1
|
Hong HR, Prince CR, Wu L, Lin IN, Callan K, Feaga HA. YebC2 resolves ribosome stalling and increases fitness of cells lacking EF-P and the ABCF ATPase YfmR. PLoS Genet 2025; 21:e1011633. [PMID: 40215226 PMCID: PMC11990639 DOI: 10.1371/journal.pgen.1011633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/22/2025] [Indexed: 04/14/2025] Open
Abstract
Ribosome stalling is a major source of cellular stress. Therefore, many specialized elongation factors help prevent ribosome stalling. One of the best characterized of these factors is EF-P, which prevents ribosome stalling at polyproline tracts and other difficult-to-translate sequences. Recent evidence suggests that other factors also facilitate translation of polyproline motifs. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that YebC2 (formerly YeeI) functions as a translation factor in Bacillus subtilis that resolves ribosome stalling at polyprolines. YebC2 associates with the ribosome, supporting a direct role for YebC2 in translation. Moreover, YebC2 can reduce ribosome stalling and support cellular fitness in the absence of EF-P and YfmR. Finally, we present evidence that YebC2 is evolutionarily distinct from previously characterized YebC-family transcription factors and demonstrate that these paralogs have distinct physiological roles in B. subtilis. Altogether our work identifies YebC2 as a translation factor that resolves ribosome stalling in B. subtilis and provides crucial insight into the relationship between YebC2, EF-P, and YfmR, three factors that prevent ribosome stalling at polyprolines.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Cassidy R. Prince
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Katrina Callan
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
2
|
Nishikawa Y, Fujikawa R, Nakano H, Kanamori T, Ojima-Kato T. Effect of Translation-Enhancing Nascent SKIK Peptide on the Arrest Peptides Containing Consecutive Proline. ACS Synth Biol 2024; 13:3908-3916. [PMID: 39573840 DOI: 10.1021/acssynbio.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Ribosome arrest peptides (RAPs) such as the SecM arrest peptide (SecM AP: FSTPVWISQAQGIRAGP) and WPPP with consecutive Pro residues are known to induce translational stalling in Escherichia coli. We demonstrate that the translation-enhancing SKIK peptide tag, which consists of four amino acid residues Ser-Lys-Ile-Lys, effectively alleviates translational arrest caused by WPPP. Moreover, the proximity between SKIK and WPPP significantly influences the extent of this alleviation, observed in both PURE cell-free protein synthesis and in vivo protein production systems, resulting in a substantial increase in the yield of proteins containing such RAPs. Furthermore, we unveil that nascent SKIK peptide tag and translation elongation factor P (EF-P) alleviate ribosome stalling in consecutive-Pro-rich protein to synergistically promote translation. A kinetic analysis based on the generation of superfolder green fluorescent protein under in vitro translation reaction reveals that the ribosome turnover is enhanced by more than 10-fold when the SKIK peptide tag is positioned immediately upstream of the SecM AP sequence. Our findings provide valuable insights into optimizing protein production processes, which are essential for advancing synthetic biology applications.
Collapse
Affiliation(s)
- Yuma Nishikawa
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Riko Fujikawa
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Kanamori
- GeneFrontier Corporation, 273-1 Kashiwa, Kashiwa, Chiba 277-0005, Japan
| | - Teruyo Ojima-Kato
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Sieber A, Parr M, von Ehr J, Dhamotharan K, Kielkowski P, Brewer T, Schäpers A, Krafczyk R, Qi F, Schlundt A, Frishman D, Lassak J. EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences. Nat Commun 2024; 15:10465. [PMID: 39622818 PMCID: PMC11611912 DOI: 10.1038/s41467-024-54556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Polyproline sequences are deleterious to cells because they stall ribosomes. In bacteria, EF-P plays an important role in overcoming such polyproline sequence-induced ribosome stalling. Additionally, numerous bacteria possess an EF-P paralog called EfpL (also known as YeiP) of unknown function. Here, we functionally and structurally characterize EfpL from Escherichia coli and demonstrate its role in the translational stress response. Through ribosome profiling, we analyze the EfpL arrest motif spectrum and find additional sequences beyond the canonical polyproline motifs that both EF-P and EfpL can resolve. Notably, the two factors can also induce pauses. We further report that EfpL can sense the metabolic state of the cell via lysine acylation. Overall, our work characterizes the role of EfpL in ribosome rescue at proline-containing sequences, and provides evidence that co-occurrence of EF-P and EfpL is an evolutionary driver for higher bacterial growth rates.
Collapse
Affiliation(s)
- Alina Sieber
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Institut für Chemische Epigenetik (ICEM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tess Brewer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna Schäpers
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph Krafczyk
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Lassak
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
4
|
Hong HR, Prince CR, Wu L, Lin IN, Feaga HA. YebC2 resolves ribosome stalling at polyprolines independent of EF-P and the ABCF ATPase YfmR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618948. [PMID: 39463947 PMCID: PMC11507958 DOI: 10.1101/2024.10.18.618948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Polyproline motifs are essential structural features of many proteins, and recent evidence suggests that EF-P is one of several factors that facilitate their translation. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that the YebC-family protein YebC2 (formerly YeeI) functions as a translation factor in B. subtilis that resolves ribosome stalling at polyprolines. We demonstrate that YebC2, EF-P and YfmR act independently to support cellular fitness. Moreover, we show that YebC2 interacts directly with the 70S ribosome, supporting a direct role for YebC2 in translation. Finally, we assess the evolutionary relationship between YebC2 and other characterized YebC family proteins, and present evidence that transcription and translation factors within the YebC family have evolved separately. Altogether our work identifies YebC2 as a translation factor that resolves ribosome stalling and provides crucial insight into the relationship between YebC2, EF-P, and YfmR, three factors that prevent ribosome stalling at prolines.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
6
|
Brischigliaro M, Krüger A, Moran JC, Antonicka H, Ahn A, Shoubridge E, Rorbach J, Barrientos A. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res 2024; 52:9710-9726. [PMID: 39036954 PMCID: PMC11381339 DOI: 10.1093/nar/gkae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The University of Miami Medical Scientist Training Program (MSTP), 1600 NW 10th Ave.,Miami, FL33136, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16th St, Miami, FL-33125, USA
| |
Collapse
|
7
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Vazulka S, Schiavinato M, Tauer C, Wagenknecht M, Cserjan-Puschmann M, Striedner G. RNA-seq reveals multifaceted gene expression response to Fab production in Escherichia coli fed-batch processes with particular focus on ribosome stalling. Microb Cell Fact 2024; 23:14. [PMID: 38183013 PMCID: PMC10768439 DOI: 10.1186/s12934-023-02278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV, GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
9
|
Daskalova SM, Dedkova LM, Maini R, Talukder P, Bai X, Chowdhury SR, Zhang C, Nangreave RC, Hecht SM. Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Escherichia coli Dihydrofolate Reductase. J Am Chem Soc 2023; 145:23600-23608. [PMID: 37871253 PMCID: PMC10762953 DOI: 10.1021/jacs.3c07524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The introduction of noncanonical amino acids into proteins and peptides has been of great interest for many years and has facilitated the detailed study of peptide/protein structure and mechanism. In addition to numerous nonproteinogenic α-l-amino acids, bacterial ribosome modification has provided the wherewithal to enable the synthesis of peptides and proteins with a much greater range of structural diversity, as has the use of endogenous bacterial proteins in reconstituted protein synthesizing systems. In a recent report, elongation factor P (EF-P), putatively essential for enabling the incorporation of contiguous proline residues into proteins, was shown to facilitate the introduction of an N-methylated amino acid in addition to proline. This finding prompted us to investigate the properties of this protein factor with a broad variety of structurally diverse amino acid analogues using an optimized suppressor tRNAPro that we designed. While these analogues can generally be incorporated into proteins only in systems containing modified ribosomes specifically selected for their incorporation, we found that EF-P could significantly enhance their incorporation into model protein dihydrofolate reductase using wild-type ribosomes. Plausibly, the increased yields observed in the presence of structurally diverse amino acid analogues may result from the formation of a stabilized ribosomal complex in the presence of EF-P that provides more favorable conditions for peptide bond formation. This finding should enable the facile incorporation of a much broader structural variety of amino acid analogues into proteins and peptides using native ribosomes.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Rumit Maini
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Poulami Talukder
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sandipan Roy Chowdhury
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chao Zhang
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan C Nangreave
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Ojima-Kato T, Nishikawa Y, Furukawa Y, Kojima T, Nakano H. Nascent MSKIK Peptide Cancels Ribosomal Stalling by Arrest Peptides in Escherichia coli. J Biol Chem 2023; 299:104676. [PMID: 37028767 DOI: 10.1016/j.jbc.2023.104676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
The insertion of the DNA sequence encoding SKIK peptide adjacent to the M start codon of a difficult-to-express protein enhances protein production in Escherichia coli. In this report, we reveal that the increased production of the SKIK-tagged protein is not due to codon usage of the SKIK sequence. Furthermore, we found that insertion of SKIK or MSKIK just before the SecM arrest peptide (FSTPVWISQAQGIRAGP), which causes ribosomal stalling on mRNA, greatly increased the production of the protein containing the SecM arrest peptide in the E. coli reconstituted cell-free protein synthesis system (PURE system). A similar translation enhancement phenomenon by MSKIK was observed for the CmlA leader peptide, a ribosome arrest peptide, whose arrest is induced by chloramphenicol. These results strongly suggest that the nascent MSKIK peptide prevents or releases ribosomal stalling immediately following its generation during the translation process, resulting in an increase of protein production.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Yuma Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuki Furukawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideo Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Abstract
The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.
