1
|
Liu G, Yang X, Yan W, Wang Y, Yu F, Zheng J. Molecular basis of Streptomyces ECF σShbA factors transcribing principal σHrdB genes. Nucleic Acids Res 2025; 53:gkaf339. [PMID: 40272361 PMCID: PMC12019637 DOI: 10.1093/nar/gkaf339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/25/2025] Open
Abstract
In bacteria, principal σ factors (σ70 or σA) transcribe housekeeping genes required for cell viability. Although most principal σ genes are transcribed by the RNA polymerase (RNAP) holoenzyme containing the principal σ factor itself, an extracytoplasmic function (ECF) σ factor (σShbA) governs transcription of the principal σ factor gene (hrdB) in two model Streptomycetes. Here, we employed a combination of cryo-electron microscopy (cryo-EM) and bioinformatics to decipher how σShbA-RNAP holoenzymes govern the transcription of hrdB genes in Streptomyces. A cryo-EM structure of Streptomyces coelicolor σShbA-RNAP-promoter open (RPo) complex was solved at 2.97 Å resolution. In combination with in vitro transcription assays, we demonstrate the unique structural features used by the σShbA to recognize the hrdB promoter and form a transcription bubble. All Streptomyces genomes (603) tagged as 'reference' were retrieved from NCBI Datasets. The conserved protein sequences and genomic neighborhoods, as well as the promoter consensus sequences of σShbA and σHrdB homologs, support that the principal σHrdB being governed by the ECF σShbA is a common feature in Streptomyces. Overall, these results provide detailed molecular insights into the transcription of the principal σHrdB gene and pave the way for globally modulating Streptomyces cell viability.
Collapse
Affiliation(s)
- Guiyang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjin Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Otur Ç, Kurt-Kızıldoğan A. Global regulator AdpA directly binds to tunicamycin gene cluster and negatively regulates tunicamycin biosynthesis in Streptomyces clavuligerus. World J Microbiol Biotechnol 2024; 40:360. [PMID: 39433609 DOI: 10.1007/s11274-024-04160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Since a transcriptional regulator has yet to be identified within the tunicamycin biosynthetic gene cluster in Streptomyces clavuligerus, we conducted a comprehensive investigation by focusing on the possible function of the pleiotropic regulator AdpA on tunicamycin. The genes encoding early steps of tunicamycin biosynthesis were significantly upregulated in S. clavuligerus ΔadpA. At the same time, they were downregulated in adpA overexpressed strain as shown by RNA-sequencing (RNA-seq) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) analysis. The tunicamycin gene cluster's co-transcription pattern was understood by reverse transcriptase polymerase chain reaction (RT-PCR). Our Electrophoretic Mobility Shift Assay (EMSA) data clearly showed AdpA's binding to the upstream sequence of the tunA gene, asserting its regulatory control. In addition to its direct negative regulation of tunicamycin biosynthesis, AdpA operates at a global level by orchestrating various regulatory genes in S. clavuligerus, such as wblA, whiB, bldM, arpA, brp, and adsA involved in morphological differentiation and secondary metabolite biosynthesis as depicted in RNA-seq data. This study represents a significant milestone by unveiling the AdpA regulator's pathway-specific and global regulatory effect in S. clavuligerus.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, Atakum, Samsun, 55139, Türkiye
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, Atakum, Samsun, 55139, Türkiye.
| |
Collapse
|
3
|
Gallagher KA, Tschowri N, Brennan RG, Schumacher MA, Buttner MJ. How c-di-GMP controls progression through the Streptomyces life cycle. Curr Opin Microbiol 2024; 80:102516. [PMID: 39059031 PMCID: PMC11497840 DOI: 10.1016/j.mib.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Members of the antibiotic-producing bacterial genus Streptomyces undergo a complex developmental life cycle that culminates in the production of spores. Central to control of this cell differentiation process is signaling through the second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP). So far, three proteins that are directly controlled by c-di-GMP in Streptomyces have been functionally and structurally characterized: the key developmental regulators BldD and σWhiG, and the glycogen-degrading enzyme GlgX. c-di-GMP signals through BldD and σWhiG, respectively, to control the two most dramatic transitions of the Streptomyces life cycle, the formation of the reproductive aerial hyphae and their differentiation into spore chains. Later in development, c-di-GMP activates GlgX-mediated degradation of glycogen, releasing stored carbon for spore maturation.
Collapse
Affiliation(s)
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
4
|
Xu G, Yang S. Evolution of orphan and atypical histidine kinases and response regulators for microbial signaling diversity. Int J Biol Macromol 2024; 275:133635. [PMID: 38964677 DOI: 10.1016/j.ijbiomac.2024.133635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Two-component signaling systems (TCS) are the predominant means of microbes for sensing and responding to environmental stimuli. Typically, TCS is comprised of a sensor histidine kinase (HK) and a cognate response regulator (RR), which might have coevolved together. They usually involve the phosphoryl transfer signaling mechanism. However, there are also some orphan and atypical HK and RR homologs, and their evolutionary origins are still not very clear. They are not associated with cognate pairs or lack the conserved residues for phosphoryl transfer, but they could receive or respond to signals from other regulators. The objective of this study is to reveal the evolutionary history of these orphan and atypical HK and RR homologs. Structural, domain, sequence, and phylogenetic analyses indicated that their evolution process might undergo gene duplication, divergence, and domain shuffling. Meanwhile, lateral gene transfer might also be involved for their gene distribution. Evolution of orphan and atypical HK and RR homologs have increased their signaling diversity, which could be helpful for microbial adaption in complex environments.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
5
|
Zhu Y, Lu T, Zhang H, Liu M, Pang X. SVEN_5003 is a Major Developmental Regulator in Streptomyces venezuelae. Curr Microbiol 2024; 81:166. [PMID: 38724665 DOI: 10.1007/s00284-024-03688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 05/15/2024]
Abstract
Many regulatory genes that affect cellular development in Streptomyces, such as the canonical bld genes, have already been identified. However, in this study, we identified sven_5003 in Streptomyces venezuelae as a major new developmental regulatory gene, the deletion of which leads to a bald phenotype, typical of bld mutants, under multiple growth conditions. Our data indicated that disruption of sven_5003 also has a differential impact on the production of the two antibiotics jadomycin and chloramphenicol. Enhanced production of jadomycin but reduced production of chloramphenicol were detected in our sven_5003 mutant strain (S. venezuelae D5003). RNA-Seq analysis indicated that SVEN_5003 impacts expression of hundreds of genes, including genes involved in development, primary and secondary metabolism, and genes of unknown function, a finding confirmed by real-time PCR analysis. Transcriptional analysis indicated that sven_5003 is an auto-regulatory gene, repressing its own expression. Despite the evidence indicating that SVEN_5003 is a regulatory factor, a putative DNA-binding domain was not predicted from its primary amino acid sequence, implying an unknown regulatory mechanism by SVEN_5003. Our findings revealed that SVEN_5003 is a pleiotropic regulator with a critical role in morphological development in S. venezuelae.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ting Lu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Hanlei Zhang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Meng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
6
|
Shepherdson EMF, Elliot MA. Redefining development in Streptomyces venezuelae: integrating exploration into the classical sporulating life cycle. mBio 2024; 15:e0242423. [PMID: 38470267 PMCID: PMC11005364 DOI: 10.1128/mbio.02424-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Two growth modes have been described for the filamentous Streptomyces bacteria. Their classic developmental life cycle culminates in the formation of dormant spores, where movement to new environments is mediated through spore dispersal. In contrast, exploratory growth proceeds as a rapidly expanding vegetative mycelium that leads to extensive surface colonization and is associated with the release of volatile compounds that promote alkalinization (and reduced iron bioavailability) of its surrounding environment. Here, we report that exploratory growth in Streptomyces venezuelae can proceed in tandem with classic sporulating development in response to specific nutritional cues. Sporulating exploration is not accompanied by a rise in environmental pH but has the same iron acquisition requirements as conventional exploration. We found that mutants that were defective in their ability to sporulate were unaffected in exploration, but mutants undergoing precocious sporulation were compromised in their exploratory growth and this appeared to be mediated through premature activation of the developmental regulator WhiI. Cell envelope integrity was also found to be critical for exploration, as mutations in the cell envelope stress-responsive extracytoplasmic function sigma factor SigE led to a failure to explore robustly under all exploration-promoting conditions. Finally, in expanding the known exploration-promoting conditions, we discovered that the model species Streptomyces lividans exhibited exploration capabilities, supporting the proposal that exploration is conserved across diverse streptomycetes. IMPORTANCE Streptomyces bacteria have evolved diverse developmental and metabolic strategies to thrive in dynamic environmental niches. Here, we report the amalgamation of previously disparate developmental pathways, showing that colony expansion via exploration can proceed in tandem with colony sporulation. This developmental integration extends beyond phenotype to include shared genetic elements, with sporulation-specific repressors being required for successful exploration. Comparing this new exploration mode with previously identified strategies has revealed key differences (e.g., no need for environmental alkalinization), and simultaneously allowed us to define unifying requirements for Streptomyces exploration. The "reproductive exploration" phenomenon reported here represents a unique bet-hedging strategy, with the Streptomyces colony engaging in an aggressive colonization strategy while transporting a protected genetic repository.
