1
|
Xiao J, Feng C, Zhu T, Zhang X, Chen X, Li Z, You J, Wang Q, Zhuansun D, Meng X, Wang J, Xiang L, Yu X, Zhou B, Tang W, Tou J, Wang Y, Yang H, Yu L, Liu Y, Jiang X, Ren H, Yu M, Chen Q, Yin Q, Liu X, Xu Z, Wu D, Yu D, Wu X, Yang J, Xiong B, Chen F, Hao X, Feng J. Rare and common genetic variants underlying the risk of Hirschsprung's disease. Hum Mol Genet 2025; 34:586-598. [PMID: 39817569 DOI: 10.1093/hmg/ddae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
Hirschsprung's disease (HSCR) is a congenital enteric neuropathic disorder characterized by high heritability (>80%) and polygenic inheritance (>20 genes). The previous genome-wide association studies (GWAS) identified several common variants associated with HSCR and demonstrated increased predictive performance for HSCR risk in Europeans using a genetic risk score, there remains a notable gap in knowledge regarding Chinese populations. We conducted whole exome sequencing in a HSCR case cohort in Chinese. By using the common controls (505 controls from 1KG EAS and 10 588 controls from ChinaMAP), we conducted GWAS for the common variants in the exome and gene-based association for rare variants. We further validated the associated variants and genes in replicated samples and in vitro and vivo experiments. We identified one novel gene PLK5 by GWAS and suggested 45 novel putative genes based the gene-based test. By using genetic variant at RET and PLK5, we constructed a genetic risk score that could identify the individuals with very high genetic risk for HSCR. Compared with patients with zero or one risk allele from the three variants, the risk for HSCR was 36.61 times higher with six alleles. In addition, we delineated a HSCR risk gene landscape that encompasses 57 genes, which explains 88.5% and 54.5% of HSCR in Chinese and European, respectively. In summary, this study improved the understanding of genetic architecture of HSCR and provided a risk prediction approach for HSCR in the Chinese.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Chenzhao Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, No. 6 Longtian South Road, Longtian Subdistrict, Pingshan District, Shenzhen, Guangdong 518122, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Qiong Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210008, China
| | - Jinfa Tou
- Department of General Surgery, Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310003, China
| | - Yi Wang
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Heying Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, No. 1 Renmin Road, Erqi District, Henan 450052, China
| | - Lei Yu
- Department of Neonatal Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Jiang'an District, Wuhan, Hubei 430030, China
| | - Yuanmei Liu
- Department of Pediatric Surgery, The Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563000, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69, Dongxia North Road, Jinping District, Shantou, Guangdong 515041, China
| | - Hongxia Ren
- Department of Neonatal Surgery, Children's Hospital of Shanxi, No. 13 Xinminbei Street, Xinhualing district, Taiyuan, Shanxi 030013, China
| | - Mei Yu
- Department of Pediatric Surgery, Guiyang Maternal and Child Health Hospital, No. 63 Ruijin South Road, Nanming district, Guiyang, Guizhou 550002, China
| | - Qi Chen
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, No. 7 Kangfuqian Street, Erqi District, Zhengzhou 450052, Henan, China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan 515041, China
| | - Xiang Liu
- Department of Pediatric Surgery, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Wuhu Road Subdistrict, Hefei, Anhui 230051, China
| | - Zhilin Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, No. 199 Dazhi Street, Nangang district, Harbin, Heilongjiang 150001, China
| | - Dianming Wu
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Donghai Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan, Hubei 430030, China
| | - Feng Chen
- Department of Pediatric Surgery, Union Hospital, Fujian Medical University, No. 29, Xinquan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan, Hubei 430030, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Daly AC, Cambuli F, Äijö T, Lötstedt B, Marjanovic N, Kuksenko O, Smith-Erb M, Fernandez S, Domovic D, Van Wittenberghe N, Drokhlyansky E, Griffin GK, Phatnani H, Bonneau R, Regev A, Vickovic S. Tissue and cellular spatiotemporal dynamics in colon aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590125. [PMID: 38712088 PMCID: PMC11071407 DOI: 10.1101/2024.04.22.590125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue structure and molecular circuitry in the colon can be profoundly impacted by systemic age-related effects, but many of the underlying molecular cues remain unclear. Here, we built a cellular and spatial atlas of the colon across three anatomical regions and 11 age groups, encompassing ~1,500 mouse gut tissues profiled by spatial transcriptomics and ~400,000 single nucleus RNA-seq profiles. We developed a new computational framework, cSplotch, which learns a hierarchical Bayesian model of spatially resolved cellular expression associated with age, tissue region, and sex, by leveraging histological features to share information across tissue samples and data modalities. Using this model, we identified cellular and molecular gradients along the adult colonic tract and across the main crypt axis, and multicellular programs associated with aging in the large intestine. Our multi-modal framework for the investigation of cell and tissue organization can aid in the understanding of cellular roles in tissue-level pathology.
