1
|
Ding Y, Zou M, Guo B. Genomic signatures associated with recurrent scale loss in cyprinid fish. Integr Zool 2025; 20:535-550. [PMID: 38816909 DOI: 10.1111/1749-4877.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Scale morphology represents a fundamental feature of fish and a key evolutionary trait underlying fish diversification. Despite frequent and recurrent scale loss throughout fish diversification, comprehensive genome-wide analyses of the genomic signatures associated with scale loss in divergent fish lineages remain scarce. In the current study, we investigated genome-wide signatures, specifically convergent protein-coding gene loss, amino acid substitutions, and cis-regulatory sequence changes, associated with recurrent scale loss in two divergent Cypriniformes lineages based on large-scale genomic, transcriptomic, and epigenetic data. Results demonstrated convergent changes in many genes related to scale formation in divergent scaleless fish lineages, including loss of P/Q-rich scpp genes (e.g. scpp6 and scpp7), accelerated evolution of non-coding elements adjacent to the fgf and fgfr genes, and convergent amino acid changes in genes (e.g. snap29) under relaxed selection. Collectively, these findings highlight the existence of a shared genetic architecture underlying recurrent scale loss in divergent fish lineages, suggesting that evolutionary outcomes may be genetically repeatable and predictable in the convergence of scale loss in fish.
Collapse
Affiliation(s)
- Yongli Ding
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
2
|
Dorans E, Jagadeesh K, Dey K, Price AL. Linking regulatory variants to target genes by integrating single-cell multiome methods and genomic distance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307813. [PMID: 38826240 PMCID: PMC11142273 DOI: 10.1101/2024.05.24.24307813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Methods that analyze single-cell paired RNA-seq and ATAC-seq multiome data have shown great promise in linking regulatory elements to genes. However, existing methods differ in their modeling assumptions and approaches to account for biological and technical noise-leading to low concordance in their linking scores-and do not capture the effects of genomic distance. We propose pgBoost, an integrative modeling framework that trains a non-linear combination of existing linking strategies (including genomic distance) on fine-mapped eQTL data to assign a probabilistic score to each candidate SNP-gene link. We applied pgBoost to single-cell multiome data from 85k cells representing 6 major immune/blood cell types. pgBoost attained higher enrichment for fine-mapped eSNP-eGene pairs (e.g. 21x at distance >10kb) than existing methods (1.2-10x; p-value for difference = 5e-13 vs. distance-based method and < 4e-35 for each other method), with larger improvements at larger distances (e.g. 35x vs. 0.89-6.6x at distance >100kb; p-value for difference < 0.002 vs. each other method). pgBoost also outperformed existing methods in enrichment for CRISPR-validated links (e.g. 4.8x vs. 1.6-4.1x at distance >10kb; p-value for difference = 0.25 vs. distance-based method and < 2e-5 for each other method), with larger improvements at larger distances (e.g. 15x vs. 1.6-2.5x at distance >100kb; p-value for difference < 0.009 for each other method). Similar improvements in enrichment were observed for links derived from Activity-By-Contact (ABC) scores and GWAS data. We further determined that restricting pgBoost to features from a focal cell type improved the identification of SNP-gene links relevant to that cell type. We highlight several examples where pgBoost linked fine-mapped GWAS variants to experimentally validated or biologically plausible target genes that were not implicated by other methods. In conclusion, a non-linear combination of linking strategies, including genomic distance, improves power to identify target genes underlying GWAS associations.
Collapse
|
3
|
Hsu LA, Wu S, Teng MS, Ko YL. Causal links of α-thalassemia indices and cardiometabolic traits and diabetes: MR study. Life Sci Alliance 2023; 6:e202302204. [PMID: 37788909 PMCID: PMC10547910 DOI: 10.26508/lsa.202302204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Our study aimed to investigate if genetic variants around 16p13.3's HBA1 locus, associated with erythrocyte indices and HbA1c levels, predict α-thalassemia-related erythrocyte indices, cardiometabolic traits, and diabetes risk in Taiwanese individuals. We analyzed Taiwan Biobank data, including whole-genome sequencing from 1,493 participants and genotyping arrays from 129,542 individuals. First, we performed regional association analysis using whole-genome sequencing data to identify genetic variants significantly associated with erythrocyte indices, confirming their linkage disequilibrium with the α0 thalassemia --SEA deletion mutation, a common cause of α-thalassemia in Southeast Asian populations. Deletion mutation sequencing further validated these variants' association with α-thalassemia. Subsequently, we analyzed genotyping array data, revealing associations between specific genetic variants and cardiometabolic traits, including lipid profiles, HbA1c levels, bilirubin levels, and diabetes risk. Using Mendelian randomization, we established causal relationships between α-thalassemia-related erythrocyte indices and cardiometabolic traits, elucidating their role in diabetes susceptibility. Our findings highlight genetic variants around the α-globin genes as surrogate markers for common α-thalassemia mutations in Taiwan, emphasizing the causal links between α-thalassemia-related erythrocyte indices, cardiometabolic traits, and heightened diabetes risk.