Collapse
Affiliation(s)
- Evan M. F. Shepherdson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Marie A. Elliot
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Augustijn HE, Roseboom AM, Medema MH, van Wezel GP. Harnessing regulatory networks in Actinobacteria for natural product discovery. J Ind Microbiol Biotechnol 2024; 51:kuae011. [PMID: 38569653 PMCID: PMC10996143 DOI: 10.1093/jimb/kuae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Microbes typically live in complex habitats where they need to rapidly adapt to continuously changing growth conditions. To do so, they produce an astonishing array of natural products with diverse structures and functions. Actinobacteria stand out for their prolific production of bioactive molecules, including antibiotics, anticancer agents, antifungals, and immunosuppressants. Attention has been directed especially towards the identification of the compounds they produce and the mining of the large diversity of biosynthetic gene clusters (BGCs) in their genomes. However, the current return on investment in random screening for bioactive compounds is low, while it is hard to predict which of the millions of BGCs should be prioritized. Moreover, many of the BGCs for yet undiscovered natural products are silent or cryptic under laboratory growth conditions. To identify ways to prioritize and activate these BGCs, knowledge regarding the way their expression is controlled is crucial. Intricate regulatory networks control global gene expression in Actinobacteria, governed by a staggering number of up to 1000 transcription factors per strain. This review highlights recent advances in experimental and computational methods for characterizing and predicting transcription factor binding sites and their applications to guide natural product discovery. We propose that regulation-guided genome mining approaches will open new avenues toward eliciting the expression of BGCs, as well as prioritizing subsets of BGCs for expression using synthetic biology approaches. ONE-SENTENCE SUMMARY This review provides insights into advances in experimental and computational methods aimed at predicting transcription factor binding sites and their applications to guide natural product discovery.
Collapse
Affiliation(s)
- Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Anna M Roseboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
8
|
Hao Y, Liu W, Li X, Wen Y. Streptomyces global regulators AfsR and AfsS interact to co-regulate antibiotic production and morphological development. Microb Biotechnol 2024; 17:e14319. [PMID: 37986689 PMCID: PMC10832544 DOI: 10.1111/1751-7915.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 11/22/2023] Open
Abstract
Streptomyces species have a complex life cycle and are the producers of ~70% of commercial antibiotics. Global regulators AfsR and AfsS are widespread among Streptomyces and have been identified as key activators of antibiotic production in several species. However, their roles as repressors of antibiotic production are unclear; in particular, nothing is known regarding the regulatory mechanism of AfsS, despite many decades of research, because it has no DNA-binding domain. Here, we demonstrate that AfsR and AfsS negatively regulate avermectin production and morphological development in the industrially important species S. avermitilis. AfsR directly represses ave structural genes (aveA1, aveA4), cluster-situated activator gene aveR, and eight key developmental genes, whereas it directly activates afsS, aco (for autoregulator avenolide biosynthesis), and avaR1 (encoding avenolide receptor). GST pull-down, microscale thermophoresis, co-immunoprecipitation, and chromatin immunoprecipitation-quantitative PCR assays demonstrated that AfsS interacts with AfsR to co-regulate target genes involved in avermectin production and development and that this interaction requires intact AfsS repeated sequences and enhances the binding affinity of AfsR to target promoters. AfsR/AfsS interaction also occurs in model species S. coelicolor and S. roseosporus (producer of daptomycin, a cyclic lipopeptide antibiotic widely used for the treatment of human infections), suggesting that such interaction is conserved in Streptomyces species. The master developmental repressor BldD acts as a direct activator of both afsR and afsS. Deletion of afsR or afsS strongly enhances avermectin production in wild-type and industrial S. avermitilis strains. Our findings demonstrate novel regulatory roles and mechanisms of AfsR and AfsS in Streptomyces and facilitate methods for antibiotic overproduction.
Collapse
Affiliation(s)
- Yi Hao
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenshuai Liu
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross-regulation in a three-component cell envelope stress signaling system of Brucella. mBio 2023; 14:e0238723. [PMID: 38032291 PMCID: PMC10746171 DOI: 10.1128/mbio.02387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE As intracellular pathogens, Brucella must contend with a variety of host-derived stressors when infecting a host cell. The inner membrane, cell wall, and outer membrane, i.e. the cell envelope, of Brucella provide a critical barrier to host assault. A conserved regulatory mechanism known as two-component signaling (TCS) commonly controls transcription of genes that determine the structure and biochemical composition of the cell envelope during stress. We report the identification of previously uncharacterized TCS genes that determine Brucella ovis fitness in the presence of cell envelope disruptors and within infected mammalian host cells. Our study reveals a new molecular mechanism of TCS-dependent gene regulation, and thereby advances fundamental understanding of transcriptional regulatory processes in bacteria.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Melene A. Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
McLaughlin M, Fiebig A, Crosson S. XRE transcription factors conserved in Caulobacter and φCbK modulate adhesin development and phage production. PLoS Genet 2023; 19:e1011048. [PMID: 37972151 PMCID: PMC10688885 DOI: 10.1371/journal.pgen.1011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and bacteriophage, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs throughout the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this cluster impact host-phage interactions. Here we show that a closely related group of XRE transcription factors encoded by both C. crescentus and φCbK can physically interact and function to control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK-encoded XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly inhibit transcription of host genes including hfiA, a potent holdfast inhibitor, and gafYZ, an activator of prophage-like gene transfer agents (GTAs). XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting the C. crescentus XRE transcription factors reduced φCbK burst size, while overexpressing these host genes or φCbK tgrL rescued this burst defect. We conclude that this XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
11
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross regulation in a three-component cell envelope stress signaling system of Brucella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536747. [PMID: 37873345 PMCID: PMC10592609 DOI: 10.1101/2023.04.15.536747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A multi-layered structure known as the cell envelope separates the controlled interior of bacterial cells from a fluctuating physical and chemical environment. The transcription of genes that determine cell envelope structure and function is commonly regulated by two-component signaling systems (TCS), comprising a sensor histidine kinase and a cognate response regulator. To identify TCS genes that contribute to cell envelope function in the intracellular mammalian pathogen, Brucella ovis, we subjected a collection of non-essential TCS deletion mutants to compounds that disrupt cell membranes and the peptidoglycan cell wall. Our screen led to the discovery of three TCS proteins that coordinately function to confer resistance to cell envelope stressors and to support B. ovis replication in the intracellular niche. This tripartite regulatory system includes the known cell envelope regulator, CenR, and a previously uncharacterized TCS, EssR-EssS, which is widely conserved in Alphaproteobacteria. The CenR and EssR response regulators bind a shared set of sites on the B. ovis chromosomes to control transcription of an overlapping set of genes with cell envelope functions. CenR directly interacts with EssR and functions to stimulate phosphoryl transfer from the EssS kinase to EssR, while CenR and EssR control the cellular levels of each other via a post-transcriptional mechanism. Our data provide evidence for a new mode of TCS cross-regulation in which a non-cognate response regulator affects both the activity and protein levels of a cognate TCS protein pair.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
12
|
McLaughlin M, Fiebig A, Crosson S. XRE Transcription Factors Conserved in Caulobacter and φCbK Modulate Adhesin Development and Phage Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554034. [PMID: 37645952 PMCID: PMC10462132 DOI: 10.1101/2023.08.20.554034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Upon infection, transcriptional shifts in both a host bacterium and its invading phage determine host and viral fitness. The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and phages, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs across the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this gene cluster impact host-phage interactions. Here we show that that a closely related group of XRE proteins, encoded by both C. crescentus and φCbK, can form heteromeric associations and control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly repress transcription of hfiA, a potent holdfast inhibitor, and gafYZ, a transcriptional activator of prophage-like gene transfer agents (GTAs) encoded on the C. crescentus chromosome. XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting host XRE transcription factors reduced φCbK burst size, while overexpressing these genes or φCbK tgrL rescued this burst defect. We conclude that an XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Schlimpert S, Elliot MA. The Best of Both Worlds-Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J Bacteriol 2023; 205:e0015323. [PMID: 37347176 PMCID: PMC10367585 DOI: 10.1128/jb.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marie A. Elliot
- Department of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Avramova MM, Stevenson CEM, Chandra G, Holmes NA, Bush MJ, Findlay KC, Buttner MJ. Global Effects of the Developmental Regulator BldB in Streptomyces venezuelae. J Bacteriol 2023; 205:e0013523. [PMID: 37249447 PMCID: PMC10294661 DOI: 10.1128/jb.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In Streptomyces, the Bld (Bald) regulators control formation of the reproductive aerial hyphae. The functions of some of these regulators have been well characterized, but BldB has remained enigmatic. In addition to the bldB gene itself, Streptomyces venezuelae has 10 paralogs of bldB that sit next to paralogs of whiJ and abaA. Transcriptome sequencing (RNA-seq) revealed that loss of BldB function causes the dramatic transcriptional upregulation of the abaA paralogs and a novel inhibitor of sporulation, iosA, and that cooverexpression of just two of these genes, iosA and abaA6, was sufficient to recapitulate the bldB mutant phenotype. Further RNA-seq analysis showed that the transcription factor WhiJ9 is required for the activation of iosA seen in the bldB mutant, and biochemical studies showed that WhiJ9 mediates the activation of iosA expression by binding to direct repeats in the iosA-whiJ9 intergenic region. BldB and BldB9 hetero-oligomerize, providing a potential link between BldB and the iosA-whiJ9-bldB9 locus. This work greatly expands our overall understanding of the global effects of the BldB developmental regulator. IMPORTANCE To reproduce and disperse, the filamentous bacterium Streptomyces develops specialized reproductive structures called aerial hyphae. The formation of these structures is controlled by the bld (bald) genes, many of which encode transcription factors whose functions have been characterized. An exception is BldB, a protein whose biochemical function is unknown. In this study, we gain insight into the global effects of BldB function by examining the genome-wide transcriptional effects of deleting bldB. We identify a small set of genes that are dramatically upregulated in the absence of BldB. We show that their overexpression causes the bldB phenotype and characterize a transcription factor that mediates the upregulation of one of these target genes. Our results provide new insight into how BldB influences Streptomyces development.
