1
|
Ali TT, Merghani M, Al-Azzani M, Gatzemeier LM, Hoppert M, Kaloyanova D, Outeiro TF, Neumann P, Popova B, Braus GH. Rationally designed peptides inhibit the formation of α-synuclein fibrils and oligomers. Eur J Med Chem 2025; 289:117452. [PMID: 40022877 DOI: 10.1016/j.ejmech.2025.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Parkinson's Disease (PD) is characterized by the pathological aggregation of α-synuclein (αSyn) into oligomers and amyloid fibrils, making αSyn aggregation a key target for drug development. Peptides have gained recent attention as potential agents to inhibit aggregation. Two previously identified peptide inhibitors, discovered through large-scale yeast screening, were used as templates for in silico mutagenesis aimed at designing novel peptides with improved efficacy in inhibiting αSyn aggregation and cytotoxicity. The newly designed peptides underwent in silico docking analysis, and the most promising candidates were tested in vitro and in cellular models. Peptides T02 and T05 emerged as the most effective inhibitors, with T02 binding αSyn monomers and T05 targeting lower-order oligomers. Both peptides reduce αSyn fibril and oligomer formation in vitro and significantly suppress αSyn aggregation and cytotoxicity in yeast and human H4 cells. These novel peptides represent antagonists of αSyn aggregation with promising potential for therapeutic intervention for PD.
Collapse
Affiliation(s)
- Tariq T Ali
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Madiha Merghani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Luisa Maria Gatzemeier
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Michael Hoppert
- Department of General Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Dora Kaloyanova
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Boschen SL, A Mukerjee A, H Faroqi A, E Rabichow B, Fryer J. Research models to study lewy body dementia. Mol Neurodegener 2025; 20:46. [PMID: 40269912 PMCID: PMC12020038 DOI: 10.1186/s13024-025-00837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Lewy body dementia (LBD) encompasses neurodegenerative dementias characterized by cognitive fluctuations, visual hallucinations, and parkinsonism. Clinical differentiation of LBD from Alzheimer's disease (AD) remains complex due to symptom overlap, yet approximately 25% of dementia cases are diagnosed as LBD postmortem, primarily identified by the presence of α-synuclein aggregates, tau tangles, and amyloid plaques. These pathological features position LBD as a comorbid condition of both Parkinson's disease (PD) and AD, with over 50% of LBD cases exhibiting co-pathologies. LBD's mixed pathology complicates the development of comprehensive models that reflect the full spectrum of LBD's etiological, clinical, and pathological features. While existing animal and cellular models have facilitated significant discoveries in PD and AD research, they lack specificity in capturing LBD's unique pathogenic mechanisms, limiting the exploration of therapeutic avenues for LBD specifically. This review assesses widely used PD and AD models in terms of their relevance to LBD, particularly focusing on their ability to replicate human disease pathology and assess treatment efficacy. Furthermore, we discuss potential modifications to these models to advance the understanding of LBD mechanisms and propose innovative research directions aimed at developing models with enhanced etiological, face, predictive, and construct validity.
Collapse
Affiliation(s)
- Suelen Lucio Boschen
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
- Department of Neurosurgery, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| | - Aarushi A Mukerjee
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ayman H Faroqi
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ben E Rabichow
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - John Fryer
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 850054, USA
| |
Collapse
|
3
|
Zhao L, Cao Y, Xin Y, Liu C, Yang J, Li Y, Tian S, Liu Z, Jia H, Liu M, Hu M, Luo L, Meng F. Targeted Raman Visualization and Mitigation of α-Synuclein Amyloidogenesis in Living Zebrafish by a Nanobody-Decorated Polydiacetylene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411419. [PMID: 39996265 DOI: 10.1002/smll.202411419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Indexed: 02/26/2025]
Abstract
α-Synuclein (α-Syn) amyloidogenesis is considered a promising diagnostic marker and therapeutic target for Parkinson's disease (PD). Simultaneously visualizing and mitigating α-Syn amyloidogenesis are essential for future PD theranostics, yet they continue to pose an insurmountable challenge. This study have herein developed a nanobody-decorated polydiacetylene to approach a straightforward solution. Grafting α-Syn61-95 segment into the third complementary determining region of a parent nanobody generates an engineered nanobody X30 that can bind with α-Syn and prevent its amyloidogenesis through homotypic interaction. It next use X30 to decorate poly(deca-4,6-diynedioic acid) (PDDA), a polydiacetylene with an ultrastrong alkyne Raman signal (2120 cm-1) in the cellular silent region, to create an α-Syn targeting Raman probe PX30. The binding affinity between X30 and α-Syn can be further boosted for over 150 times attributed to the rigidity of PDDA backbone and the multivalent effect. Therefore, PX30 not only enables real-time Raman visualization of α-Syn amyloidogenesis with a high signal-to-noise ratio in living zebrafish, but also alleviates amyloidogenesis-mediated damage to zebrafish embryos by effectively inhibiting α-Syn amyloidogenesis at low stoichiometric concentrations and scavenging pathologic reactive oxygen species.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chenxi Liu
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Jin Yang
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Yanan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Min Hu
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry, Materia Medica School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry, Materia Medica School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Yaribash S, Mohammadi K, Sani MA. Alpha-Synuclein Pathophysiology in Neurodegenerative Disorders: A Review Focusing on Molecular Mechanisms and Treatment Advances in Parkinson's Disease. Cell Mol Neurobiol 2025; 45:30. [PMID: 40140103 PMCID: PMC11947388 DOI: 10.1007/s10571-025-01544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Worldwide aging has contributed to the growth of prevalence of neurodegenerative diseases (NDDs), including Parkinson's disease among the elderlies. The advanced destruction of dopaminergic neurons in the substantia nigra, due to many accelerator factors in the brain is the main mechanism of Parkinson's disease. The pathological aggregated alpha-synuclein (α-syn), a protein implicated in multiple neurodegenerative disorders, is one of the critical factors in this neurodegenerative disease and other similar disorders. The misfolding and aggregation of α-syn may interrupt critical processes, including functions of synaptic vesicles and can lead to neuronal death. This protein is encoded by Alpha-Synuclein Gene (SNCA) and mutation in this gene can lead to dysfunctions of the protein structure. Since, therapeutic policies that aim α-syn are promising approaches. Advances in immunotherapies, molecular chaperones, gene therapy targeting SNCA, and DNA aptamers are some examples of this strategy. This review aims to comprehensively assess the current knowledge and evidence on α-syn pathology, genetic determinants, and novel therapeutic methods in Parkinson,'s disease and other synucleinopathies. Continued investigation to discover interventions in this system could result in finding of effective and safe treatments for NDDs.
Collapse
Affiliation(s)
- Shakila Yaribash
- Faculty of Pharmacy, Tehran University of Medical Sciences, Enghelab Square, 16 Azar Street, Tehran, 1417614411, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Enghelab Square, 16 Azar Street, Tehran, 1417614411, Iran.
- Research Center for Antibiotics Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Square, 16 Azar Street, Tehran, 1417613151, Iran
| |
Collapse
|
5
|
Akhtar A, Singh P, Admane N, Grover A. Salvianolic acid B prevents the amyloid transformation of A53T mutant of α-synuclein. Biophys Chem 2025; 318:107379. [PMID: 39693815 DOI: 10.1016/j.bpc.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons in the substantia nigra pars compacta triggered by the accumulation of amyloid aggregates of α-synuclein protein. This study investigates the potential of Salvianolic Acid B (SalB), a water-soluble polyphenol derived from Salvia miltiorrhiza Bunge, in modulating the aggregation of the A53T mutant of α-synuclein (A53T Syn). This mutation is associated with rapid aggregation and a higher rate of protofibril formation in early-onset familial PD. Computational and experimental approaches demonstrated Sal-B effectively prevents the amyloid fibrillation of A53T Syn by interacting with the N-terminal region and NAC domain. Sal-B particularly associates with the KTKEGV motif and NACore segment of A53T Syn by hydrophobic and hydrogen bonding interactions. Replica exchange molecular dynamics (REMD) simulations indicated that Sal-B reduces intramolecular hydrogen bonding and structural transitions into β-sheet rich conformations, thereby lowering the aggregation propensity of A53T Syn. Systematic analysis conducted using biophysical techniques and high-end microscopy has demonstrated significant inhibition in the amyloid transformation of A53T Syn corroborated by a 92 % decrease in ThT maxima at 100 μM Sal-B concentration and microscopic techniques validated the absence of mature fibrillar amyloids. DLS data revealed heterogeneous particle sizes, supporting the formation of smaller unstructured aggregates. These findings underscore Sal-B as a promising therapeutic candidate for PD and related synucleinopathies, warranting further investigation in cellular and animal models to advance potential treatments and early intervention strategies.
Collapse
Affiliation(s)
- Almas Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Payal Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Díaz Reyes M, Gatti S, Delgado Ocaña S, Ortega HH, Banchio C. Neuroprotective effect of NSCs-derived extracellular vesicles in Parkinson's disease models. Sci Rep 2025; 15:6092. [PMID: 39971975 PMCID: PMC11839983 DOI: 10.1038/s41598-025-87238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms, caused by the degeneration and loss of dopaminergic neurons in the substantia nigra. Current therapies are limited to symptom management, unable to prevent neuronal loss or halt the progression of the disease. A significant limitation to more effective treatments is the difficulty of crossing the blood-brain barrier (BBB). Extracellular vesicles (EVs) communication plays a crucial role in several physiological processes within the nervous system. Notably, EVs have the unique ability to cross the BBB, making them a highly promising vehicle for delivering therapeutic agents directly to the brain. Given the rising prevalence of PD, the need for therapies that prevent neuronal death and promote cell survival is urgent. This study explores the potential of neural stem cell-derived extracellular vesicles (NSC-EVs) using two in vitro models of PD. Our findings demonstrate that NSC-EVs significantly enhance the survival of dopaminergic neurons by reducing apoptosis and showing strong neuroprotective effects. Notably, the natural extracellular vesicles used in this study are enriched with Catalase, a potent scavenger protein with antioxidant properties. This natural enrichment further strengthens their neuroprotective capacity, enabling them to mitigate oxidative stress and protect vulnerable neurons. The use of such naturally enriched extracellular vesicles represents a promising approach for developing innovative therapies to effectively combat Parkinson's disease.