Collapse
|
12
|
Leiva LE, Elgamal S, Leidel SA, Orellana O, Ibba M, Katz A. Oxidative stress strongly restricts the effect of codon choice on the efficiency of protein synthesis in Escherichia coli. Front Microbiol 2022; 13:1042675. [PMID: 36532460 PMCID: PMC9749903 DOI: 10.3389/fmicb.2022.1042675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/04/2022] [Indexed: 04/21/2025] Open
Abstract
INTRODUCTION The response of enterobacteria to oxidative stress is usually considered to be regulated by transcription factors such as OxyR and SoxR. Nevertheless, several reports have shown that under oxidative stress the levels, modification and aminoacylation of tRNAs may be altered suggesting a role of codon bias in regulation of gene expression under this condition. METHODS In order to characterize the effects of oxidative stress on translation elongation we constructed a library of 61 plasmids, each coding for the green fluorescent protein (GFP) translationally fused to a different set of four identical codons. RESULTS Using these reporters, we observed that GFP production levels vary widely (~15 fold) when Escherichia coli K-12 is cultured in minimal media as a consequence of codon choice variations. When bacteria are cultured under oxidative stress caused by paraquat the levels of GFP produced by most clones is reduced and, in contrast to control conditions, the range of GFP levels is restricted to a ~2 fold range. Restricting elongation of particular sequences does not increase the range of GFP production under oxidative stress, but altering translation initiation rates leads to an increase in this range. DISCUSSION Altogether, our results suggest that under normal conditions the speed of translation elongation is in the range of the speed of initiation and, consequently, codon choice impacts the speed of protein synthesis. In contrast, under oxidative stress translation initiation becomes much slower than elongation, limiting the speed of translation such that codon choice has at most only subtle effects on the overall output of translation.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Sara Elgamal
- Department of Microbiology, The Center for RNA Biology, Ohio State University, Columbus, OH, United States
| | - Sebastian A. Leidel
- Research Group for RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michael Ibba
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Komarova ES, Slesarchuk AN, Rubtsova MP, Osterman IA, Tupikin AE, Pyshnyi DV, Dontsova OA, Kabilov MR, Sergiev PV. Flow-Seq Evaluation of Translation Driven by a Set of Natural Escherichia coli 5'-UTR of Variable Length. Int J Mol Sci 2022; 23:ijms232012293. [PMID: 36293163 PMCID: PMC9604319 DOI: 10.3390/ijms232012293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Flow-seq is a method that combines fluorescently activated cell sorting and next-generation sequencing to deduce a large amount of data about translation efficiency from a single experiment. Here, we constructed a library of fluorescent protein-based reporters preceded by a set of 648 natural 5'-untranslated regions (5'-UTRs) of Escherichia coli genes. Usually, Flow-seq libraries are constructed using uniform-length sequence elements, in contrast to natural situations, where functional elements are of heterogenous lengths. Here, we demonstrated that a 5'-UTR library of variable length could be created and analyzed with Flow-seq. In line with previous Flow-seq experiments with randomized 5'-UTRs, we observed the influence of an RNA secondary structure and Shine-Dalgarno sequences on translation efficiency; however, the variability of these parameters for natural 5'-UTRs in our library was smaller in comparison with randomized libraries. In line with this, we only observed a 30-fold difference in translation efficiency between the best and worst bins sorted with this factor. The results correlated with those obtained with ribosome profiling.
Collapse
Affiliation(s)
- Ekaterina S. Komarova
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna N. Slesarchuk
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria P. Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya A. Osterman
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitry V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olga A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: (M.R.K.); (P.V.S.)
| | - Petr V. Sergiev
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (M.R.K.); (P.V.S.)
| |
Collapse
|
14
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Krafczyk R, Qi F, Sieber A, Mehler J, Jung K, Frishman D, Lassak J. Proline codon pair selection determines ribosome pausing strength and translation efficiency in bacteria. Commun Biol 2021; 4:589. [PMID: 34002016 PMCID: PMC8129111 DOI: 10.1038/s42003-021-02115-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
The speed of mRNA translation depends in part on the amino acid to be incorporated into the nascent chain. Peptide bond formation is especially slow with proline and two adjacent prolines can even cause ribosome stalling. While previous studies focused on how the amino acid context of a Pro-Pro motif determines the stalling strength, we extend this question to the mRNA level. Bioinformatics analysis of the Escherichia coli genome revealed significantly differing codon usage between single and consecutive prolines. We therefore developed a luminescence reporter to detect ribosome pausing in living cells, enabling us to dissect the roles of codon choice and tRNA selection as well as to explain the genome scale observations. Specifically, we found a strong selective pressure against CCC/U-C, a sequon causing ribosomal frameshifting even under wild-type conditions. On the other hand, translation efficiency as positive evolutionary driving force led to an overrepresentation of CCG. This codon is not only translated the fastest, but the corresponding prolyl-tRNA reaches almost saturating levels. By contrast, CCA, for which the cognate prolyl-tRNA amounts are limiting, is used to regulate pausing strength. Thus, codon selection both in discrete positions but especially in proline codon pairs can tune protein copy numbers.