Collapse
Affiliation(s)
- Marieta M. Avramova
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Clare E. M. Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
15
|
Abanoz-Seçgin B, Otur Ç, Okay S, Kurt-Kızıldoğan A. The regulatory role of Fur-encoding SCLAV_3199 in iron homeostasis in Streptomyces clavuligerus. Gene 2023:147594. [PMID: 37364696 DOI: 10.1016/j.gene.2023.147594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Iron homeostasis is strictly regulated by complex cascades connected with secondary metabolism in bacteria. Ferric uptake regulators ('Fur's), siderophores, efflux systems, and two-component signal transduction systems are the leading players in response stimuli. However, these regulatory mechanisms remain to be elucidated in Streptomyces clavuligerus. Our study focused on unraveling a possible role of SCLAV_3199 which encodes a Fur family transcriptional regulator, particularly in iron regulation and at the global level in this species. We deleted the SCLAV_3199 gene in S. clavuligerus and compared gene expression differences with the wild-type strain based on iron availability by RNA-seq. We found a potential regulatory effect of SCLAV_3199 on many transcriptional regulators and transporters. Besides, the genes encoding iron sulfur binding proteins were overexpressed in the mutant in the presence of iron. Notably, catechol (SCLAV_5397), and hydroxamate-type (SCLAV_1952, SCLAV_4680) siderophore-related genes were upregulated in the mutant strain in iron scarcity. Concomitantly, S. clavuligerus Δ3199 produced 1.65 and 1.9 times more catechol and hydroxamate-type siderophores, respectively, than that of the wild type strain under iron depletion. Iron containing chemically defined medium did not favor antibiotic production in S. clavuligerus Δ3199 while fermentation in starch-asparagine medium led to improved cephamycin C (2.23-fold) and clavulanic acid (2.56-fold) production in the mutant compared to the control. However, better tunicamycin yield (2.64-fold) was obtained in trypticase soy broth-grown cultures of S. clavuligerus Δ3199. Our findings demonstrate that the SCLAV_3199 gene plays a significant role in regulating both iron homeostasis and secondary metabolite biosynthesis in S. clavuligerus.
Collapse
Affiliation(s)
- Büşra Abanoz-Seçgin
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun 55139, Türkiye
| | - Çiğdem Otur
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun 55139, Türkiye
| | - Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, 06230, Türkiye
| | | |
Collapse
|
16
|
Lilic M, Holmes NA, Bush MJ, Marti AK, Widdick DA, Findlay KC, Choi YJ, Froom R, Koh S, Buttner MJ, Campbell EA. Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB. Proc Natl Acad Sci U S A 2023; 120:e2220785120. [PMID: 36888660 PMCID: PMC10243135 DOI: 10.1073/pnas.2220785120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023] Open
Abstract
Studies of transcriptional initiation in different bacterial clades reveal diverse molecular mechanisms regulating this first step in gene expression. The WhiA and WhiB factors are both required to express cell division genes in Actinobacteria and are essential in notable pathogens such as Mycobacterium tuberculosis. The WhiA/B regulons and binding sites have been elucidated in Streptomyces venezuelae (Sven), where they coordinate to activate sporulation septation. However, how these factors cooperate at the molecular level is not understood. Here we present cryoelectron microscopy structures of Sven transcriptional regulatory complexes comprising RNA polymerase (RNAP) σA-holoenzyme and WhiA and WhiB, in complex with the WhiA/B target promoter sepX. These structures reveal that WhiB binds to domain 4 of σA (σA4) of the σA-holoenzyme, bridging an interaction with WhiA while making non-specific contacts with the DNA upstream of the -35 core promoter element. The N-terminal homing endonuclease-like domain of WhiA interacts with WhiB, while the WhiA C-terminal domain (WhiA-CTD) makes base-specific contacts with the conserved WhiA GACAC motif. Notably, the structure of the WhiA-CTD and its interactions with the WhiA motif are strikingly similar to those observed between σA4 housekeeping σ-factors and the -35 promoter element, suggesting an evolutionary relationship. Structure-guided mutagenesis designed to disrupt these protein-DNA interactions reduces or abolishes developmental cell division in Sven, confirming their significance. Finally, we compare the architecture of the WhiA/B σA-holoenzyme promoter complex with the unrelated but model CAP Class I and Class II complexes, showing that WhiA/WhiB represent a new mechanism in bacterial transcriptional activation.
Collapse
Affiliation(s)
- Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Alexandra K. Marti
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - David A. Widdick
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, UK
| | - Young Joo Choi
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Steven Koh
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, UK
| | | |
Collapse
|
17
|
Sánchez de la Nieta R, Santamaría RI, Díaz M. Two-Component Systems of Streptomyces coelicolor: An Intricate Network to Be Unraveled. Int J Mol Sci 2022; 23:ijms232315085. [PMID: 36499414 PMCID: PMC9739842 DOI: 10.3390/ijms232315085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria of the Streptomyces genus constitute an authentic biotech gold mine thanks to their ability to produce a myriad of compounds and enzymes of great interest at various clinical, agricultural, and industrial levels. Understanding the physiology of these organisms and revealing their regulatory mechanisms is essential for their manipulation and application. Two-component systems (TCSs) constitute the predominant signal transduction mechanism in prokaryotes, and can detect a multitude of external and internal stimuli and trigger the appropriate cellular responses for adapting to diverse environmental conditions. These global regulatory systems usually coordinate various biological processes for the maintenance of homeostasis and proper cell function. Here, we review the multiple TCSs described and characterized in Streptomyces coelicolor, one of the most studied and important model species within this bacterial group. TCSs are involved in all cellular processes; hence, unravelling the complex regulatory network they form is essential for their potential biotechnological application.
Collapse
|
18
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
19
|
Bautista S, Schmidt V, Guiseppi A, Mauriello EMF, Attia B, Elantak L, Mignot T, Mercier R. FrzS acts as a polar beacon to recruit SgmX, a central activator of type IV pili during Myxococcus xanthus motility. EMBO J 2022; 42:e111661. [PMID: 36345779 PMCID: PMC9811614 DOI: 10.15252/embj.2022111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
In rod-shaped bacteria, type IV pili (Tfp) promote twitching motility by assembling and retracting at the cell pole. In Myxococcus xanthus, a bacterium that moves in highly coordinated cell groups, Tfp are activated by a polar activator protein, SgmX. However, while it is known that the Ras-like protein MglA is required for unipolar targeting, how SgmX accesses the cell pole to activate Tfp is unknown. Here, we demonstrate that a polar beacon protein, FrzS, recruits SgmX at the cell pole. We identified two main functional domains, including a Tfp-activating domain and a polar-binding domain. Within the latter, we show that the direct binding of MglA-GTP unveils a hidden motif that binds directly to the FrzS N-terminal response regulator (CheY). Structural analyses reveal that this binding occurs through a novel binding interface for response regulator domains. In conclusion, the findings unveil the protein interaction network leading to the spatial activation of Tfp at the cell pole. This tripartite system is at the root of complex collective behaviours in this predatory bacterium.