Collapse
Affiliation(s)
- Mercyleidi Díaz Reyes
- Laboratorio de Biología Molecular y Celular de Lípidos, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda, Predio CONICET and Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Sabrina Gatti
- Laboratorio de Biología Molecular y Celular de Lípidos, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda, Predio CONICET and Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Susana Delgado Ocaña
- Laboratorio de Biología Molecular y Celular de Lípidos, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda, Predio CONICET and Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET, 3080, Esperanza, Santa Fe, Argentina
| | - Claudia Banchio
- Laboratorio de Biología Molecular y Celular de Lípidos, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda, Predio CONICET and Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| |
Collapse
|
7
|
Al-Azzani M, Weber S, Ramalingam N, Ramón M, Shvachiy L, Mestre G, Zech M, Sicking K, de Opakua AI, Jayanthi V, Amaral L, Agarwal A, Chandran A, Chaves SR, Winkelmann J, Trenkwalder C, Schwager M, Pauli S, Dettmer U, Fernández CO, Lautenschläger J, Zweckstetter M, Busnadiego RF, Mollenhauer B, Outeiro TF. A novel alpha-synuclein K58N missense variant in a patient with Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.07.25321793. [PMID: 39990587 PMCID: PMC11844588 DOI: 10.1101/2025.02.07.25321793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Mutations and multiplications in the SNCA gene, encoding alpha-synuclein (aSyn), are associated with familial forms of Parkinson's disease (PD). We report the identification of a novel SNCA missense mutation (NM_000345.4, cDNA 174G>C; protein K58N) in a PD patient using whole exome sequencing, and describe comprehensive molecular and cellular analysss of the effects of this novel mutation. The patient exhibited typical sporadic PD with early onset and a benign disease course. Biophysical studies revealed that the K58N substitution causes local structural effects, disrupts binding to membranes, and enhances aSyn in vitro aggregation. K58N aSyn produces fewer inclusions per cell, and fails to undergo condensate formation. The mutation increases the cytoplasmic distribution of the protein, and has minimal effect on the dynamic reversibility of serine-129 phosphorylation. In total, the identification of this novel mutation advances our understanding of aSyn biology and pathobiology.
Collapse
Affiliation(s)
- Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Maria Ramón
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Gonçalo Mestre
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Vidyashree Jayanthi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Leslie Amaral
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susana R. Chaves
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich-Augsburg, Munich-Augsburg, Germany
| | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Centre Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Maike Schwager
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Ruben Fernandez Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Tiago Fleming Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
8
|
Brücke C, Al-Azzani M, Ramalingam N, Ramón M, Sousa RL, Buratti F, Zech M, Sicking K, Amaral L, Gelpi E, Chandran A, Agarwal A, Chaves SR, Fernández CO, Dettmer U, Lautenschläger J, Zweckstetter M, Busnadiego RF, Zimprich A, Outeiro TF. A novel alpha-synuclein G14R missense variant is associated with atypical neuropathological features. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.23.24313864. [PMID: 39399048 PMCID: PMC11469355 DOI: 10.1101/2024.09.23.24313864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Parkinson's disease (PD) affects millions of people worldwide, but only 5-10% of patients suffer from a monogenic form of the disease with Mendelian inheritance. SNCA, the gene encoding for the protein alpha-synuclein (aSyn), was the first to be associated with familial forms of PD and, since then, several missense variants and multiplications of the SNCA gene have been established as rare causes of autosomal dominant forms of PD. Aim and methods A patient carrying aSyn missense mutation and his family members were studied. We present the clinical features, genetic testing - whole exome sequencing (WES), and neuropathological findings. The functional consequences of this aSyn variant were extensively investigated using biochemical, biophysical, and cellular assays. Results The patient exhibited a complex neurodegenerative disease that included generalized myocloni, bradykinesia, dystonia of the left arm and apraxia. WES identified a novel heterozygous SNCA variant (cDNA 40G>A; protein G14R). Neuropathological examination showed extensive atypical aSyn pathology with frontotemporal lobar degeneration (FTLD) and nigral degeneration pattern with abundant ring-like neuronal inclusions, and few oligodendroglial inclusions. Sanger sequencing confirmed the SNCA variant in the healthy, elderly parent of the patient patient suggesting incomplete penetrance. NMR studies suggest that the G14R mutation induces a local structural alteration in aSyn, and lower thioflavin T binding in in vitro fibrillization assays. Interestingly, the G14R aSyn fibers display different fibrillar morphologies as revealed by cryo-electron microscopy. Cellular studies of the G14R variant revealed increased inclusion formation, enhanced membrane association, and impaired dynamic reversibility of serine-129 phosphorylation. Summary The atypical neuropathological features observed, which are reminiscent of those observed for the G51D aSyn variant, suggest a causal role of the SNCA variant with a distinct clinical and pathological phenotype, which is further supported by the properties of the mutant aSyn, compatible with the strain hypothesis of proteinopathies.
Collapse
Affiliation(s)
- Christof Brücke
- Department of Neurology, Medical University Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Maria Ramón
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Rita L. Sousa
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Fiamma Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute of Neurogenomics, Helmholtz Munich, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Leslie Amaral
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Ellen Gelpi
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University Vienna, Austria
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susana R. Chaves
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Ruben Fernandez Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Alexander Zimprich
- Department of Neurology, Medical University Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tiago Fleming Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
9
|
Yi LX, Tan EK, Zhou ZD. The α-Synuclein Seeding Amplification Assay for Parkinson's Disease. Int J Mol Sci 2025; 26:389. [PMID: 39796243 PMCID: PMC11720040 DOI: 10.3390/ijms26010389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical manifestations. The central pathological event in PD is the abnormal aggregation and deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in affected brain areas. Behaving as a prion-like seeding, the misfolded α-syn protein can induce and facilitate the aggregation of native unfolded α-Syn protein to aggravate α-Syn protein aggregation, leading to PD progression. Recently, in a blood-based α-Syn seeding amplification assay (SAA), Kluge et al. identified pathological α-Syn seeding activity in PD patients with Parkin (PRKN) gene variants. Additionally, pathological α-syn seeding activity was also identified in sporadic PD and PD patients with Leucine-rich repeat kinase 2 (LRRK2) or glucocerebrosidase (GBA) gene variants. Principally, the α-Syn SAA can be used to detect pathological α-Syn seeding activity, which will significantly enhance PD diagnosis, progression monitoring, prognosis prediction, and anti-PD therapy. The significance and future strategies of α-Syn SAA protocol are highlighted and proposed, whereas challenges and limitations of the assay are discussed.
Collapse
Affiliation(s)
- Ling-Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
10
|
Liang Q, Zhao G. The Effect of glna Loss on the Physiological and Pathological Phenotype of Parkinson's Disease C. elegans. J Clin Lab Anal 2024; 38:e25129. [PMID: 39600125 DOI: 10.1002/jcla.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease. Glutamate(Glu) excitotoxicity is one of the main pathogenesis of PD. Glutaminase (Gls) is an enzyme primarily responsible for catalyzing the hydrolysis and deamidation of glutamine (Gln) to produce Glu and ammonia. Inhibiting the function of Gls may have a beneficial effect on the treatment of PD by reducing the production of Glu. The homologous gene of Gls in C. elegans is glna. AIMS To explore the effects of glna loss on physiological and pathological phenotype of PD C. elegans, and to provide new ideas and references for the research and treatment of PD. MATERIALS & METHODS We used PD C. elegans UA44 and QIN27 to detect development and lifespan, behavior, degeneration of dopaminergic neurons, lipid levels, ROS levels, expression levels of common amino acids. RESULTS Glna loss had no significant impact on the development and lifespan of PD C. elegans. Glna loss saved part of the decline of motor function, including the head thrash frequency and the body bend frequency, and the difference was significant. There was a trend of improvement in some motor behaviors, such as the ethanol avoidance experiment, while no improvement was observed in other experiments. Glna loss slowed down the degeneration of dopaminergic neurons. Glna loss increased the lipid levels and ROS levels in C. elegans. Glna loss decreased Glu content and increased Gln content in C. elegans. DISCUSSION The effect of glna loss on PD C. elegans may be the result of multiple factors, such as the tissue types of α-syn expression in C. elegans, the PD C. elegans model used, the adverse effects of glna loss on other systems, and the changes in ROS levels in C. elegans. The specific mechanisms causing these phenomena are still unclear and need to be further explored. CONCLUSION Glna loss has a certain protective effect on dopaminergic neurons in PD C. elegans, while the improvement effect on movement and behavior is limited.
Collapse
Affiliation(s)
- Qifei Liang
- Tongji University School of Medicine, Shanghai, China
- Nanjing Drum Tower Hospital, Nanjing, China
| | | |
Collapse
|
11
|
Garcha J, Huang J, Martinez Pomier K, Melacini G. Amyloid-Driven Allostery. Biophys Chem 2024; 315:107320. [PMID: 39278064 DOI: 10.1016/j.bpc.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
The fields of allostery and amyloid-related pathologies, such as Parkinson's disease (PD), have been extensively explored individually, but less is known about how amyloids control allostery. Recent advancements have revealed that amyloids can drive allosteric effects in both intrinsically disordered proteins, such as alpha-synuclein (αS), and multi-domain signaling proteins, such as protein kinase A (PKA). Amyloid-driven allostery plays a central role in explaining the mechanisms of gain-of-pathological-function mutations in αS (e.g. E46K, which causes early PD onset) and loss-of-physiological-function mutations in PKA (e.g. A211D, which predisposes to tumors). This review highlights allosteric effects of disease-related mutations and how they can cause exposure of amyloidogenic regions, leading to amyloids that are either toxic or cause aberrant signaling. We also discuss multiple potential modulators of these allosteric effects, such as MgATP and kinase substrates, opening future opportunities to improve current pharmacological interventions against αS and PKA-related pathologies. Overall, we show that amyloid-driven allosteric models are useful to explain the mechanisms underlying disease-related mutations.
Collapse
Affiliation(s)
- Jaskiran Garcha
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
12
|
Lage L, Rodríguez-Perez AI, Labandeira-Garcia JL, Dominguez-Meijide A. Angiotensin type-1 receptor autoantibodies promote alpha-synuclein aggregation in dopaminergic neurons. Front Immunol 2024; 15:1457459. [PMID: 39588364 PMCID: PMC11586346 DOI: 10.3389/fimmu.2024.1457459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Angiotensin, through its type-1 receptor (AT1), is a major inducer of inflammation and oxidative stress, contributing to several diseases. Autoimmune processes have been involved in neurodegeneration, including Parkinson's disease (PD). AT1 autoantibodies (AT1-AA) enhance neurodegeneration and PD, which was related to increased neuronal oxidative stress and neuroinflammation. However, the effect of AT1-AA on α-synuclein aggregation, a major factor in PD progression, has not been studied. In cultures of dopaminergic neurons, we observed that AT1-AA promote aggregation of α-synuclein, as AT1-AA upregulated major mechanisms involved in the α-synuclein aggregation process such as NADPH-oxidase activation and intracellular calcium raising. The results further support the role of AT1 receptors in dopaminergic neuron degeneration, and several recent clinical studies observing the neuroprotective effects of AT1 receptor blockers.
