1
|
McQuillen R, Perez AJ, Yang X, Bohrer CH, Smith EL, Chareyre S, Tsui HCT, Bruce KE, Hla YM, McCausland JW, Winkler ME, Goley ED, Ramamurthi KS, Xiao J. Light-dependent modulation of protein localization and function in living bacteria cells. Nat Commun 2024; 15:10746. [PMID: 39737933 PMCID: PMC11685620 DOI: 10.1038/s41467-024-54974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amilcar J Perez
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher H Bohrer
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika L Smith
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Joshua W McCausland
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Erin D Goley
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Lyu Z, Yang X, Yahashiri A, Ha S, McCausland JW, Chen X, Britton BM, Weiss DS, Xiao J. E. coli FtsN coordinates synthesis and degradation of septal peptidoglycan by partitioning between a synthesis track and a denuded glycan track. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594014. [PMID: 39253420 PMCID: PMC11383011 DOI: 10.1101/2024.05.13.594014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The E. coli cell division protein FtsN was proposed to coordinate septal peptidoglycan (sPG) synthesis and degradation to ensure robust cell wall constriction without lethal lesions. Although the precise mechanism remains unclear, previous work highlights the importance of two FtsN domains: the E domain, which interacts with and activates the sPG synthesis complex FtsWIQLB, and the SPOR domain, which binds to denuded glycan (dnG) strands, key intermediates in sPG degradation. Here, we used single-molecule tracking of FtsN and FtsW (a proxy for the sPG synthesis complex FtsWIQLB) to investigate how FtsN coordinates the two opposing processes. We observed dynamic behaviors indicating that FtsN's SPOR domain binds to dnGs cooperatively, which both sequesters the sPG synthesis complex on dnG (termed as the dnG-track) and protects dnGs from degradation by lytic transglycosylases (LTs). The release of the SPOR domain from dnGs leads to activating the sPG synthesis complex on the sPG-track and simultaneously exposing those same dnGs to degradation. Furthermore, FtsN's SPOR domain self-interacts and facilitates the formation of a multimeric sPG synthesis complex on both tracks. The cooperative self-interaction of the SPOR domain creates a sensitive switch to regulate the partitioning of FtsN between the dnG- and sPG-tracks, thereby controlling the balance between sequestered and active populations of the sPG synthesis complex. As such, FtsN coordinates sPG synthesis and degradation in space and time.
Collapse
|
3
|
Halte M, Andrianova EP, Goosmann C, Chevance FFV, Hughes KT, Zhulin IB, Erhardt M. FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria. Nat Commun 2024; 15:5921. [PMID: 39004688 PMCID: PMC11247099 DOI: 10.1038/s41467-024-50278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The bacterial flagellum, which facilitates motility, is composed of ~20 structural proteins organized into a long extracellular filament connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Flagellum assembly is regulated by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various building blocks. Here, we use epifluorescence, super-resolution, and transmission electron microscopy to show that the absence of a periplasmic protein (FlhE) prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella in Salmonella enterica. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of normal cell morphology resulting in cell lysis. We propose that FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod, thus preventing formation of periplasmic flagella.
Collapse
Affiliation(s)
- Manuel Halte
- Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| | | | - Christian Goosmann
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Kelly T Hughes
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Marc Erhardt
- Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Halte M, Andrianova EP, Goosmann C, Chevance FFV, Hughes KT, Zhulin IB, Erhardt M. FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584431. [PMID: 38558991 PMCID: PMC10979839 DOI: 10.1101/2024.03.11.584431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The bacterial flagellum is an organelle utilized by many Gram-negative bacteria to facilitate motility. The flagellum is composed of a several µm long, extracellular filament that is connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Composed of ∼20 structural proteins, ranging from a few subunits to several thousand building blocks, the flagellum is a paradigm of a complex macromolecular structure that utilizes a highly regulated assembly process. This process is governed by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various flagellar building blocks in order to produce a functional flagellum. Using epifluorescence, super-resolution STED and transmission electron microscopy, we discovered that in Salmonella , the absence of one periplasmic protein, FlhE, prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of the standard cell morphology resulting in cell lysis. We propose a model where FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod to prevent formation of periplasmic flagella. Our results highlight that bacteria evolved sophisticated regulatory mechanisms to control proper flagellar assembly and minor deviations from this highly regulated process can cause dramatic physiological consequences.
Collapse
|
5
|
Mahone CR, Payne IP, Lyu Z, McCausland JW, Barrows JM, Xiao J, Yang X, Goley ED. Integration of cell wall synthesis and chromosome segregation during cell division in Caulobacter. J Cell Biol 2024; 223:e202211026. [PMID: 38015166 PMCID: PMC10683668 DOI: 10.1083/jcb.202211026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
To divide, bacteria must synthesize their peptidoglycan (PG) cell wall, a protective meshwork that maintains cell shape. FtsZ, a tubulin homolog, dynamically assembles into a midcell band, recruiting division proteins, including the PG synthases FtsW and FtsI. FtsWI are activated to synthesize PG and drive constriction at the appropriate time and place. However, their activation pathway remains unresolved. In Caulobacter crescentus, FtsWI activity requires FzlA, an essential FtsZ-binding protein. Through time-lapse imaging and single-molecule tracking of Caulobacter FtsW and FzlA, we demonstrate that FzlA is a limiting constriction activation factor that signals to promote conversion of inactive FtsW to an active, slow-moving state. We find that FzlA interacts with the DNA translocase FtsK and place FtsK genetically in a pathway with FzlA and FtsWI. Misregulation of the FzlA-FtsK-FtsWI pathway leads to heightened DNA damage and cell death. We propose that FzlA integrates the FtsZ ring, chromosome segregation, and PG synthesis to ensure robust and timely constriction during Caulobacter division.