Collapse
Affiliation(s)
- Sarah Bautista
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Victoria Schmidt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Annick Guiseppi
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Emillia M F Mauriello
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Bouchra Attia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Romain Mercier
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| |
Collapse
|
20
|
Genome-Wide Identification of the LexA-Mediated DNA Damage Response in Streptomyces venezuelae. J Bacteriol 2022; 204:e0010822. [PMID: 35862789 PMCID: PMC9380542 DOI: 10.1128/jb.00108-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA damage triggers a widely conserved stress response in bacteria called the SOS response, which involves two key regulators, the activator RecA and the transcriptional repressor LexA. Despite the wide conservation of the SOS response, the number of genes controlled by LexA varies considerably between different organisms. The filamentous soil-dwelling bacteria of the genus Streptomyces contain LexA and RecA homologs, but their roles in Streptomyces have not been systematically studied. Here, we demonstrate that RecA and LexA are required for the survival of Streptomyces venezuelae during DNA-damaging conditions and for normal development during unperturbed growth. Monitoring the activity of a fluorescent recA promoter fusion and LexA protein levels revealed that the activation of the SOS response is delayed in S. venezuelae. By combining global transcriptional profiling and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we determined the LexA regulon and defined the core set of DNA damage repair genes that are expressed in response to treatment with the DNA-alkylating agent mitomycin C. Our results show that DNA damage-induced degradation of LexA results in the differential regulation of LexA target genes. Using surface plasmon resonance, we further confirmed the LexA DNA binding motif (SOS box) and demonstrated that LexA displays tight but distinct binding affinities to its target promoters, indicating a graded response to DNA damage. IMPORTANCE The transcriptional regulator LexA functions as a repressor of the bacterial SOS response, which is induced under DNA-damaging conditions. This results in the expression of genes important for survival and adaptation. Here, we report the regulatory network controlled by LexA in the filamentous antibiotic-producing Streptomyces bacteria and establish the existence of the SOS response in Streptomyces. Collectively, our work reveals significant insights into the DNA damage response in Streptomyces that will promote further studies to understand how these important bacteria adapt to their environment.
Collapse
|
21
|
Falguera JVT, Stratton KJ, Bush MJ, Jani C, Findlay KC, Schlimpert S, Nodwell JR. DNA damage-induced block of sporulation in Streptomyces venezuelae involves downregulation of ssgB. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35704023 DOI: 10.1099/mic.0.001198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA damage often causes an arrest of the cell cycle that provides time for genome integrity to be restored. In bacteria, the classical SOS DNA damage response leads to an inhibition of cell division resulting in temporarily filamentous growth. This raises the question as to whether such a response mechanism might similarly function in naturally filamentous bacteria such as Streptomyces. Streptomyces exhibit two functionally distinct forms of cell division: cross-wall formation in vegetative hyphae and sporulation septation in aerial hyphae. Here, we show that the genotoxic agent mitomycin C confers a block in sporulation septation in
Streptomyces venezuelae
in a mechanism that involves, at least in part, the downregulation of ssgB. Notably, this DNA damage response does not appear to block cross-wall formation and may be independent of canonical SOS and developmental regulators. We also show that the mitomycin C-induced block in sporulation can be partially bypassed by the constitutive expression of ssgB, though this appears to be largely limited to mitomycin C treatment and the resultant spore-like cells have reduced viability.
Collapse
Affiliation(s)
- Jan V T Falguera
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada
| | - Kathryn J Stratton
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Charul Jani
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
22
|
Xu Z, Ji L, Tang W, Guo L, Gao C, Chen X, Liu J, Hu G, Liu L. Metabolic engineering of Streptomyces to enhance the synthesis of valuable natural products. ENGINEERING MICROBIOLOGY 2022; 2:100022. [PMID: 39628845 PMCID: PMC11611008 DOI: 10.1016/j.engmic.2022.100022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/06/2024]
Abstract
The mycelial bacterium Streptomyces is a workhorse for producing natural products, serving as a key source of drugs and other valuable chemicals. However, its complicated life cycle, silent biosynthetic gene clusters (BGCs), and poorly characterized metabolic mechanisms limit efficient production of natural products. Therefore, a metabolic engineering strategy, including traditional and emerging tools from different disciplines, was developed to further enhance natural product synthesis by Streptomyces. Here, current trends in systems metabolic engineering, including tools and strategies, are reviewed. Particularly, this review focuses on recent developments in the selection of methods for regulating the Streptomyces life cycle, strategies for the activation of silent gene clusters, and the exploration of regulatory mechanisms governing antibiotic production. Finally, future challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zuwei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lihao Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenxiu Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
SspH, a Novel HATPase Family Regulator, Controls Antibiotic Biosynthesis in Streptomyces. Antibiotics (Basel) 2022; 11:antibiotics11050538. [PMID: 35625182 PMCID: PMC9137472 DOI: 10.3390/antibiotics11050538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Streptomyces can produce a wealth of pharmaceutically valuable antibiotics and other bioactive compounds. Production of most antibiotics is generally low due to the rigorously controlled regulatory networks, in which global/pleiotropic and cluster-situated regulatory proteins coordinate with various intra- and extracellular signals. Thus, mining new antibiotic regulatory proteins, particularly the ones that are widespread, is essential for understanding the regulation of antibiotic biosynthesis. Here, in the biopesticide milbemycin producing strain Streptomyces bingchenggensis, a novel global/pleiotropic regulatory protein, SspH, a single domain protein containing only the HATPase domain, was identified as being involved in controlling antibiotic biosynthesis. The sspH overexpression inhibited milbemycin production by repressing the expression of milbemycin biosynthetic genes. The sspH overexpression also differentially influenced the expression of various antibiotic biosynthetic core genes. Site-directed mutagenesis revealed that the HATPase domain was essential for SspH’s function, and mutation of the conserved amino acid residues N54A and D84A led to the loss of SspH function. Moreover, cross-overexpression experiments showed that SspH and its orthologs, SCO1241 from Streptomyces coelicolor and SAVERM_07097 from Streptomyces avermitilis, shared identical functionality, and all exerted a positive effect on actinorhodin production but a negative effect on avermectin production, indicating that SspH-mediated differential control of antibiotic biosynthesis may be widespread in Streptomyces. This study extended our understanding of the regulatory network of antibiotic biosynthesis and provided effective targets for future antibiotic discovery and overproduction.
Collapse
|
24
|
Zhu Y, Wang X, Zhang J, Ni X, Zhang X, Tao M, Pang X. The regulatory gene wblA is a target of the orphan response regulator OrrA in Streptomyces coelicolor. Environ Microbiol 2022; 24:3081-3096. [PMID: 35384219 DOI: 10.1111/1462-2920.15992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Our previous study using transposon mutagenesis indicated that disruption of the putative response regulator gene orrA impacted antibiotic production in Streptomyces coelicolor. In this study, the role of OrrA was further characterized by comparing the phenotypes and transcriptomic profiles of the wild-type S. coelicolor strain M145 and ΔorrA, a strain with an inactivated orrA gene. Chromatin immunoprecipitation using a strain expressing OrrA fused with FLAG showed that OrrA binds the promoter of wblA, whose expression was downregulated in ΔorrA. The interaction of OrrA with the wblA promoter was further validated by a pull-down assay. Similar to ΔorrA, the deletion mutant of wblA (ΔwblA) was defective in development, and developmental genes were expressed at similar levels in ΔorrA and ΔwblA. Although both OrrA and WblA downregulated actinorhodin and undecylprodigiosin, their roles in regulation of the calcium-dependent antibiotic and yellow-pigmented type I polyketide differed. sco1375, a gene of unknown function, was identified as another OrrA target, and overexpression of either sco1375 or wblA in ΔorrA partially restored the wild-type phenotype, indicating that these genes mediate some of the effects of OrrA. This study revealed targets of OrrA and provided more insights into the role of the orphan response regulator OrrA in Streptomyces. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.,Colleage of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinyuan Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Ni
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xia Zhang
- Qingdao Vland Biotech Group Inc, Qingdao, 266000, China
| | - Meifeng Tao
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
25
|
Zambri MP, Williams MA, Elliot MA. How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Adv Microb Physiol 2022; 80:203-236. [PMID: 35489792 DOI: 10.1016/bs.ampbs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.