Collapse
Affiliation(s)
- Lucia Lage
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana I. Rodríguez-Perez
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L. Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Dominguez-Meijide
- Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
13
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 PMCID: PMC11808831 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Robert H. Edwards
- Department of Physiology and NeurologyUniversity of California, San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of SydneyCamperdownNew South WalesAustralia
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Hilal A. Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRSFontenay‐Aux‐RosesFrance
| | - Shigeo Murayama
- Department of NeuropathologyTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child DevelopmentOsaka UniversityOsakaJapan
| | - Tiago F. Outeiro
- Department of Experimental NeurodegenerationUniversity Medical CenterGöttingenGermany
- Faculty of Medical Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Stella M. Papa
- Department of NeurologySchool of Medicine, and Emory National Primate Research Center, Emory UniversityAtlantaGeorgiaUSA
| | - Leonidas Stefanis
- First Department of NeurologyEginitio Hospital, School of Medicine, National and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Amanda L. Woerman
- Department of BiologyInstitute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
- Department of Microbiology, Immunology, and PathologyPrion Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Lorraine V. Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
14
|
Lázaro DF, Lee VMY. Navigating through the complexities of synucleinopathies: Insights into pathogenesis, heterogeneity, and future perspectives. Neuron 2024; 112:3029-3042. [PMID: 38861985 PMCID: PMC11427175 DOI: 10.1016/j.neuron.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
The aggregation of alpha-synuclein (aSyn) represents a neuropathological hallmark observed in a group of neurodegenerative disorders collectively known as synucleinopathies. Despite their shared characteristics, these disorders manifest diverse clinical and pathological phenotypes. The mechanism underlying this heterogeneity is thought to be due to the diversity in the aSyn strains present across the diseases. In this perspective, we will explore recent findings on aSyn strains and discuss recent discoveries about Lewy bodies' composition. We further discuss the current hypothesis for aSyn spreading and emphasize the emerging biomarker field demonstrating promising results. A comprehension of these mechanisms holds substantial promise for future clinical applications. This understanding can pave the way for the development of personalized medicine strategies, specifically targeting the unique underlying causes of each synucleinopathy. Such advancements can revolutionize therapeutic approaches and significantly contribute to more effective interventions in the intricate landscape of neurodegenerative disorders.
Collapse
Affiliation(s)
- Diana F Lázaro
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Medicine, University of Pennsylvania, Perelman School of Medicine at University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA 19104, USA.
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Medicine, University of Pennsylvania, Perelman School of Medicine at University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Amaral L, Mendes F, Côrte-Real M, Rego A, Outeiro TF, Chaves SR. A versatile yeast model identifies the pesticides cymoxanil and metalaxyl as risk factors for synucleinopathies. CHEMOSPHERE 2024; 364:143039. [PMID: 39117080 DOI: 10.1016/j.chemosphere.2024.143039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies, which predominantly consist of aggregated forms of the protein alpha-synuclein (aSyn). While these aggregates are a pathological hallmark of PD, the etiology of most cases remains elusive. Although environmental risk factors have been identified, such as the pesticides dieldrin and MTPT, many others remain to be assessed and their molecular impacts are underexplored. This study aimed to identify pesticides that could enhance aSyn aggregation using a humanized yeast model expressing aSyn fused to GFP as a primary screening platform, which we validated using dieldrin. We found that the pesticides cymoxanil and metalaxyl induce aggregation of aSyn in yeast, which we confirmed also occurs in a model of aSyn inclusion formation using human H4 cells. In conclusion, our approach generated invaluable molecular data on the effect of pesticides, therefore providing insights into mechanisms associated with the onset and progression of PD and other synucleinopathies.
Collapse
Affiliation(s)
- Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Filipa Mendes
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - António Rego
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany; Scientific Employee With an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
16
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
17
|
Lyra P, Botelho J, Rota S, Poplawska-Domaszewicz K, Machado V, Guerreiro D, Proença L, Barroso H, Mendes JJ, Chaudhuri KR. Non-Surgical Periodontal Therapy's Influence on Alpha-Synuclein and Inflammatory Marker Levels: A Pilot Study. J Clin Med 2024; 13:3586. [PMID: 38930115 PMCID: PMC11204787 DOI: 10.3390/jcm13123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Microbial dysbiosis may contribute to alpha-synuclein (α-Syn) homeostasis disruption, yet the burden of inflammatory periodontal infection and its treatment have never been studied in this regard. We aimed to compare the cytokine and α-Syn levels in the saliva and blood of patients with periodontitis who underwent non-surgical periodontal therapy (NSPT) and those of their healthy counterparts. Methods: Periodontal examination and saliva and blood sample collection were carried out in incoming patients at a university clinic. The periodontitis group (PG) received NSPT. The sample collection and periodontal observation were repeated 30 days after. IL-6, IL1-β and total α-Syn were quantified using immunoassay methods. The periodontal inflamed surface area (PISA) was calculated as a proxy for periodontal inflammation. Results: Eleven participants formed the PG, and there were fifteen healthy controls (HC). At baseline, no correlation between salivary and plasma α-Syn was found. The salivary α-Syn levels revealed a tendency to decrease 30 days after, particularly in the PD cases. The variation in PISA and α-Syn showed significant correlation. Salivary α-Syn correlated negatively with salivary IL-6 levels at both timepoints in the total sample (rho = -0.394 and rho = -0.451) and in the HC (rho = -0.632 and rho = -0.561). Variations in plasma IL-6 and α-Syn were negatively correlated (rho = -0.518) in the healthy participants. Baseline plasma IL1-β negatively correlated with plasmatic α-Syn at 30 days in the HC (rho = -0.581). Conclusions: Salivary and plasma α-Syn bioavailability operate independently, and periodontal diagnosis was not a confounding factor. Salivary α-Syn levels were significantly affected by NSPT, contrary to plasma levels. These results should be confirmed in future larger and prospective studies.
Collapse
Affiliation(s)
- Patrícia Lyra
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; (P.L.); (J.B.); (V.M.); (D.G.); (L.P.); (H.B.)
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; (P.L.); (J.B.); (V.M.); (D.G.); (L.P.); (H.B.)
| | - Silvia Rota
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London WC2R 2LS, UK; (S.R.); (K.R.C.)
- Parkinson’s Foundation Center of Excellence, King’s College Hospital, London SE5 9RS, UK;
| | - Karolina Poplawska-Domaszewicz
- Parkinson’s Foundation Center of Excellence, King’s College Hospital, London SE5 9RS, UK;
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; (P.L.); (J.B.); (V.M.); (D.G.); (L.P.); (H.B.)
| | - Daniela Guerreiro
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; (P.L.); (J.B.); (V.M.); (D.G.); (L.P.); (H.B.)
| | - Luís Proença
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; (P.L.); (J.B.); (V.M.); (D.G.); (L.P.); (H.B.)
| | - Helena Barroso
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; (P.L.); (J.B.); (V.M.); (D.G.); (L.P.); (H.B.)
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; (P.L.); (J.B.); (V.M.); (D.G.); (L.P.); (H.B.)
| | - Kallol Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London WC2R 2LS, UK; (S.R.); (K.R.C.)
- Parkinson’s Foundation Center of Excellence, King’s College Hospital, London SE5 9RS, UK;
| |
Collapse
|
18
|
Namba S, Moriya H. Toxicity of the model protein 3×GFP arises from degradation overload, not from aggregate formation. J Cell Sci 2024; 137:jcs261977. [PMID: 38766715 DOI: 10.1242/jcs.261977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system.
Collapse
Affiliation(s)
- Shotaro Namba
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hisao Moriya
- Faculty of Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
19
|
Abioye A, Akintade D, Mitchell J, Olorode S, Adejare A. Nonintuitive Immunogenicity and Plasticity of Alpha-Synuclein Conformers: A Paradigm for Smart Delivery of Neuro-Immunotherapeutics. Pharmaceutics 2024; 16:609. [PMID: 38794271 PMCID: PMC11124533 DOI: 10.3390/pharmaceutics16050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the extensive research successes and continuous developments in modern medicine in terms of diagnosis, prevention, and treatment, the lack of clinically useful disease-modifying drugs or immunotherapeutic agents that can successfully treat or prevent neurodegenerative diseases is an ongoing challenge. To date, only one of the 244 drugs in clinical trials for the treatment of neurodegenerative diseases has been approved in the past decade, indicating a failure rate of 99.6%. In corollary, the approved monoclonal antibody did not demonstrate significant cognitive benefits. Thus, the prevalence of neurodegenerative diseases is increasing rapidly. Therefore, there is an urgent need for creative approaches to identifying and testing biomarkers for better diagnosis, prevention, and disease-modifying strategies for the treatment of neurodegenerative diseases. Overexpression of the endogenous α-synuclein has been identified as the driving force for the formation of the pathogenic α-synuclein (α-Syn) conformers, resulting in neuroinflammation, hypersensitivity, endogenous homeostatic responses, oxidative dysfunction, and degeneration of dopaminergic neurons in Parkinson's disease (PD). However, the conformational plasticity of α-Syn proffers that a certain level of α-Syn is essential for the survival of neurons. Thus, it exerts both neuroprotective and neurotoxic (regulatory) functions on neighboring neuronal cells. Furthermore, the aberrant metastable α-Syn conformers may be subtle and difficult to detect but may trigger cellular and molecular events including immune responses. It is well documented in literature that the misfolded α-Syn and its conformers that are released into the extracellular space from damaged or dead neurons trigger the innate and adaptive immune responses in PD. Thus, in this review, we discuss the nonintuitive plasticity and immunogenicity of the α-Syn conformers in the brain immune cells and their physiological and pathological consequences on the neuroimmune responses including neuroinflammation, homeostatic remodeling, and cell-specific interactions that promote neuroprotection in PD. We also critically reviewed the novel strategies for immunotherapeutic delivery interventions in PD pathogenesis including immunotherapeutic targets and potential nanoparticle-based smart drug delivery systems. It is envisioned that a greater understanding of the nonintuitive immunogenicity of aberrant α-Syn conformers in the brain's microenvironment would provide a platform for identifying valid therapeutic targets and developing smart brain delivery systems for clinically effective disease-modifying immunotherapeutics that can aid in the prevention and treatment of PD in the future.