Collapse
Affiliation(s)
- Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- The Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Capasso S, Cardiero G, Musollino G, Prezioso R, Testa R, Dembech S, Piluso G, Nigro V, Digilio FA, Lacerra G. Functional analysis of three new alpha-thalassemia deletions involving MCS-R2 reveals the presence of an additional enhancer element in the 5' boundary region. PLoS Genet 2023; 19:e1010727. [PMID: 37216374 DOI: 10.1371/journal.pgen.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
We report three novel deletions involving the Multispecies Conserved Sequences (MCS) R2, also known as the Major Regulative Element (MRE), in patients showing the α-thalassemia phenotype. The three new rearrangements showed peculiar positions of the breakpoints. 1) The (αα)ES is a telomeric 110 kb deletion ending inside the MCS-R3 element. 2) The (αα)FG, 984 bp-long, ends 51 bp upstream to MCS-R2; both are associated with a severe α-thalassemia phenotype. 3) The (αα)CT, 5058 bp-long starts at position +93 of MCS-R2 and is the only one associated to a mild α-thalassemia phenotype. To understand the specific role of different segments of the MCS-R2 element and of its boundary regions we carried out transcriptional and expression analysis. Transcriptional analysis of patients' reticulocytes showed that (αα)ES was unable to produce α2-globin mRNA, while a high level of expression of the α2-globin genes (56%) was detected in (αα)CT deletion, characterized by the presence of the first 93 bp of MCS-R2. Expression analysis of constructs containing breakpoints and boundary regions of the deletions (αα)CT and (αα)FG, showed comparable activity both for MCS-R2 and the boundary region (-682/-8). Considering that the (αα)CT deletion, almost entirely removing MCS-R2, has a less severe phenotype than the (αα)FG α0thalassemia deletion, removing both MCS-R2 almost entirely and an upstream 679 bp, we infer for the first time that an enhancer element must exist in this region that helps to increase the expression of the α-globin genes. The genotype-phenotype relationship of other previously published MCS-R2 deletions strengthened our hypothesis.
Collapse
Affiliation(s)
- Serena Capasso
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" (IGB-ABT), National Research Council (CNR), Naples, Italy
| | - Giovanna Cardiero
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" (IGB-ABT), National Research Council (CNR), Naples, Italy
| | - Gennaro Musollino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" (IGB-ABT), National Research Council (CNR), Naples, Italy
| | - Romeo Prezioso
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" (IGB-ABT), National Research Council (CNR), Naples, Italy
| | - Rosario Testa
- A.O.U. Policlinico Rodolico-San Marco, University of Catania, Catania, Italy
| | - Sabrina Dembech
- Central analysis laboratory, Azienda Ospedaliero-Universitaria, Ospedali Riuniti, Foggia, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - F Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET-CNR), National Research Council (CNR), Naples, Italy
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" (IGB-ABT), National Research Council (CNR), Naples, Italy
| |
Collapse
|
5
|
Abstract
RNA modifications are prevalent among all the classes of RNA, regulate diverse biological processes, and have emerged as a key regulatory mechanism in post-transcriptional control of gene expression. They are subjected to precise spatial and temporal control and shown to be critical for the maintenance of normal development and physiology. For example, m6A modification of mRNA affects stability, recruitment of RNA binding protein (RBP), translation, and splicing. The deposition of m6A on the RNA happens co-transcriptionally, allowing the tight coupling between the transcription and RNA modification machinery. The m6A modification is affected by transcriptional dynamics, but recent insights also suggest that m6A machinery impacts transcription and chromatin signature.
