1
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against transsynaptic signaling functions for extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.22.537920. [PMID: 38746182 PMCID: PMC11092503 DOI: 10.1101/2023.04.22.537920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto, Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; Department of Cell and Systems Biology University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | | |
Collapse
|
2
|
Du H, Ge R, Zhang L, Zhang J, Chen K, Li C. Transcriptome-wide identification of development related genes and pathways in Tribolium castaneum. Genomics 2023; 115:110551. [PMID: 36566947 DOI: 10.1016/j.ygeno.2022.110551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The growth and development in Tribolium castaneum were poorly understood at the transcriptome level. Currently, we identified 15,756, 9941 and 10,080 differentially expressed transcripts between late eggs VS early larvae, late larvae VS early pupae, and late pupae VS early adults of T. castaneum by RNA-seq, which was confirmed by qRT-PCR analysis on nine genes expression. Functional enrichment analysis indicated that DNA replication, cell cycle and insect hormone biosynthesis significantly enriched differentially expressed genes. The transcription of DNA replication and cell cycle genes decreased after hatching but increased after pupation. The juvenile hormone (JH) and ecdysteroid biosynthesis genes decreased after hatching, and the JH degradation genes were stimulated after pupation and eclosion while the ecdysteroid degradation gene CYP18A1 decreased after pupation. Silencing CYP18A1 elevated the titer of ecdysteroids and caused developmental arrest at the late larval stage. This study promotes the understanding of insect growth and development.
Collapse
Affiliation(s)
- Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Runting Ge
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ling Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Kabakci Z, Reichle HE, Lemke B, Rousova D, Gupta S, Weber J, Schleiffer A, Weir JR, Lehner CF. Homologous chromosomes are stably conjoined for Drosophila male meiosis I by SUM, a multimerized protein assembly with modules for DNA-binding and for separase-mediated dissociation co-opted from cohesin. PLoS Genet 2022; 18:e1010547. [PMID: 36480577 PMCID: PMC9767379 DOI: 10.1371/journal.pgen.1010547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
For meiosis I, homologous chromosomes must be paired into bivalents. Maintenance of homolog conjunction in bivalents until anaphase I depends on crossovers in canonical meiosis. However, instead of crossovers, an alternative system achieves homolog conjunction during the achiasmate male meiosis of Drosophila melanogaster. The proteins SNM, UNO and MNM are likely constituents of a physical linkage that conjoins homologs in D. melanogaster spermatocytes. Here, we report that SNM binds tightly to the C-terminal region of UNO. This interaction is homologous to that of the cohesin subunits stromalin/Scc3/STAG and α-kleisin, as revealed by sequence similarities, structure modeling and cross-link mass spectrometry. Importantly, purified SU_C, the heterodimeric complex of SNM and the C-terminal region of UNO, displayed DNA-binding in vitro. DNA-binding was severely impaired by mutational elimination of positively charged residues from the C-terminal helix of UNO. Phenotypic analyses in flies fully confirmed the physiological relevance of this basic helix for chromosome-binding and homolog conjunction during male meiosis. Beyond DNA, SU_C also bound MNM, one of many isoforms expressed from the complex mod(mdg4) locus. This binding of MNM to SU_C was mediated by the MNM-specific C-terminal region, while the purified N-terminal part common to all Mod(mdg4) isoforms multimerized into hexamers in vitro. Similarly, the UNO N-terminal domain formed tetramers in vitro. Thus, we suggest that multimerization confers to SUM, the assemblies composed of SNM, UNO and MNM, the capacity to conjoin homologous chromosomes stably by the resultant multivalent DNA-binding. Moreover, to permit homolog separation during anaphase I, SUM is dissociated by separase, since UNO, the α-kleisin-related protein, includes a separase cleavage site. In support of this proposal, we demonstrate that UNO cleavage by tobacco etch virus protease is sufficient to release homolog conjunction in vivo after mutational exchange of the separase cleavage site with that of the bio-orthogonal protease.
Collapse
Affiliation(s)
- Zeynep Kabakci
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Heidi E. Reichle
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Bianca Lemke
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Dorota Rousova
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Samir Gupta
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Joe Weber
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - John R. Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Christian F. Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
5
|
GPBAR1 preserves neurite and synapse of dopaminergic neurons via RAD21-OPCML signaling: Role in preventing Parkinson's disease in mouse model and human patients. Pharmacol Res 2022; 184:106459. [PMID: 36152741 DOI: 10.1016/j.phrs.2022.106459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) exhibits systemic impacts on the metabolism, while metabolic alteration contributes to the risk and progression of PD. Bile acids (BA) metabolism disturbance has been linked to PD pathology. Membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1) is expressed in the brain and thought to be neuroprotective; however, the role of GPBAR1 in PD remains unknown. The current study aimed to explore the effect of GPBAR1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice with dopaminergic (DA) neuron-specific Gpbar1 knockdown or central GPBAR1 activation. The underlying mechanisms were investigated using mesencephalic primary neurons analyzed. Our study found that GPBAR1 was reduced in the substantia nigra of PD patients and MPTP-PD mice, and its expression was negatively correlated with the severity of PD-related features. Genetic downregulation of Gpbar1 in mouse mesencephalic DA neurons exacerbated MPTP-induced neurobehavioral and neuropathological deficits, whereas activation of central GPBAR1 with INT-777 (INT) relieved it. Moreover, in vivo and in vitro experiments showed the neurite- and synapse-protective effects of GPBAR1 activation in PD model. Mechanistically, by promoting the nuclear localization of cohesin subunit RAD21, GPBAR1 activation increased opioid-binding cell adhesion molecule (Opcml) expression, thereby inhibiting neurite and synapse degeneration of DA neurons in PD model. Collectively, our findings demonstrate that GPBAR1 is implicated in PD pathogenesis and activation of central GPBAR1 with INT antagonizes neurodegenerative pathology in PD model. This neuroprotection, at least in part, is attributed to the RAD21-OPCML signaling in neurons. Hence, GPBAR1 may serve as a promising candidate target for PD treatment.