Collapse
Affiliation(s)
- Amos Abioye
- College of Pharmacy and Health Sciences, Belmont University, Nashville, TN 37212, USA
| | - Damilare Akintade
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - James Mitchell
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Simisade Olorode
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| |
Collapse
|
20
|
Mansuri S, Jain A, Singh R, Rawat S, Mondal D, Raychaudhuri S. Widespread nuclear lamina injuries defeat proteostatic purposes of α-synuclein amyloid inclusions. J Cell Sci 2024; 137:jcs261935. [PMID: 38477372 DOI: 10.1242/jcs.261935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.
Collapse
Affiliation(s)
- Shemin Mansuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Aanchal Jain
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Shivali Rawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Debodyuti Mondal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Monteiro Neto JR, Lima VDA, Follmer C. Fibrillation of α-synuclein triggered by bacterial endotoxin and lipid vesicles is modulated by N-terminal acetylation and familial Parkinson's disease mutations. FEBS J 2024; 291:1151-1167. [PMID: 38069536 DOI: 10.1111/febs.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
It has been hypothesized that --Parkinson's disease (PD) may be initiated in the gastrointestinal tract, before manifesting in the central nervous system. In this respect, it was demonstrated that lipopolysaccharide (LPS), an endotoxin from gram-negative bacteria, accelerates the in vitro formation of α-synuclein (aSyn) fibrils, whose intracellular deposits is a histological hallmark of the degeneration of dopaminergic neurons in PD. Herein, N-terminal acetylation and missense mutations of aSyn (A30P, A53T, E46K, H50Q and G51D) linked to rare, early-onset forms of familial PD were investigated regarding their effect on aSyn aggregation stimulated by either LPS or small unilamellar lipid vesicles (SUVs). Our findings indicated that LPS as well as SUVs induce the fibrillation of N-terminally acetylated wild-type aSyn (Ac-aSyn-WT) more remarkably than the non-acetylated protein, while the LPS-free protein alone did not undergo fibrillation under our assay conditions. In addition, with the exception of A30P, PD mutations increased the fibrillation of Ac-aSyn in the presence of LPS compared with Ac-aSyn-WT. The most pronounced effect of LPS was noticed for A53T, as observed when either Thioflavin-T or JC-1 were used as fluorescent probes for fibrils. Overall, our results suggest for the first time the existence of a synergy between LPS and PD mutations/N-terminal acetylation toward aSyn fibrillation.
Collapse
Affiliation(s)
- José Raphael Monteiro Neto
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Vanderlei de Araújo Lima
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
22
|
da Silva ANR, Pereira GRC, Bonet LFS, Outeiro TF, De Mesquita JF. In silico analysis of alpha-synuclein protein variants and posttranslational modifications related to Parkinson's disease. J Cell Biochem 2024; 125:e30523. [PMID: 38239037 DOI: 10.1002/jcb.30523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 03/12/2024]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative disorders, affecting over 10 million people worldwide. The protein encoded by the SNCA gene, alpha-synuclein (ASYN), is the major component of Lewy body (LB) aggregates, a histopathological hallmark of PD. Mutations and posttranslational modifications (PTMs) in ASYN are known to influence protein aggregation and LB formation, possibly playing a crucial role in PD pathogenesis. In this work, we applied computational methods to characterize the effects of missense mutations and PTMs on the structure and function of ASYN. Missense mutations in ASYN were compiled from the literature/databases and underwent a comprehensive predictive analysis. Phosphorylation and SUMOylation sites of ASYN were retrieved from databases and predicted by algorithms. ConSurf was used to estimate the evolutionary conservation of ASYN amino acids. Molecular dynamics (MD) simulations of ASYN wild-type and variants A30G, A30P, A53T, and G51D were performed using the GROMACS package. Seventy-seven missense mutations in ASYN were compiled. Although most mutations were not predicted to affect ASYN stability, aggregation propensity, amyloid formation, and chaperone binding, the analyzed mutations received relatively high rates of deleterious predictions and predominantly occurred at evolutionarily conserved sites within the protein. Moreover, our predictive analyses suggested that the following mutations may be possibly harmful to ASYN and, consequently, potential targets for future investigation: K6N, T22I, K34E, G36R, G36S, V37F, L38P, G41D, and K102E. The MD analyses pointed to remarkable flexibility and essential dynamics alterations at nearly all domains of the studied variants, which could lead to impaired contact between NAC and the C-terminal domain triggering protein aggregation. These alterations may have functional implications for ASYN and provide important insight into the molecular mechanism of PD, supporting the design of future biomedical research and improvements in existing therapies for the disease.
Collapse
Affiliation(s)
- Aloma N R da Silva
- Bioinformatics and Computational Biology Laboratory, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R C Pereira
- Bioinformatics and Computational Biology Laboratory, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felippe Sarmento Bonet
- Bioinformatics and Computational Biology Laboratory, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Joelma F De Mesquita
- Bioinformatics and Computational Biology Laboratory, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Lage L, Rodriguez-Perez AI, Villar-Cheda B, Labandeira-Garcia JL, Dominguez-Meijide A. Angiotensin type 1 receptor activation promotes neuronal and glial alpha-synuclein aggregation and transmission. NPJ Parkinsons Dis 2024; 10:37. [PMID: 38368444 PMCID: PMC10874459 DOI: 10.1038/s41531-024-00650-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
The brain renin-angiotensin system (RAS) has been related to dopaminergic degeneration, and high expression of the angiotensin II (AngII) type 1 receptor (AT1) gene is a marker of the most vulnerable neurons in humans. However, it is unknown whether AngII/AT1 overactivation affects α-synuclein aggregation and transmission. In vitro, AngII/AT1 activation increased α-synuclein aggregation in dopaminergic neurons and microglial cells, which was related to AngII-induced NADPH-oxidase activation and intracellular calcium raising. In mice, AngII/AT1 activation was involved in MPTP-induced increase in α-synuclein expression and aggregation, as they significantly decreased in mice treated with the AT1 blocker telmisartan and AT1 knockout mice. Cell co-cultures (transwells) revealed strong transmission of α-synuclein from dopaminergic neurons to astrocytes and microglia. AngII induced a higher α-synuclein uptake by microglial cells and an increase in the transfer of α-synuclein among astroglial cells. However, AngII did not increase the release of α-synuclein by neurons. The results further support brain RAS dysregulation as a major mechanism for the progression of Parkinson's disease, and AT1 inhibition and RAS modulation as therapeutic targets.
Collapse
Affiliation(s)
- Lucia Lage
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana I Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Begoña Villar-Cheda
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Antonio Dominguez-Meijide
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
24
|
Aubrey LD, Ninkina N, Ulamec SM, Abramycheva NY, Vasili E, Devine OM, Wilkinson M, Mackinnon E, Limorenko G, Walko M, Muwanga S, Amadio L, Peters OM, Illarioshkin SN, Outeiro TF, Ranson NA, Brockwell DJ, Buchman VL, Radford SE. Substitution of Met-38 to Ile in γ-synuclein found in two patients with amyotrophic lateral sclerosis induces aggregation into amyloid. Proc Natl Acad Sci U S A 2024; 121:e2309700120. [PMID: 38170745 PMCID: PMC10786281 DOI: 10.1073/pnas.2309700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
α-, β-, and γ-Synuclein are intrinsically disordered proteins implicated in physiological processes in the nervous system of vertebrates. α-synuclein (αSyn) is the amyloidogenic protein associated with Parkinson's disease and certain other neurodegenerative disorders. Intensive research has focused on the mechanisms that cause αSyn to form amyloid structures, identifying its NAC region as being necessary and sufficient for amyloid assembly. Recent work has shown that a 7-residue sequence (P1) is necessary for αSyn amyloid formation. Although γ-synuclein (γSyn) is 55% identical in sequence to αSyn and its pathological deposits are also observed in association with neurodegenerative conditions, γSyn is resilient to amyloid formation in vitro. Here, we report a rare single nucleotide polymorphism (SNP) in the SNCG gene encoding γSyn, found in two patients with amyotrophic lateral sclerosis (ALS). The SNP results in the substitution of Met38 with Ile in the P1 region of the protein. These individuals also had a second, common and nonpathological, SNP in SNCG resulting in the substitution of Glu110 with Val. In vitro studies demonstrate that the Ile38 variant accelerates amyloid fibril assembly. Contrastingly, Val110 retards fibril assembly and mitigates the effect of Ile38. Substitution of residue 38 with Leu had little effect, while Val retards, and Ala increases the rate of amyloid formation. Ile38 γSyn also results in the formation of γSyn-containing inclusions in cells. The results show how a single point substitution can enhance amyloid formation of γSyn and highlight the P1 region in driving amyloid formation in another synuclein family member.