Collapse
Affiliation(s)
- Junaid Akhtar
- Institute of Developmental Biology and Neurobiology, University of Mainz, Mainz, Germany
| | - Margot Lugoboni
- Department reproduction and development in health and disease, Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, Genetics, Reproduction and Development Institute (IGReD), Clermont-Ferrand, France
| | - Guillaume Junion
- Department reproduction and development in health and disease, Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, Genetics, Reproduction and Development Institute (IGReD), Clermont-Ferrand, France
| |
Collapse
|
6
|
Erlandsson L, Masoumi Z, Hansson LR, Hansson SR. The roles of free iron, heme, haemoglobin, and the scavenger proteins haemopexin and alpha-1-microglobulin in preeclampsia and fetal growth restriction. J Intern Med 2021; 290:952-968. [PMID: 34146434 DOI: 10.1111/joim.13349] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a complex pregnancy syndrome characterised by maternal hypertension and organ damage after 20 weeks of gestation and is associated with an increased risk of cardiovascular disease later in life. Extracellular haemoglobin (Hb) and its metabolites heme and iron are highly toxic molecules and several defence mechanisms have evolved to protect the tissue. OBJECTIVES We will discuss the roles of free iron, heme, Hb, and the scavenger proteins haemopexin and alpha-1-microglobulin in pregnancies complicated by PE and fetal growth restriction (FGR). CONCLUSION In PE, oxidative stress causes syncytiotrophoblast (STB) stress and increased shedding of placental STB-derived extracellular vesicles (STBEV). The level in maternal circulation correlates with the severity of hypertension and supports the involvement of STBEVs in causing maternal symptoms in PE. In PE and FGR, iron homeostasis is changed, and iron levels significantly correlate with the severity of the disease. The normal increase in plasma volume taking place during pregnancy is less for PE and FGR and therefore have a different impact on, for example, iron concentration, compared to normal pregnancy. Excess iron promotes ferroptosis is suggested to play a role in trophoblast stress and lipotoxicity. Non-erythroid α-globin regulates vasodilation through the endothelial nitric oxide synthase pathway, and hypoxia-induced α-globin expression in STBs in PE placentas is suggested to contribute to hypertension in PE. Underlying placental pathology in PE with and without FGR might be amplified by iron and heme overload causing oxidative stress and ferroptosis. As the placenta becomes stressed, the release of STBEVs increases and affects the maternal vasculature.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zahra Masoumi
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lucas R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Obstetrics and Gynecology, Skåne University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
7
|
Thompson AW, Hawkins MB, Parey E, Wcisel DJ, Ota T, Kawasaki K, Funk E, Losilla M, Fitch OE, Pan Q, Feron R, Louis A, Montfort J, Milhes M, Racicot BL, Childs KL, Fontenot Q, Ferrara A, David SR, McCune AR, Dornburg A, Yoder JA, Guiguen Y, Roest Crollius H, Berthelot C, Harris MP, Braasch I. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat Genet 2021; 53:1373-1384. [PMID: 34462605 PMCID: PMC8423624 DOI: 10.1038/s41588-021-00914-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin's importance for illuminating vertebrate biology and diversity in the genomic era.
Collapse
Affiliation(s)
- Andrew W Thompson
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - M Brent Hawkins
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Elise Parey
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, NC, USA
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (the Graduate University for Advanced Studies), Hayama, Japan
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Emily Funk
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Animal Science Department, University of California Davis, Davis, CA, USA
| | - Mauricio Losilla
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Olivia E Fitch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandra Louis
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | | | - Marine Milhes
- GeT-PlaGe, INRAE, Genotoul, Castanet-Tolosan, France
| | - Brett L Racicot
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Quenton Fontenot
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Allyse Ferrara
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Solomon R David
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, NC, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA
- Center for Human Health and the Environment, NC State University, Raleigh, NC, USA
| | | | - Hugues Roest Crollius
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Berthelot
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
- Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Larke MSC, Schwessinger R, Nojima T, Telenius J, Beagrie RA, Downes DJ, Oudelaar AM, Truch J, Graham B, Bender MA, Proudfoot NJ, Higgs DR, Hughes JR. Enhancers predominantly regulate gene expression during differentiation via transcription initiation. Mol Cell 2021; 81:983-997.e7. [PMID: 33539786 PMCID: PMC7612206 DOI: 10.1016/j.molcel.2021.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/25/2020] [Accepted: 01/02/2021] [Indexed: 12/16/2022]
Abstract
Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II). A key question is how transcriptional enhancers influence these events to control gene expression. Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide. This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing. Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and β-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression. Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process.