Collapse
Affiliation(s)
- Matthew P Zambri
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michelle A Williams
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
26
|
Exploratory Growth in Streptomyces venezuelae Involves a Unique Transcriptional Program, Enhanced Oxidative Stress Response, and Profound Acceleration in Response to Glycerol. J Bacteriol 2022; 204:e0062321. [PMID: 35254103 DOI: 10.1128/jb.00623-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploration is a recently discovered mode of growth and behavior exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signaling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in the expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source, and this response is broadly conserved across other exploration-competent species. IMPORTANCE Exploration represents an alternative growth strategy for Streptomyces bacteria and is initiated in response to other microbes or specific environmental conditions. Here, we show that entry into exploration involves comprehensive transcriptional reprogramming, with an emphasis on changes in primary metabolism and regulatory/signaling functions. Intriguingly, a number of transcription factor classes were downregulated upon entry into exploration. In contrast, respiration-associated genes were strongly induced, and this was accompanied by an enhanced oxidative stress response. Notably, our transcriptional analyses suggested that glycerol may play a role in exploration, and we found that glycerol supplementation dramatically enhanced the exploration response in many streptomycetes. This work sheds new light on the regulatory and metabolic cues that influence a fascinating new microbial behavior.
Collapse
|
27
|
Hwang S, Lee N, Choe D, Lee Y, Kim W, Kim JH, Kim G, Kim H, Ahn NH, Lee BH, Palsson BO, Cho BK. System-Level Analysis of Transcriptional and Translational Regulatory Elements in Streptomyces griseus. Front Bioeng Biotechnol 2022; 10:844200. [PMID: 35284422 PMCID: PMC8914203 DOI: 10.3389/fbioe.2022.844200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria belonging to Streptomyces have the ability to produce a wide range of secondary metabolites through a shift from primary to secondary metabolism regulated by complex networks activated after vegetative growth terminates. Despite considerable effort to understand the regulatory elements governing gene expression related to primary and secondary metabolism in Streptomyces, system-level information remains limited. In this study, we integrated four multi-omics datasets from Streptomyces griseus NBRC 13350: RNA-seq, ribosome profiling, dRNA-seq, and Term-Seq, to analyze the regulatory elements of transcription and translation of differentially expressed genes during cell growth. With the functional enrichment of gene expression in different growth phases, one sigma factor regulon and four transcription factor regulons governing differential gene transcription patterns were found. In addition, the regulatory elements of transcription termination and post-transcriptional processing at transcript 3'-end positions were elucidated, including their conserved motifs, stem-loop RNA structures, and non-terminal locations within the polycistronic operons, and the potential regulatory elements of translation initiation and elongation such as 5'-UTR length, RNA structures at ribosome-bound sites, and codon usage were investigated. This comprehensive genetic information provides a foundational genetic resource for strain engineering to enhance secondary metabolite production in Streptomyces.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Neung-Ho Ahn
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
28
|
Płachetka M, Krawiec M, Zakrzewska-Czerwińska J, Wolański M. AdpA Positively Regulates Morphological Differentiation and Chloramphenicol Biosynthesis in Streptomyces venezuelae. Microbiol Spectr 2021; 9:e0198121. [PMID: 34878326 PMCID: PMC8653842 DOI: 10.1128/spectrum.01981-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
In members of genus Streptomyces, AdpA is a master transcriptional regulator that controls the expression of hundreds of genes involved in morphological differentiation, secondary metabolite biosynthesis, chromosome replication, etc. However, the function of AdpASv, an AdpA ortholog of Streptomyces venezuelae, is unknown. This bacterial species is a natural producer of chloramphenicol and has recently become a model organism for studies on Streptomyces. Here, we demonstrate that AdpASv is essential for differentiation and antibiotic biosynthesis in S. venezuelae and provide evidence suggesting that AdpASv positively regulates its own gene expression. We speculate that the different modes of AdpA-dependent transcriptional autoregulation observed in S. venezuelae and other Streptomyces species reflect the arrangement of AdpA binding sites in relation to the transcription start site. Lastly, we present preliminary data suggesting that AdpA may undergo a proteolytic processing and we speculate that this may potentially constitute a novel regulatory mechanism controlling cellular abundance of AdpA in Streptomyces. IMPORTANCEStreptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites. Despite extensive studies, the function of AdpA in these processes remains elusive. This work provides insights into the role of a yet unstudied AdpA ortholog of Streptomyces venezuelae, now considered a novel model organism. We found that AdpA plays essential role in morphological differentiation and biosynthesis of chloramphenicol, a broad-spectrum antibiotic. We also propose that AdpA may undergo a proteolytic processing that presumably constitutes a novel mechanism regulating cellular abundance of this master regulator.
Collapse
Affiliation(s)
| | - Michał Krawiec
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
29
|
Djeghdir I, Chefdor F, Bertheau L, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Depierreux C, Larcher M, Lamblin F, Héricourt F, Glévarec G, Oudin A, Carpin S. Evaluation of type-B RR dimerization in poplar: A mechanism to preserve signaling specificity? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111068. [PMID: 34763861 DOI: 10.1016/j.plantsci.2021.111068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Plants possess specific signaling pathways, such as the MultiStep Phosphorelay (MSP), which is involved in cytokinin and ethylene sensing, and light, drought or osmotic stress sensing. These MSP comprise histidine-aspartate kinases (HKs) as receptors, histidine phosphotransfer (HPts) proteins acting as phosphorelay proteins, and response regulators (RRs), some of which act as transcription factors (type-B RRs). In previous studies, we identified partners of the poplar osmosensing signaling pathway, composed of two HKs, three main HPts, and six type-B RRs. To date, it is unresolved as to how cytokinin or osmotic stress signal specificity is achieved in the MSP in order to generate specific responses. Here, we present a large-scale interaction study of poplar type-B RR dimerization. Using the two-hybrid assay, we were able to show the homodimerization of type-B RRs, the heterodimerization of duplicated type-B RRs, and surprisingly, a lack of interaction between some type-B RRs belonging to different duplicates. The lack of interaction of the duplicates RR12-14 and RR18-19, which are involved in the osmosensing pathway has been confirmed by BiFC experiments. This study reveals, for the first time, an overview of type-B RR dimerization in poplar and makes way for the hypothesis that signal specificity for cytokinin or osmotic stress could be in part due to the fact that it is impossible for specific type-B RRs to heterodimerize.
Collapse
Affiliation(s)
- I Djeghdir
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Chefdor
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - L Bertheau
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - P Lemos Cruz
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - G Glévarec
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - A Oudin
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - S Carpin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France.
| |
Collapse
|
30
|
Pawlik KJ, Zelkowski M, Biernacki M, Litwinska K, Jaworski P, Kotowska M. GntR-like SCO3932 Protein Provides a Link between Actinomycete Integrative and Conjugative Elements and Secondary Metabolism. Int J Mol Sci 2021; 22:ijms222111867. [PMID: 34769298 PMCID: PMC8584621 DOI: 10.3390/ijms222111867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Streptomyces bacteria produce a plethora of secondary metabolites including the majority of medically important antibiotics. The onset of secondary metabolism is correlated with morphological differentiation and controlled by a complex regulatory network involving numerous regulatory proteins. Control over these pathways at the molecular level has a medical and industrial importance. Here we describe a GntR-like DNA binding transcription factor SCO3932, encoded within an actinomycete integrative and conjugative element, which is involved in the secondary metabolite biosynthesis regulation. Affinity chromatography, electrophoresis mobility shift assay, footprinting and chromatin immunoprecipitation experiments revealed, both in vitro and in vivo, SCO3932 binding capability to its own promoter region shared with the neighboring gene SCO3933, as well as promoters of polyketide metabolite genes, such as cpkD, a coelimycin biosynthetic gene, and actII-orf4—an activator of actinorhodin biosynthesis. Increased activity of SCO3932 target promoters, as a result of SCO3932 overproduction, indicates an activatory role of this protein in Streptomyces coelicolor A3(2) metabolite synthesis pathways.