Collapse
Affiliation(s)
- Liam D. Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod308015, Russian Federation
| | - Sabine M. Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Natalia Y. Abramycheva
- Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology, Moscow125367, Russia
| | - Eftychia Vasili
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - Oliver M. Devine
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Eilish Mackinnon
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Galina Limorenko
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, LeedsLS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sarah Muwanga
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Leonardo Amadio
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Owen M. Peters
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Sergey N. Illarioshkin
- Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology, Moscow125367, Russia
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen37075, Germany
- Max Planck Institute for Multidisciplinary Sciences, Goettingen37075, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon TyneNE2 4HH, United Kingdom
- Scientific employee with a honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen, Göttingen37075, Germany
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod308015, Russian Federation
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
25
|
Kalinderi K, Papaliagkas V, Fidani L. Current genetic data on depression and anxiety in Parkinson's disease patients. Parkinsonism Relat Disord 2024; 118:105922. [PMID: 37935601 DOI: 10.1016/j.parkreldis.2023.105922] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder affecting about 1 % of the population over the age of 60 years. PD is characterized by a wide spectrum of symptomatology including not only motor symptoms but non-motor symptoms, as well. Depression is one of the most common non-motor manifestations, and the most frequent neuropsychiatric comorbidity in PD. Neuropsychiatric symptoms like depression and anxiety may precede the appearance of motor features, highlighting their importance in the early detection of the disease and its strategic management. This review discusses the possible genetic background of the development of these neuropsychiatric symptoms in PD patients analyzing current genetic data associated with this clinical entity.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400, Thessaloniki, Greece
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
26
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
27
|
Huang J, Ahmed R, Akimoto M, Martinez Pomier K, Melacini G. Early-Onset Parkinson Mutation Remodels Monomer-Fibril Interactions to Allosterically Amplify Synuclein's Amyloid Cascade. JACS AU 2023; 3:3485-3493. [PMID: 38155658 PMCID: PMC10751762 DOI: 10.1021/jacsau.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Alpha synuclein (αS) aggregates are the main component of Lewy bodies (LBs) associated with Parkinson's disease (PD). A longstanding question about αS and PD pertains to the autosomal dominant E46K αS mutant, which leads to the early onset of PD and LB dementias. The E46K mutation not only promotes αS aggregation but also stabilizes αS monomers in "closed" conformers, which are compact and aggregation-incompetent. Hence, the mechanism of action of the E46K mutation is currently unclear. Here, we show that αS monomers harboring the E46K mutation exhibit more extensive interactions with fibrils compared to those of WT. Such monomer-fibril interactions are sufficient to allosterically drive transitions of αS monomers from closed to open conformations, enabling αS aggregation. We also show that E46K promotes head-to-tail monomer-monomer interactions in early self-association events. This multipronged mechanism provides a new framework to explain how the E46K mutation and possibly other αS variants trigger early-onset PD.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rashik Ahmed
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
28
|
Peng Y, Ye JR, Wang SS, He WB, Feng ZP, Sun HS, Chu SF, Zhang Z, Chen NH. A small molecule 20C from Gastrodia elata inhibits α-synuclein aggregation and prevents progression of Parkinson's disease. Cell Death Dis 2023; 14:594. [PMID: 37673867 PMCID: PMC10482970 DOI: 10.1038/s41419-023-06116-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is pathologically manifested by the aggregation of α-synuclein, which has been envisioned as a promising disease-modifying target for PD. Here, we identified 20C, a bibenzyl compound derived from Gastrodia elata, able to inhibit the aggregation of A53T variants of α-synuclein directly in vitro. Computational analysis revealed that 20C binds to cavities in mature α-synuclein fibrils, and it indeed displays a strong interaction with α-synuclein and reduced their β-sheet structure by microscale thermophoresis and circular dichroism, respectively. Moreover, incubating neural cells with 20C reduced the amounts of α-synuclein inclusions significantly. The treatment of A53T α-Syn transgenic mice with 20C significantly reduces the toxic α-synuclein levels, improves behavioral performance, rescues dopaminergic neuron, and enhances functional connections between SNc and PD associated brain areas. The transcriptome analysis of SNc demonstrated that 20C improves mitochondrial dynamics, which protects mitochondrial morphology and function against α-synuclein induced degeneration. Overall, 20C appears to be a promising candidate for the treatment of PD.
Collapse
Affiliation(s)
- Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jun-Rui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wen-Bin He
- Shanxi University of Chinese Medicine, National International Joint Research Center for Molecular Chinese Medicine, Taiyuan, 030024, China
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
29
|
Sant'Anna R, Robbs BK, de Freitas JA, Dos Santos PP, König A, Outeiro TF, Foguel D. The alpha-synuclein oligomers activate nuclear factor of activated T-cell (NFAT) modulating synaptic homeostasis and apoptosis. Mol Med 2023; 29:111. [PMID: 37596531 PMCID: PMC10439599 DOI: 10.1186/s10020-023-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.
Collapse
Affiliation(s)
- Ricardo Sant'Anna
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Bruno K Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo, RJ, 28625-650, Brazil
| | - Júlia Araújo de Freitas
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Patrícia Pires Dos Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Debora Foguel
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
30
|
Siwecka N, Saramowicz K, Galita G, Rozpędek-Kamińska W, Majsterek I. Inhibition of Protein Aggregation and Endoplasmic Reticulum Stress as a Targeted Therapy for α-Synucleinopathy. Pharmaceutics 2023; 15:2051. [PMID: 37631265 PMCID: PMC10459316 DOI: 10.3390/pharmaceutics15082051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
α-synuclein (α-syn) is an intrinsically disordered protein abundant in the central nervous system. Physiologically, the protein regulates vesicle trafficking and neurotransmitter release in the presynaptic terminals. Pathologies related to misfolding and aggregation of α-syn are referred to as α-synucleinopathies, and they constitute a frequent cause of neurodegeneration. The most common α-synucleinopathy, Parkinson's disease (PD), is caused by abnormal accumulation of α-syn in the dopaminergic neurons of the midbrain. This results in protein overload, activation of endoplasmic reticulum (ER) stress, and, ultimately, neural cell apoptosis and neurodegeneration. To date, the available treatment options for PD are only symptomatic and rely on dopamine replacement therapy or palliative surgery. As the prevalence of PD has skyrocketed in recent years, there is a pending issue for development of new disease-modifying strategies. These include anti-aggregative agents that target α-syn directly (gene therapy, small molecules and immunization), indirectly (modulators of ER stress, oxidative stress and clearance pathways) or combine both actions (natural compounds). Herein, we provide an overview on the characteristic features of the structure and pathogenic mechanisms of α-syn that could be targeted with novel molecular-based therapies.
Collapse
Affiliation(s)
| | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (N.S.); (K.S.); (G.G.); (W.R.-K.)
| |
Collapse
|
31
|
Pandit E, Das L, Das AK, Dolui S, Saha S, Pal U, Mondal A, Chowdhury J, Biswas SC, Maiti NC. Single point mutations at the S129 residue of α-synuclein and their effect on structure, aggregation, and neurotoxicity. Front Chem 2023; 11:1145877. [PMID: 37304685 PMCID: PMC10250651 DOI: 10.3389/fchem.2023.1145877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease is an age-related neurological disorder, and the pathology of the disease is linked to different types of aggregates of α-synuclein or alpha-synuclein (aS), which is an intrinsically disordered protein. The C-terminal domain (residues 96-140) of the protein is highly fluctuating and possesses random/disordered coil conformation. Thus, the region plays a significant role in the protein's solubility and stability by an interaction with other parts of the protein. In the current investigation, we examined the structure and aggregation behavior of two artificial single point mutations at a C-terminal residue at position 129 that represent a serine residue in the wild-type human aS (wt aS). Circular Dichroism (CD) and Raman spectroscopy were performed to analyse the secondary structure of the mutated proteins and compare it to the wt aS. Thioflavin T assay and atomic force microscopy imaging helped in understanding the aggregation kinetics and type of aggregates formed. Finally, the cytotoxicity assay gave an idea about the toxicity of the aggregates formed at different stages of incubation due to mutations. Compared to wt aS, the mutants S129A and S129W imparted structural stability and showed enhanced propensity toward the α-helical secondary structure. CD analysis showed proclivity of the mutant proteins toward α-helical conformation. The enhancement of α-helical propensity lengthened the lag phase of fibril formation. The growth rate of β-sheet-rich fibrillation was also reduced. Cytotoxicity tests on SH-SY5Y neuronal cell lines established that the S129A and S129W mutants and their aggregates were potentially less toxic than wt aS. The average survivability rate was ∼40% for cells treated with oligomers (presumably formed after 24 h of incubation of the freshly prepared monomeric protein solution) produced from wt aS and ∼80% for cells treated with oligomers obtained from mutant proteins. The relative structural stability with α-helical propensity of the mutants could be a plausible reason for their slow rate of oligomerization and fibrillation, and this was also the possible reason for reduced toxicity to neuronal cells.
Collapse
Affiliation(s)
- Esha Pandit
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Lopamudra Das
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Anoy Kumar Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Saumen Saha
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | | - Subhas C. Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nakul C. Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| |
Collapse
|
32
|
Mazzotta GM, Ceccato N, Conte C. Synucleinopathies Take Their Toll: Are TLRs a Way to Go? Cells 2023; 12:cells12091231. [PMID: 37174631 PMCID: PMC10177040 DOI: 10.3390/cells12091231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The misfolding and subsequent abnormal accumulation and aggregation of α-Synuclein (αSyn) as insoluble fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD) and several neurodegenerative disorders. A combination of environmental and genetic factors is linked to αSyn misfolding, among which neuroinflammation is recognized to play an important role. Indeed, a number of studies indicate that a Toll-like receptor (TLR)-mediated neuroinflammation might lead to a dopaminergic neural loss, suggesting that TLRs could participate in the pathogenesis of PD as promoters of immune/neuroinflammatory responses. Here we will summarize our current understanding on the mechanisms of αSyn aggregation and misfolding, focusing on the contribution of TLRs to the progression of α-synucleinopathies and speculating on their link with the non-motor disturbances associated with aging and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Nadia Ceccato
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
33
|
Martin-Lopez E, Vidyadhara DJ, Liberia T, Meller SJ, Harmon LE, Hsu RM, Spence N, Brennan B, Han K, Yücel B, Chandra SS, Greer CA. α-Synuclein Pathology and Reduced Neurogenesis in the Olfactory System Affect Olfaction in a Mouse Model of Parkinson's Disease. J Neurosci 2023; 43:1051-1071. [PMID: 36596700 PMCID: PMC9908323 DOI: 10.1523/jneurosci.1526-22.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is characterized by multiple symptoms including olfactory dysfunction, whose underlying mechanisms remain unclear. Here, we explored pathologic changes in the olfactory pathway of transgenic (Tg) mice of both sexes expressing the human A30P mutant α-synuclein (α-syn; α-syn-Tg mice) at 6-7 and 12-14 months of age, representing early and late-stages of motor progression, respectively. α-Syn-Tg mice at late stages exhibited olfactory behavioral deficits, which correlated with severe α-syn pathology in projection neurons (PNs) of the olfactory pathway. In parallel, olfactory bulb (OB) neurogenesis in α-syn-Tg mice was reduced in the OB granule cells at six to seven months and OB periglomerular cells at 12-14 months, respectively, both of which could contribute to olfactory dysfunction. Proteomic analyses showed a disruption in endocytic and exocytic pathways in the OB during the early stages which appeared exacerbated at the synaptic terminals when the mice developed olfactory deficits at 12-14 months. Our data suggest that (1) the α-syn-Tg mice recapitulate the olfactory functional deficits seen in PD; (2) olfactory structures exhibit spatiotemporal disparities for vulnerability to α-syn pathology; (3) α-syn pathology is restricted to projection neurons in the olfactory pathway; (4) neurogenesis in adult α-syn-Tg mice is reduced in the OB; and (5) synaptic endocytosis and exocytosis defects in the OB may further explain olfactory deficits.SIGNIFICANCE STATEMENT Olfactory dysfunction is a characteristic symptom of Parkinson's disease (PD). Using the human A30P mutant α-synuclein (α-syn)-expressing mouse model, we demonstrated the appearance of olfactory deficits at late stages of the disease, which was accompanied by the accumulation of α-syn pathology in projection neurons (PNs) of the olfactory system. This dysfunction included a reduction in olfactory bulb (OB) neurogenesis as well as changes in synaptic vesicular transport affecting synaptic function, both of which are likely contributing to olfactory behavioral deficits.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Teresa Liberia
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sarah J Meller
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Leah E Harmon
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Ryan M Hsu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Natalie Spence
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Bowen Brennan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Kimberly Han
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Betül Yücel
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Charles A Greer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
34
|
Hassanzadeh K, Morrone C, Akhtari K, Gerhardt E, Zaccagnini L, Outeiro TF, Feligioni M. Non-SUMOylated alternative spliced isoforms of alpha-synuclein are more aggregation-prone and toxic. Mech Ageing Dev 2023; 209:111759. [PMID: 36464085 DOI: 10.1016/j.mad.2022.111759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The exon skipping of α-Synuclein (α-Syn), the main constituent of the abnormal protein aggregation in Lewy bodies of Parkinson's disease (PD), forms four isoforms. In contrast to the full length α-Syn (α-Syn 140), little is known about the splice isoforms' properties and functions. SUMOylation, a post-translational modification, regulates α-Syn function, aggregation, and degradation, but information about α-Syn isoforms and the effect of SUMOylation on them is unknown. Therefore, this study aims to characterize the SUMOylation of α-Syn isoforms and its impact on cell death and α-Syn aggregation. In a cellular model of PD induced by rotenone, cell toxicity, SUMOylation, and α-Syn aggregation with or without isoforms overexpression were evaluated. First, rotenone induced cell toxicity and α-Syn aggregation, with a significant reduction of SUMOylation and autophagy. Boosting SUMOylation prevented α-Syn aggregation, phosphorylation and recovery of autophagy. Moreover, α-Syn 140 and α-Syn 126 were SUMOylated while the other two isoforms, α-Syn 112 and 98 were not and their overexpression showed that were more toxic and induced more α-Syn aggregation. Rotenone increased their toxicity that was not affected by boosting SUMOylation. These results may indicate a role of SUMOylation in modulating α-Syn aggregation, inducing to understanding more about the behavior of α-Syn isoforms.