Collapse
Affiliation(s)
- Ralph Krafczyk
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Fei Qi
- grid.411404.40000 0000 8895 903XInstitute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, China ,grid.6936.a0000000123222966Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Alina Sieber
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Judith Mehler
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Kirsten Jung
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Dmitrij Frishman
- grid.6936.a0000000123222966Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Lassak
- grid.5252.00000 0004 1936 973XDepartment of Biology I, Microbiology, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
16
|
Pinheiro B, Scheidler CM, Kielkowski P, Schmid M, Forné I, Ye S, Reiling N, Takano E, Imhof A, Sieber SA, Schneider S, Jung K. Structure and Function of an Elongation Factor P Subfamily in Actinobacteria. Cell Rep 2021; 30:4332-4342.e5. [PMID: 32234471 DOI: 10.1016/j.celrep.2020.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
Translation of consecutive proline motifs causes ribosome stalling and requires rescue via the action of a specific translation elongation factor, EF-P in bacteria and archaeal/eukaryotic a/eIF5A. In Eukarya, Archaea, and all bacteria investigated so far, the functionality of this translation elongation factor depends on specific and rather unusual post-translational modifications. The phylum Actinobacteria, which includes the genera Corynebacterium, Mycobacterium, and Streptomyces, is of both medical and economic significance. Here, we report that EF-P is required in these bacteria in particular for the translation of proteins involved in amino acid and secondary metabolite production. Notably, EF-P of Actinobacteria species does not need any post-translational modification for activation. While the function and overall 3D structure of this EF-P type is conserved, the loop containing the conserved lysine is flanked by two essential prolines that rigidify it. Actinobacteria's EF-P represents a unique subfamily that works without any modification.
Collapse
Affiliation(s)
- Bruno Pinheiro
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Pavel Kielkowski
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Marina Schmid
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Suhui Ye
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Eriko Takano
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Axel Imhof
- Biomedical Center Munich, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Stephan A Sieber
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| |
Collapse
|
17
|
Sakiyama K, Shimokawa-Chiba N, Fujiwara K, Chiba S. Search for translation arrest peptides encoded upstream of genes for components of protein localization pathways. Nucleic Acids Res 2021; 49:1550-1566. [PMID: 33503266 PMCID: PMC7897499 DOI: 10.1093/nar/gkab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Regulatory nascent peptides participate in the regulation of cellular functions by the mechanisms involving regulated translation arrest. A class of them in bacteria, called monitoring substrates, feedback-regulates the expression of a specific component of protein localization machinery. Three monitoring substrates, SecM, MifM and VemP have previously been identified. Here, we attempt at identifying additional arrest peptides in bacteria. Our bioinformatic searches over more than 400 bacterial genomic sequences for proteins that have the common characteristic features shared by the known monitoring substrates and subsequent in vitro and in vivo characterization of the highlighted sequences allowed the identification of three arrest peptides termed ApcA, ApdA and ApdP. ApcA and ApdA homologs are conserved among a subset of actinobacteria, whereas ApdP has homologs in a subset of α-proteobacteria. We demonstrate that these arrest peptides, in their ribosome-tethered nascent states, inhibit peptidyl transfer. The elongation arrest occurs at a specific codon near the 3′ end of the coding region, in a manner depending on the amino acid sequence of the nascent chain. Interestingly, the arrest sequences of ApcA, ApdA and ApdP share a sequence R-A-P-G/P that is essential for the elongation arrest.
Collapse
Affiliation(s)
- Karen Sakiyama
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| |
Collapse
|
18
|
Hummels KR, Kearns DB. Translation elongation factor P (EF-P). FEMS Microbiol Rev 2020; 44:208-218. [PMID: 32011712 DOI: 10.1093/femsre/fuaa003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
Translation elongation factor P (EF-P) is conserved in all three domains of life (called eIF5A and aIF5A in eukaryotes and archaea, respectively) and functions to alleviate ribosome pausing during the translation of specific sequences, including consecutive proline residues. EF-P was identified in 1975 as a factor that stimulated the peptidyltransferase reaction in vitro but its involvement in the translation of tandem proline residues was not uncovered until 2013. Throughout the four decades of EF-P research, perceptions of EF-P function have changed dramatically. In particular, while EF-P was thought to potentiate the formation of the first peptide bond in a protein, it is now broadly accepted to act throughout translation elongation. Further, EF-P was initially reported to be essential, but recent work has shown that the requirement of EF-P for growth is conditional. Finally, it is thought that post-translational modification of EF-P is strictly required for its function but recent studies suggest that EF-P modification may play a more nuanced role in EF-P activity. Here, we review the history of EF-P research, with an emphasis on its initial isolation and characterization as well as the discoveries that altered our perceptions of its function.
Collapse
Affiliation(s)
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN USA
| |
Collapse
|
19
|
Pinheiro B, Petrov DP, Guo L, Martins GB, Bramkamp M, Jung K. Elongation factor P is required for EII Glc translation in Corynebacterium glutamicum due to an essential polyproline motif. Mol Microbiol 2020; 115:320-331. [PMID: 33012080 DOI: 10.1111/mmi.14618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Translating ribosomes require elongation factor P (EF-P) to incorporate consecutive prolines (XPPX) into nascent peptide chains. The proteome of Corynebacterium glutamicum ATCC 13032 contains a total of 1,468 XPPX motifs, many of which are found in proteins involved in primary and secondary metabolism. We show here that synthesis of EIIGlc , the glucose-specific permease of the phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS) encoded by ptsG, is strongly dependent on EF-P, as an efp deletion mutant grows poorly on glucose as sole carbon source. The amount of EIIGlc is strongly reduced in this mutant, which consequently results in a lower rate of glucose uptake. Strikingly, the XPPX motif is essential for the activity of EIIGlc , and substitution of the prolines leads to inactivation of the protein. Finally, translation of GntR2, a transcriptional activator of ptsG, is also dependent on EF-P. However, its reduced amount in the efp mutant can be compensated for by other regulators. These results reveal for the first time a translational bottleneck involving production of the major glucose transporter EIIGlc , which has implications for future strain engineering strategies.
Collapse
Affiliation(s)
- Bruno Pinheiro
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Dimitar Plamenov Petrov
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Lingyun Guo
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
20
|
Leiva LE, Pincheira A, Elgamal S, Kienast SD, Bravo V, Leufken J, Gutiérrez D, Leidel SA, Ibba M, Katz A. Modulation of Escherichia coli Translation by the Specific Inactivation of tRNA Gly Under Oxidative Stress. Front Genet 2020; 11:856. [PMID: 33014012 PMCID: PMC7461829 DOI: 10.3389/fgene.2020.00856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Pincheira
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Sandra D Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Verónica Bravo
- Unidad de Microbiología, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Daniela Gutiérrez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Abstract
Many organisms, including bacteria, code for multiple paralogues of some ribosomal protein subunits. The relative contribution of these alternative subunits to ribosome function and protein synthesis is unknown and controversial. Many studies on alternative ribosomes have been confounded by isolation of alternative and canonical ribosomes from different strains or growth conditions, potentially confounding results. Here, we show that one form of alternative ribosome from Mycobacterium smegmatis has a distinct translational profile compared with canonical ribosomes purified from an identical cellular context. We also identify a role for alternative ribosomes in iron homeostasis. Given the prevalence of alternative ribosomal genes in diverse organisms, our study suggests that alternative ribosomes may represent a further layer of regulation of gene translation. Alternative ribosome subunit proteins are prevalent in the genomes of diverse bacterial species, but their functional significance is controversial. Attempts to study microbial ribosomal heterogeneity have mostly relied on comparing wild-type strains with mutants in which subunits have been deleted, but this approach does not allow direct comparison of alternate ribosome isoforms isolated from identical cellular contexts. Here, by simultaneously purifying canonical and alternative RpsR ribosomes from Mycobacterium smegmatis, we show that alternative ribosomes have distinct translational features compared with their canonical counterparts. Both alternative and canonical ribosomes actively take part in protein synthesis, although they translate a subset of genes with differential efficiency as measured by ribosome profiling. We also show that alternative ribosomes have a relative defect in initiation complex formation. Furthermore, a strain of M. smegmatis in which the alternative ribosome protein operon is deleted grows poorly in iron-depleted medium, uncovering a role for alternative ribosomes in iron homeostasis. Our work confirms the distinct and nonredundant contribution of alternative bacterial ribosomes for adaptation to hostile environments.