Collapse
|
6
|
Wang P, Yang F, Ma Z, Zhang R. Chromosome Unipolar Division and Low Expression of Tws May Cause Parthenogenesis of Rice Water Weevil ( Lissorhoptrus oryzophilus Kuschel). INSECTS 2021; 12:278. [PMID: 33805047 PMCID: PMC8064085 DOI: 10.3390/insects12040278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Rice water weevil (RWW) is divided into two types of population, triploid parthenogenesis and diploid bisexual reproduction. In this study, we explored the meiosis of triploid parthenogenesis RWW (Shangzhuang Town, Haidian District, Beijing, China) by marking the chromosomes and microtubules of parthenogenetic RWW oocytes via immunostaining. The immunostaining results show that there is a canonical meiotic spindle formed in the triploid parthenogenetic RWW oocytes, but chromosomes segregate at only one pole, which means that there is a chromosomal unipolar division during the oogenesis of the parthenogenetic RWW. Furthermore, we cloned the conserved sequences of parthenogenetic RWW REC8 and Tws, and designed primers based on the parthenogenetic RWW sequence to detect expression patterns by quantitative PCR (Q-PCR). Q-PCR results indicate that the expression of REC8 and Tws in ovarian tissue of bisexual Drosophila melanogaster is 0.98 and 10,000.00 times parthenogenetic RWW, respectively (p < 0.01). The results show that Tws had low expression in parthenogenetic RWW ovarian tissue, and REC8 was expressed normally. Our study suggests that the chromosomal unipolar division and deletion of Tws may cause parthenogenesis in RWW.
Collapse
Affiliation(s)
- Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- Department of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhuo Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Vicars H, Karg T, Warecki B, Bast I, Sullivan W. Kinetochore-independent mechanisms of sister chromosome separation. PLoS Genet 2021; 17:e1009304. [PMID: 33513180 PMCID: PMC7886193 DOI: 10.1371/journal.pgen.1009304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/16/2021] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
Although kinetochores normally play a key role in sister chromatid separation and segregation, chromosome fragments lacking kinetochores (acentrics) can in some cases separate and segregate successfully. In Drosophila neuroblasts, acentric chromosomes undergo delayed, but otherwise normal sister separation, revealing the existence of kinetochore- independent mechanisms driving sister chromosome separation. Bulk cohesin removal from the acentric is not delayed, suggesting factors other than cohesin are responsible for the delay in acentric sister separation. In contrast to intact kinetochore-bearing chromosomes, we discovered that acentrics align parallel as well as perpendicular to the mitotic spindle. In addition, sister acentrics undergo unconventional patterns of separation. For example, rather than the simultaneous separation of sisters, acentrics oriented parallel to the spindle often slide past one another toward opposing poles. To identify the mechanisms driving acentric separation, we screened 117 RNAi gene knockdowns for synthetic lethality with acentric chromosome fragments. In addition to well-established DNA repair and checkpoint mutants, this candidate screen identified synthetic lethality with X-chromosome-derived acentric fragments in knockdowns of Greatwall (cell cycle kinase), EB1 (microtubule plus-end tracking protein), and Map205 (microtubule-stabilizing protein). Additional image-based screening revealed that reductions in Topoisomerase II levels disrupted sister acentric separation. Intriguingly, live imaging revealed that knockdowns of EB1, Map205, and Greatwall preferentially disrupted the sliding mode of sister acentric separation. Based on our analysis of EB1 localization and knockdown phenotypes, we propose that in the absence of a kinetochore, microtubule plus-end dynamics provide the force to resolve DNA catenations required for sister separation.