Collapse
Affiliation(s)
| | | | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | | | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Natural Sciences, 37075 Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, NE2 4HH, United Kingdom; Scientific employee with an honorary contract at German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Marco Feligioni
- EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan 20144, Italy.
| |
Collapse
|
35
|
Weston LJ, Bowman AM, Osterberg VR, Meshul CK, Woltjer RL, Unni VK. Aggregated Alpha-Synuclein Inclusions within the Nucleus Predict Impending Neuronal Cell Death in a Mouse Model of Parkinsonism. Int J Mol Sci 2022; 23:ijms232315294. [PMID: 36499619 PMCID: PMC9736441 DOI: 10.3390/ijms232315294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Alpha-synuclein (aSyn) is a 14 kD protein encoded by the SNCA gene that is expressed in vertebrates and normally localizes to presynaptic terminals and the nucleus. aSyn forms pathological intracellular aggregates that typify a group of important neurodegenerative diseases called synucleinopathies. Previous work in human tissue and model systems indicates that some of these aggregates can be intranuclear, but the significance of aSyn aggregation within the nucleus is not clear. We used a mouse model that develops aggregated aSyn nuclear inclusions. Using aSyn preformed fibril injections in GFP-tagged aSyn transgenic mice, we were able to induce the formation of nuclear aSyn inclusions and study their properties in fixed tissue and in vivo using multiphoton microscopy. In addition, we analyzed human synucleinopathy patient tissue to better understand this pathology. Our data demonstrate that nuclear aSyn inclusions may form through the transmission of aSyn between neurons, and these intranuclear aggregates bear the hallmarks of cytoplasmic Lewy pathology. Neuronal nuclear aSyn inclusions can form rod-like structures that do not contain actin, excluding them from being previously described nuclear actin rods. Longitudinal, in vivo multiphoton imaging indicates that certain morphologies of neuronal nuclear aSyn inclusions predict cell death within 14 days. Human multiple system atrophy cases contain neurons and glia with similar nuclear inclusions, but we were unable to detect such inclusions in Lewy body dementia cases. This study suggests that the dysregulation of a nuclear aSyn function associated with nuclear inclusion formation could play a role in the forms of neurodegeneration associated with synucleinopathy.
Collapse
Affiliation(s)
- Leah J. Weston
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anna M. Bowman
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Valerie R. Osterberg
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles K. Meshul
- Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR 97239, USA
- Departments of Behavioral Neuroscience and Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Randall L. Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Vivek K. Unni
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
- OHSU Parkinson Center, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
36
|
JM-20, a Benzodiazepine-Dihydropyridine Hybrid Molecule, Inhibits the Formation of Alpha-Synuclein-Aggregated Species. Neurotox Res 2022; 40:2135-2147. [PMID: 35997936 DOI: 10.1007/s12640-022-00559-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022]
Abstract
Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.
Collapse
|
37
|
Ruf WP, Meirelles J, Danzer KM. Spreading of alpha-synuclein between different cell types. Behav Brain Res 2022; 436:114059. [PMID: 35995264 DOI: 10.1016/j.bbr.2022.114059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Aggregation of alpha-synuclein (α-syn) is central in Parkinson's disease as well as in other synucleinopathies. Recent evidence suggests that not only intracellular aggregation of α-syn plays an important role for disease pathogenesis but also cell-to-cell propagation of α-syn seems to significantly contribute to pathological changes in synucleinopathies. In this mini-review we summarize current aspects of spreading of α-syn between brain cell types and its role in pathology.
Collapse
Affiliation(s)
- Wolfgang P Ruf
- Department of Neurology, University Clinic, University of Ulm, Ulm, Germany
| | - Joao Meirelles
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, University Clinic, University of Ulm, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
38
|
Gaeta AL, Nourse JB, Willicott K, McKay LE, Keogh CM, Peter K, Russell SN, Hamamichi S, Berkowitz LA, Caldwell KA, Caldwell GA. Systemic RNA Interference Defective (SID) genes modulate dopaminergic neurodegeneration in C. elegans. PLoS Genet 2022; 18:e1010115. [PMID: 35984862 PMCID: PMC9432717 DOI: 10.1371/journal.pgen.1010115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/31/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023] Open
Abstract
The fine-tuning of gene expression is critical for all cellular processes; aberrations in this activity can lead to pathology, and conversely, resilience. As their role in coordinating organismal responses to both internal and external factors have increasingly come into focus, small non-coding RNAs have emerged as an essential component to disease etiology. Using Systemic RNA interference Defective (SID) mutants of the nematode Caenorhabditis elegans, deficient in gene silencing, we examined the potential consequences of dysfunctional epigenomic regulation in the context of Parkinson's disease (PD). Specifically, the loss of either the sid-1 or sid-3 genes, which encode a dsRNA transporter and an endocytic regulatory non-receptor tyrosine kinase, respectively, conferred neuroprotection to dopaminergic (DA) neurons in an established transgenic C. elegans strain wherein overexpression of human α-synuclein (α-syn) from a chromosomally integrated multicopy transgene causes neurodegeneration. We further show that knockout of a specific microRNA, mir-2, attenuates α-syn neurotoxicity; suggesting that the native targets of mir-2-dependent gene silencing represent putative neuroprotective modulators. In support of this, we demonstrated that RNAi knockdown of multiple mir-2 targets enhanced α-syn-induced DA neurodegeneration. Moreover, we demonstrate that mir-2 overexpression originating in the intestine can induce neurodegeneration of DA neurons, an effect that was reversed by pharmacological inhibition of SID-3 activity. Interestingly, sid-1 mutants retained mir-2-induced enhancement of neurodegeneration. Transcriptomic analysis of α-syn animals with and without a sid-1 mutation revealed 27 differentially expressed genes with human orthologs related to a variety of diseases, including PD. Among these was pgp-8, encoding a P-glycoprotein-related ABC transporter. Notably, sid-1; pgp-8 double mutants abolished the neurodegeneration resulting from intestinal mir-2 overexpression. This research positions known regulators of small RNA-dependent gene silencing within a framework that facilitates mechanistic evaluation of epigenetic responses to exogenous and endogenous factors influencing DA neurodegeneration, revealing a path toward new targets for therapeutic intervention of PD.
Collapse
Affiliation(s)
- Anthony L. Gaeta
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - J. Brucker Nourse
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Karolina Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Luke E. McKay
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Candice M. Keogh
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Kylie Peter
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Shannon N. Russell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Shusei Hamamichi
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Laura A. Berkowitz
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, Alabama, United States of America
- Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, Alabama, United States of America
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Basic Research in the Biology of Aging, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, Alabama, United States of America
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Basic Research in the Biology of Aging, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, Alabama, United States of America
| |
Collapse
|
39
|
Structure-specific amyloid precipitation in biofluids. Nat Chem 2022; 14:1045-1053. [PMID: 35798951 DOI: 10.1038/s41557-022-00976-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
The composition of soluble toxic protein aggregates formed in vivo is currently unknown in neurodegenerative diseases, due to their ultra-low concentration in human biofluids and their high degree of heterogeneity. Here we report a method to capture amyloid-containing aggregates in human biofluids in an unbiased way, a process we name amyloid precipitation. We use a structure-specific chemical dimer, a Y-shaped, bio-inspired small molecule with two capture groups, for amyloid precipitation to increase affinity. Our capture molecule for amyloid precipitation (CAP-1) consists of a derivative of Pittsburgh Compound B (dimer) to target the cross β-sheets of amyloids and a biotin moiety for surface immobilization. By coupling CAP-1 to magnetic beads, we demonstrate that we can target the amyloid structure of all protein aggregates present in human cerebrospinal fluid, isolate them for analysis and then characterize them using single-molecule fluorescence imaging and mass spectrometry. Amyloid precipitation enables unbiased determination of the molecular composition and structural features of the in vivo aggregates formed in neurodegenerative diseases.