Collapse
|
22
|
Glaub A, Huptas C, Neuhaus K, Ardern Z. Recommendations for bacterial ribosome profiling experiments based on bioinformatic evaluation of published data. J Biol Chem 2020; 295:8999-9011. [PMID: 32385111 PMCID: PMC7335797 DOI: 10.1074/jbc.ra119.012161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Ribosome profiling (RIBO-Seq) has improved our understanding of bacterial translation, including finding many unannotated genes. However, protocols for RIBO-Seq and corresponding data analysis are not yet standardized. Here, we analyzed 48 RIBO-Seq samples from nine studies of Escherichia coli K12 grown in lysogeny broth medium and particularly focused on the size-selection step. We show that for conventional expression analysis, a size range between 22 and 30 nucleotides is sufficient to obtain protein-coding fragments, which has the advantage of removing many unwanted rRNA and tRNA reads. More specific analyses may require longer reads and a corresponding improvement in rRNA/tRNA depletion. There is no consensus about the appropriate sequencing depth for RIBO-Seq experiments in prokaryotes, and studies vary significantly in total read number. Our analysis suggests that 20 million reads that are not mapping to rRNA/tRNA are required for global detection of translated annotated genes. We also highlight the influence of drug-induced ribosome stalling, which causes bias at translation start sites. The resulting accumulation of reads at the start site may be especially useful for detecting weakly expressed genes. As different methods suit different questions, it may not be possible to produce a "one-size-fits-all" ribosome profiling data set. Therefore, experiments should be carefully designed in light of the scientific questions of interest. We propose some basic characteristics that should be reported with any new RIBO-Seq data sets. Careful attention to the factors discussed should improve prokaryotic gene detection and the comparability of ribosome profiling data sets.
Collapse
Affiliation(s)
- Alina Glaub
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Christopher Huptas
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany; Core Facility Microbiome, ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
23
|
Tollerson R, Ibba M. Translational regulation of environmental adaptation in bacteria. J Biol Chem 2020; 295:10434-10445. [PMID: 32518156 DOI: 10.1074/jbc.rev120.012742] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation-initiation, elongation, and termination-cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels of specific protein products using programmed ribosome pausing or inducing frameshifting. Recent studies have improved understanding and revealed greater complexity regarding long-standing paradigms describing key regulatory steps of translation such as start-site selection and the coupling of transcription and translation. In this review, we describe how bacteria regulate their gene expression at the three translational steps and discuss how translation is used to detect and respond to changes in the cellular environment. Finally, we appraise the costs and benefits of regulation at the translational level in bacteria.
Collapse
Affiliation(s)
- Rodney Tollerson
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Pan X, Luo J, Li S. Bacteria-Catalyzed Arginine Glycosylation in Pathogens and Host. Front Cell Infect Microbiol 2020; 10:185. [PMID: 32411621 PMCID: PMC7199390 DOI: 10.3389/fcimb.2020.00185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/07/2020] [Indexed: 01/25/2023] Open
Abstract
In recent years, protein glycosylation in pathogenic bacteria has attracted more and more attention, and accumulating evidence indicated that this type of posttranslational modification is involved in many physiological processes. The NleB from several enteropathogenic bacteria species as well as SseK from Salmonella enterica are type III secretion system effectors, which have an atypical N-acetylglucosamine (N-GlcNAc) transferase activity that specifically modified a conserved arginine in TRADD, FADD, and RIPK1. NleB/SseKs GlcNAcylation of death domain proteins abrogates homotypic and heterotypic death receptors/adaptors interactions, thereby blocking an important antimicrobial host response. Interestingly, NleB/SseKs could also GlcNAcylate themselves, and self-GlcNAcylation of NleB, SseK1, and SseK3 are crucial for their biological activity during infection. In addition, EarP (EF-P specific arginine rhamnosyl transferase for Posttranslational activation) catalyzes arginine rhamnosylation of translation elongation factor P (EF-P). Importantly, this kind of N-linked protein glycosylation is not only important for EF-P dependent rescue of polyproline stalled ribosomes but also for pathogenicity in Pseudomonas aeruginosa and other clinically relevant bacteria. Glycosylation of arginine is unique because the guanidine group of arginine has a high acid dissociation constant value and representing an extremely poor nucleophile. Recently, the crystal structures of NleB, SseKs, EarP, arginine GlcNAcylated death domain-containing proteins, NleB/FADD-DD, and EarP/EF-P/dTDP-β-L-rhamnose were solved by our group and other groups, revealing the unique catalytic mechanisms. In this review, we provide detailed information about the currently known arginine glycosyltransferases and their potential catalytic mechanisms.
Collapse
Affiliation(s)
- Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Immunohistochemical detection of the pro-apoptotic Bax∆2 protein in human tissues. Histochem Cell Biol 2020; 154:41-53. [PMID: 32200452 DOI: 10.1007/s00418-020-01874-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
The pro-apoptotic Bax isoform Bax∆2 was originally discovered in cancer patients with a microsatellite guanine deletion (G8 to G7). This deletion leads to an early stop codon; however, when combined with the alternative splicing of exon 2, the reading frame is restored allowing production of a full-length protein (Bax∆2). Unlike the parental Baxα, Bax∆2 triggers apoptosis through a non-mitochondrial pathway and the expression in human tissues was unknown. Here, we analyzed over 1000 tissue microarray samples from 13 different organs using immunohistochemistry. Bax∆2-positive cells were detected in all examined organs at low rates (1-5%) and mainly scattered throughout the connective tissues. Surprisingly, over 70% of normal colon samples scored high for BaxΔ2-positive staining. Only 7% of malignant colon samples scored high, with most high-grade tumors being negative. A similar pattern was observed in most organs examined. We also showed that both Baxα and Bax∆2 can co-exist in the same cells. Genotyping showed that the majority of Bax∆2-positive normal tissues contain no G7 mutation, but an unexpected high rate of G9 was observed. Although the underlying mechanism remains to be explored, the inverse correlation of Bax∆2 expression with tissue malignancy suggests that it may have a clinical implication in cancer development and treatment.
Collapse
|
26
|
Jong WSP, Ten Hagen-Jongman CM, Vikström D, Dontje W, Abdallah AM, de Gier JW, Bitter W, Luirink J. Mutagenesis-Based Characterization and Improvement of a Novel Inclusion Body Tag. Front Bioeng Biotechnol 2020; 7:442. [PMID: 31998707 PMCID: PMC6965018 DOI: 10.3389/fbioe.2019.00442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Whereas, bacterial inclusion bodies (IBs) for long were regarded as undesirable aggregates emerging during recombinant protein production, they currently receive attention as promising nanoparticulate biomaterials with diverse applications in biotechnology and biomedicine. We previously identified ssTorA, a signal sequence that normally directs protein export via the Tat pathway in E. coli, as a tag that induces the accumulation of fused proteins into IBs under overexpression conditions. Here, we used targeted mutagenesis to identify features and motifs being either critical or dispensable for IB formation. We found that IB formation is neither related to the function of ssTorA as a Tat-signal sequence nor is it a general feature of this family of signal sequences. IB formation was inhibited by co-overexpression of ssTorA binding chaperones TorD and DnaK and by amino acid substitutions that affect the propensity of ssTorA to form an α-helix. Systematic deletion experiments identified a minimal region of ssTorA required for IB formation in the center of the signal sequence. Unbiased genetic screening of a library of randomly mutagenized ssTorA sequences for reduced aggregation properties allowed us to pinpoint residues that are critical to sustain insoluble expression. Together, the data point to possible mechanisms for the aggregation of ssTorA fusions. Additionally, they led to the design of a tag with superior IB-formation properties compared to the original ssTorA sequence.