Collapse
Affiliation(s)
- Martin S C Larke
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Julia Truch
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryony Graham
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M A Bender
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Douglas R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Zittersteijn HA, Harteveld CL, Klaver-Flores S, Lankester AC, Hoeben RC, Staal FJT, Gonçalves MAFV. A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies. Front Genome Ed 2021; 2:617780. [PMID: 34713239 PMCID: PMC8525365 DOI: 10.3389/fgeed.2020.617780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Throughout the past decades, the search for a treatment for severe hemoglobinopathies has gained increased interest within the scientific community. The discovery that ɤ-globin expression from intact HBG alleles complements defective HBB alleles underlying β-thalassemia and sickle cell disease, has provided a promising opening for research directed at relieving ɤ-globin repression mechanisms and, thereby, improve clinical outcomes for patients. Various gene editing strategies aim to reverse the fetal-to-adult hemoglobin switch to up-regulate ɤ-globin expression through disabling either HBG repressor genes or repressor binding sites in the HBG promoter regions. In addition to these HBB mutation-independent strategies involving fetal hemoglobin (HbF) synthesis de-repression, the expanding genome editing toolkit is providing increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin (HbA) restoration for a personalized treatment of hemoglobinopathies. Moreover, besides genome editing, more conventional gene addition strategies continue under investigation to restore HbA expression. Together, this research makes hemoglobinopathies a fertile ground for testing various innovative genetic therapies with high translational potential. Indeed, the progressive understanding of the molecular clockwork underlying the hemoglobin switch together with the ongoing optimization of genome editing tools heightens the prospect for the development of effective and safe treatments for hemoglobinopathies. In this context, clinical genetics plays an equally crucial role by shedding light on the complexity of the disease and the role of ameliorating genetic modifiers. Here, we cover the most recent insights on the molecular mechanisms underlying hemoglobin biology and hemoglobinopathies while providing an overview of state-of-the-art gene editing platforms. Additionally, current genetic therapies under development, are equally discussed.
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis L. Harteveld
- Department of Human and Clinical Genetics, The Hemoglobinopathies Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arjan C. Lankester
- Department of Pediatrics, Stem Cell Transplantation Program, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
10
|
Cellular Basis of Embryonic Hematopoiesis and Its Implications in Prenatal Erythropoiesis. Int J Mol Sci 2020; 21:ijms21249346. [PMID: 33302450 PMCID: PMC7763178 DOI: 10.3390/ijms21249346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023] Open
Abstract
Primitive erythrocytes are the first hematopoietic cells observed during ontogeny and are produced specifically in the yolk sac. Primitive erythrocytes express distinct hemoglobins compared with adult erythrocytes and circulate in the blood in the nucleated form. Hematopoietic stem cells produce adult-type (so-called definitive) erythrocytes. However, hematopoietic stem cells do not appear until the late embryonic/early fetal stage. Recent studies have shown that diverse types of hematopoietic progenitors are present in the yolk sac as well as primitive erythroblasts. Multipotent hematopoietic progenitors that arose in the yolk sac before hematopoietic stem cells emerged likely fill the gap between primitive erythropoiesis and hematopoietic stem-cell-originated definitive erythropoiesis and hematopoiesis. In this review, we discuss the cellular origin of primitive erythropoiesis in the yolk sac and definitive hematopoiesis in the fetal liver. We also describe mechanisms for developmental switches that occur during embryonic and fetal erythropoiesis and hematopoiesis, particularly focusing on recent studies performed in mice.
Collapse
|
11
|
Redondo-Antón J, Fontela MG, Notario L, Torres-Ruiz R, Rodríguez-Perales S, Lorente E, Lauzurica P. Functional Characterization of a Dual Enhancer/Promoter Regulatory Element Leading Human CD69 Expression. Front Genet 2020; 11:552949. [PMID: 33193627 PMCID: PMC7652794 DOI: 10.3389/fgene.2020.552949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
The CD69 gene encodes a C-type lectin glycoprotein with immune regulatory properties which is expressed on the cell surfaces of all activated hematopoietic cells. CD69 activation kinetics differ by developmental stage, cell linage and activating conditions, and these differences have been attributed to the participation of complex gene regulatory networks. An evolutionarily conserved regulatory element, CNS2, located 4kb upstream of the CD69 gene transcriptional start site, has been proposed as the major candidate governing the gene transcriptional activation program. To investigate the function of human CNS2, we studied the effect of its endogenous elimination via CRISPR-Cas9 on CD69 protein and mRNA expression levels in various immune cell lines. Even when the entire promoter region was maintained, CNS2-/- cells did not express CD69, thus indicating that CNS2 has promoter-like characteristics. However, like enhancers, inverted CNS2 sustained transcription, although at a diminished levels, thereby suggesting that it has dual promoter and enhancer functions. Episomal luciferase assays further suggested that both functions are combined within the CNS2 regulatory element. In addition, CNS2 directs its own bidirectional transcription into two different enhancer-derived RNAs molecules (eRNAs) which are transcribed from two independent transcriptional start sites in opposite directions. This eRNA transcription is dependent on only the enhancer sequence itself, because in the absence of the CD69 promoter, sufficient RNA polymerase II levels are maintained at CNS2 to drive eRNA expression. Here, we describe a regulatory element with overlapping promoter and enhancer functions, which is essential for CD69 gene transcriptional regulation.