Collapse
|
40
|
Koss DJ, Erskine D, Porter A, Palmoski P, Menon H, Todd OGJ, Leite M, Attems J, Outeiro TF. Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathol Commun 2022; 10:98. [PMID: 35794636 PMCID: PMC9258129 DOI: 10.1186/s40478-022-01403-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is pathologically defined by the cytoplasmic accumulation of alpha-synuclein (aSyn) within neurons in the brain. Predominately pre-synaptic, aSyn has been reported in various subcellular compartments in experimental models. Indeed, nuclear alpha-synuclein (aSynNuc) is evident in many models, the dysregulation of which is associated with altered DNA integrity, transcription and nuclear homeostasis. However, the presence of aSynNuc in human brain cells remains controversial, yet the determination of human brain aSynNuc and its pathological modification is essential for understanding synucleinopathies. Here, using a multi-disciplinary approach employing immunohistochemistry, immunoblot, and mass-spectrometry (MS), we confirm aSynNuc in post-mortem brain tissue obtained from DLB and control cases. Highly dependent on antigen retrieval methods, in optimal conditions, intra-nuclear pan and phospho-S129 positive aSyn puncta were observed in cortical neurons and non-neuronal cells in fixed brain sections and in isolated nuclear preparations in all cases examined. Furthermore, an increase in nuclear phospho-S129 positive aSyn immunoreactivity was apparent in DLB cases compared to controls, in both neuronal and non-neuronal cell types. Our initial histological investigations identified that aSynNuc is affected by epitope unmasking methods but present under optimal conditions, and this presence was confirmed by isolation of nuclei and a combined approach of immunoblotting and mass spectrometry, where aSynNuc was approximately tenfold less abundant in the nucleus than cytoplasm. Notably, direct comparison of DLB cases to aged controls identified increased pS129 and higher molecular weight species in the nuclei of DLB cases, suggesting putative pathogenic modifications to aSynNuc in DLB. In summary, using multiple approaches we provide several lines of evidence supporting the presence of aSynNuc in autoptic human brain tissue and, notably, that it is subject to putative pathogenic modifications in DLB that may contribute to the disease phenotype.
Collapse
|
41
|
Buratti FA, Boeffinger N, Garro HA, Flores JS, Hita FJ, Gonçalves PDC, Copello FDR, Lizarraga L, Rossetti G, Carloni P, Zweckstetter M, Outeiro TF, Eimer S, Griesinger C, Fernández CO. Aromaticity at position 39 in α-synuclein: A modulator of amyloid fibril assembly and membrane-bound conformations. Protein Sci 2022; 31:e4360. [PMID: 35762717 PMCID: PMC9235065 DOI: 10.1002/pro.4360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
Recent studies revealed that molecular events related with the physiology and pathology of αS might be regulated by specific sequence motifs in the primary sequence of αS. The importance of individual residues in these motifs remains an important open avenue of investigation. In this work, we have addressed the structural details related to the amyloid fibril assembly and lipid-binding features of αS through the design of site-directed mutants at position 39 of the protein and their study by in vitro and in vivo assays. We demonstrated that aromaticity at position 39 of αS primary sequence influences strongly the aggregation properties and the membrane-bound conformations of the protein, molecular features that might have important repercussions for the function and dysfunction of αS. Considering that aggregation and membrane damage is an important driver of cellular toxicity in amyloid diseases, future work is needed to link our findings with studies based on toxicity and neuronal cell death. BRIEF STATEMENT OUTLINING SIGNIFICANCE: Modulation by distinct sequential motifs and specific residues of αS on its physiological and pathological states is an active area of research. Here, we demonstrated that aromaticity at position 39 of αS modulates the membrane-bound conformations of the protein, whereas removal of aromatic functionality at position 39 reduces strongly the amyloid assembly in vitro and in vivo. Our study provides new evidence for the modulation of molecular events related with the physiology and pathology of αS.
Collapse
Affiliation(s)
- Fiamma A. Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
| | - Nicola Boeffinger
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Department of Structural Cell Biology, Institute for Cell Biology and NeuroscienceGoethe University FrankfurtFrankfurtGermany
| | - Hugo A. Garro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
- Area de Química OrgánicaUNSL‐INTEQUI/CONICETSan LuisArgentina
| | - Jesica S. Flores
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
| | - Francisco J. Hita
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
| | - Phelippe do Carmo Gonçalves
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
| | | | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias (CIBION‐CONICET)Buenos AiresArgentina
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM‐9) and Institute for Advanced Simulations (IAS‐5)JülichGermany
- Department of NeurologyUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
- Jülich Supercomputing Center (JSC)JülichGermany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM‐9) and Institute for Advanced Simulations (IAS‐5)JülichGermany
- Faculty of Mathematics, Computer Science and Natural SciencesRWTH AachenAachenGermany
- Institute for Neuroscience and Medicine (INM‐11) Forschungszentrum JülichJülichGermany
| | - Markus Zweckstetter
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Translational and Clinical Research InstituteNewcastle UniversityNewcastleUK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | - Stefan Eimer
- Department of Structural Cell Biology, Institute for Cell Biology and NeuroscienceGoethe University FrankfurtFrankfurtGermany
| | - Christian Griesinger
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
42
|
Queiroz DD, Ribeiro TP, Gonçalves JM, Mattos LMM, Gerhardt E, Freitas J, Palhano FL, Frases S, Pinheiro AS, McCann M, Knox A, Devereux M, Outeiro TF, Pereira MD. A water-soluble manganese(II) octanediaoate/phenanthroline complex acts as an antioxidant and attenuates alpha-synuclein toxicity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166475. [PMID: 35777688 DOI: 10.1016/j.bbadis.2022.166475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
Abstract
The overproduction of reactive oxygen species (ROS) induces oxidative stress, a well-known process associated with aging and several human pathologies, such as cancer and neurodegenerative diseases. A large number of synthetic compounds have been described as antioxidant enzyme mimics, capable of eliminating ROS and/or reducing oxidative damage. In this study, we investigated the antioxidant activity of a water-soluble 1,10-phenantroline-octanediaoate Mn2+-complex on cells under oxidative stress, and assessed its capacity to attenuate alpha-synuclein (aSyn) toxicity and aggregation, a process associated with increased oxidative stress. This Mn2+-complex exhibited a significant antioxidant potential, reducing intracelular oxidation and increasing oxidative stress resistance in S. cerevisiae cells and in vivo, in G. mellonella, increasing the activity of the intracellular antioxidant enzymes superoxide dismutase and catalase. Strikingly, the Mn2+-complex reduced both aSyn oligomerization and aggregation in human cell cultures and, using NMR and DFT/molecular docking we confirmed its interaction with the C-terminal region of aSyn. In conclusion, the Mn2+-complex appears as an excellent lead for the design of new phenanthroline derivatives as alternative compounds for preventing oxidative damages and oxidative stress - related diseases.
Collapse
Affiliation(s)
- Daniela D Queiroz
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany; Rede de Micrologia RJ-FAPERJ, Brazil
| | - Thales P Ribeiro
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany; Rede de Micrologia RJ-FAPERJ, Brazil
| | - Julliana M Gonçalves
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Rede de Micrologia RJ-FAPERJ, Brazil
| | - Larissa M M Mattos
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Rede de Micrologia RJ-FAPERJ, Brazil
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany
| | - Júlia Freitas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil
| | - Malachy McCann
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Andrew Knox
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Camden Row, Dublin 8, Ireland
| | - Michael Devereux
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Camden Row, Dublin 8, Ireland
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK; Scientific employee with an honorary contract at German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Marcos D Pereira
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil; Rede de Micrologia RJ-FAPERJ, Brazil.
| |
Collapse
|
43
|
Guzzo A, Delarue P, Rojas A, Nicolaï A, Maisuradze GG, Senet P. Wild-Type α-Synuclein and Variants Occur in Different Disordered Dimers and Pre-Fibrillar Conformations in Early Stage of Aggregation. Front Mol Biosci 2022; 9:910104. [PMID: 35836937 PMCID: PMC9273784 DOI: 10.3389/fmolb.2022.910104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein is a 140 amino-acid intrinsically disordered protein mainly found in the brain. Toxic α-synuclein aggregates are the molecular hallmarks of Parkinson’s disease. In vitro studies showed that α-synuclein aggregates in oligomeric structures of several 10th of monomers and into cylindrical structures (fibrils), comprising hundred to thousands of proteins, with polymorphic cross-β-sheet conformations. Oligomeric species, formed at the early stage of aggregation remain, however, poorly understood and are hypothezised to be the most toxic aggregates. Here, we studied the formation of wild-type (WT) and mutant (A30P, A53T, and E46K) dimers of α-synuclein using coarse-grained molecular dynamics. We identified two principal segments of the sequence with a higher propensity to aggregate in the early stage of dimerization: residues 36–55 and residues 66–95. The transient α-helices (residues 53–65 and 73–82) of α-synuclein monomers are destabilized by A53T and E46K mutations, which favors the formation of fibril native contacts in the N-terminal region, whereas the helix 53–65 prevents the propagation of fibril native contacts along the sequence for the WT in the early stages of dimerization. The present results indicate that dimers do not adopt the Greek key motif of the monomer fold in fibrils but form a majority of disordered aggregates and a minority (9–15%) of pre-fibrillar dimers both with intra-molecular and intermolecular β-sheets. The percentage of residues in parallel β-sheets is by increasing order monomer < disordered dimers < pre-fibrillar dimers. Native fibril contacts between the two monomers are present in the NAC domain for WT, A30P, and A53T and in the N-domain for A53T and E46K. Structural properties of pre-fibrillar dimers agree with rupture-force atomic force microscopy and single-molecule Förster resonance energy transfer available data. This suggests that the pre-fibrillar dimers might correspond to the smallest type B toxic oligomers. The probability density of the dimer gyration radius is multi-peaks with an average radius that is 10 Å larger than the one of the monomers for all proteins. The present results indicate that even the elementary α-synuclein aggregation step, the dimerization, is a complicated phenomenon that does not only involve the NAC region.
Collapse
Affiliation(s)
- Adrien Guzzo
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, Dijon, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, Dijon, France
| | - Ana Rojas
- Schrödinger, Inc., New York, NY, United States
| | - Adrien Nicolaï
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, Dijon, France
| | - Gia G. Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, Dijon, France
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
- *Correspondence: Patrick Senet,
| |
Collapse
|
44
|
Polinski NK, Martinez TN, Ramboz S, Sasner M, Herberth M, Switzer R, Ahmad SO, Pelligrino LJ, Clark SW, Marcus JN, Smith SM, Dave KD, Frasier MA. The GBA1 D409V mutation exacerbates synuclein pathology to differing extents in two alpha-synuclein models. Dis Model Mech 2022; 15:dmm049192. [PMID: 35419585 PMCID: PMC9150115 DOI: 10.1242/dmm.049192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Heterozygous mutations in the GBA1 gene - encoding lysosomal glucocerebrosidase (GCase) - are the most common genetic risk factors for Parkinson's disease (PD). Experimental evidence suggests a correlation between decreased GCase activity and accumulation of alpha-synuclein (aSyn). To enable a better understanding of the relationship between aSyn and GCase activity, we developed and characterized two mouse models that investigate aSyn pathology in the context of reduced GCase activity. The first model used constitutive overexpression of wild-type human aSyn in the context of the homozygous GCase activity-reducing D409V mutant form of GBA1. Although increased aSyn pathology and grip strength reductions were observed in this model, the nigrostriatal system remained largely intact. The second model involved injection of aSyn preformed fibrils (PFFs) into the striatum of the homozygous GBA1 D409V knock-in mouse model. The GBA1 D409V mutation did not exacerbate the pathology induced by aSyn PFF injection. This study sheds light on the relationship between aSyn and GCase in mouse models, highlighting the impact of model design on the ability to model a relationship between these proteins in PD-related pathology.