Collapse
Affiliation(s)
- Wouter S P Jong
- Abera Bioscience AB, Solna, Sweden.,Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Corinne M Ten Hagen-Jongman
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | | | - Wendy Dontje
- Department of Clinical Immunology and Rheumatology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Abdallah M Abdallah
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Wilbert Bitter
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, Netherlands.,Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Joen Luirink
- Abera Bioscience AB, Solna, Sweden.,Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
27
|
Park H, Subramaniam AR. Inverted translational control of eukaryotic gene expression by ribosome collisions. PLoS Biol 2019; 17:e3000396. [PMID: 31532761 PMCID: PMC6750593 DOI: 10.1371/journal.pbio.3000396] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022] Open
Abstract
The canonical model of eukaryotic translation posits that efficient translation initiation increases protein expression and mRNA stability. Contrary to this model, we find that increasing initiation rate can decrease both protein expression and stability of certain mRNAs in the budding yeast Saccharomyces cerevisiae. These mRNAs encode a stretch of polybasic residues that cause ribosome stalling. Our computational modeling predicts that the observed decrease in gene expression at high initiation rates occurs when ribosome collisions at stalls stimulate abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage. Consistent with this prediction, the collision-associated quality-control factors Asc1 and Hel2 (orthologs of human RACK1 and ZNF598, respectively) decrease gene expression from stall-containing mRNAs only at high initiation rates. Remarkably, hundreds of S. cerevisiae mRNAs that contain ribosome stall sequences also exhibit lower translation efficiency. We propose that inefficient translation initiation allows these stall-containing endogenous mRNAs to escape collision-stimulated reduction in gene expression. Higher rates of translation counterintuitively lead to lower protein levels from eukaryotic mRNAs that encode ribosome stalls; modelling suggests that this occurs when ribosome collisions at stalls trigger abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage.
Collapse
Affiliation(s)
- Heungwon Park
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hummels KR, Kearns DB. Suppressor mutations in ribosomal proteins and FliY restore Bacillus subtilis swarming motility in the absence of EF-P. PLoS Genet 2019; 15:e1008179. [PMID: 31237868 PMCID: PMC6613710 DOI: 10.1371/journal.pgen.1008179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/08/2019] [Accepted: 05/07/2019] [Indexed: 11/19/2022] Open
Abstract
Translation elongation factor P (EF-P) alleviates ribosome pausing at a subset of motifs encoding consecutive proline residues, and is required for growth in many organisms. Here we show that Bacillus subtilis EF-P also alleviates ribosome pausing at sequences encoding tandem prolines and ribosomes paused within several essential genes without a corresponding growth defect in an efp mutant. The B. subtilis efp mutant is instead impaired for flagellar biosynthesis which results in the abrogation of a form of motility called swarming. We isolate swarming suppressors of efp and identify mutations in 8 genes that suppressed the efp mutant swarming defect, many of which encode conserved ribosomal proteins or ribosome-associated factors. One mutation abolished a translational pause site within the flagellar C-ring component FliY to increase flagellar number and restore swarming motility in the absence of EF-P. Our data support a model wherein EF-P-alleviation of ribosome pausing may be particularly important for macromolecular assemblies like the flagellum that require precise protein stoichiometries.
Collapse
Affiliation(s)
- Katherine R. Hummels
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Hockenberry AJ, Jewett MC, Amaral LAN, Wilke CO. Within-Gene Shine-Dalgarno Sequences Are Not Selected for Function. Mol Biol Evol 2019; 35:2487-2498. [PMID: 30085185 DOI: 10.1093/molbev/msy150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Shine-Dalgarno (SD) sequence motif facilitates translation initiation and is frequently found upstream of bacterial start codons. However, thousands of instances of this motif occur throughout the middle of protein coding genes in a typical bacterial genome. Here, we use comparative evolutionary analysis to test whether SD sequences located within genes are functionally constrained. We measure the conservation of SD sequences across Enterobacteriales, and find that they are significantly less conserved than expected. Further, the strongest SD sequences are the least conserved whereas we find evidence of conservation for the weakest possible SD sequences given amino acid constraints. Our findings indicate that most SD sequences within genes are likely to be deleterious and removed via selection. To illustrate the origin of these deleterious costs, we show that ATG start codons are significantly depleted downstream of SD sequences within genes, highlighting the constraint that these sequences impose on the surrounding nucleotides to minimize the potential for erroneous translation initiation.
Collapse
Affiliation(s)
- Adam J Hockenberry
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL.,Center for Synthetic Biology, Northwestern University, Evanston, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL.,Simpson Querrey Institute, Northwestern University, Evanston, IL
| | - Luís A N Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL.,Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
30
|
Volkwein W, Krafczyk R, Jagtap PKA, Parr M, Mankina E, Macošek J, Guo Z, Fürst MJLJ, Pfab M, Frishman D, Hennig J, Jung K, Lassak J. Switching the Post-translational Modification of Translation Elongation Factor EF-P. Front Microbiol 2019; 10:1148. [PMID: 31178848 PMCID: PMC6544042 DOI: 10.3389/fmicb.2019.01148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Tripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands β3/β4 is crucial for EF-P function and modified at its tip by lysylation of lysine or rhamnosylation of arginine. Phylogenetic analyses unveiled an invariant proline in the -2 position of the modification site in EF-Ps that utilize lysine modifications such as Escherichia coli. Bacteria with the arginine modification like Pseudomonas putida on the contrary have selected against it. Focusing on the EF-Ps from these two model organisms we demonstrate the importance of the β3/β4 loop composition for functionalization by chemically distinct modifications. Ultimately, we show that only two amino acid changes in E. coli EF-P are needed for switching the modification strategy from lysylation to rhamnosylation.
Collapse
Affiliation(s)
- Wolfram Volkwein
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany.,St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Elena Mankina
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jakub Macošek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Zhenghuan Guo
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Josef Ludwig Johannes Fürst
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Molecular Enzymology Group, University of Groningen, Groningen, Netherlands
| | - Miriam Pfab
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany.,St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jürgen Lassak
- Center for Integrated Protein Science Munich, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
31
|
Abstract
Ribosome profiling provides information on the position of ribosomes on mRNA on a genomic scale. Although this information is often used to detect changes in gene expression under different conditions, it also has great potential for yielding insight into the mechanism and regulation of protein synthesis itself. First developed in yeast, ribosome profiling involves the isolation and sequencing of ribosome-protected mRNA fragments generated by nuclease treatment. Since the application of ribosome profiling in bacteria has been problematic, we report here a systematically optimized protocol for E. coli that we have used with success for other bacteria as well. Cells are harvested by flash-freezing cultures directly in liquid nitrogen. After lysis, translation is arrested by high magnesium concentration without the use of antibiotics. These improvements eliminate artifacts induced by harvesting cells by centrifugation or filtration and by use of chloramphenicol to arrest translation. These improvements are especially appropriate for studies where the exact position of the ribosome is critical, and not merely the number of ribosomes per message, such as studies aimed at monitoring differences in local elongation rates.
