradation of xenobiotic compounds.
Collapse
Affiliation(s)
- Chioma C Obi
- Department of Biological Sciences, Bells University of Technology, Ota, Nigeria
| | - Shivangi Vayla
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Vidya de Gannes
- Department of Food Production, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Mark E Berres
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jason Walker
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Derek Pavelec
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua Hyman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - William J Hickey
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Physiological and transcriptome changes induced by Pseudomonas putida acquisition of an integrative and conjugative element. Sci Rep 2018; 8:5550. [PMID: 29615803 PMCID: PMC5882942 DOI: 10.1038/s41598-018-23858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Integrative and conjugative elements (ICEs) comprise ubiquitous large mobile regions in prokaryotic chromosomes that transmit vertically to daughter cells and transfer horizontally to distantly related lineages. Their evolutionary success originates in maximized combined ICE-host fitness trade-offs, but how the ICE impacts on the host metabolism and physiology is poorly understood. Here we investigate global changes in the host genetic network and physiology of Pseudomonas putida with or without an integrated ICEclc, a model ICE widely distributed in proteobacterial genomes. Genome-wide gene expression differences were analyzed by RNA-seq using exponentially growing or stationary phase-restimulated cultures on 3-chlorobenzoate, an aromatic compound metabolizable thanks to specific ICEclc-located genes. We found that the presence of ICEclc imposes a variety of changes in global pathways such as cell cycle and amino acid metabolism, which were more numerous in stationary-restimulated than exponential phase cells. Unexpectedly, ICEclc stimulates cellular motility and leads to more rapid growth on 3-chlorobenzoate than cells carrying only the integrated clc genes. ICEclc also concomitantly activates the P. putida Pspu28-prophage, but this in itself did not provoke measurable fitness effects. ICEclc thus interferes in a number of cellular pathways, inducing both direct benefits as well as indirect costs in P. putida.
Collapse
|
12
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
13
|
Zamarro MT, Martín-Moldes Z, Díaz E. The ICE XTD of Azoarcus sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties. Environ Microbiol 2016; 18:5018-5031. [PMID: 27450529 DOI: 10.1111/1462-2920.13465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Abstract
Integrative and conjugative elements (ICE) play a major role in aerobic degradation of aromatic compounds, but they have not yet been shown to be involved in anaerobic degradation. We have characterized here the ICEXTD element which endows to the beta-proteobacterium Azoarcus sp. CIB with the ability to utilize aromatic hydrocarbons. The core region of ICEXTD , which shows a remarkable synteny with that of ICEclc-like elements, allows its own intracellular and intercellular mobility. ICEXTD integrates at the tRNAGly of the host chromosome, but it can also excise to produce a ready to transfer circular form. The adaptation modules of ICEXTD represent a unique combination of gene clusters for aerobic (tod genes) and anaerobic (bss-bbs and mbd genes) degradation of certain aromatic hydrocarbons, e.g., toluene, m-xylene and cumene. Transfer of ICEXTD to other Azoarcus strains, e.g., A. evansii, confers them the ability to degrade aromatic hydrocarbons both aerobically and anaerobically. Interestingly, ICEXTD allows Cupriavidus pinatubonensis, a bacterium unable to degrade anaerobically aromatic compounds, to grow with m-xylene under anoxic conditions. Thus, ICEXTD constitutes the first mobile genetic element able to expand the catabolic abilities of certain bacteria for the removal of aromatic hydrocarbons either in the presence or absence of oxygen.
Collapse
Affiliation(s)
- María Teresa Zamarro
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Zaira Martín-Moldes
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Eduardo Díaz
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
14
|
Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element. Proc Natl Acad Sci U S A 2016; 113:E3375-83. [PMID: 27247406 DOI: 10.1073/pnas.1604479113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is an important evolutionary mechanism for bacterial adaptation. However, given the typical low transfer frequencies in a bacterial population, little is known about the fate and interplay of donor cells and the mobilized DNA during transfer. Here we study transfer of an integrative and conjugative element (ICE) among individual live bacterial cells. ICEs are widely distributed mobile DNA elements that are different than plasmids because they reside silent in the host chromosome and are maintained through vertical descent. Occasionally, ICEs become active, excise, and transmit their DNA to a new recipient, where it is reintegrated. We develop a fluorescent tool to differentiate excision, transfer, and reintegration of a model ICE named ICEclc (for carrying the clc genes for chlorocatechol metabolism) among single Pseudomonas cells by using time-lapse microscopy. We find that ICEclc activation is initiated in stationary phase cells, but excision and transfer predominantly occur only when such cells have been presented with new nutrients. Donors with activated ICE develop a number of different states, characterized by reduced cell division rates or growth arrest, persistence, or lysis, concomitant with ICE excision, and likely, ICE loss or replication. The donor cell state transitions can be described by using a stochastic model, which predicts that ICE fitness is optimal at low initiation rates in stationary phase. Despite highly variable donor cell fates, ICE transfer is remarkably robust overall, with 75% success after excision. Our results help to better understand ICE behavior and shed a new light on bacterial cellular differentiation during horizontal gene transfer.