Collapse
Affiliation(s)
- Nicole K. Polinski
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station PO Box 4777, New York, NY 10163, USA
| | - Terina N. Martinez
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station PO Box 4777, New York, NY 10163, USA
| | - Sylvie Ramboz
- PsychoGenics, Inc, 215 College Road, Paramus, NJ 07652, USA
| | - Michael Sasner
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mark Herberth
- Charles River Laboratories, 1407 George Road, Ashland, OH 44805, USA
| | - Robert Switzer
- NeuroScience Associates, 10915 Lake Ridge Drive, Knoxville, TN 37934, USA
| | - Syed O. Ahmad
- Saint Louis University, 3437 Caroline Street, St. Louis, MO 63104, USA
| | | | - Sean W. Clark
- Amicus Therapeutics, 1 Cedarbrook Dr, Cranbury, NJ 08512, USA
| | - Jacob N. Marcus
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Sean M. Smith
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Kuldip D. Dave
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station PO Box 4777, New York, NY 10163, USA
| | - Mark A. Frasier
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station PO Box 4777, New York, NY 10163, USA
| |
Collapse
|
45
|
Mechanisms of enhanced aggregation and fibril formation of Parkinson's disease-related variants of α-synuclein. Sci Rep 2022; 12:6770. [PMID: 35474118 PMCID: PMC9043213 DOI: 10.1038/s41598-022-10789-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Aggregation of α-synuclein (α-syn) into amyloid fibrils is closely associated with Parkinson’s disease (PD). Familial mutations or posttranslational truncations in α-syn are known as risk factor for PD. Here, we examined the effects of the PD-related A30P or A53T point mutation and C-terminal 123–140 or 104–140 truncation on the aggregating property of α-syn based on the kinetic and thermodynamic analyses. Thioflavin T fluorescence measurements indicated that A53T, Δ123‒140, and Δ104–140 variants aggregated faster than WT α-syn, in which the A53T mutation markedly increases nucleation rate whereas the Δ123‒140 or Δ104‒140 truncation significantly increases both nucleation and fibril elongation rates. Ultracentrifugation and western blotting analyses demonstrated that these mutations or truncations promote the conversion of monomer to aggregated forms of α-syn. Analysis of the dependence of aggregation reaction of α-syn variants on the monomer concentration suggested that the A53T mutation enhances conversion of monomers to amyloid nuclei whereas the C-terminal truncations, especially the Δ104–140, enhance autocatalytic aggregation on existing fibrils. In addition, thermodynamic analysis of the kinetics of nucleation and fibril elongation of α-syn variants indicated that both nucleation and fibril elongation of WT α-syn are enthalpically and entropically unfavorable. Interestingly, the unfavorable activation enthalpy of nucleation greatly decreases for the A53T and becomes reversed in sign for the C-terminally truncated variants. Taken together, our results indicate that the A53T mutation and the C-terminal truncation enhance α-syn aggregation by reducing unfavorable activation enthalpy of nucleation, and the C-terminal truncation further triggers the autocatalytic fibril elongation on the fibril surfaces.
Collapse
|
46
|
Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiol Dis 2022; 168:105696. [DOI: 10.1016/j.nbd.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
|
47
|
Torres-Garcia L, P Domingues JM, Brandi E, Haikal C, Mudannayake JM, Brás IC, Gerhardt E, Li W, Svanbergsson A, Outeiro TF, Gouras GK, Li JY. Monitoring the interactions between alpha-synuclein and Tau in vitro and in vivo using bimolecular fluorescence complementation. Sci Rep 2022; 12:2987. [PMID: 35194057 PMCID: PMC8863885 DOI: 10.1038/s41598-022-06846-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are characterized by pathological accumulation and aggregation of different amyloidogenic proteins, α-synuclein (aSyn) in PD, and amyloid-β (Aβ) and Tau in AD. Strikingly, few PD and AD patients' brains exhibit pure pathology with most cases presenting mixed types of protein deposits in the brain. Bimolecular fluorescence complementation (BiFC) is a technique based on the complementation of two halves of a fluorescent protein, which allows direct visualization of protein-protein interactions. In the present study, we assessed the ability of aSyn and Tau to interact with each other. For in vitro evaluation, HEK293 and human neuroblastoma cells were used, while in vivo studies were performed by AAV6 injection in the substantia nigra pars compacta (SNpc) of mice and rats. We observed that the co-expression of aSyn and Tau led to the emergence of fluorescence, reflecting the interaction of the proteins in cell lines, as well as in mouse and rat SNpc. Thus, our data indicates that aSyn and Tau are able to interact with each other in a biologically relevant context, and that the BiFC assay is an effective tool for studying aSyn-Tau interactions in vitro and in different rodent models in vivo.
Collapse
Affiliation(s)
- Laura Torres-Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joana M P Domingues
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Clinical Neurosciences, University of Cambridge, The Clifford Albbutt Building, Cambridge, UK
| | - Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Janitha M Mudannayake
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Inês C Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Scientific Employee With an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Institute of Health Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
48
|
Sepúlveda D, Cisternas-Olmedo M, Arcos J, Nassif M, Vidal RL. Contribution of Autophagy-Lysosomal Pathway in the Exosomal Secretion of Alpha-Synuclein and Its Impact in the Progression of Parkinson’s Disease. Front Mol Neurosci 2022; 15:805087. [PMID: 35250476 PMCID: PMC8891570 DOI: 10.3389/fnmol.2022.805087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is caused by the degeneration of dopaminergic neurons due to an accumulation of intraneuronal abnormal alpha-synuclein (α-syn) protein aggregates. It has been reported that the levels of exosomal α-syn of neuronal origin in plasma correlate significantly with motor dysfunction, highlighting the exosomes containing α-syn as a potential biomarker of PD. In addition, it has been found that the selective autophagy-lysosomal pathway (ALP) contributes to the secretion of misfolded proteins involved in neurodegenerative diseases. In this review, we describe the evidence that supports the relationship between the ALP and α-syn exosomal secretion on the PD progression and its implications in the diagnosis and progression of this pathology.
Collapse
Affiliation(s)
- Denisse Sepúlveda
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Marisol Cisternas-Olmedo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - René L. Vidal
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- *Correspondence: René L. Vidal,
| |
Collapse
|
49
|
Passive Immunization in Alpha-Synuclein Preclinical Animal Models. Biomolecules 2022; 12:biom12020168. [PMID: 35204668 PMCID: PMC8961624 DOI: 10.3390/biom12020168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha-synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. These are all progressive neurodegenerative diseases that are characterized by pathological misfolding and accumulation of the protein alpha-synuclein (αsyn) in neurons, axons or glial cells in the brain, but also in other organs. The abnormal accumulation and propagation of pathogenic αsyn across the autonomic connectome is associated with progressive loss of neurons in the brain and peripheral organs, resulting in motor and non-motor symptoms. To date, no cure is available for synucleinopathies, and therapy is limited to symptomatic treatment of motor and non-motor symptoms upon diagnosis. Recent advances using passive immunization that target different αsyn structures show great potential to block disease progression in rodent studies of synucleinopathies. However, passive immunotherapy in clinical trials has been proven safe but less effective than in preclinical conditions. Here we review current achievements of passive immunotherapy in animal models of synucleinopathies. Furthermore, we propose new research strategies to increase translational outcome in patient studies, (1) by using antibodies against immature conformations of pathogenic αsyn (monomers, post-translationally modified monomers, oligomers and protofibrils) and (2) by focusing treatment on body-first synucleinopathies where damage in the brain is still limited and effective immunization could potentially stop disease progression by blocking the spread of pathogenic αsyn from peripheral organs to the brain.
Collapse
|
50
|
Vasili E, Dominguez-Meijide A, Flores-León M, Al-Azzani M, Kanellidi A, Melki R, Stefanis L, Outeiro TF. Endogenous Levels of Alpha-Synuclein Modulate Seeding and Aggregation in Cultured Cells. Mol Neurobiol 2022; 59:1273-1284. [PMID: 34984585 PMCID: PMC8857012 DOI: 10.1007/s12035-021-02713-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
Parkinson’s disease is a progressive neurodegenerative disorder characterized by the accumulation of misfolded alpha-synuclein in intraneuronal inclusions known as Lewy bodies and Lewy neurites. Multiple studies strongly implicate the levels of alpha-synuclein as a major risk factor for the onset and progression of Parkinson’s disease. Alpha-synuclein pathology spreads progressively throughout interconnected brain regions but the precise molecular mechanisms underlying the seeding of alpha-synuclein aggregation are still unclear. Here, using stable cell lines expressing alpha-synuclein, we examined the correlation between endogenous alpha-synuclein levels and the seeding propensity by exogenous alpha-synuclein preformed fibrils. We applied biochemical approaches and imaging methods in stable cell lines expressing alpha-synuclein and in primary neurons to determine the impact of alpha-synuclein levels on seeding and aggregation. Our results indicate that the levels of alpha-synuclein define the pattern and severity of aggregation and the extent of p-alpha-synuclein deposition, likely explaining the selective vulnerability of different cell types in synucleinopathies. The elucidation of the cellular processes involved in the pathological aggregation of alpha-synuclein will enable the identification of novel targets and the development of therapeutic strategies for Parkinson’s disease and other synucleinopathies.
Collapse
Affiliation(s)
- Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Goettingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Goettingen, Germany
- Laboratory of Neuroanatomy and Experimental Neurology, Department. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Flores-León
- Departamento de Medicina Genómica Y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico
| | - Mohammed Al-Azzani
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Goettingen, Germany
| | - Angeliki Kanellidi
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA, and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Goettingen, Germany.
- Max Planck Institute for Experimental Medicine, Goettingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Scientific Employee With a Honorary Contract at Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|