Collapse
Affiliation(s)
- Aidan C. Daly
- New York Genome Center, New York, NY, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Britta Lötstedt
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nemanja Marjanovic
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olena Kuksenko
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | - Eugene Drokhlyansky
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriel K Griffin
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Center for Data Science, New York University, New York, NY, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Lefèvre MA, Soret R, Pilon N. Harnessing the Power of Enteric Glial Cells' Plasticity and Multipotency for Advancing Regenerative Medicine. Int J Mol Sci 2023; 24:12475. [PMID: 37569849 PMCID: PMC10419543 DOI: 10.3390/ijms241512475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The enteric nervous system (ENS), known as the intrinsic nervous system of the gastrointestinal tract, is composed of a diverse array of neuronal and glial cell subtypes. Fascinating questions surrounding the generation of cellular diversity in the ENS have captivated ENS biologists for a considerable time, particularly with recent advancements in cell type-specific transcriptomics at both population and single-cell levels. However, the current focus of research in this field is predominantly restricted to the study of enteric neuron subtypes, while the investigation of enteric glia subtypes significantly lags behind. Despite this, enteric glial cells (EGCs) are increasingly recognized as equally important regulators of numerous bowel functions. Moreover, a subset of postnatal EGCs exhibits remarkable plasticity and multipotency, distinguishing them as critical entities in the context of advancing regenerative medicine. In this review, we aim to provide an updated overview of the current knowledge on this subject, while also identifying key questions that necessitate future exploration.
Collapse
Affiliation(s)
- Marie A. Lefèvre
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Rodolphe Soret
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
| | - Nicolas Pilon
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre D’excellence en Recherche Sur Les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
4
|
Pendse M, De Selle H, Vo N, Quinn G, Dende C, Li Y, Salinas CN, Srinivasan T, Propheter DC, Crofts AA, Koo E, Hassell B, Ruhn KA, Raj P, Obata Y, Hooper LV. Macrophages regulate gastrointestinal motility through complement component 1q. eLife 2023; 12:e78558. [PMID: 37159507 PMCID: PMC10185340 DOI: 10.7554/elife.78558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.
Collapse
Affiliation(s)
- Mihir Pendse
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Haley De Selle
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Gabriella Quinn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chaitanya Dende
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yun Li
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Cristine N Salinas
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Tarun Srinivasan
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Daniel C Propheter
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander A Crofts
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Eugene Koo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Brian Hassell
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kelly A Ruhn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Prithvi Raj
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
- The Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
5
|
Sunardi M, Ito K, Sato Y, Uesaka T, Iwasaki M, Enomoto H. A Single RET Mutation in Hirschsprung Disease Induces Intestinal Aganglionosis Via a Dominant-Negative Mechanism. Cell Mol Gastroenterol Hepatol 2022; 15:1505-1524. [PMID: 36521661 DOI: 10.1016/j.jcmgh.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of the enteric nervous system (ENS). HSCR potentially involves multiple gene aberrations and displays complex patterns of inheritance. Mutations of the RET gene, encoding the RET receptor tyrosine kinase, play a central role in the pathogenesis of HSCR. Although a wide variety of coding RET mutations have been identified, their pathogenetic significance in vivo has remained largely unclear. METHODS We introduced a HSCR-associated RET missense mutation, RET(S811F), into the corresponding region (S812) of the mouse Ret gene. Pathogenetic impact of Ret(S812F) was assessed by histologic and functional analyses of the ENS and by biochemical analyses. Interactions of the Ret(S812F) allele with HSCR susceptibility genes, the RET9 allele and the Ednrb gene, were examined by genetic crossing in mice. RESULTS RetS812F/+ mice displayed intestinal aganglionosis (incidence, 50%) or hypoganglionosis (50%), impaired differentiation of enteric neurons, defecation deficits, and increased lethality. Biochemical analyses revealed that Ret(S811F) protein was not only kinase-deficient but also abrogated function of wild-type RET in trans. Moreover, the Ret(S812F) allele interacted with other HSCR susceptibility genes and caused intestinal aganglionosis with full penetrance. CONCLUSIONS This study demonstrates that a single RET missense mutation alone induces intestinal aganglionosis via a dominant-negative mechanism. The RetS812F/+ mice model HSCR displays dominant inheritance with incomplete penetrance and serves as a valuable platform for better understanding of the pathogenetic mechanism of HSCR caused by coding RET mutations.
Collapse
Affiliation(s)
- Mukhamad Sunardi
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Keisuke Ito
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yuya Sato
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Toshihiro Uesaka
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Mitsuhiro Iwasaki
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.