Collapse
Affiliation(s)
- Jennifer Redondo-Antón
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - M G Fontela
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Notario
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Lorente
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Pilar Lauzurica
- Immune Gene Regulation and Antigen Presentation Group, National Center for Microbiology, Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
12
|
Kominato Y, Sano R, Takahashi Y, Hayakawa A, Ogasawara K. Human ABO gene transcriptional regulation. Transfusion 2020; 60:860-869. [PMID: 32216153 PMCID: PMC7187371 DOI: 10.1111/trf.15760] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/06/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoichiro Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | |
Collapse
|
13
|
van de Lagemaat LN, Flenley M, Lynch MD, Garrick D, Tomlinson SR, Kranc KR, Vernimmen D. CpG binding protein (CFP1) occupies open chromatin regions of active genes, including enhancers and non-CpG islands. Epigenetics Chromatin 2018; 11:59. [PMID: 30292235 PMCID: PMC6173865 DOI: 10.1186/s13072-018-0230-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mechanism by which protein complexes interact to regulate the deposition of post-translational modifications of histones remains poorly understood. This is particularly important at regulatory regions, such as CpG islands (CGIs), which are known to recruit Trithorax (TrxG) and Polycomb group proteins. The CxxC zinc finger protein 1 (CFP1, also known as CGBP) is a subunit of the TrxG SET1 protein complex, a major catalyst of trimethylation of H3K4 (H3K4me3). RESULTS Here, we used ChIP followed by high-throughput sequencing (ChIP-seq) to analyse genomic occupancy of CFP1 in two human haematopoietic cell types. We demonstrate that CFP1 occupies CGIs associated with active transcription start sites (TSSs), and is mutually exclusive with H3K27 trimethylation (H3K27me3), a marker of polycomb repressive complex 2. Strikingly, rather than being restricted to active CGI TSSs, CFP1 also occupies a substantial fraction of active non-CGI TSSs and enhancers of transcribed genes. However, relative to other TrxG subunits, CFP1 was specialised to TSSs. Finally, we found enrichment of CpG-containing DNA motifs in CFP1 peaks at CGI promoters. CONCLUSIONS We found that CFP1 is not solely recruited to CpG islands as it was originally defined, but also other regions including non-CpG island promoters and enhancers.
Collapse
Affiliation(s)
- Louie N. van de Lagemaat
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Maria Flenley
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS UK
| | - Magnus D. Lynch
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS UK
- Centre for Stem Cells and Regenerative Medicine, 28th Floor Guy’s Tower, Great Maze Pond, London, SE1 9RT UK
- st John’s institute of dermatology, Great Maze Pond, London, SE1 9RT UK
| | - David Garrick
- INSERM, UMRS-1126, Institut Universitaire d’Hématologie, Université Paris Diderot, 75010 Paris, France
| | - Simon R. Tomlinson
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Kamil R. Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Douglas Vernimmen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
14
|
Stage-specific differential DNA methylation data analysis during human erythropoiesis in chromosome 16. Genet Res (Camb) 2018; 100:e5. [PMID: 30014809 DOI: 10.1017/s0016672318000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Previous studies have generated controversial findings regarding the correlation between DNA methylation in the human genome and gene expression. Some reports have indicated that promoter methylation is negatively correlated with gene expression levels; however, in some cases, a poor or positive correlation was reported. Most previous findings were based on general trends observed with whole-genome data analysis. Here, we present a novel chromosome-specific statistical analysis design of empirical Bayes differential tests for five phases of erythroid development. To better understand the common methylation patterns of differentially methylated regions (DMRs) during specific stages, we defined differential phases for each CpG locus, based on a maximum log2 fold change. Analyzing hypermethylated and hypomethylated CpG loci separately showed variations in methylation patterns during erythropoiesis in the gene body, promoter and enhancer regions. Hypomethylated DMRs showed stronger associations with erythroid-specific enhancers at the differentiation start phase and with exons in the intermediate phase. To investigate the hypomethylated DMRs further, transcription factor binding site-enrichment analysis was conducted. This analysis highlighted novel transcription factors during each differentiation stage that were not detected by previous differential methylation data analysis. In contrast, hypermethylated DMRs showed a consistent methylation pattern over the different genomic regions. Thus, a closer examination of DNA methylation patterns in a single chromosome during each developmental stage can contribute to verify the association nature between gene expression and DNA methylation.