Collapse
|
31
|
Undabarrena A, Pereira CF, Kruasuwan W, Parra J, Sélem-Mojica N, Vind K, Schniete JK. Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001084. [PMID: 34515628 PMCID: PMC8549240 DOI: 10.1099/mic.0.001084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Camila F Pereira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Worarat Kruasuwan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jonathan Parra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Nelly Sélem-Mojica
- Centro de Ciencias Matemáticas, Antigua Carretera a Pátzcuaro # 8701, Col. Ex Hacienda San José de la Huerta, Morelia C.P. 58089, Michoacán, México
| | - Kristiina Vind
- NAICONS Srl, Viale Ortles 22/4, 20139 Milan (MI), Italy
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1 6708 WD, Wageningen, Netherlands
| | - Jana K. Schniete
- Biology, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| |
Collapse
|
32
|
Gomez-Escribano JP, Holmes NA, Schlimpert S, Bibb MJ, Chandra G, Wilkinson B, Buttner MJ, Bibb MJ. Streptomyces venezuelae NRRL B-65442: genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. J Ind Microbiol Biotechnol 2021; 48:6294913. [PMID: 34100946 PMCID: PMC8788739 DOI: 10.1093/jimb/kuab035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
For over a decade, Streptomyces venezuelae has been used to study the molecular mechanisms that control morphological development in streptomycetes and it is now a well-established model strain. Its rapid growth and ability to sporulate in a near-synchronised manner in liquid culture, unusual among streptomycetes, greatly facilitates the application of modern molecular techniques such as ChIP-seq and RNA-seq, as well as fluorescence time-lapse imaging of the complete Streptomyces life cycle. Here we describe a high-quality genome sequence of our isolate of the strain (NRRL B-65442) consisting of an 8.2 Mb chromosome and a 158 kb plasmid, pSVJI1, which had not been reported previously. Surprisingly, while NRRL B-65442 yields green spores on MYM agar, the ATCC type strain 10712 (from which NRRL B-65442 was derived) produces grey spores. While comparison of the genome sequences of the two isolates revealed almost total identity, it did reveal a single nucleotide substitution in a gene, vnz_33525, likely to be involved in spore pigment biosynthesis. Replacement of the vnz_33525 allele of ATCC 10712 with that of NRRL B-65442 resulted in green spores, explaining the discrepancy in spore pigmentation. We also applied CRISPR-Cas9 to delete the essential parB of pSVJI1 to cure the plasmid from the strain without obvious phenotypic consequences.
Collapse
Affiliation(s)
| | - Neil A Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
33
|
The upcycled roles of pseudoenzymes in two-component signal transduction. Curr Opin Microbiol 2021; 61:82-90. [PMID: 33872991 DOI: 10.1016/j.mib.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022]
Abstract
Upon first glance at a bacterial genome, pseudoenzymes appear unremarkable due to their lack of critical motifs that facilitate catalysis. These pseudoenzymes exist within signal transduction enzymes including histidine kinases, response regulators, diguanylate cyclases, and phosphodiesterases. Here, we summarize recent studies of bacterial pseudo-histidine kinases and pseudo-response regulators that regulate cell division, capsule formation, and the circadian rhythm. These examples illuminate the mechanistic potential of catalytically dead signaling enzymes and their impact upon bacterial signal transduction. Moreover, proteins lacking characteristic catalytic features of two-component systems reveal the sophisticated underlying potential of canonical two-component systems.
Collapse
|
34
|
Cantlay S, Sen BC, Flärdh K, McCormick JR. Influence of core divisome proteins on cell division in Streptomyces venezuelae ATCC 10712. MICROBIOLOGY-SGM 2021; 167. [PMID: 33400639 DOI: 10.1099/mic.0.001015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sporulating, filamentous soil bacterium Streptomyces venezuelae ATCC 10712 differentiates under submerged and surface growth conditions. In order to lay a solid foundation for the study of development-associated division for this organism, a congenic set of mutants was isolated, individually deleted for a gene encoding either a cytoplasmic (i.e. ftsZ) or core inner membrane (i.e. divIC, ftsL, ftsI, ftsQ, ftsW) component of the divisome. While ftsZ mutants are completely blocked for division, single mutants in the other core divisome genes resulted in partial, yet similar, blocks in sporulation septum formation. Double and triple mutants for core divisome membrane components displayed phenotypes that were similar to those of the single mutants, demonstrating that the phenotypes were not synergistic. Division in this organism is still partially functional without multiple core divisome proteins, suggesting that perhaps other unknown lineage-specific proteins perform redundant functions. In addition, by isolating an ftsZ2p mutant with an altered -10 region, the conserved developmentally controlled promoter was also shown to be required for sporulation-associated division. Finally, microscopic observation of FtsZ-YFP dynamics in the different mutant backgrounds led to the conclusion that the initial assembly of regular Z rings does not per se require the tested divisome membrane proteins, but the stability of Z rings is dependent on the divisome membrane components tested. The observation is consistent with the interpretation that Z ring instability likely results from and further contributes to the observed defects in sporulation septation in mutants lacking core divisome proteins.
Collapse
Affiliation(s)
- Stuart Cantlay
- Present address: Department of Biological Sciences, West Liberty University, West Liberty, WV 26074, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | - Klas Flärdh
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Joseph R McCormick
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
35
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
36
|
Lee Y, Lee N, Hwang S, Kim K, Kim W, Kim J, Cho S, Palsson BO, Cho BK. System-level understanding of gene expression and regulation for engineering secondary metabolite production in Streptomyces. ACTA ACUST UNITED AC 2020; 47:739-752. [DOI: 10.1007/s10295-020-02298-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Abstract
The gram-positive bacterium, Streptomyces, is noticed for its ability to produce a wide array of pharmaceutically active compounds through secondary metabolism. To discover novel bioactive secondary metabolites and increase the production, Streptomyces species have been extensively studied for the past decades. Among the cellular components, RNA molecules play important roles as the messengers for gene expression and diverse regulations taking place at the RNA level. Thus, the analysis of RNA-level regulation is critical to understanding the regulation of Streptomyces’ metabolism and secondary metabolite production. A dramatic advance in Streptomyces research was made recently, by exploiting high-throughput technology to systematically understand RNA levels. In this review, we describe the current status of the system-wide investigation of Streptomyces in terms of RNA, toward expansion of its genetic potential for secondary metabolite synthesis.
Collapse
Affiliation(s)
- Yongjae Lee
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Namil Lee
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Soonkyu Hwang
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Kangsan Kim
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Woori Kim
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Jihun Kim
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Suhyung Cho
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Bernhard O Palsson
- grid.266100.3 0000 0001 2107 4242 Department of Bioengineering University of California San Diego 92093 La Jolla CA USA
- grid.266100.3 0000 0001 2107 4242 Department of Pediatrics University of California San Diego 92093 La Jolla CA USA
- grid.5170.3 0000 0001 2181 8870 Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark 2800 Lyngby Denmark
| | - Byung-Kwan Cho
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
- Intelligent Synthetic Biology Center 34141 Daejeon Republic of Korea
| |
Collapse
|
37
|
Haist J, Neumann SA, Al-Bassam MM, Lindenberg S, Elliot MA, Tschowri N. Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development. Mol Microbiol 2020; 114:808-822. [PMID: 32797697 DOI: 10.1111/mmi.14581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Indexed: 12/26/2022]
Abstract
The second messenger bis-3,5-cyclic di-guanosine monophosphate (c-di-GMP) determines when Streptomyces initiate sporulation. c-di-GMP signals are integrated into the genetic differentiation network by the regulator BldD and the sigma factor σWhiG . However, functions of the development-specific diguanylate cyclases (DGCs) CdgB and CdgC, and the c-di-GMP phosphodiesterases (PDEs) RmdA and RmdB, are poorly understood. Here, we provide biochemical evidence that the GGDEF-EAL domain protein RmdB from S. venezuelae is a monofunctional PDE that hydrolyzes c-di-GMP to 5'pGpG. Despite having an equivalent GGDEF-EAL domain arrangement, RmdA cleaves c-di-GMP to GMP and exhibits residual DGC activity. We show that an intact EAL motif is crucial for the in vivo function of both enzymes since strains expressing protein variants with an AAA motif instead of EAL are delayed in development, similar to null mutants. Transcriptome analysis of ∆cdgB, ∆cdgC, ∆rmdA, and ∆rmdB strains revealed that the c-di-GMP specified by these enzymes has a global regulatory role, with about 20% of all S. venezuelae genes being differentially expressed in the cdgC mutant. Our data suggest that the major c-di-GMP-controlled targets determining the timing and mode of sporulation are genes involved in cell division and the production of the hydrophobic sheath that covers Streptomyces aerial hyphae and spores.