| |
Collapse
|
6
|
Bonnamour G, Charrier B, Sallis S, Leduc E, Pilon N. NR2F1 regulates a Schwann cell precursor-vs-melanocyte cell fate switch in a mouse model of Waardenburg syndrome type IV. Pigment Cell Melanoma Res 2022; 35:506-516. [PMID: 35816394 DOI: 10.1111/pcmr.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
Waardenburg syndrome type 4 (WS4) combines abnormal development of neural crest cell (NCC)-derived melanocytes (causing depigmentation and inner ear dysfunction) and enteric nervous system (causing aganglionic megacolon). The full spectrum of WS4 phenotype is present in Spot mice, in which an insertional mutation close to a silencer element leads to NCC-specific upregulation of the transcription factor-coding gene Nr2f1. These mice were previously found to develop aganglionic megacolon because of NR2F1-induced premature differentiation of enteric neural progenitors into enteric glia. Intriguingly, this prior work also showed that inner ear dysfunction in Spot mutants specifically affects balance but not hearing, consistent with the absence of melanocytes in the vestibule only. Here, we report an analysis of the effect of Nr2f1 upregulation on the development of both inner ear and skin melanocytes, also taking in consideration their origin relative to the dorsolateral and ventral NCC migration pathways. In the trunk, we found that NR2F1 overabundance in Spot NCCs forces dorso-laterally migrating melanoblasts to abnormally adopt a Schwann cell precursor (SCP) fate and conversely prevents ventrally migrating SCPs to normally adopt a melanoblast fate. In the head, Nr2f1 upregulation appears not to be uniform, which might explain why SCP-derived melanocytes do colonize the cochlea while non-SCP-derived melanocytes cannot reach the vestibule. Collectively, these data point to a key role for NR2F1 in the control of SCP-vs-melanocyte fate choice and unveil a new pathogenic mechanism for WS4. Moreover, our data argue against the proposed existence of a transit-amplifying compartment of melanocyte precursors in hair follicles.
Collapse
Affiliation(s)
- Grégoire Bonnamour
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Sephora Sallis
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada.,Département de Pédiatrie, Université de Montréal, Montréal, Canada
| |
Collapse
|
7
|
Genetic Background Influences Severity of Colonic Aganglionosis and Response to GDNF Enemas in the Holstein Mouse Model of Hirschsprung Disease. Int J Mol Sci 2021; 22:ijms222313140. [PMID: 34884944 PMCID: PMC8658428 DOI: 10.3390/ijms222313140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hirschsprung disease is a congenital malformation where ganglia of the neural crest-derived enteric nervous system are missing over varying lengths of the distal gastrointestinal tract. This complex genetic condition involves both rare and common variants in dozens of genes, many of which have been functionally validated in animal models. Modifier loci present in the genetic background are also believed to influence disease penetrance and severity, but this has not been frequently tested in animal models. Here, we addressed this question using Holstein mice in which aganglionosis is due to excessive deposition of collagen VI around the developing enteric nervous system, thereby allowing us to model trisomy 21-associated Hirschsprung disease. We also asked whether the genetic background might influence the response of Holstein mice to GDNF enemas, which we recently showed to have regenerative properties for the missing enteric nervous system. Compared to Holstein mice in their original FVB/N genetic background, Holstein mice maintained in a C57BL/6N background were found to have a less severe enteric nervous system defect and to be more responsive to GDNF enemas. This change of genetic background had a positive impact on the enteric nervous system only, leaving the neural crest-related pigmentation phenotype of Holstein mice unaffected. Taken together with other similar studies, these results are thus consistent with the notion that the enteric nervous system is more sensitive to genetic background changes than other neural crest derivatives.
Collapse
|
8
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
9
|
Lee SH, Hadipour-Lakmehsari S, Kim DH, Di Paola M, Kuzmanov U, Shah S, Lee JJH, Kislinger T, Sharma P, Oudit GY, Gramolini AO. Bioinformatic analysis of membrane and associated proteins in murine cardiomyocytes and human myocardium. Sci Data 2020; 7:425. [PMID: 33262348 PMCID: PMC7708497 DOI: 10.1038/s41597-020-00762-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the current study we examined several proteomic- and RNA-Seq-based datasets of cardiac-enriched, cell-surface and membrane-associated proteins in human fetal and mouse neonatal ventricular cardiomyocytes. By integrating available microarray and tissue expression profiles with MGI phenotypic analysis, we identified 173 membrane-associated proteins that are cardiac-enriched, conserved amongst eukaryotic species, and have not yet been linked to a 'cardiac' Phenotype-Ontology. To highlight the utility of this dataset, we selected several proteins to investigate more carefully, including FAM162A, MCT1, and COX20, to show cardiac enrichment, subcellular distribution and expression patterns in disease. We performed three-dimensional confocal imaging analysis to validate subcellular localization and expression in adult mouse ventricular cardiomyocytes. FAM162A, MCT1, and COX20 were expressed differentially at the transcriptomic and proteomic levels in multiple models of mouse and human heart diseases and may represent potential diagnostic and therapeutic targets for human dilated and ischemic cardiomyopathies. Altogether, we believe this comprehensive cardiomyocyte membrane proteome dataset will prove instrumental to future investigations aimed at characterizing heart disease markers and/or therapeutic targets for heart failure.