Collapse
|
15
|
Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev 2018; 32:42-57. [PMID: 29378788 PMCID: PMC5828394 DOI: 10.1101/gad.308619.117] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/21/2017] [Indexed: 12/03/2022]
Abstract
Here, Mikhaylichenko et al. investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. The authors demonstrate that while the timing of enhancer transcription is correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers and conclude that this is likely an inherent sequence property of the elements themselves. Gene expression is regulated by promoters, which initiate transcription, and enhancers, which control their temporal and spatial activity. However, the discovery that mammalian enhancers also initiate transcription questions the inherent differences between enhancers and promoters. Here, we investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. We show that while the timing of enhancer transcription is generally correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers. To assess how this impacts function, we developed a dual transgenic assay to simultaneously measure enhancer and promoter activities from a single element in the same embryo. Extensive transgenic analysis revealed a relationship between the direction of endogenous transcription and the ability to function as an enhancer or promoter in vivo, although enhancer RNA (eRNA) production and activity are not always strictly coupled. Some enhancers (mainly bidirectional) can act as weak promoters, producing overlapping spatio–temporal expression. Conversely, bidirectional promoters often act as strong enhancers, while unidirectional promoters generally cannot. The balance between enhancer and promoter activity is generally reflected in the levels and directionality of eRNA transcription and is likely an inherent sequence property of the elements themselves.
Collapse
Affiliation(s)
- Olga Mikhaylichenko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Vladyslav Bondarenko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Dermot Harnett
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Ignacio E Schor
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Matilda Males
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| |
Collapse
|
16
|
Huang L, Liu P, Yuan Z, Zhou T, Yu J. The free-energy cost of interaction between DNA loops. Sci Rep 2017; 7:12610. [PMID: 28974770 PMCID: PMC5626758 DOI: 10.1038/s41598-017-12765-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/14/2017] [Indexed: 12/03/2022] Open
Abstract
From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.
Collapse
Affiliation(s)
- Lifang Huang
- Research Centre of Applied Mathematics, Guangzhou University, Guangzhou, 510006, P.R. China
- School of Statistics and Mathematics, Guangdong University of Finance & Economics, Guangzhou, 510275, P.R. China
| | - Peijiang Liu
- School of Statistics and Mathematics, Guangdong University of Finance & Economics, Guangzhou, 510275, P.R. China
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, P.R. China.
| | - Jianshe Yu
- Research Centre of Applied Mathematics, Guangzhou University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
17
|
Farashi S, Harteveld CL. Molecular basis of α-thalassemia. Blood Cells Mol Dis 2017; 70:43-53. [PMID: 29032940 DOI: 10.1016/j.bcmd.2017.09.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/05/2023]
Abstract
α-Thalassemia is an inherited, autosomal recessive, disorder characterized by a microcytic hypochromic anemia. It is one of the most common monogenic gene disorders in the world population. The clinical severity varies from almost asymptomatic, to mild microcytic hypochromic, and to a lethal hemolytic condition, called Hb Bart's Hydrops Foetalis Syndrome. The molecular basis are usually deletions and less frequently, point mutations affecting the expression of one or more of the duplicated α-genes. The clinical variation and increase in disease severity is directly related to the decreased expression of one, two, three or four copies of the α-globin genes. Deletions and point mutations in the α-globin genes and their regulatory elements have been studied extensively in carriers and patients and these studies have given insight into the α-globin genes are regulated. By looking at naturally occurring deletions and point mutations, our knowledge of globin-gene regulation and expression will continue to increase and will lead to new targets of therapy.
Collapse
Affiliation(s)
- Samaneh Farashi
- Dept. of Clinical Genetics, Hemoglobinopathy Expert Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis L Harteveld
- Dept. of Clinical Genetics, Hemoglobinopathy Expert Center, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Ferrão J, Silva M, Gonçalves L, Gomes S, Loureiro P, Coelho A, Miranda A, Seuanes F, Reis AB, Pina F, Maia R, Kjöllerström P, Monteiro E, Lacerda JF, Lavinha J, Gonçalves J, Faustino P. Widening the spectrum of deletions and molecular mechanisms underlying alpha-thalassemia. Ann Hematol 2017; 96:1921-1929. [DOI: 10.1007/s00277-017-3090-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/01/2017] [Indexed: 10/18/2022]
|
19
|
Ulianov SV, Galitsyna AA, Flyamer IM, Golov AK, Khrameeva EE, Imakaev MV, Abdennur NA, Gelfand MS, Gavrilov AA, Razin SV. Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure. Epigenetics Chromatin 2017; 10:35. [PMID: 28693562 PMCID: PMC5504709 DOI: 10.1186/s13072-017-0142-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. RESULTS We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. CONCLUSIONS Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.