Collapse
Affiliation(s)
- Hannah Vicars
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Travis Karg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Brandt Warecki
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Ian Bast
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
8
|
Fellgett A, Middleton CA, Munns J, Ugbode C, Jaciuch D, Wilson LG, Chawla S, Elliott CJ. Multiple Pathways of LRRK2-G2019S/Rab10 Interaction in Dopaminergic Neurons. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1805-1820. [PMID: 34250948 PMCID: PMC8609683 DOI: 10.3233/jpd-202421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Inherited mutations in the LRRK2 protein are common causes of Parkinson's disease, but the mechanisms by which increased kinase activity of mutant LRRK2 leads to pathological events remain to be determined. In vitro assays (heterologous cell culture, phospho-protein mass spectrometry) suggest that several Rab proteins might be directly phosphorylated by LRRK2-G2019S. An in vivo screen of Rab expression in dopaminergic neurons in young adult Drosophila demonstrated a strong genetic interaction between LRRK2-G2019S and Rab10. OBJECTIVE To determine if Rab10 is necessary for LRRK2-induced pathophysiological responses in the neurons that control movement, vision, circadian activity, and memory. These four systems were chosen because they are modulated by dopaminergic neurons in both humans and flies. METHODS LRRK2-G2019S was expressed in Drosophila dopaminergic neurons and the effects of Rab10 depletion on Proboscis Extension, retinal neurophysiology, circadian activity pattern ('sleep'), and courtship memory determined in aged flies. RESULTS Rab10 loss-of-function rescued LRRK2-G2019S induced bradykinesia and retinal signaling deficits. Rab10 knock-down, however, did not rescue the marked sleep phenotype which results from dopaminergic LRRK2-G2019S. Courtship memory is not affected by LRRK2, but is markedly improved by Rab10 depletion. Anatomically, both LRRK2-G2019S and Rab10 are seen in the cytoplasm and at the synaptic endings of dopaminergic neurons. CONCLUSION We conclude that, in Drosophila dopaminergic neurons, Rab10 is involved in some, but not all, LRRK2-induced behavioral deficits. Therefore, variations in Rab expression may contribute to susceptibility of different dopaminergic nuclei to neurodegeneration seen in people with Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Jack Munns
- Department of Biology, University of York, York, UK
| | - Chris Ugbode
- Department of Biology, University of York, York, UK
| | | | - Laurence G. Wilson
- Department of Physics, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| | - Christopher J.H. Elliott
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| |
Collapse
|
9
|
Chiu YL, Shikina S, Yoshioka Y, Shinzato C, Chang CF. De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis. BMC Genomics 2020; 21:732. [PMID: 33087060 PMCID: PMC7579821 DOI: 10.1186/s12864-020-07113-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. RESULTS 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. CONCLUSIONS Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Collapse
Affiliation(s)
- Yi-Ling Chiu
- Doctoral Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Doctoral Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan. .,Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan.
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
10
|
Adams EE, He Q, McKee BD. How noncrossover homologs are conjoined and segregated in Drosophila male meiosis I: Stable but reversible homolog linkers require a novel Separase target protein. PLoS Genet 2020; 16:e1008997. [PMID: 33002007 PMCID: PMC7529219 DOI: 10.1371/journal.pgen.1008997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Elsie E. Adams
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Qiutao He
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bruce D. McKee
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
11
|
Weber J, Kabakci Z, Chaurasia S, Brunner E, Lehner CF. Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO. PLoS Genet 2020; 16:e1008928. [PMID: 33001976 PMCID: PMC7529252 DOI: 10.1371/journal.pgen.1008928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Regular chromosome segregation during the first meiotic division requires prior pairing of homologous chromosomes into bivalents. During canonical meiosis, linkage between homologous chromosomes is maintained until late metaphase I by chiasmata resulting from meiotic recombination in combination with distal sister chromatid cohesion. Separase-mediated elimination of cohesin from chromosome arms at the end of metaphase I permits terminalization of chiasmata and homolog segregation to opposite spindle poles during anaphase I. Interestingly, separase is also required for bivalent splitting during meiosis I in Drosophila males, where homologs are conjoined by an alternative mechanism independent of meiotic recombination and cohesin. Here we report the identification of a novel alternative homolog conjunction protein encoded by the previously uncharacterized gene univalents only (uno). The univalents that are present in uno null mutants at the start of meiosis I, instead of normal bivalents, are segregated randomly. In wild type, UNO protein is detected in dots associated with bivalent chromosomes and most abundantly at the localized pairing site of the sex chromosomes. UNO is cleaved by separase. Expression of a mutant UNO version with a non-functional separase cleavage site restores homolog conjunction in a uno null background. However, separation of bivalents during meiosis I is completely abrogated by this non-cleavable UNO version. Therefore, we propose that homolog separation during Drosophila male meiosis I is triggered by separase-mediated cleavage of UNO.
Collapse
Affiliation(s)
- Joe Weber
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Zeynep Kabakci
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Soumya Chaurasia
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Erich Brunner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F. Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Kleinschnitz K, Vießmann N, Jordan M, Heidmann SK. Condensin I is required for faithful meiosis in Drosophila males. Chromosoma 2020; 129:141-160. [PMID: 32314039 PMCID: PMC7260282 DOI: 10.1007/s00412-020-00733-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/03/2023]
Abstract
The heteropentameric condensin complexes play vital roles in the formation and faithful segregation of mitotic chromosomes in eukaryotes. While the different contributions of the two common condensin complexes, condensin I and condensin II, to chromosome morphology and behavior in mitosis have been thoroughly investigated, much less is known about the specific roles of the two complexes during meiotic divisions. In Drosophila melanogaster, faithful mitotic divisions depend on functional condensin I, but not on condensin II. However, meiotic divisions in Drosophila males require functional condensin II subunits. The role of condensin I during male meiosis in Drosophila has been unresolved. Here, we show that condensin I-specific subunits localize to meiotic chromatin in both meiosis I and II during Drosophila spermatogenesis. Live cell imaging reveals defects during meiotic divisions after RNAi-mediated knockdown of condensin I-specific mRNAs. This phenotype correlates with reduced male fertility and an increase in nondisjunction events both in meiosis I and meiosis II. Consistently, a reduction in male fertility was also observed after proteasome-mediated degradation of the condensin I subunit Barren. Taken together, our results demonstrate an essential role of condensin I during male meiosis in Drosophila melanogaster.