Collapse
Affiliation(s)
- Shin-Haw Lee
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Sina Hadipour-Lakmehsari
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Da Hye Kim
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Michelle Di Paola
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Uros Kuzmanov
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Saumya Shah
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, T6G 2B7, Canada
| | - Joseph Jong-Hwan Lee
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Research Centre, Toronto, Ontario, M5G 1L8, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Parveen Sharma
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, T6G 2B7, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada.
| |
Collapse
|
10
|
Bonnamour G, Soret R, Pilon N. Dhh-expressing Schwann cell precursors contribute to skin and cochlear melanocytes, but not to vestibular melanocytes. Pigment Cell Melanoma Res 2020; 34:648-654. [PMID: 33089656 DOI: 10.1111/pcmr.12938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/18/2022]
Abstract
For a long time, melanocytes were believed to be exclusively derived from neural crest cells migrating from the neural tube toward the developing skin. This notion was then challenged by studies suggesting that melanocytes could also be made from neural crest-derived Schwann cell precursors (SCPs) on peripheral nerves. A SCP origin was inferred from lineage tracing studies in mice using a Plp1 promoter-controlled Cre driver transgene (Plp1-CreERT2) and a fluorescent Rosa26 locus-controlled Cre reporter allele (Rosa26FloxSTOP-YFP ). However, doubts were raised in part because another SCP-directed Cre driver controlled by the Dhh promoter (Dhh-Cre) was apparently unable to label melanocytes when used with a non-fluorescent Rosa26 locus-controlled Cre reporter (Rosa26FloxSTOP-LacZ ). Here, we report that the same Dhh-Cre driver line can efficiently label melanocytes when used in a pure FVB/N background together with the fluorescent instead of the non-fluorescent Rosa26 locus-controlled Cre reporter. Our data further suggest that the vast majority of skin melanocytes are SCP-derived. Interestingly, we also discovered that SCPs contribute inner ear melanocytes in a region-specific manner, extensively contributing to the cochlea but not to the vestibule.
Collapse
Affiliation(s)
- Grégoire Bonnamour
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréa, QC, Canada.,Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréa, QC, Canada.,Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréa, QC, Canada.,Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada.,Département de pédiatrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Soret R, Schneider S, Bernas G, Christophers B, Souchkova O, Charrier B, Righini-Grunder F, Aspirot A, Landry M, Kembel SW, Faure C, Heuckeroth RO, Pilon N. Glial Cell-Derived Neurotrophic Factor Induces Enteric Neurogenesis and Improves Colon Structure and Function in Mouse Models of Hirschsprung Disease. Gastroenterology 2020; 159:1824-1838.e17. [PMID: 32687927 DOI: 10.1053/j.gastro.2020.07.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is a life-threatening birth defect in which the distal colon is devoid of enteric neural ganglia. HSCR is treated by surgical removal of aganglionic bowel, but many children continue to have severe problems after surgery. We studied whether administration of glial cell derived neurotrophic factor (GDNF) induces enteric nervous system regeneration in mouse models of HSCR. METHODS We performed studies with four mouse models of HSCR: Holstein (HolTg/Tg, a model for trisomy 21-associated HSCR), TashT (TashTTg/Tg, a model for male-biased HSCR), Piebald-lethal (Ednrbs-l//s-l, a model for EDNRB mutation-associated HSCR), and Ret9/- (with aganglionosis induced by mycophenolate). Mice were given rectal enemas containing GDNF or saline (control) from postnatal days 4 through 8. We measured survival times of mice, and colon tissues were analyzed by histology, immunofluorescence, and immunoblots. Neural ganglia regeneration and structure, bowel motility, epithelial permeability, muscle thickness, and neutrophil infiltration were studied in colon tissues and in mice. Stool samples were collected, and microbiomes were analyzed by 16S rRNA gene sequencing. Time-lapse imaging and genetic cell-lineage tracing were used to identify a source of GDNF-targeted neural progenitors. Human aganglionic colon explants from children with HSCR were cultured with GDNF and evaluated for neurogenesis. RESULTS GDNF significantly prolonged mean survival times of HolTg/Tg mice, Ednrbs-l//s-l mice, and male TashTTg/Tg mice, compared with control mice, but not Ret9/- mice (which had mycophenolate toxicity). Mice given GDNF developed neurons and glia in distal bowel tissues that were aganglionic in control mice, had a significant increase in colon motility, and had significant decreases in epithelial permeability, muscle thickness, and neutrophil density. We observed dysbiosis in fecal samples from HolTg/Tg mice compared with feces from wild-type mice; fecal microbiomes of mice given GDNF were similar to those of wild-type mice except for Bacteroides. Exogenous luminal GDNF penetrated aganglionic colon epithelium of HolTg/Tg mice, inducing production of endogenous GDNF, and new enteric neurons and glia appeared to arise from Schwann cells within extrinsic nerves. GDNF application to cultured explants of human aganglionic bowel induced proliferation of Schwann cells and formation of new neurons. CONCLUSIONS GDNF prolonged survival, induced enteric neurogenesis, and improved colon structure and function in 3 mouse models of HSCR. Application of GDNF to cultured explants of aganglionic bowel from children with HSCR induced proliferation of Schwann cells and formation of new neurons. GDNF might be developed for treatment of HSCR.