Collapse
Affiliation(s)
- Sergey V Ulianov
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia 119992
| | - Aleksandra A Galitsyna
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334.,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia 119992.,Institute for Information Transmission Problems (the Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia 127051
| | - Ilya M Flyamer
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia 119992.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Arkadiy K Golov
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334
| | - Ekaterina E Khrameeva
- Skolkovo Institute of Science and Technology, Skolkovo, Russia 143026.,Institute for Information Transmission Problems (the Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia 127051
| | - Maxim V Imakaev
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Nezar A Abdennur
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Mikhail S Gelfand
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia 119992.,Skolkovo Institute of Science and Technology, Skolkovo, Russia 143026.,Institute for Information Transmission Problems (the Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia 127051.,Faculty of Computer Science, Higher School of Economics, Moscow, Russia 125319
| | - Alexey A Gavrilov
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334
| | - Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia 119992
| |
Collapse
|
20
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
21
|
De Gobbi M, Brazel AJ, Sharpe JA, Sloane-Stanley JA, Smith AJ, Wood WG, Vernimmen D. Enhancer deletion generates cellular phenotypic diversity due to bimodal gene expression. Blood Cells Mol Dis 2017; 64:10-12. [PMID: 28292728 DOI: 10.1016/j.bcmd.2017.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Marco De Gobbi
- University of Torino, Department of Clinical and Biological Sciences, AOU San Luigi Gonzaga, Orbassano 10043, Torino, Italy
| | - Ailbhe J Brazel
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Jacqueline A Sharpe
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Jacqueline A Sloane-Stanley
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Andrew J Smith
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - William G Wood
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| |
Collapse
|
22
|
Seifi M, Footz T, Taylor SAM, Elhady GM, Abdalla EM, Walter MA. Novel PITX2 gene mutations in patients with Axenfeld-Rieger syndrome. Acta Ophthalmol 2016; 94:e571-e579. [PMID: 27009473 DOI: 10.1111/aos.13030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/23/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Mutations in the bicoid-like transcription factor PITX2 gene often result in Axenfeld-Rieger syndrome (ARS), an autosomal-dominant inherited disorder. We report here the discovery and characterization of novel PITX2 deletions in a small kindred with ARS. METHODS Two familial patients (father and son) from a consanguineous family were examined in the present study. Patient DNA samples were screened for PITX2 mutations by DNA sequencing and for copy number variation by SYBR Green quantitative polymerase chain reaction (PCR) analysis. RESULTS We report a novel deletion involving the coding region of PITX2 in both patients. The minimum size of the deletion is 1 421 914 bp that spans one upstream regulatory element (CE4), PITX2 and a minimum of 13 neighbouring genes. The maximum size of the deletion is 3 789 983 bp. The proband (son) additionally possesses a novel 2-bp deletion in a non-coding exon of the remaining PITX2 allele predicted to alter correct splicing. CONCLUSION Our findings implicate a novel deletion of the PITX2 gene in the pathogenesis of ARS in the affected family. This ARS family presented with an atypical and extremely severe phenotype that resulted in four miscarriages and the death at 10 months of age of a sib of the proband. As the phenotypic manifestations in the proband are more severe than that of the father, we hypothesize that the deletion of the entire PITX2 allele plus a novel 2-bp deletion (observed in the proband) within the remaining PITX2 allele together contributed to the atypical ARS presentation in this family. This is the first study reporting on bi-allelic changes of PITX2 potentially contributing to a more severe ARS phenotype.
Collapse
Affiliation(s)
- Morteza Seifi
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sherry A M Taylor
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ghada M Elhady
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ebtesam M Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Michael A Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
23
|
Martyn GE, Quinlan KGR, Crossley M. The regulation of human globin promoters by CCAAT box elements and the recruitment of NF-Y. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:525-536. [PMID: 27718361 DOI: 10.1016/j.bbagrm.2016.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023]
Abstract
CCAAT boxes are motifs found within the proximal promoter of many genes, including the human globin genes. The highly conserved nature of CCAAT box motifs within the promoter region of both α-like and β-like globin genes emphasises the functional importance of the CCAAT sequence in globin gene regulation. Mutations within the β-globin CCAAT box result in β-thalassaemia, while mutations within the distal γ-globin CCAAT box cause the Hereditary Persistence of Foetal Haemoglobin, a benign condition which results in continued γ-globin expression during adult life. Understanding the transcriptional regulation of the globin genes is of particular interest, as reactivating the foetal γ-globin gene alleviates the symptoms of β-thalassaemia and sickle cell anaemia. NF-Y is considered to be the primary activating transcription factor which binds to globin CCAAT box motifs. Here we review recruitment of NF-Y to globin CCAAT boxes and the role NF-Y plays in regulating globin gene expression. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Gabriella E Martyn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
24
|
Sano R, Nakajima T, Takahashi Y, Kubo R, Kobayashi M, Takahashi K, Takeshita H, Ogasawara K, Kominato Y. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5. J Biol Chem 2016; 291:22594-22606. [PMID: 27587399 DOI: 10.1074/jbc.m116.730655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Indexed: 01/03/2023] Open
Abstract
The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.