Collapse
Affiliation(s)
- Fuad Mohammad
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Murina V, Kasari M, Takada H, Hinnu M, Saha CK, Grimshaw JW, Seki T, Reith M, Putrinš M, Tenson T, Strahl H, Hauryliuk V, Atkinson GC. ABCF ATPases Involved in Protein Synthesis, Ribosome Assembly and Antibiotic Resistance: Structural and Functional Diversification across the Tree of Life. J Mol Biol 2018; 431:3568-3590. [PMID: 30597160 PMCID: PMC6723617 DOI: 10.1016/j.jmb.2018.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022]
Abstract
Within the larger ABC superfamily of ATPases, ABCF family members eEF3 in Saccharomyces cerevisiae and EttA in Escherichia coli have been found to function as ribosomal translation factors. Several other ABCFs including biochemically characterized VgaA, LsaA and MsrE confer resistance to antibiotics that target the peptidyl transferase center and exit tunnel of the ribosome. However, the diversity of ABCF subfamilies, the relationships among subfamilies and the evolution of antibiotic resistance (ARE) factors from other ABCFs have not been explored. To address this, we analyzed the presence of ABCFs and their domain architectures in 4505 genomes across the tree of life. We find 45 distinct subfamilies of ABCFs that are widespread across bacterial and eukaryotic phyla, suggesting that they were present in the last common ancestor of both. Surprisingly, currently known ARE ABCFs are not confined to a distinct lineage of the ABCF family tree, suggesting that ARE can readily evolve from other ABCF functions. Our data suggest that there are a number of previously unidentified ARE ABCFs in antibiotic producers and important human pathogens. We also find that ATPase-deficient mutants of all four E. coli ABCFs (EttA, YbiT, YheS and Uup) inhibit protein synthesis, indicative of their ribosomal function, and demonstrate a genetic interaction of ABCFs Uup and YheS with translational GTPase BipA involved in assembly of the 50S ribosome subunit. Finally, we show that the ribosome-binding resistance factor VmlR from Bacillus subtilis is localized to the cytoplasm, ruling out a role in antibiotic efflux.
Collapse
Affiliation(s)
- Victoriia Murina
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Marje Kasari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Mariliis Hinnu
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Chayan Kumar Saha
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - James W Grimshaw
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Takahiro Seki
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 263-8522 Chiba, Japan
| | - Michael Reith
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Marta Putrinš
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden; University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | | |
Collapse
|
33
|
Elongation factor P is required to maintain proteome homeostasis at high growth rate. Proc Natl Acad Sci U S A 2018; 115:11072-11077. [PMID: 30297417 DOI: 10.1073/pnas.1812025115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elongation factor P (EF-P) is a universally conserved translation factor that alleviates ribosome pausing at polyproline (PPX) motifs by facilitating peptide bond formation. In the absence of EF-P, PPX peptide bond formation can limit translation rate, leading to pleotropic phenotypes including slowed growth, increased antibiotic sensitivity, and loss of virulence. In this study, we observe that many of these phenotypes are dependent on growth rate. Limiting growth rate suppresses a variety of detrimental phenotypes associated with ribosome pausing at PPX motifs in the absence of EF-P. Polysome levels are also similar to wild-type under slow growth conditions, consistent with global changes in ribosome queuing in cells without EF-P when growth rate is decreased. Inversely, under high protein synthesis demands, we observe that Escherichia coli lacking EF-P have reduced fitness. Our data demonstrate that EF-P-mediated relief of ribosome queuing is required to maintain proteome homeostasis under conditions of high translational demands.
Collapse
|
34
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
35
|
Choi E, Nam D, Choi J, Park S, Lee JS, Lee EJ. Elongation factor P controls translation of the mgtA gene encoding a Mg 2+ transporter during Salmonella infection. Microbiologyopen 2018; 8:e00680. [PMID: 29949242 PMCID: PMC6460261 DOI: 10.1002/mbo3.680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Ribosome often stalls on mRNA sequences harboring consecutive proline codons. Elongation factor P (EF‐P) is required for the stalled ribosome to continue translation and thus the absence of EF‐P affects translation of the associated open reading frame. Here we report that EF‐P controls translation of the mgtA gene encoding a Mg2+‐transporting ATPase from the intracellualr pathogen Salmonella enterica serovar Typhimurium. EF‐P's effect on mgtA translation is dependent on the 550th and 551st proline codons in the coding region and thus substitution of those proline codons eliminates EF‐P‐mediated control of MgtA protein without affecting the Mg2+‐transporting activity of the mgtA gene. The Pro550 and Pro551‐substituted mgtA gene promotes Salmonella's intramacrophage survival and mouse virulence, suggesting that EF‐P‐mediated translational control of the mgtA gene is required for Salmonella pathogenesis.
Collapse
Affiliation(s)
- Eunna Choi
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Daesil Nam
- Division of Microbiology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Eun-Jin Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
36
|
Choi J, Grosely R, Prabhakar A, Lapointe CP, Wang J, Puglisi JD. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation. Annu Rev Biochem 2018; 87:421-449. [PMID: 29925264 PMCID: PMC6594189 DOI: 10.1146/annurev-biochem-060815-014818] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Program in Biophysics, Stanford University, Stanford, California 94305, USA
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| |
Collapse
|
37
|
Eastman G, Smircich P, Sotelo-Silveira JR. Following Ribosome Footprints to Understand Translation at a Genome Wide Level. Comput Struct Biotechnol J 2018; 16:167-176. [PMID: 30069283 PMCID: PMC6066590 DOI: 10.1016/j.csbj.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Protein translation is a key step in gene expression. The development of Ribosome Profiling has allowed the global analysis of this process at sub-codon resolution. In the last years the method has been applied to several models ranging from bacteria to mammalian cells yielding a surprising amount of insight on the mechanism and the regulation of translation. In this review we describe the key aspects of the experimental protocol and comment on the main conclusions raised in different models.
Collapse
Affiliation(s)
- Guillermo Eastman
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Pablo Smircich
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
- Laboratory of Molecular Interactions, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, CP 11400, Uruguay
| | - José R. Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
- Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, CP 11400, Uruguay
| |
Collapse
|
38
|
Artsimovitch I. Rebuilding the bridge between transcription and translation. Mol Microbiol 2018; 108:467-472. [PMID: 29608805 DOI: 10.1111/mmi.13964] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2018] [Indexed: 12/21/2022]
Abstract
In Bacteria, ribosomes may bind to the nascent RNA emerging from the transcribing RNA polymerase and initiate translation. Transcription-translation coupling plays diverse roles in cellular physiology, including attenuation control, mRNA surveillance and maintenance of genome integrity. While the existence of coupling is broadly accepted, its mechanism and ubiquity are debated. Structural evidence supports mutually exclusive modes of RNA polymerase-ribosome contacts. In a model based on nuclear magnetic resonance data, NusG binds to a ribosomal protein S10 and acts as an adapter between RNA polymerase and the 30S subunit. Recent single-particle cryo electron microscopy analyses of RNA polymerase bound to 30S and 70S ribosomes revealed extensive, and very distinct, contacts which are incompatible with bridging by NusG. Saxena et al. provide the first evidence for NusG-mediated coupling in vivo. Their results demonstrate that Escherichia coli NusG interacts with the 70S ribosomes through a previously established interface and that these interactions are required for survival when translation elongation is hindered to weaken coupling. Future studies will address a likely possibility that distinct bridging mechanisms underpin context-dependent coupling in the cell.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology, The Center for RNA Biology, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
39
|
Witzky A, Hummels KR, Tollerson R, Rajkovic A, Jones LA, Kearns DB, Ibba M. EF-P Posttranslational Modification Has Variable Impact on Polyproline Translation in Bacillus subtilis. mBio 2018; 9:e00306-18. [PMID: 29615499 PMCID: PMC5885033 DOI: 10.1128/mbio.00306-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Elongation factor P (EF-P) is a ubiquitous translation factor that facilitates translation of polyproline motifs. In order to perform this function, EF-P generally requires posttranslational modification (PTM) on a conserved residue. Although the position of the modification is highly conserved, the structure can vary widely between organisms. In Bacillus subtilis, EF-P is modified at Lys32 with a 5-aminopentanol moiety. Here, we use a forward genetic screen to identify genes involved in 5-aminopentanolylation. Tandem mass spectrometry analysis of the PTM mutant strains indicated that ynbB, gsaB, and ymfI are required for modification and that yaaO, yfkA, and ywlG influence the level of modification. Structural analyses also showed that EF-P can retain unique intermediate modifications, suggesting that 5-aminopentanol is likely directly assembled on EF-P through a novel modification pathway. Phenotypic characterization of these PTM mutants showed that each mutant does not strictly phenocopy the efp mutant, as has previously been observed in other organisms. Rather, each mutant displays phenotypic characteristics consistent with those of either the efp mutant or wild-type B. subtilis depending on the growth condition. In vivo polyproline reporter data indicate that the observed phenotypic differences result from variation in both the severity of polyproline translation defects and altered EF-P context dependence in each mutant. Together, these findings establish a new EF-P PTM pathway and also highlight a unique relationship between EF-P modification and polyproline context dependence.IMPORTANCE Despite the high level of conservation of EF-P, the posttranslational modification pathway that activates EF-P is highly divergent between species. Here, we have identified and characterized in B. subtilis a novel posttranslational modification pathway. This pathway not only broadens the scope of potential EF-P modification strategies, but it also indicates that EF-P modifications can be assembled directly on EF-P. Furthermore, characterization of these PTM mutants has established that an altered modification state can impact both the severity of polyproline translational defects and context dependence.