Collapse
Affiliation(s)
- Rodolphe Soret
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sabine Schneider
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Guillaume Bernas
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Briana Christophers
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Ouliana Souchkova
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Baptiste Charrier
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Franziska Righini-Grunder
- Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Ann Aspirot
- Division de chirurgie pédiatrique, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Mathieu Landry
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Christophe Faure
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada; Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Robert O Heuckeroth
- Department of Pediatrics, the University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Nicolas Pilon
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada; Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada; Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Bandara TAMK, Otsuka K, Matsubara S, Shiraishi A, Satake H, Kimura AP. A dual enhancer-silencer element, DES-K16, in mouse spermatocyte-derived GC-2spd(ts) cells. Biochem Biophys Res Commun 2020; 534:1007-1012. [PMID: 33121685 DOI: 10.1016/j.bbrc.2020.10.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/23/2022]
Abstract
The multifunctionality of genome is suggested at some loci in different species but not well understood. Here we identified a DES-K16 region in an intron of the Kctd16 gene as the chromatin highly marked with epigenetic modifications of both enhancers (H3K4me1 and H3K27ac) and silencers (H3K27me3) in mouse spermatocytes. In vitro reporter gene assay demonstrated that DES-K16 exhibited significant enhancer activity in spermatocyte-derived GC-2spd(ts) and hepatic tumor-derived Hepa1-6 cells, and a deletion of this sequence in GC-2spd(ts) cells resulted in a decrease and increase of Yipf5 and Kctd16 expression, respectively. This was consistent with increased and decreased expression of Yipf5 and Kctd16, respectively, in primary spermatocytes during testis development. While known dual enhancer-silencers exert each activity in different tissues, our data suggest that DES-K16 functions as both enhancer and silencer in a single cell type, GC-2spd(ts) cells. This is the first report on a dual enhancer-silencer element which activates and suppresses gene expression in a single cell type.
Collapse
Affiliation(s)
| | - Kai Otsuka
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Sorakugun, Kyoto, 619-0284, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Sorakugun, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Sorakugun, Kyoto, 619-0284, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
13
|
Cardinal T, Bergeron KF, Soret R, Souchkova O, Faure C, Guillon A, Pilon N. Male-biased aganglionic megacolon in the TashT mouse model of Hirschsprung disease involves upregulation of p53 protein activity and Ddx3y gene expression. PLoS Genet 2020; 16:e1009008. [PMID: 32898154 PMCID: PMC7500598 DOI: 10.1371/journal.pgen.1009008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hirschsprung disease (HSCR) is a complex genetic disorder of neural crest development resulting in incomplete formation of the enteric nervous system (ENS). This life-threatening neurocristopathy affects 1/5000 live births, with a currently unexplained male-biased ratio. To address this lack of knowledge, we took advantage of the TashT mutant mouse line, which is the only HSCR model to display a robust male bias. Our prior work revealed that the TashT insertional mutation perturbs a Chr.10 silencer-enriched non-coding region, leading to transcriptional dysregulation of hundreds of genes in neural crest-derived ENS progenitors of both sexes. Here, through sex-stratified transcriptome analyses and targeted overexpression in ENS progenitors, we show that male-biased ENS malformation in TashT embryos is not due to upregulation of Sry-the murine ortholog of a candidate gene for the HSCR male bias in humans-but instead involves upregulation of another Y-linked gene, Ddx3y. This discovery might be clinically relevant since we further found that the DDX3Y protein is also expressed in the ENS of a subset of male HSCR patients. Mechanistically, other data including chromosome conformation captured-based assays and CRISPR/Cas9-mediated deletions suggest that Ddx3y upregulation in male TashT ENS progenitors is due to increased transactivation by p53, which appears especially active in these cells yet without triggering apoptosis. Accordingly, in utero treatment of TashT embryos with the p53 inhibitor pifithrin-α decreased Ddx3y expression and abolished the otherwise more severe ENS defect in TashT males. Our data thus highlight novel pathogenic roles for p53 and DDX3Y during ENS formation in mice, a finding that might help to explain the intriguing male bias of HSCR in humans.
Collapse
Affiliation(s)
- Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Karl-Frédérik Bergeron
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Lipid Metabolism Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Christophe Faure
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
- Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Amélina Guillon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Sánchez-Gaya V, Mariner-Faulí M, Rada-Iglesias A. Rare or Overlooked? Structural Disruption of Regulatory Domains in Human Neurocristopathies. Front Genet 2020; 11:688. [PMID: 32765580 PMCID: PMC7379850 DOI: 10.3389/fgene.2020.00688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few years, the role of non-coding regulatory elements and their involvement in human disease have received great attention. Among the non-coding regulatory sequences, enhancers are particularly important for the proper establishment of cell type-specific gene-expression programs. Furthermore, the disruption of enhancers can lead to human disease through two main mechanisms: (i) Mutations or copy number variants can directly alter the enhancer sequences and thereby affect expression of their target genes; (ii) structural variants can provoke changes in 3-D chromatin organization that alter neither the enhancers nor their target genes, but rather the physical communication between them. In this review, these pathomechanisms are mostly discussed in the context of neurocristopathies, congenital disorders caused by defects that occur during neural crest development. We highlight why, due to its contribution to multiple tissues and organs, the neural crest represents an important, yet understudied, cell type involved in multiple congenital disorders. Moreover, we discuss currently available resources and experimental models for the study of human neurocristopathies. Last, we provide some practical guidelines that can be followed when investigating human neurocristopathies caused by structural variants. Importantly, these guidelines can be useful not only to uncover the etiology of human neurocristopathies, but also of other human congenital disorders in which enhancer disruption is involved.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Doni Jayavelu N, Jajodia A, Mishra A, Hawkins RD. Candidate silencer elements for the human and mouse genomes. Nat Commun 2020; 11:1061. [PMID: 32103011 PMCID: PMC7044160 DOI: 10.1038/s41467-020-14853-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/08/2020] [Indexed: 11/24/2022] Open
Abstract
The study of gene regulation is dominated by a focus on the control of gene activation or increase in the level of expression. Just as critical is the process of gene repression or silencing. Chromatin signatures have identified enhancers, however, genome-wide identification of silencers by computational or experimental approaches are lacking. Here, we first define uncharacterized cis-regulatory elements likely containing silencers and find that 41.5% of ~7500 tested elements show silencer activity using massively parallel reporter assay (MPRA). We trained a support vector machine classifier based on MPRA data to predict candidate silencers in over 100 human and mouse cell or tissue types. The predicted candidate silencers exhibit characteristics expected of silencers. Leveraging promoter-capture HiC data, we find that over 50% of silencers are interacting with gene promoters having very low to no expression. Our results suggest a general strategy for genome-wide identification and characterization of silencer elements. Identification of silencer elements by computational or experimental approaches in a genome-wide manner is still challenging. Here authors define uncharacterized cis-regulatory elements (CREs) in human and mouse genomes likely containing silencer elements, and test them in cells using massively parallel reporter assays to identify silencer elements that showed silencer activity.