Collapse
|
15
|
Ricker N, Shen SY, Goordial J, Jin S, Fulthorpe RR. PacBio SMRT assembly of a complex multi-replicon genome reveals chlorocatechol degradative operon in a region of genome plasticity. Gene 2016; 586:239-47. [PMID: 27063562 DOI: 10.1016/j.gene.2016.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 01/03/2023]
Abstract
We have sequenced a Burkholderia genome that contains multiple replicons and large repetitive elements that would make it inherently difficult to assemble by short read sequencing technologies. We illustrate how the integrated long read correction algorithms implemented through the PacBio Single Molecule Real-Time (SMRT) sequencing technology successfully provided a de novo assembly that is a reasonable estimate of both the gene content and genome organization without making any further modifications. This assembly is comparable to related organisms assembled by more labour intensive methods. Our assembled genome revealed regions of genome plasticity for further investigation, one of which harbours a chlorocatechol degradative operon highly homologous to those previously identified on globally ubiquitous plasmids. In an ideal world, this assembly would still require experimental validation to confirm gene order and copy number of repeated elements. However, we submit that particularly in instances where a polished genome is not the primary goal of the sequencing project, PacBio SMRT sequencing provides a financially viable option for generating a biologically relevant genome estimate that can be utilized by other researchers for comparative studies.
Collapse
Affiliation(s)
- N Ricker
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - S Y Shen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - J Goordial
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111 Lakeshore Rd., Sainte Anne de Bellevue, Quebec H9X 3V9, Canada
| | - S Jin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - R R Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| |
Collapse
|
16
|
Carraro N, Libante V, Morel C, Charron-Bourgoin F, Leblond P, Guédon G. Plasmid-like replication of a minimal streptococcal integrative and conjugative element. MICROBIOLOGY-SGM 2016; 162:622-632. [PMID: 26825653 DOI: 10.1099/mic.0.000219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements encoding their own excision from a replicon of their bacterial host, transfer by conjugation to a recipient bacterium and reintegration for maintenance. The conjugation, recombination and regulation modules of ICEs of the ICESt3 family are grouped together in a region called the ICE 'core region'. In addition to this core region, elements belonging to this family carry a highly variable region including cargo genes that could be involved in bacterial adaptation or in the maintenance of the element. Although ICEs are a major class of mobile elements through bacterial genomes, the functionality of an element encoding only its excision, transfer, integration and regulation has never been demonstrated experimentally. We engineered MiniICESt3, an artificial ICE derived from ICESt3, devoid of its cargo genes and thus only harbouring the core region. The functionality of this minimal element was assessed. MiniICESt3 was found to be able to excise at a rate of 3.1 %, transfer with a frequency of 1.0 × 10- 5 transconjugants per donor cell and stably maintain by site-specific integration into the 3' end of the fda gene, the same as ICESt3. Furthermore, MiniICESt3 was found in ∼10 copies per chromosome, this multicopy state likely contributing to its stability for >100 generations even in the absence of selection. Therefore, although ICEs were primarily assumed to only replicate along with the chromosome, our results uncovered extrachromosomal rolling-circle replicating plasmid-like forms of MiniICESt3.
Collapse
Affiliation(s)
- Nicolas Carraro
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Virginie Libante
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Catherine Morel
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Florence Charron-Bourgoin
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Pierre Leblond
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Gérard Guédon
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
17
|
Fischer S, Klockgether J, Morán Losada P, Chouvarine P, Cramer N, Davenport CF, Dethlefsen S, Dorda M, Goesmann A, Hilker R, Mielke S, Schönfelder T, Suerbaum S, Türk O, Woltemate S, Wiehlmann L, Tümmler B. Intraclonal genome diversity of the major Pseudomonas aeruginosa clones C and PA14. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:227-234. [PMID: 26711897 PMCID: PMC4819714 DOI: 10.1111/1758-2229.12372] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Bacterial populations differentiate at the subspecies level into clonal complexes. Intraclonal genome diversity was studied in 100 isolates of the two dominant Pseudomonas aeruginosa clones C and PA14 collected from the inanimate environment, acute and chronic infections. The core genome was highly conserved among clone members with a median pairwise within-clone single nucleotide sequence diversity of 8 × 10(-6) for clone C and 2 × 10(-5) for clone PA14. The composition of the accessory genome was, on the other hand, as variable within the clone as between unrelated clones. Each strain carried a large cargo of unique genes. The two dominant worldwide distributed P. aeruginosa clones combine an almost invariant core with the flexible gain and loss of genetic elements that spread by horizontal transfer.