Collapse
Affiliation(s)
| | - Nina Vießmann
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | - Mareike Jordan
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
13
|
Mao Y, Xue P, Li L, Xu P, Cai Y, Chu X, Jiang P, Zhu S. Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer. Mol Med Rep 2019; 20:2199-2208. [PMID: 31257520 PMCID: PMC6691276 DOI: 10.3892/mmr.2019.10441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) is a type of lung cancer with early metastasis, and high recurrence and mortality rates. The molecular mechanism is still unclear and further research is required. The aim of the present study was to examine the pathogenesis and potential molecular markers of SCLC by comparing the differential expression of mRNA and microRNA (miRNA) between SCLC tissue and normal lung tissue. A transcriptome sequencing dataset (GSE6044) and a non-coding RNA sequence dataset (GSE19945) were downloaded from the Gene Expression Omnibus (GEO) database. In total, 451 differentially expressed genes (DEGs) and 134 differentially expressed miRNAs (DEMs) were identified using the R limma software package and the GEO2R tool of the GEO, respectively. The Gene Ontology function was significantly enriched for 28 terms, and the Kyoto Encyclopedia of Genes and Genomes database had 19 enrichment pathways, mainly related to ‘cell cycle’, ‘DNA replication’ and ‘oocyte meiosis mismatch repair’. The protein-protein interaction network was constructed using Cytoscape software to identify the molecular mechanisms of key signaling pathways and cellular activities in SCLC. The 1,402 miRNA-gene pairs encompassed 602 target genes of the DEMs using miRNAWalk, which is a bioinformatics platform that predicts DEM target genes and miRNA-gene pairs. There were 19 overlapping genes regulated by 32 miRNAs between target genes of the DEMs and DEGs. Bioinformatics analysis may help to better understand the role of DEGs, DEMs and miRNA-gene pairs in cell proliferation and signal transduction. The related hub genes may be used as biomarkers for the diagnosis and prognosis of SCLC, and as potential drug targets.
Collapse
Affiliation(s)
- Yun Mao
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Peng Xue
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Linlu Li
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Pengpeng Xu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yafang Cai
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xuelei Chu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Pengyuan Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| |
Collapse
|
14
|
Kim LH, Hong ST, Choi KW. Protein phosphatase 2A interacts with Verthandi/Rad21 to regulate mitosis and organ development in Drosophila. Sci Rep 2019; 9:7624. [PMID: 31110215 PMCID: PMC6527568 DOI: 10.1038/s41598-019-44027-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Rad21/Scc1 is a subunit of the cohesin complex implicated in gene regulation as well as sister chromatid cohesion. The level of Rad21/Scc1 must be controlled for proper mitosis and gene expression during development. Here, we identify the PP2A catalytic subunit encoded by microtubule star (mts) as a regulator of Drosophila Rad21/Verthandi (Vtd). Mutations in mts and vtd cause synergistic mitotic defects, including abnormal spindles and loss of nuclei during nuclear division in early embryo. Depletion of Mts and Vtd in developing wing synergistically reduces the Cut protein level, causing severe defects in wing growth. Mts and PP2A subunit Twins (Tws) interact with Vtd protein. Loss of Mts or Tws reduces Vtd protein level. Reduced proteasome function suppresses mitotic defects caused by mutations in mts and vtd. Taken together, this work provides evidence that PP2A is required for mitosis and wing growth by regulating the Vtd level through the proteasomal pathway.