Collapse
Affiliation(s)
- Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Ajay Jajodia
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Arpit Mishra
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
16
|
Gut microbiota-mediated Gene-Environment interaction in the TashT mouse model of Hirschsprung disease. Sci Rep 2019; 9:492. [PMID: 30679567 PMCID: PMC6345786 DOI: 10.1038/s41598-018-36967-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Based on the bilateral relationship between the gut microbiota and formation/function of the enteric nervous system (ENS), we sought to determine whether antibiotics-induced dysbiosis might impact the expressivity of genetically-induced ENS abnormalities. To address this, we took advantage of the TashT mouse model of Hirschsprung disease, in which colonic aganglionosis and hypoganglionosis are both much more severe in males. These defects result into two male-biased colon motility phenotypes: either megacolon that is lethal around weaning age or chronic constipation in adults, the latter being also associated with an increased proportion of nitrergic neurons in the distal ENS. Induction of dysbiosis using a cocktail of broad-spectrum antibiotics specifically impacted the colonic ENS of TashTTg/Tg mice in a stage-dependent manner. It further decreased the neuronal density at post-weaning age and differentially modulated the otherwise increased proportion of nitrergic neurons, which appeared normalized around weaning age and further increased at post-weaning age. These changes delayed the development of megacolon around weaning age but led to premature onset of severe constipation later on. Finally, local inhibition of nitric oxide signaling improved motility and prevented death by megacolon. We thus conclude that exposure to antibiotics can negatively influence the expressivity of a genetically-induced enteric neuropathy.
Collapse
|
17
|
Hao MM, Bergner AJ, Newgreen DF, Enomoto H, Young HM. Technologies for Live Imaging of Enteric Neural Crest-Derived Cells. Methods Mol Biol 2019; 1976:97-105. [PMID: 30977068 DOI: 10.1007/978-1-4939-9412-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Time-lapse imaging of gut explants from embryonic mice in which neural crest-derived cells express fluorescent proteins allows the behavior of enteric neural crest cells to be observed and analyzed. Explants of embryonic gut are dissected, mounted on filter paper supports so the gut retains its tubular three-dimensional structure, and then placed in coverglass bottom culture dishes in tissue culture medium. A stainless steel ring is placed on top of the filter support to prevent movement. Imaging is performed using a confocal microscope in an environmental chamber. A z series of images through the network of fluorescent cells is collected every 3, 5, or 10 min. At the end of imaging, the z series are projected.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Leuven, Belgium
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Donald F Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Bérubé-Simard FA, Pilon N. Molecular dissection of CHARGE syndrome highlights the vulnerability of neural crest cells to problems with alternative splicing and other transcription-related processes. Transcription 2018; 10:21-28. [PMID: 30205741 DOI: 10.1080/21541264.2018.1521213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CHARGE syndrome is characterized by co-occurrence of multiple malformations due to abnormal development of neural crest cells. Here, we review the phenotypic and molecular overlap between CHARGE syndrome and similar pathologies, and further discuss the observation that neural crest cells appear especially sensitive to malfunction of the chromatin-transcription-splicing molecular hub.