Collapse
Affiliation(s)
- Anne Witzky
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | | | - Rodney Tollerson
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Andrei Rajkovic
- Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Lisa A Jones
- Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Michael Ibba
- Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
40
|
Qi F, Motz M, Jung K, Lassak J, Frishman D. Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation. PLoS Comput Biol 2018; 14:e1005987. [PMID: 29389943 PMCID: PMC5811046 DOI: 10.1371/journal.pcbi.1005987] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/13/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Translation of consecutive prolines causes ribosome stalling, which is alleviated but cannot be fully compensated by the elongation factor P. However, the presence of polyproline motifs in about one third of the E. coli proteins underlines their potential functional importance, which remains largely unexplored. We conducted an evolutionary analysis of polyproline motifs in the proteomes of 43 E. coli strains and found evidence of evolutionary selection against translational stalling, which is especially pronounced in proteins with high translational efficiency. Against the overall trend of polyproline motif loss in evolution, we observed their enrichment in the vicinity of translational start sites, in the inter-domain regions of multi-domain proteins, and downstream of transmembrane helices. Our analysis demonstrates that the time gain caused by ribosome pausing at polyproline motifs might be advantageous in protein regions bracketing domains and transmembrane helices. Polyproline motifs might therefore be crucial for co-translational folding and membrane insertion. Polyproline motifs induce ribosome stalling during translation, but the functional significance of this effect remains unclear. Our evolutionary analysis of polyproline motifs reveals that they are disfavored in E. coli proteomes as a consequence of the reduced translation efficiency, supporting the conjecture that translation efficiency-based evolutionary pressure shapes protein sequences. Enrichment of polyproline motifs in the protein regions bracketing structural domains and transmembrane helices indicates their regulatory role in co-translational protein folding and transmembrane helix insertion. Polyproline motifs could thus serve as protein-level cis-acting elements, which directly regulate the rate of translation elongation.
Collapse
Affiliation(s)
- Fei Qi
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Magdalena Motz
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany.,St Petersburg State Polytechnic University, St Petersburg, Russia
| |
Collapse
|
41
|
Hör J, Gorski SA, Vogel J. Bacterial RNA Biology on a Genome Scale. Mol Cell 2018; 70:785-799. [PMID: 29358079 DOI: 10.1016/j.molcel.2017.12.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
Bacteria are an exceedingly diverse group of organisms whose molecular exploration is experiencing a renaissance. While the classical view of bacterial gene expression was relatively simple, the emerging view is more complex, encompassing extensive post-transcriptional control involving riboswitches, RNA thermometers, and regulatory small RNAs (sRNAs) associated with the RNA-binding proteins CsrA, Hfq, and ProQ, as well as CRISPR/Cas systems that are programmed by RNAs. Moreover, increasing interest in members of the human microbiota and environmental microbial communities has highlighted the importance of understudied bacterial species with largely unknown transcriptome structures and RNA-based control mechanisms. Collectively, this creates a need for global RNA biology approaches that can rapidly and comprehensively analyze the RNA composition of a bacterium of interest. We review such approaches with a focus on RNA-seq as a versatile tool to investigate the different layers of gene expression in which RNA is made, processed, regulated, modified, translated, and turned over.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Stanislaw A Gorski
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany.
| |
Collapse
|
42
|
Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper Chaperone from the Same Gene. Mol Cell 2017; 65:207-219. [PMID: 28107647 DOI: 10.1016/j.molcel.2016.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/23/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022]
Abstract
Metal efflux pumps maintain ion homeostasis in the cell. The functions of the transporters are often supported by chaperone proteins, which scavenge the metal ions from the cytoplasm. Although the copper ion transporter CopA has been known in Escherichia coli, no gene for its chaperone had been identified. We show that the CopA chaperone is expressed in E. coli from the same gene that encodes the transporter. Some ribosomes translating copA undergo programmed frameshifting, terminate translation in the -1 frame, and generate the 70 aa-long polypeptide CopA(Z), which helps cells survive toxic copper concentrations. The high efficiency of frameshifting is achieved by the combined stimulatory action of a "slippery" sequence, an mRNA pseudoknot, and the CopA nascent chain. Similar mRNA elements are not only found in the copA genes of other bacteria but are also present in ATP7B, the human homolog of copA, and direct ribosomal frameshifting in vivo.
Collapse
|
43
|
Abstract
Glycosylation is a universal strategy to posttranslationally modify proteins. The recently discovered arginine rhamnosylation activates the polyproline-specific bacterial translation elongation factor EF-P. EF-P is rhamnosylated on arginine 32 by the glycosyltransferase EarP. However, the enzymatic mechanism remains elusive. In the present study, we solved the crystal structure of EarP from Pseudomonas putida. The enzyme is composed of two opposing domains with Rossmann folds, thus constituting a B pattern-type glycosyltransferase (GT-B). While dTDP-β-l-rhamnose is located within a highly conserved pocket of the C-domain, EarP recognizes the KOW-like N-domain of EF-P. Based on our data, we propose a structural model for arginine glycosylation by EarP. As EarP is essential for pathogenicity in P. aeruginosa, our study provides the basis for targeted inhibitor design. The structural and biochemical characterization of the EF-P-specific rhamnosyltransferase EarP not only provides the first molecular insights into arginine glycosylation but also lays the basis for targeted-inhibitor design against Pseudomonas aeruginosa infection.
Collapse
|
44
|
Abstract
Bacterial elongation factor P (EF-P) plays a pivotal role in the translation of polyproline motifs. To stimulate peptide bond formation, EF-P must enter the ribosome via an empty E-site. Using fluorescence-based single-molecule tracking, Mohapatra et al. (S. Mohapatra, H. Choi, X. Ge, S. Sanyal, and J. C. Weisshaar, mBio 8:e00300-17, 2017, https://doi.org/10.1128/mBio.00300-17) monitored the cellular distribution of EF-P and quantified the frequency of association between EF-P and the ribosome under various conditions. Findings from the study showed that EF-P has a localization pattern that is strikingly similar to that of ribosomes. Intriguingly, EF-P was seen to bind ribosomes more frequently than the estimated number of pausing events, indicating that E-site vacancies occur even when ribosomes are not paused. The study provides new insights into the mechanism of EF-P-dependent peptide bond formation and the intricacies of translation elongation.