Collapse
Affiliation(s)
- Lee-Hyang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Aguilar G, Matsuda S, Vigano MA, Affolter M. Using Nanobodies to Study Protein Function in Developing Organisms. Antibodies (Basel) 2019; 8:E16. [PMID: 31544822 PMCID: PMC6640693 DOI: 10.3390/antib8010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/28/2022] Open
Abstract
Polyclonal and monoclonal antibodies have been invaluable tools to study proteins over the past decades. While indispensable for most biological studies including developmental biology, antibodies have been used mostly in fixed tissues or as binding reagents in the extracellular milieu. For functional studies and for clinical applications, antibodies have been functionalized by covalently fusing them to heterologous partners (i.e., chemicals, proteins or other moieties). Such functionalized antibodies have been less widely used in developmental biology studies. In the past few years, the discovery and application of small functional binding fragments derived from single-chain antibodies, so-called nanobodies, has resulted in novel approaches to study proteins during the development of multicellular animals in vivo. Expression of functionalized nanobody fusions from integrated transgenes allows manipulating proteins of interest in the extracellular and the intracellular milieu in a tissue- and time-dependent manner in an unprecedented manner. Here, we describe how nanobodies have been used in the field of developmental biology and look into the future to imagine how else nanobody-based reagents could be further developed to study the proteome in living organisms.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Shinya Matsuda
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - M Alessandra Vigano
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Markus Affolter
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
16
|
Stormo BM, Fox DT. Interphase cohesin regulation ensures mitotic fidelity after genome reduplication. Mol Biol Cell 2019; 30:219-227. [PMID: 30462577 PMCID: PMC6589556 DOI: 10.1091/mbc.e17-10-0582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 12/24/2022] Open
Abstract
To ensure faithful genome propagation, mitotic cells alternate one round of chromosome duplication with one round of chromosome separation. Chromosome separation failure thus causes genome reduplication, which alters mitotic chromosome structure. Such structural alterations are well documented to impair mitotic fidelity following aberrant genome reduplication, including in diseased states. In contrast, we recently showed that naturally occurring genome reduplication does not alter mitotic chromosome structure in Drosophila papillar cells. Our discovery raised the question of how a cell undergoing genome reduplication might regulate chromosome structure to prevent mitotic errors. Here, we show that papillar cells ensure mitotic fidelity through interphase cohesin regulation. We demonstrate a requirement for cohesins during programmed rounds of papillar genome reduplication known as endocycles. This interphase cohesin regulation relies on cohesin release but not cohesin cleavage and depends on the conserved cohesin regulator Pds5 . Our data suggest that a distinct form of interphase cohesin regulation ensures mitotic fidelity after genome reduplication.
Collapse
Affiliation(s)
- Benjamin M. Stormo
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Donald T. Fox
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
17
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
18
|
Natsume T, Kanemaki MT. Conditional Degrons for Controlling Protein Expression at the Protein Level. Annu Rev Genet 2018; 51:83-102. [PMID: 29178817 DOI: 10.1146/annurev-genet-120116-024656] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conditional depletion of a protein of interest (POI) is useful not only for loss-of-function studies, but also for the modulation of biological pathways. Technologies that work at the level of DNA, mRNA, and protein are available for temporal protein depletion. Compared with technologies targeting the pretranslation steps, direct protein depletion (or protein knockdown approaches) is advantageous in terms of specificity, reversibility, and time required for depletion, which can be achieved by fusing a POI with a protein domain called a degron that induces rapid proteolysis of the fusion protein. Conditional degrons can be activated or inhibited by temperature, small molecules, light, or the expression of another protein. The conditional degron-based technologies currently available are described and discussed.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan;
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan;
| |
Collapse
|
19
|
Chaurasia S, Lehner CF. Dynamics and control of sister kinetochore behavior during the meiotic divisions in Drosophila spermatocytes. PLoS Genet 2018; 14:e1007372. [PMID: 29734336 PMCID: PMC5957430 DOI: 10.1371/journal.pgen.1007372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/17/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
Sister kinetochores are connected to the same spindle pole during meiosis I and to opposite poles during meiosis II. The molecular mechanisms controlling the distinct behavior of sister kinetochores during the two meiotic divisions are poorly understood. To study kinetochore behavior during meiosis, we have optimized time lapse imaging with Drosophila spermatocytes, enabling kinetochore tracking with high temporal and spatial resolution through both meiotic divisions. The correct bipolar orientation of chromosomes within the spindle proceeds rapidly during both divisions. Stable bi-orientation of the last chromosome is achieved within ten minutes after the onset of kinetochore-microtubule interactions. Our analyses of mnm and tef mutants, where univalents instead of bivalents are present during meiosis I, indicate that the high efficiency of normal bi-orientation depends on pronounced stabilization of kinetochore attachments to spindle microtubules by the mechanical tension generated by spindle forces upon bi-orientation. Except for occasional brief separation episodes, sister kinetochores are so closely associated that they cannot be resolved individually by light microscopy during meiosis I, interkinesis and at the start of meiosis II. Permanent evident separation of sister kinetochores during M II depends on spindle forces resulting from bi-orientation. In mnm and tef mutants, sister kinetochore separation can be observed already during meiosis I in bi-oriented univalents. Interestingly, however, this sister kinetochore separation is delayed until the metaphase to anaphase transition and depends on the Fzy/Cdc20 activator of the anaphase-promoting complex/cyclosome. We propose that univalent bi-orientation in mnm and tef mutants exposes a release of sister kinetochore conjunction that occurs also during normal meiosis I in preparation for bi-orientation of dyads during meiosis II. For production of oocytes and sperm, cells have to complete meiosis which includes two successive divisions. These divisions convert diploid cells with a maternal and a paternal copy of each chromosome into haploid cells with only one copy of each chromosome. Chromosome copy reduction requires regulation of sister kinetochore behavior during the meiotic divisions. Kinetochores are protein networks assembled at the start of divisions within the centromeric region of chromosomes. They provide attachment sites for spindle microtubules which in turn exert poleward pulling forces. During pre-meiotic S phase, each chromosome is duplicated into two closely associated sister chromatids. At the start of the first meiotic division, both sister chromatids together assemble only one functional kinetochore, permitting subsequent separation of paired homologous chromosomes to opposite spindle poles. In contrast, at the onset of the second meiotic division, each sister chromatid organizes its own kinetochore followed by separation of sister chromatids to opposite spindle poles. To analyze when and how sister kinetochores are individualized, we have improved time lapse imaging with Drosophila spermatocytes. Our analyses in normal and genetically altered spermatocytes suggest that the release of sister kinetochore conjunction occurs during the first meiotic division after activation of the anaphase promoting complex/cyclosome.