Collapse
Affiliation(s)
- Julian Haist
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Alina Neumann
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Sandra Lindenberg
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Natalia Tschowri
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
38
|
McLean TC, Lo R, Tschowri N, Hoskisson PA, Al Bassam MM, Hutchings MI, Som NF. Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. MICROBIOLOGY-SGM 2020; 165:929-952. [PMID: 31334697 DOI: 10.1099/mic.0.000817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Streptomyces venezuelae is a Gram-positive, filamentous actinomycete with a complex developmental life cycle. Genomic analysis revealed that S. venezuelae encodes a large number of two-component systems (TCSs): these consist of a membrane-bound sensor kinase (SK) and a cognate response regulator (RR). These proteins act together to detect and respond to diverse extracellular signals. Some of these systems have been shown to regulate antimicrobial biosynthesis in Streptomyces species, making them very attractive to researchers. The ability of S. venezuelae to sporulate in both liquid and solid cultures has made it an increasingly popular model organism in which to study these industrially and medically important bacteria. Bioinformatic analysis identified 58 TCS operons in S. venezuelae with an additional 27 orphan SK and 18 orphan RR genes. A broader approach identified 15 of the 58 encoded TCSs to be highly conserved in 93 Streptomyces species for which high-quality and complete genome sequences are available. This review attempts to unify the current work on TCS in the streptomycetes, with an emphasis on S. venezuelae.
Collapse
Affiliation(s)
- Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Rebecca Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mahmoud M Al Bassam
- Department of Paediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Nicolle F Som
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
39
|
Stewart MYY, Bush MJ, Crack JC, Buttner MJ, Le Brun NE. Interaction of the Streptomyces Wbl protein WhiD with the principal sigma factor σ HrdB depends on the WhiD [4Fe-4S] cluster. J Biol Chem 2020; 295:9752-9765. [PMID: 32303639 PMCID: PMC7363131 DOI: 10.1074/jbc.ra120.012708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/15/2020] [Indexed: 12/29/2022] Open
Abstract
The bacterial protein WhiD belongs to the Wbl family of iron-sulfur [Fe-S] proteins present only in the actinomycetes. In Streptomyces coelicolor, it is required for the late stages of sporulation, but precisely how it functions is unknown. Here, we report results from in vitro and in vivo experiments with WhiD from Streptomyces venezuelae (SvWhiD), which differs from S. coelicolor WhiD (ScWhiD) only at the C terminus. We observed that, like ScWhiD and other Wbl proteins, SvWhiD binds a [4Fe-4S] cluster that is moderately sensitive to O2 and highly sensitive to nitric oxide (NO). However, although all previous studies have reported that Wbl proteins are monomers, we found that SvWhiD exists in a monomer-dimer equilibrium associated with its unusual C-terminal extension. Several Wbl proteins of Mycobacterium tuberculosis are known to interact with its principal sigma factor SigA. Using bacterial two-hybrid, gel filtration, and MS analyses, we demonstrate that SvWhiD interacts with domain 4 of the principal sigma factor of Streptomyces, σHrdB (σHrdB 4). Using MS, we determined the dissociation constant (Kd ) for the SvWhiD-σHrdB 4 complex as ∼0.7 μm, consistent with a relatively tight binding interaction. We found that complex formation was cluster dependent and that a reaction with NO, which was complete at 8-10 NO molecules per cluster, resulted in dissociation into the separate proteins. The SvWhiD [4Fe-4S] cluster was significantly less sensitive to reaction with O2 and NO when SvWhiD was bound to σHrdB 4, consistent with protection of the cluster in the complex.
Collapse
Affiliation(s)
- Melissa Y Y Stewart
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
40
|
Becher PG, Verschut V, Bibb MJ, Bush MJ, Molnár BP, Barane E, Al-Bassam MM, Chandra G, Song L, Challis GL, Buttner MJ, Flärdh K. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol 2020; 5:821-829. [DOI: 10.1038/s41564-020-0697-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
|
41
|
Latoscha A, Wörmann ME, Tschowri N. Nucleotide second messengers in Streptomyces. MICROBIOLOGY-SGM 2020; 165:1153-1165. [PMID: 31535967 DOI: 10.1099/mic.0.000846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic producing Streptomyces sense and respond to environmental signals by using nucleotide second messengers, including (p)ppGpp, cAMP, c-di-GMP and c-di-AMP. As summarized in this review, these molecules are important message carriers that coordinate the complex Streptomyces morphological transition from filamentous growth to sporulation along with the secondary metabolite production. Here, we provide an overview of the enzymes that make and break these second messengers and suggest candidates for (p)ppGpp and cAMP enzymes to be studied. We highlight the target molecules that bind these signalling molecules and elaborate individual functions that they control in the context of Streptomyces development. Finally, we discuss open questions in the field, which may guide future studies in this exciting research area.
Collapse
Affiliation(s)
- Andreas Latoscha
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mirka E Wörmann
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Natalia Tschowri
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
42
|
Gallagher KA, Schumacher MA, Bush MJ, Bibb MJ, Chandra G, Holmes NA, Zeng W, Henderson M, Zhang H, Findlay KC, Brennan RG, Buttner MJ. c-di-GMP Arms an Anti-σ to Control Progression of Multicellular Differentiation in Streptomyces. Mol Cell 2020; 77:586-599.e6. [PMID: 31810759 PMCID: PMC7005675 DOI: 10.1016/j.molcel.2019.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.
Collapse
Affiliation(s)
- Kelley A. Gallagher
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA,Corresponding author
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maureen J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hengshan Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK,Corresponding author
| |
Collapse
|
43
|
Lopatniuk M, Myronovskyi M, Nottebrock A, Busche T, Kalinowski J, Ostash B, Fedorenko V, Luzhetskyy A. Effect of “ribosome engineering” on the transcription level and production of S. albus indigenous secondary metabolites. Appl Microbiol Biotechnol 2019; 103:7097-7110. [DOI: 10.1007/s00253-019-10005-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 01/31/2023]
|
44
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
45
|
Novel Two-Component System MacRS Is a Pleiotropic Regulator That Controls Multiple Morphogenic Membrane Protein Genes in Streptomyces coelicolor. Appl Environ Microbiol 2019; 85:AEM.02178-18. [PMID: 30530707 DOI: 10.1128/aem.02178-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
As with most annotated two-component systems (TCSs) of Streptomyces coelicolor, the function of TCS SCO2120/2121 was unknown. Based on our findings, we have designated this TCS MacRS, for morphogenesis and actinorhodin regulator/sensor. Our study indicated that either single or double mutation of MacRS largely blocked production of actinorhodin but enhanced formation of aerial mycelium. Chromatin immunoprecipitation (ChIP) sequencing, using an S. coelicolor strain expressing MacR-Flag fusion protein, identified in vivo targets of MacR, and DNase I footprinting of these targets revealed a consensus sequence for MacR binding, TGAGTACnnGTACTCA, containing two 7-bp inverted repeats. A genome-wide search revealed sites identical or highly similar to this consensus sequence upstream of six genes encoding putative membrane proteins or lipoproteins. These predicted sites were confirmed as MacR binding sites by DNase I footprinting and electrophoretic mobility shift assays in vitro and by ChIP-quantitative PCR in vivo, and transcriptional analyses demonstrated that MacR significantly impacts expression of these target genes. Disruption of three of these genes, sco6728, sco4924, and sco4011, markedly accelerated aerial mycelium formation, indicating that their gene products are novel morphogenic factors. Two-hybrid assays indicated that these three proteins, which we have named morphogenic membrane protein A (MmpA; SCO6728), MmpB (SCO4924), and MmpC (SCO4011), interact with one another and with the putative membrane protein and MacR target SCO4225. Notably, SAV6081/82 and SVEN1780/81, homologs of MacRS TCS from S. avermitilis and S. venezuelae, respectively, can substitute for MacRS, indicating functional conservation. Our findings reveal a role for MacRS in cellular morphogenesis and secondary metabolism in Streptomyces IMPORTANCE TCSs help bacteria adapt to environmental stresses by altering gene expression. However, the roles and corresponding regulatory mechanisms of most TCSs in the Streptomyces model strain S. coelicolor are unknown. We investigated the previously uncharacterized MacRS TCS and identified the core DNA recognition sequence, two seven-nucleotide inverted repeats, for the DNA-binding protein MacR. We further found that MacR directly controls a group of membrane proteins, including MmpA-C, which are novel morphogenic factors that delay formation of aerial mycelium. We also discovered that these membrane proteins interact with one another and that other Streptomyces species have conserved MacRS homologs. Our findings suggest a conserved role for MacRS in morphogenesis and/or other membrane-associated activities. Additionally, our study showed that MacRS impacts, albeit indirectly, the production of the signature metabolite actinorhodin, further suggesting that MacRS and its homologs function as novel pleiotropic regulatory systems in Streptomyces.