Collapse
Affiliation(s)
- Rie Sano
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan,
| | - Tamiko Nakajima
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Yoichiro Takahashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Rieko Kubo
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Momoko Kobayashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Keiko Takahashi
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Haruo Takeshita
- the Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan, and
| | | | - Yoshihiko Kominato
- From the Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| |
Collapse
|
25
|
Vernimmen D, Bickmore WA. The Hierarchy of Transcriptional Activation: From Enhancer to Promoter. Trends Genet 2016; 31:696-708. [PMID: 26599498 DOI: 10.1016/j.tig.2015.10.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/18/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
Regulatory elements (enhancers) that are remote from promoters play a critical role in the spatial, temporal, and physiological control of gene expression. Studies on specific loci, together with genome-wide approaches, suggest that there may be many common mechanisms involved in enhancer-promoter communication. Here, we discuss the multiprotein complexes that are recruited to enhancers and the hierarchy of events taking place between regulatory elements and promoters.
Collapse
Affiliation(s)
- Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
26
|
Liu T, Zhang J, Zhou T. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression. PLoS Comput Biol 2016; 12:e1004917. [PMID: 27153118 PMCID: PMC4859557 DOI: 10.1371/journal.pcbi.1004917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023] Open
Abstract
According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.
Collapse
Affiliation(s)
- Tuoqi Liu
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Tianshou Zhou
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
27
|
Mettananda S, Gibbons RJ, Higgs DR. Understanding α-globin gene regulation and implications for the treatment of β-thalassemia. Ann N Y Acad Sci 2015; 1368:16-24. [PMID: 26695885 DOI: 10.1111/nyas.12988] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past three decades, a vast amount of new information has been uncovered describing how the globin genes are regulated. This knowledge has provided significant insights into the general understanding of the regulation of human genes. It is now known that molecular defects within and around the α- and β-globin genes, as well as in the distant regulatory elements, can cause thalassemia. Unbalanced production of globin chains owing to defective synthesis of one, and the continued unopposed synthesis of another, is the central causative factor in the cellular pathology and pathophysiology of thalassemia. A large body of clinical, genetic, and experimental evidence suggests that altering globin chain imbalance by reducing the production of α-globin synthesis ameliorates the disease severity in patients with β-thalassemia. With the development of new genetic-based therapeutic tools that have a potential to decrease the expression of a selected gene in a tissue-specific manner, the possibility of decreasing expression of the α-globin gene to improve the clinical severity of β-thalassemia could become a reality.
Collapse
Affiliation(s)
- Sachith Mettananda
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Department of Pediatrics, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Richard J Gibbons
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Douglas R Higgs
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Oxford National Institute for Health Research Biomedical Research Centre, Blood Theme, Oxford University Hospital, Oxford, United Kingdom
| |
Collapse
|
28
|
Brazel AJ, Vernimmen D. The complexity of epigenetic diseases. J Pathol 2015; 238:333-44. [PMID: 26419725 PMCID: PMC4982038 DOI: 10.1002/path.4647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022]
Abstract
Over the past 30 years, a plethora of pathogenic mutations affecting enhancer regions and epigenetic regulators have been identified. Coupled with more recent genome‐wide association studies (GWAS) and epigenome‐wide association studies (EWAS) implicating major roles for regulatory mutations in disease, it is clear that epigenetic mechanisms represent important biomarkers for disease development and perhaps even therapeutic targets. Here, we discuss the diversity of disease‐causing mutations in enhancers and epigenetic regulators, with a particular focus on cancer. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ailbhe Jane Brazel
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
29
|
Abstract
Abstract
An intimate relationship exists between nuclear architecture and gene activity. Unraveling the fine-scale three-dimensional structure of the genome and its impact on gene regulation is a major goal of current epigenetic research, one with direct implications for understanding the molecular mechanisms underlying human phenotypic variation and disease susceptibility. In this context, the novel revolutionary genome editing technologies and emerging new ways to manipulate genome folding offer new promises for the treatment of human disorders.
Collapse
|