Collapse
Affiliation(s)
- Soumya Chaurasia
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Nagarkar-Jaiswal S, Manivannan SN, Zuo Z, Bellen HJ. A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells. eLife 2017; 6. [PMID: 28561736 PMCID: PMC5493436 DOI: 10.7554/elife.26420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila. Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase-dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ, encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail. DOI:http://dx.doi.org/10.7554/eLife.26420.001 The instructions needed to build and maintain cells in an organism are encoded in their DNA. There are many different cell types, and each type only needs a small portion of the information found in the DNA to do its job. Hence, only some of the instructions, in the form of genes, need to be active or ‘expressed’ in any given cell type. To understand how a gene works, it is necessary to know in which cell the gene is expressed and where in the cell the gene product – normally a protein – is located. Researchers may study a gene by deleting it, which prevents the protein from being made, or by attaching a new instruction into the gene, which generates a fluorescent tag on the protein to determine where and when it is expressed. Until now, it was not possible to selectively inactivate a gene and simultaneously mark both normal cells containing the protein and mutant cells lacking the protein. Based on an existing tagging approach, Nagarkar-Jaiswal et al. have now developed a method in which normal and mutant cells of fruit flies are marked differently. A gene of interest is tagged with a fluorescent marker called green fluorescent protein (or GFP). The same gene is then inactivated in some of the cells, which are tagged with a red marker called mCherry. Nagarkar-Jaiswal et al. compared normal and mutant cells, and were able to determine how long it takes before the mutant cells become abnormal. With this new method, the role of numerous genes in any tissue of adult flies can be reassessed. This will allow to investigate what happens when a protein is removed in specific cells in adult flies. A future goal will be to apply this method to other animals that are more closely related to humans, such as mice, to gain a clearer picture of the role of genes in different cell types and how faulty genes may cause disease. DOI:http://dx.doi.org/10.7554/eLife.26420.002
Collapse
Affiliation(s)
| | - Sathiya N Manivannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| |
Collapse
|
21
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
22
|
Distinct and Overlapping Requirements for Cyclins A, B, and B3 in Drosophila Female Meiosis. G3-GENES GENOMES GENETICS 2016; 6:3711-3724. [PMID: 27652889 PMCID: PMC5100870 DOI: 10.1534/g3.116.033050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Meiosis, like mitosis, depends on the activity of the cyclin dependent kinase Cdk1 and its cyclin partners. Here, we examine the specific requirements for the three mitotic cyclins, A, B, and B3 in meiosis of Drosophila melanogaster. We find that all three cyclins contribute redundantly to nuclear envelope breakdown, though cyclin A appears to make the most important individual contribution. Cyclin A is also required for biorientation of homologs in meiosis I. Cyclin B3, as previously reported, is required for anaphase progression in meiosis I and in meiosis II. We find that it also plays a redundant role, with cyclin A, in preventing DNA replication during meiosis. Cyclin B is required for maintenance of the metaphase I arrest in mature oocytes, for spindle organization, and for timely progression through the second meiotic division. It is also essential for polar body formation at the completion of meiosis. With the exception of its redundant role in meiotic maturation, cyclin B appears to function independently of cyclins A and B3 through most of meiosis. We conclude that the three mitotic cyclin-Cdk complexes have distinct and overlapping functions in Drosophila female meiosis.
Collapse
|
23
|
Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei. PLoS Genet 2016; 12:e1006169. [PMID: 27541002 PMCID: PMC4991795 DOI: 10.1371/journal.pgen.1006169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. As cells grow, they replicate their DNA to give rise to two copies of each chromosome, known as sister chromatids, which separate from each other once the cell divides. To ensure that sister chromatids end up in different daughter cells, they are kept together from DNA replication until mitosis via a connection known as cohesion. A protein complex known as cohesin is essential for this process. Our work in Drosophila cells suggests that factors other than cohesin also contribute to sister chromatid cohesion in interphase. Additionally, we observed that the alignment of sister chromatids is regulated by condensin II, a protein complex involved in the compaction of chromosomes prior to division as well as the regulation of inter-chromosomal associations. These findings highlight that, in addition to their important individual functions, cohesin and condensin II proteins may interact to organize chromosomes over the course of the cell cycle. Finally, building on prior observations that condensin II is involved in the regulation of somatic homolog pairing in Drosophila, our work suggests that the mechanisms underlying homolog pairing may also contribute to sister chromatid cohesion.