Collapse
|
45
|
Novel Antibiotic Resistance Determinants from Agricultural Soil Exposed to Antibiotics Widely Used in Human Medicine and Animal Farming. Appl Environ Microbiol 2017. [PMID: 28625995 DOI: 10.1128/aem.00989-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance has emerged globally as one of the biggest threats to human and animal health. Although the excessive use of antibiotics is recognized as accelerating the selection for resistance, there is a growing body of evidence suggesting that natural environments are "hot spots" for the development of both ancient and contemporary resistance mechanisms. Given that pharmaceuticals can be entrained onto agricultural land through anthropogenic activities, this could be a potential driver for the emergence and dissemination of resistance in soil bacteria. Using functional metagenomics, we interrogated the "resistome" of bacterial communities found in a collection of Canadian agricultural soil, some of which had been receiving antibiotics widely used in human medicine (macrolides) or food animal production (sulfamethazine, chlortetracycline, and tylosin) for up to 16 years. Of the 34 new antibiotic resistance genes (ARGs) recovered, the majority were predicted to encode (multi)drug efflux systems, while a few share little to no homology with established resistance determinants. We characterized several novel gene products, including putative enzymes that can confer high-level resistance against aminoglycosides, sulfonamides, and broad range of beta-lactams, with respect to their resistance mechanisms and clinical significance. By coupling high-resolution proteomics analysis with functional metagenomics, we discovered an unusual peptide, PPPAZI 4, encoded within an alternative open reading frame not predicted by bioinformatics tools. Expression of the proline-rich PPPAZI 4 can promote resistance against different macrolides but not other ribosome-targeting antibiotics, implicating a new macrolide-specific resistance mechanism that could be fundamentally linked to the evolutionary design of this peptide.IMPORTANCE Antibiotic resistance is a clinical phenomenon with an evolutionary link to the microbial pangenome. Genes and protogenes encoding specialized and potential resistance mechanisms are abundant in natural environments, but understanding of their identity and genomic context remains limited. Our discovery of several previously unknown antibiotic resistance genes from uncultured soil microorganisms indicates that soil is a significant reservoir of resistance determinants, which, once acquired and "repurposed" by pathogenic bacteria, can have serious impacts on therapeutic outcomes. This study provides valuable insights into the diversity and identity of resistance within the soil microbiome. The finding of a novel peptide-mediated resistance mechanism involving an unpredicted gene product also highlights the usefulness of integrating proteomics analysis into metagenomics-driven gene discovery.
Collapse
|
46
|
Pelechano V, Alepuz P. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences. Nucleic Acids Res 2017; 45:7326-7338. [PMID: 28549188 PMCID: PMC5499558 DOI: 10.1093/nar/gkx479] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/05/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by identifying eIF5A-dependent ribosome pauses at termination and at >200 tripeptide motifs. We show that presence of proline, glycine and charged amino acids at the peptidyl transferase center and at the beginning of the peptide exit tunnel arrest ribosomes in eIF5A-depleted cells. Lack of eIF5A also renders ribosome accumulation at the stop codons. Our data indicate specific protein functional groups under the control of eIF5A, including ER-coupled translation and GTPases in yeast and cytoskeleton organization, collagen metabolism and cell differentiation in humans. Our results support a broad mRNA-specific role of eIF5A in translation and identify the conserved motifs that affect translation elongation from yeast to humans.
Collapse
Affiliation(s)
- Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, P‐Box 1031. 171 21 Solna, Sweden
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
- ERI-BioteMed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| |
Collapse
|
47
|
Abstract
In vitro assays find that ribosomes form peptide bonds to proline (Pro) residues more slowly than to other residues. Ribosome profiling shows that stalling at Pro-Pro-X triplets is especially severe but is largely alleviated in Escherichia coli by the action of elongation factor EF-P. EF-P and its eukaryotic/archaeal homolog IF5A enhance the peptidyl transfer step of elongation. Here, a superresolution fluorescence localization and tracking study of EF-P–mEos2 in live E. coli provides the first in vivo information about the spatial distribution and on-off binding kinetics of EF-P. Fast imaging at 2 ms/frame helps to distinguish ribosome-bound (slowly diffusing) EF-P from free (rapidly diffusing) EF-P. Wild-type EF-P exhibits a three-peaked axial spatial distribution similar to that of ribosomes, indicating substantial binding. The mutant EF-PK34A exhibits a homogeneous distribution, indicating little or no binding. Some 30% of EF-P copies are bound to ribosomes at a given time. Two-state modeling and copy number estimates indicate that EF-P binds to 70S ribosomes during 25 to 100% of translation cycles. The timescale of the typical diffusive search by free EF-P for a ribosome-binding site is τfree ≈ 16 ms. The typical residence time of an EF-P on the ribosome is very short, τbound ≈ 7 ms. Evidently, EF-P binds to ribosomes during many or most elongation cycles, much more often than the frequency of Pro-Pro motifs. Emptying of the E site during part of the cycle is consistent with recent in vitro experiments indicating dissociation of the deacylated tRNA upon translocation. Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle.
Collapse
|
48
|
Abstract
Elongation factor P (EF-P) binds to ribosomes requiring assistance with the formation of oligo-prolines. In order for EF-P to associate with paused ribosomes, certain tRNAs with specific d-arm residues must be present in the peptidyl site, e.g., tRNAPro. Once EF-P is accommodated into the ribosome and bound to Pro-tRNAPro, productive synthesis of the peptide bond occurs. The underlying mechanism by which EF-P facilitates this reaction seems to have entropic origins. Maximal activity of EF-P requires a posttranslational modification in Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Each of these modifications is distinct and ligated onto its respective EF-P through entirely convergent means. Here we review the facets of translation elongation that are controlled by EF-P, with a particular focus on the purpose behind the many different modifications of EF-P.
Collapse
Affiliation(s)
- Andrei Rajkovic
- Molecular, Cellular and Developmental Biology Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210;
| | - Michael Ibba
- Molecular, Cellular and Developmental Biology Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210; .,Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
49
|
Schuller AP, Wu CCC, Dever TE, Buskirk AR, Green R. eIF5A Functions Globally in Translation Elongation and Termination. Mol Cell 2017; 66:194-205.e5. [PMID: 28392174 PMCID: PMC5414311 DOI: 10.1016/j.molcel.2017.03.003] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/10/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022]
Abstract
The eukaryotic translation factor eIF5A, originally identified as an initiation factor, was later shown to promote translation elongation of iterated proline sequences. Using a combination of ribosome profiling and in vitro biochemistry, we report a much broader role for eIF5A in elongation and uncover a critical function for eIF5A in termination. Ribosome profiling of an eIF5A-depleted strain reveals a global elongation defect, with abundant ribosomes stalling at many sequences, not limited to proline stretches. Our data also show ribosome accumulation at stop codons and in the 3' UTR, suggesting a global defect in termination in the absence of eIF5A. Using an in vitro reconstituted translation system, we find that eIF5A strongly promotes the translation of the stalling sequences identified by profiling and increases the rate of peptidyl-tRNA hydrolysis more than 17-fold. We conclude that eIF5A functions broadly in elongation and termination, rationalizing its high cellular abundance and essential nature.
Collapse
Affiliation(s)
- Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
50
|
Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:7316725. [PMID: 28053595 PMCID: PMC5178350 DOI: 10.1155/2016/7316725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/27/2016] [Accepted: 11/06/2016] [Indexed: 11/17/2022]
Abstract
Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.
Collapse
|