Collapse
Affiliation(s)
- Félix-Antoine Bérubé-Simard
- a Laboratoire de génétique moléculaire du développement, Département des sciences biologiques , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,b Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC) , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada
| | - Nicolas Pilon
- a Laboratoire de génétique moléculaire du développement, Département des sciences biologiques , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,b Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC) , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,c Département de pédiatrie , Université de Montréal , Montréal , QC , Canada
| |
Collapse
|
19
|
Dysregulation of cotranscriptional alternative splicing underlies CHARGE syndrome. Proc Natl Acad Sci U S A 2018; 115:E620-E629. [PMID: 29311329 DOI: 10.1073/pnas.1715378115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CHARGE syndrome-which stands for coloboma of the eye, heart defects, atresia of choanae, retardation of growth/development, genital abnormalities, and ear anomalies-is a severe developmental disorder with wide phenotypic variability, caused mainly by mutations in CHD7 (chromodomain helicase DNA-binding protein 7), known to encode a chromatin remodeler. The genetic lesions responsible for CHD7 mutation-negative cases are unknown, at least in part because the pathogenic mechanisms underlying CHARGE syndrome remain poorly defined. Here, we report the characterization of a mouse model for CHD7 mutation-negative cases of CHARGE syndrome generated by insertional mutagenesis of Fam172a (family with sequence similarity 172, member A). We show that Fam172a plays a key role in the regulation of cotranscriptional alternative splicing, notably by interacting with Ago2 (Argonaute-2) and Chd7. Validation studies in a human cohort allow us to propose that dysregulation of cotranscriptional alternative splicing is a unifying pathogenic mechanism for both CHD7 mutation-positive and CHD7 mutation-negative cases. We also present evidence that such splicing defects can be corrected in vitro by acute rapamycin treatment.
Collapse
|
20
|
Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci 2016; 17:681-691. [PMID: 27708356 DOI: 10.1038/nrn.2016.124] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonrandom chromosomal conformations, including promoter-enhancer loopings that bypass kilobases or megabases of linear genome, provide a crucial layer of transcriptional regulation and move vast amounts of non-coding sequence into the physical proximity of genes that are important for neurodevelopment, cognition and behaviour. Activity-regulated changes in the neuronal '3D genome' could govern transcriptional mechanisms associated with learning and plasticity, and loop-bound intergenic and intronic non-coding sequences have been implicated in psychiatric and adult-onset neurodegenerative disease. Recent studies have begun to clarify the roles of spatial genome organization in normal and abnormal cognition.
Collapse
Affiliation(s)
- Prashanth Rajarajan
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| | - Sergio Espeso Gil
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, Barcelona 08002, Spain
| | - Kristen J Brennand
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| | - Schahram Akbarian
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| |
Collapse
|
21
|
Touré AM, Charrier B, Pilon N. Male-specific colon motility dysfunction in the TashT mouse line. Neurogastroenterol Motil 2016; 28:1494-507. [PMID: 27278627 DOI: 10.1111/nmo.12847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/10/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND In Hirschsprung disease (HSCR), the absence of myenteric neural ganglia in the distal bowel prevents motility and thereby causes functional intestinal obstruction. Although surgical resection of the aganglionic segment allows HSCR children to survive this condition, a number of patients still suffer from impaired motility despite having myenteric ganglia in their postoperative distal bowel. Such phenomenon is also observed in patients suffering from other enteric neuropathies and, in both cases, colonic dysmotility is believed to result from abnormalities of myenteric ganglia and/or associated interstitial cells of Cajal (ICC). To better understand this, we used a recently described HSCR mouse model called TashT. METHODS Intestinal motility parameters were assessed and correlated with extent of aganglionosis and with neuronal density in ganglionated regions. The neural composition of the myenteric plexus and the status of ICC networks was also evaluated using immunofluorescence. KEY RESULTS TashT(Tg/Tg) mice display a strong male bias in the severity of both colonic aganglionosis and hypoganglionosis, which are associated with male-specific reduced colonic motility. TashT(Tg/Tg) male mice also exhibit a specific increase in nNos(+) neurons that is restricted to the most distal ganglionated regions. In contrast, Calretinin(+) myenteric neurons, Sox10(+) myenteric glial cells, and cKit(+) ICC are not affected in TashT(Tg/Tg) mice. CONCLUSIONS AND INFERENCES Male-specific impairment of colonic motility in TashT(Tg/Tg) mice is associated with both severe hypoganglionosis and myenteric neuronal imbalance. Considering these parameters in the clinic might be important for the management of postoperative HSCR patients.
Collapse
Affiliation(s)
- A M Touré
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada
| | - B Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada
| | - N Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada.
| |
Collapse
|
22
|
Heuckeroth RO, Schäfer KH. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention. Dev Biol 2016; 417:188-97. [PMID: 26997034 PMCID: PMC5026873 DOI: 10.1016/j.ydbio.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into and through the bowel during early stages of organogenesis before differentiating into a wide variety of neurons and glia. Although genetic factors critically underlie ENS development, it is now clear that many non-genetic factors may influence the number of enteric neurons, types of enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary nutrients and medicines that may impact ENS structure and function before or after birth. This review summarizes current data about gene-environment interactions that affect ENS development and suggests that these factors may contribute to human intestinal motility disorders like Hirschsprung disease or irritable bowel syndrome.
Collapse
Affiliation(s)
- Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, USA; The Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Karl-Herbert Schäfer
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; University of Heidelberg, Paediatric Surgery Mannheim, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Bergeron KF, Nguyen CMA, Cardinal T, Charrier B, Silversides DW, Pilon N. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Dis Model Mech 2016; 9:1283-1293. [PMID: 27585883 PMCID: PMC5117235 DOI: 10.1242/dmm.026773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
Abstract
Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line - obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development - is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.