Collapse
Affiliation(s)
- Sebastian Fischer
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Jens Klockgether
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Patricia Morán Losada
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Philippe Chouvarine
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Nina Cramer
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Colin F Davenport
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Sarah Dethlefsen
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Marie Dorda
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Rolf Hilker
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Samira Mielke
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Torben Schönfelder
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Sebastian Suerbaum
- Institute for Medical Microbiology and Hospital Epidemiology, OE 5210, Hannover Medical School, Hannover, Germany
| | - Oliver Türk
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, OE 5210, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', OE 6710, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
18
|
Wiehlmann L, Cramer N, Tümmler B. Habitat-associated skew of clone abundance in the Pseudomonas aeruginosa population. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:955-960. [PMID: 26419222 DOI: 10.1111/1758-2229.12340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The population structure of the cosmopolitan Pseudomonas aeruginosa was investigated by genotyping 2921 isolates from 1448 independent habitats with a custom-made 58 binary marker microarray. Of 323 identified clone types, 109 clones made up 82% of the population. The 20 most frequent clones had an absolute share of 44% indicating that the P. aeruginosa population is dominated by few epidemic clonal complexes. The frequency distribution of common clones was different between inanimate habitats and human niches. The three most abundant clones in the environment were rare among isolates from human infection. Conversely, disease-associated isolates either belonged to ubiquitous clones such as C and PA14 or to clones that were uncommon in the environment. The P. aeruginosa population consists of major clones that are just as versatile in their habitat and geographic origin as the whole species and of minor clones with preference for a peculiar niche.
Collapse
Affiliation(s)
- Lutz Wiehlmann
- Clinical Research Group, 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Nina Cramer
- Clinical Research Group, 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group, 'Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics', Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
The TetR-type MfsR protein of the integrative and conjugative element (ICE) ICEclc controls both a putative efflux system and initiation of ICE transfer. J Bacteriol 2014; 196:3971-9. [PMID: 25182498 DOI: 10.1128/jb.02129-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Integrative and conjugating elements (ICE) are self-transferable DNAs widely present in bacterial genomes, which often carry a variety of auxiliary genes of potential adaptive benefit. One of the model ICE is ICEclc, an element originally found in Pseudomonas knackmussii B13 and known for its propensity to provide its host with the capacity to metabolize chlorocatechols and 2-aminophenol. In this work, we studied the mechanism and target of regulation of MfsR, a TetR-type repressor previously found to exert global control on ICEclc horizontal transfer. By using a combination of ICEclc mutant and transcriptome analysis, gene reporter fusions, and DNA binding assays, we found that MfsR is a repressor of both its own expression and that of a gene cluster putatively coding for a major facilitator superfamily efflux system on ICEclc (named mfsABC). Phylogenetic analysis suggests that mfsR was originally located immediately adjacent to the efflux pump genes but became displaced from its original cis target DNA by a gene insertion. This resulted in divergence of the original bidirectional promoters into two separated individual regulatory units. Deletion of mfsABC did not result in a strong phenotype, and despite screening a large number of compounds and conditions, we were unable to define the precise current function or target of the putative efflux pump. Our data reconstruct how the separation of an ancestor mfsR-mfsABC system led to global control of ICEclc transfer by MfsR.
Collapse
|
20
|
Juhas M. Type IV secretion systems and genomic islands-mediated horizontal gene transfer in Pseudomonas and Haemophilus. Microbiol Res 2014; 170:10-7. [PMID: 25183653 DOI: 10.1016/j.micres.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
Bacterial secretion systems, such as type IV secretion systems (T4SSs) are multi-subunit machines transferring macromolecules across membranes. Besides proteins, T4SSs also transfer nucleoprotein complexes, thus having a significant impact on the evolution of bacterial species. By T4SS-mediated horizontal gene transfer bacteria can acquire a broad spectrum of fitness genes allowing them to thrive in the wide variety of environments. Furthermore, acquisition of antibiotic-resistance and virulence genes can lead to the emergence of novel 'superbugs'. This review provides an update on the investigation of T4SSs. It highlights the role T4SSs play in the horizontal gene transfer, particularly in the evolution of catabolic pathways, antibiotic-resistance and virulence in Haemophilus and Pseudomonas.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK.
| |
Collapse
|