Collapse
|
24
|
Gyuricza MR, Manheimer KB, Apte V, Krishnan B, Joyce EF, McKee BD, McKim KS. Dynamic and Stable Cohesins Regulate Synaptonemal Complex Assembly and Chromosome Segregation. Curr Biol 2016; 26:1688-1698. [PMID: 27291057 PMCID: PMC4942336 DOI: 10.1016/j.cub.2016.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/03/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Assembly of the synaptonemal complex (SC) in Drosophila depends on two independent pathways defined by the chromosome axis proteins C(2)M and ORD. Because C(2)M encodes a Kleisin-like protein and ORD is required for sister-chromatid cohesion, we tested the hypothesis that these two SC assembly pathways depend on two cohesin complexes. Through single- and double-mutant analysis to study the mitotic cohesion proteins Stromalin (SA) and Nipped-B (SCC2) in meiosis, we provide evidence that there are at least two meiosis-specific cohesin complexes. One complex depends on C(2)M, SA, and Nipped-B. Despite the presence of mitotic cohesins SA and Nipped-B, this pathway has only a minor role in meiotic sister-centromere cohesion and is primarily required for homolog interactions. C(2)M is continuously incorporated into pachytene chromosomes even though SC assembly is complete. In contrast, the second complex, which depends on meiosis-specific proteins SOLO, SUNN, and ORD is required for sister-chromatid cohesion, localizes to the centromeres and is not incorporated during prophase. Our results show that the two cohesin complexes have unique functions and are regulated differently. Multiple cohesin complexes may provide the diversity of activities required by the meiotic cell. For example, a dynamic complex may allow the chromosomes to regulate meiotic recombination, and a stable complex may be required for sister-chromatid cohesion.
Collapse
Affiliation(s)
- Mercedes R Gyuricza
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Kathryn B Manheimer
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Vandana Apte
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Badri Krishnan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Eric F Joyce
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
25
|
Blattner AC, Chaurasia S, McKee BD, Lehner CF. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres. PLoS Genet 2016; 12:e1005996. [PMID: 27120695 PMCID: PMC4847790 DOI: 10.1371/journal.pgen.1005996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.
Collapse
Affiliation(s)
- Ariane C. Blattner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Soumya Chaurasia
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Bruce D. McKee
- Department of Biochemistry, Cellular and Molecular Biology (BCMB), University of Tennessee, Knoxville, Tennessee, United States of America
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Trost M, Blattner AC, Lehner CF. Regulated protein depletion by the auxin-inducible degradation system in Drosophila melanogaster. Fly (Austin) 2016; 10:35-46. [PMID: 27010248 DOI: 10.1080/19336934.2016.1168552] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The analysis of consequences resulting after experimental elimination of gene function has been and will continue to be an extremely successful strategy in biological research. Mutational elimination of gene function has been widely used in the fly Drosophila melanogaster. RNA interference is used extensively as well. In the fly, exceptionally precise temporal and spatial control over elimination of gene function can be achieved in combination with sophisticated transgenic approaches and clonal analyses. However, the methods that act at the gene and transcript level cannot eliminate protein products which are already present at the time when mutant cells are generated or RNA interference is started. Targeted inducible protein degradation is therefore of considerable interest for controlled rapid elimination of gene function. To this end, a degradation system was developed in yeast exploiting TIR1, a plant F box protein, which can recruit proteins with an auxin-inducible degron to an E3 ubiquitin ligase complex, but only in the presence of the phytohormone auxin. Here we demonstrate that the auxin-inducible degradation system functions efficiently also in Drosophila melanogaster. Neither auxin nor TIR1 expression have obvious toxic effects in this organism, and in combination they result in rapid degradation of a target protein fused to the auxin-inducible degron.
Collapse
Affiliation(s)
- Martina Trost
- a Institute of Molecular Life Sciences (IMLS), University of Zurich , Zurich , Switzerland
| | - Ariane C Blattner
- a Institute of Molecular Life Sciences (IMLS), University of Zurich , Zurich , Switzerland
| | - Christian F Lehner
- a Institute of Molecular Life Sciences (IMLS), University of Zurich , Zurich , Switzerland
| |
Collapse
|
27
|
Guo Z, Batiha O, Bourouh M, Fifield E, Swan A. Role of Securin, Separase and Cohesins in female meiosis and polar body formation in Drosophila. J Cell Sci 2016; 129:531-42. [PMID: 26675236 DOI: 10.1242/jcs.179358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Chromosome segregation in meiosis is controlled by a conserved pathway that culminates in Separase-mediated cleavage of the α-kleisin Rec8, leading to dissolution of cohesin rings. Drosophila has no gene encoding Rec8, and the absence of a known Separase target raises the question of whether Separase and its regulator Securin (Pim in Drosophila) are important in Drosophila meiosis. Here, we investigate the role of Securin, Separase and the cohesin complex in female meiosis using fluorescence in situ hybridization against centromeric and arm-specific sequences to monitor cohesion. We show that Securin destruction and Separase activity are required for timely release of arm cohesion in anaphase I and centromere-proximal cohesion in anaphase II. They are also required for release of arm cohesion on polar body chromosomes. Cohesion on polar body chromosomes depends on the cohesin components SMC3 and the mitotic α-kleisin Rad21 (also called Vtd in Drosophila). We provide cytological evidence that SMC3 is required for arm cohesion in female meiosis, whereas Rad21, in agreement with recent findings, is not. We conclude that in Drosophila meiosis, cohesion is regulated by a conserved Securin-Separase pathway that targets a diverged Separase target, possibly within the cohesin complex.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| | - Osamah Batiha
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| | - Mohammed Bourouh
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| | - Eric Fifield
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| | - Andrew Swan