Collapse
|
46
|
BldC Delays Entry into Development To Produce a Sustained Period of Vegetative Growth in Streptomyces venezuelae. mBio 2019; 10:mBio.02812-18. [PMID: 30723132 PMCID: PMC6428758 DOI: 10.1128/mbio.02812-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Understanding the mechanisms that drive bacterial morphogenesis depends on the dissection of the regulatory networks that underpin the cell biological processes involved. Recently, Streptomyces venezuelae has emerged as an attractive model system for the study of morphological differentiation in Streptomyces. This has led to significant progress in identifying the genes controlled by the transcription factors that regulate aerial mycelium formation (Bld regulators) and sporulation (Whi regulators). Taking advantage of S. venezuelae, we used ChIP-seq coupled with RNA-seq to identify the genes directly under the control of BldC. Because S. venezuelae sporulates in liquid culture, the complete spore-to-spore life cycle can be examined using time-lapse microscopy, and we applied this technique to the bldC mutant. These combined approaches reveal BldC to be a member of an emerging class of Bld regulators that function principally to repress key sporulation genes, thereby extending vegetative growth and blocking the onset of morphological differentiation. Streptomycetes are filamentous bacteria that differentiate by producing spore-bearing reproductive structures called aerial hyphae. The transition from vegetative to reproductive growth is controlled by the bld (bald) loci, and mutations in bld genes prevent the formation of aerial hyphae, either by blocking entry into development (typically mutations in activators) or by inducing precocious sporulation in the vegetative mycelium (typically mutations in repressors). One of the bld genes, bldC, encodes a 68-residue DNA-binding protein related to the DNA-binding domain of MerR-family transcription factors. Recent work has shown that BldC binds DNA by a novel mechanism, but there is less insight into its impact on Streptomyces development. Here we used ChIP-seq coupled with RNA-seq to define the BldC regulon in the model species Streptomyces venezuelae, showing that BldC can function both as a repressor and as an activator of transcription. Using electron microscopy and time-lapse imaging, we show that bldC mutants are bald because they initiate development prematurely, bypassing the formation of aerial hyphae. This is consistent with the premature expression of BldC target genes encoding proteins with key roles in development (e.g., whiD, whiI, sigF), chromosome condensation and segregation (e.g., smeA-sffA, hupS), and sporulation-specific cell division (e.g., dynAB), suggesting that BldC-mediated repression is critical to maintain a sustained period of vegetative growth prior to sporulation. We discuss the possible significance of BldC as an evolutionary link between MerR family transcription factors and DNA architectural proteins.
Collapse
|
47
|
Vashist A, Malhotra V, Sharma G, Tyagi JS, Clark-Curtiss JE. Interplay of PhoP and DevR response regulators defines expression of the dormancy regulon in virulent Mycobacterium tuberculosis. J Biol Chem 2018; 293:16413-16425. [PMID: 30181216 PMCID: PMC6200940 DOI: 10.1074/jbc.ra118.004331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Indexed: 11/06/2022] Open
Abstract
The DevR response regulator of Mycobacterium tuberculosis is an established regulator of the dormancy response in mycobacteria and can also be activated during aerobic growth conditions in avirulent strains, suggesting a complex regulatory system. Previously, we reported culture medium-specific aerobic induction of the DevR regulon genes in avirulent M. tuberculosis H37Ra that was absent in the virulent H37Rv strain. To understand the underlying basis of this differential response, we have investigated aerobic expression of the Rv3134c-devR-devS operon using M. tuberculosis H37Ra and H37Rv devR overexpression strains, designated as LIX48 and LIX50, respectively. Overexpression of DevR led to the up-regulation of a large number of DevR regulon genes in aerobic cultures of LIX48, but not in LIX50. To ascertain the involvement of PhoP response regulator, also known to co-regulate a subset of DevR regulon genes, we complemented the naturally occurring mutant phoPRa gene of LIX48 with the WT phoPRv gene. PhoPRv dampened the induced expression of the DevR regulon by >70-80%, implicating PhoP in the negative regulation of devR expression. Electrophoretic mobility shift assays confirmed phosphorylation-independent binding of PhoPRv to the Rv3134c promoter and further revealed that DevR and PhoPRv proteins exhibit differential DNA binding properties to the target DNA. Through co-incubations with DNA, ELISA, and protein complementation assays, we demonstrate that DevR forms a heterodimer with PhoPRv but not with the mutant PhoPRa protein. The study puts forward a new possible mechanism for coordinated expression of the dormancy regulon, having implications in growth adaptations critical for development of latency.
Collapse
Affiliation(s)
- Atul Vashist
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Malhotra
- the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
- From the Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Gunjan Sharma
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Josephine E Clark-Curtiss
- the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
- the School of Life Sciences, Arizona State University, Tempe, Arizona 85287, and
| |
Collapse
|
48
|
Hoskisson PA, Fernández‐Martínez LT. Regulation of specialised metabolites in Actinobacteria - expanding the paradigms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:231-238. [PMID: 29457705 PMCID: PMC6001450 DOI: 10.1111/1758-2229.12629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 06/01/2023]
Abstract
The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster-specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications.
Collapse
Affiliation(s)
- Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde, 161 Cathedral StreetGlasgow G4 0REUK
| | | |
Collapse
|
49
|
The MerR-like protein BldC binds DNA direct repeats as cooperative multimers to regulate Streptomyces development. Nat Commun 2018; 9:1139. [PMID: 29556010 PMCID: PMC5859096 DOI: 10.1038/s41467-018-03576-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/22/2018] [Indexed: 01/18/2023] Open
Abstract
Streptomycetes are notable for their complex life cycle and production of most clinically important antibiotics. A key factor that controls entry into development and the onset of antibiotic production is the 68-residue protein, BldC. BldC is a putative DNA-binding protein related to MerR regulators, but lacks coiled-coil dimerization and effector-binding domains characteristic of classical MerR proteins. Hence, the molecular function of the protein has been unclear. Here we show that BldC is indeed a DNA-binding protein and controls a regulon that includes other key developmental regulators. Intriguingly, BldC DNA-binding sites vary significantly in length. Our BldC-DNA structures explain this DNA-binding capability by revealing that BldC utilizes a DNA-binding mode distinct from MerR and other known regulators, involving asymmetric head-to-tail oligomerization on DNA direct repeats that results in dramatic DNA distortion. Notably, BldC-like proteins radiate throughout eubacteria, establishing BldC as the founding member of a new structural family of regulators. BldC regulates the onset of differentiation in Streptomycetes by a yet unknown molecular mechanism. Using a combination of structural, biochemical and in vivo approaches, the authors show that BldC controls the transcription of several developmental regulators and unravel its DNA binding mode.
Collapse
|
50
|
Mouri Y, Jang MS, Konishi K, Hirata A, Tezuka T, Ohnishi Y. Regulation of sporangium formation by the orphan response regulator TcrA in the rare actinomycete Actinoplanes missouriensis. Mol Microbiol 2018; 107:718-733. [PMID: 29363196 DOI: 10.1111/mmi.13910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 11/28/2022]
Abstract
The rare actinomycete Actinoplanes missouriensis forms terminal sporangia containing a few hundred flagellated spores, which can swim in aquatic environments after release from sporangium. However, gene regulation for its characteristic morphological development is largely unknown. Here, we report the functional analysis of an orphan response regulator, TcrA, which is encoded next to the chemotaxis-flagellar gene cluster. The tcrA null (ΔtcrA) mutant formed sporangium, in which sporulation proceeded. However, many distorted spores were produced and some spores ectopically germinated in the mutant sporangia. In addition, spores were hardly released from the mutant sporangia. A comparative RNA-Seq analysis between the wild-type and ΔtcrA strains showed that TcrA upregulated the transcription of more than 263 genes, which were integrated into 185 transcriptional units. In silico searches identified a 21-bp direct repeat sequence, 5'-nnGCA(A/C)CCG-n4 -GCA(A/C)CCGn-3', as the TcrA box, which was confirmed by electrophoretic mobility shift assays. Finally, we identified 34 transcriptional units as the TcrA regulon. TcrA seems to regulate a few hundred genes through the transcriptional activation of three FliA-family sigma factor genes besides its own regulon. We concluded that TcrA is a global transcriptional activator that controls many aspects of sporangium formation, including flagellar biogenesis, spore dormancy and sporangium dehiscence.
Collapse
Affiliation(s)
- Yoshihiro Mouri
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Moon-Sun Jang
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenji Konishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|