Collapse
Affiliation(s)
- Karl-F Bergeron
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Chloé M A Nguyen
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - David W Silversides
- Veterinary Genetics Laboratory, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| |
Collapse
|
25
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Sanchez-Ferras O, Bernas G, Farnos O, Touré AM, Souchkova O, Pilon N. A direct role for murine Cdx proteins in the trunk neural crest gene regulatory network. Development 2016; 143:1363-74. [PMID: 26952979 DOI: 10.1242/dev.132159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Numerous studies in chordates and arthropods currently indicate that Cdx proteins have a major ancestral role in the organization of post-head tissues. In urochordate embryos, Cdx loss-of-function has been shown to impair axial elongation, neural tube (NT) closure and pigment cell development. Intriguingly, in contrast to axial elongation and NT closure, a Cdx role in neural crest (NC)-derived melanocyte/pigment cell development has not been reported in any other chordate species. To address this, we generated a new conditional pan-Cdx functional knockdown mouse model that circumvents Cdx functional redundancy as well as the early embryonic lethality of Cdx mutants. Through directed inhibition in the neuroectoderm, we provide in vivo evidence that murine Cdx proteins impact melanocyte and enteric nervous system development by, at least in part, directly controlling the expression of the key early regulators of NC ontogenesis Pax3,Msx1 and Foxd3 Our work thus reveals a novel role for Cdx proteins at the top of the trunk NC gene regulatory network in the mouse, which appears to have been inherited from their ancestral ortholog.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Guillaume Bernas
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Omar Farnos
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Aboubacrine M Touré
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| |
Collapse
|
27
|
Pilon N. Pigmentation-based insertional mutagenesis is a simple and potent screening approach for identifying neurocristopathy-associated genes in mice. Rare Dis 2016; 4:e1156287. [PMID: 27141416 PMCID: PMC4838316 DOI: 10.1080/21675511.2016.1156287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/12/2016] [Indexed: 01/28/2023] Open
Abstract
Neurocristopathies form a specific group of rare genetic diseases in which a defect in neural crest cell development is causal. Because of the large number of neural crest cell derivatives, distinct structures/cell types (isolated or in combination) are affected in each neurocristopathy. The most important issues in this research field is that the underlying genetic cause and associated pathogenic mechanism of most cases of neurocristopathy are poorly understood. This article describes how a relatively simple insertional mutagenesis approach in the mouse has proved useful for identifying new candidate genes and pathogenic mechanisms for diverse neurocristopathies.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada; UQAM Research Chair on Rare Genetic Diseases, Montreal, Canada
| |
Collapse
|
28
|
|
29
|
Heuckeroth RO. Hirschsprung's disease, Down syndrome, and missing heritability: too much collagen slows migration. J Clin Invest 2015; 125:4323-6. [PMID: 26571392 PMCID: PMC4665790 DOI: 10.1172/jci85003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hirschsprung's disease (HSCR) causes functional intestinal obstruction due to the absence of the enteric nervous system (ENS) in the distal bowel and is usually diagnosed shortly after birth or during childhood. While several genetic and nongenetic factors have been linked to HSCR, the underlying mechanisms that prevent ENS precursors from colonizing distal bowel during fetal development are not completely understood in many affected children. In this issue of the JCI, Soret and colleagues identify a new mechanism that causes HSCR-like disease in mice and involves deposition of excess collagen VI in the intestine by migrating ENS precursors as they colonize fetal bowel. Remarkably, their findings may explain some of the so-called missing heritability of HSCR and suggest a mechanism for increased HSCR incidence in children with Down syndrome (trisomy 21).
Collapse
|
30
|
Soret R, Mennetrey M, Bergeron KF, Dariel A, Neunlist M, Grunder F, Faure C, Silversides DW, Pilon N. A collagen VI-dependent pathogenic mechanism for Hirschsprung's disease. J Clin Invest 2015; 125:4483-96. [PMID: 26571399 DOI: 10.1172/jci83178] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a severe congenital anomaly of the enteric nervous system (ENS) characterized by functional intestinal obstruction due to a lack of intrinsic innervation in the distal bowel. Distal innervation deficiency results from incomplete colonization of the bowel by enteric neural crest cells (eNCCs), the ENS precursors. Here, we report the generation of a mouse model for HSCR--named Holstein--that contains an untargeted transgenic insertion upstream of the collagen-6α4 (Col6a4) gene. This insertion induces eNCC-specific upregulation of Col6a4 expression that increases total collagen VI protein levels in the extracellular matrix (ECM) surrounding both the developing and the postnatal ENS. Increased collagen VI levels during development mainly result in slower migration of eNCCs. This appears to be due to the fact that collagen VI is a poor substratum for supporting eNCC migration and can even interfere with the migration-promoting effects of fibronectin. Importantly, for a majority of patients in a HSCR cohort, the myenteric ganglia from the ganglionated region are also specifically surrounded by abundant collagen VI microfibrils, an outcome accentuated by Down syndrome. Collectively, our data thus unveil a clinically relevant pathogenic mechanism for HSCR that involves cell-autonomous changes in ECM composition surrounding eNCCs. Moreover, as COL6A1 and COL6A2 are on human Chr.21q, this mechanism is highly relevant to the predisposition of patients with Down syndrome to HSCR.
Collapse
|