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 2P1
| |
Collapse
|
28
|
Abstract
Protein depletion by genetic means, in a very general sense including the use of RNA interference [1, 2] or CRISPR/Cas9-based methods, represents a central paradigm of modern biology to study protein functions in vivo. However, acting upstream the proteic level is a limiting factor if the turnover of the target protein is slow or the existing pool of the target protein is important (for instance, in insect embryos, as a consequence of a strong maternal contribution). In order to circumvent these problems, we developed deGradFP [3, 4]. deGradFP harnesses the ubiquitin-proteasome pathway to achieve direct depletion of GFP-tagged proteins. deGradFP is in essence a universal method because it relies on an evolutionarily conserved machinery for protein catabolism in eukaryotic cells; see refs. 5, 6 for review. deGradFP is particularly convenient in Drosophila melanogaster where it is implemented by a genetically encoded effector expressed under the control of the Gal4 system. deGradFP is a ready-to-use solution to perform knockdowns at the protein level if a fly line carrying a functional GFP-tagged version of the gene of interest is available. Many such lines have already been generated by the Drosophila community through different technologies allowing to make genomic rescue constructs or direct GFP knockins: protein-trap stock collections [7, 8] ( http://cooley.medicine.yale.edu/flytrap/ , http://www.flyprot.org/ ), P[acman] system [9], MiMIC lines [10, 11], and CRISPR/Cas9-driven homologous recombination.Two essential controls of a protein knockdown experiment are easily achieved using deGradFP. First, the removal of the target protein can be assessed by monitoring the disappearance of the GFP tag by fluorescence microscopy in parallel to the documentation of the phenotype of the protein knockdown (see Note 1 ). Second, the potential nonspecific effects of deGradFP can be assessed in control fly lacking a GFP-tagged target protein. So far, no nonspecific effects of the deGradFP effector have been reported [3].
Collapse
Affiliation(s)
- Emmanuel Caussinus
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Room 200B, Klingelbergstrasse 50/70, 4056, Basel, Switzerland.
| |
Collapse
|
29
|
Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL, Booth BW, Evans-Holm M, Venken KJT, Levis RW, Spradling AC, Hoskins RA, Bellen HJ. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. eLife 2015; 4. [PMID: 25824290 PMCID: PMC4379497 DOI: 10.7554/elife.05338] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/06/2015] [Indexed: 01/19/2023] Open
Abstract
Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates. DOI:http://dx.doi.org/10.7554/eLife.05338.001 In the last few decades, technical advances in altering the genes of organisms have led to many discoveries about how genes work. For example, it is now possible to add a specific DNA sequence to a gene so that the protein it makes will carry a ‘tag’ that enables us to track it in cells. One such tag is called green fluorescent protein (GFP) and it is often used to study other proteins in living cells because it produces green fluorescence that can be detected under a microscope. It is labor intensive to add tags to individual genes, so this limits the number of proteins that can be studied in this way. In 2011, researchers developed a new method that can easily tag many genes in fruit flies. It makes use of small sections of DNA called transposons, which are able to move around the genome by ‘cutting’ themselves out of one location and ‘pasting’ themselves in somewhere else. The researchers used a transposon called Minos, which is naturally found in fruit flies. When Minos inserts into a gene, it often disrupts the gene and stops it from working. However, the researchers could swap the inserted transposon for a gene encoding GFP by making use of a natural process that rearranges DNA in cells. This resulted in the protein encoded by the gene containing GFP and so it can be detected under a microscope. This method allowed the researchers to create a collection of fly lines that have the GFP tag on many different proteins. Now, Nagarkar-Jaiswal et al. have greatly expanded this initial collection. More than 75% of GFP-tagged proteins worked normally and the flies producing these altered proteins remain healthy. It is possible to use a technique called RNA interference against the GFP to lower the production of the tagged proteins. Moreover, Nagarkar-Jaiswal et al. show that it is also possible to degrade the tagged proteins so that less protein is present. The removal of proteins is reversible and can be done in specific tissues during any phase in fly development. These techniques allow researchers to directly associate the loss of the protein with the consequences for the fly. This collection of fruit fly lines is a useful resource that can help us understand how genes work. The method for tagging the proteins could also be modified to work in other animals. DOI:http://dx.doi.org/10.7554/eLife.05338.002
Collapse
Affiliation(s)
- Sonal Nagarkar-Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Megan E Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | | | - Manuel Cantu Gutierrez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Theodore Busby
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Yuchun He
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Karen L Schulze
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Benjamin W Booth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Martha Evans-Holm
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Robert W Levis
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Allan C Spradling
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Roger A Hoskins
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
30
|
Krishnan B, Thomas SE, Yan R, Yamada H, Zhulin IB, McKee BD. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster. Genetics 2014; 198:947-65. [PMID: 25194162 PMCID: PMC4224182 DOI: 10.1534/genetics.114.166009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022] Open
Abstract
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.
Collapse
Affiliation(s)
- Badri Krishnan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Sharon E Thomas
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Rihui Yan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Hirotsugu Yamada
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Igor B Zhulin
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee 37996 Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|