Collapse
Affiliation(s)
- Christopher R. Mahone
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isaac P. Payne
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua W. McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
7
|
Singha S, Thomas R, Kumar A, Bharadwaj D, Vishwakarma JN, Gupta VK. Presence of potent inhibitors of bacterial biofilm associated proteins is the key to Citrus limon's antibiofilm activity against pathogenic Escherichia coli. BIOFOULING 2023; 39:171-188. [PMID: 37057638 DOI: 10.1080/08927014.2023.2199934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In an era of antibiotic resistance where natural antibiotic substitutes are considered essential, the antimicrobial and antibiofilm activities of Citrus limon extract on strains of pathogenic Escherichia coli isolated from pork were evaluated. The strains which form biofilms were more resistant (MIC50 = 2.5 mgml-1) compared to non-biofilm forming strains (MIC50 = 1.25 mgml-1). Use of C. limon extract at 20 mgml-1 concentration has resulted in inhibition of biofilm formation by 53.96%. Cyclobarbital, 5, 8-dimethoxycumarin, orotic acid and 3-methylsalicylhydrazide were the major phytochemicals in C. limon extract with highest docking affinities against the biofilm associated proteins in E. coli. The results of simulation studies have clearly illustrated the energy stability of the protein-ligand complexes. Absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles revealed that the phytochemicals in C. limon could be used in the drug design studies to preferentially target the specific receptors to combat biofilms associated with E. coli.
Collapse
Affiliation(s)
- Songeeta Singha
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| | - Rajendran Thomas
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| | - Abinash Kumar
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| | - Devarshi Bharadwaj
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| | | | - Vivek Kumar Gupta
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| |
Collapse
|
8
|
Golmohammadzadeh M, Sexton DL, Parmar S, Tocheva EI. Advanced imaging techniques: Microscopy. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:1-25. [PMID: 37085191 DOI: 10.1016/bs.aambs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.
Collapse
Affiliation(s)
- Mona Golmohammadzadeh
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle L Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shweta Parmar
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Lyu Z, Yahashiri A, Yang X, McCausland JW, Kaus GM, McQuillen R, Weiss DS, Xiao J. FtsN maintains active septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthases in E. coli. Nat Commun 2022; 13:5751. [PMID: 36180460 PMCID: PMC9525312 DOI: 10.1038/s41467-022-33404-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
FtsN plays an essential role in promoting the inward synthesis of septal peptidoglycan (sPG) by the FtsWI complex during bacterial cell division. How it achieves this role is unclear. Here we use single-molecule tracking to investigate FtsN's dynamics during sPG synthesis in E. coli. We show that septal FtsN molecules move processively at ~9 nm s-1, the same as FtsWI molecules engaged in sPG synthesis (termed sPG-track), but much slower than the ~30 nm s-1 speed of inactive FtsWI molecules coupled to FtsZ's treadmilling dynamics (termed FtsZ-track). Importantly, processive movement of FtsN is exclusively coupled to sPG synthesis and is required to maintain active sPG synthesis by FtsWI. Our findings indicate that FtsN is part of the FtsWI sPG synthesis complex, and that while FtsN is often described as a "trigger" for the initiation for cell wall constriction, it must remain part of the processive FtsWI complex to maintain sPG synthesis activity.
Collapse
Affiliation(s)
- Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Atsushi Yahashiri
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Joshua W McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Gabriela M Kaus
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - David S Weiss
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. Int J Biol Macromol 2022; 219:428-437. [PMID: 35932806 DOI: 10.1016/j.ijbiomac.2022.07.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
Abstract
Salmonella Typhi is emerging as a drug-resistant pathogen, particularly in developing countries. Hence, the progressive development of new antibiotics against novel drug targets is essential to prevent the spread of infections and mortality. The cell division protein FtsZ is an ideal drug target as the cell wall synthesis in bacteria is driven by the dynamic treadmilling nature of the FtsZ. The polymerization of the FtsZ provides the essential mechanical constricting force and flexibility to modulate the cell wall synthesis. Any alteration in FtsZ polymerization leads to the bactericidal or bacteriostatic effect. In this study, we have evaluated the secondary metabolites of natural compounds berberine chloride, cinnamaldehyde, scopoletin, quercetin and eugenol as potential inhibitors of FtsZ from Salmonella Typhi (stFtsZ) using computational, biochemical, and in vivo cell-based assays. Out of these five compounds, berberine chloride and cinnamaldehyde exhibited the best binding affinity of Kd = 7 μM and 10 μM, respectively and inhibit stFtsZ GTPase activity and polymerization by 70 %. The compound berberine chloride showed the best MIC of 500 μg/mL and 175 μg/mL against gram-negative and gram-positive bacterial strains. The findings support that these natural compounds can be used as a backbone structure to develop a broad spectrum of antibacterial agents.
Collapse
|
11
|
Söderström B, Pittorino MJ, Daley DO, Duggin IG. Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli. Nat Commun 2022; 13:3648. [PMID: 35752634 PMCID: PMC9233674 DOI: 10.1038/s41467-022-31378-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
During infection of bladder epithelial cells, uropathogenic Escherichia coli (UPEC) can stop dividing and grow into highly filamentous forms. Here, we find that some filaments of E. coli UTI89 released from infected cells grow very rapidly and by more than 100 μm before initiating division, whereas others do not survive, suggesting that infection-related filamentation (IRF) is a stress response that promotes bacterial dispersal. IRF is accompanied by unstable, dynamic repositioning of FtsZ division rings. In contrast, DamX, which is associated with normal cell division and is also essential for IRF, is distributed uniformly around the cell envelope during filamentation. When filaments initiate division to regenerate rod cells, DamX condenses into stable rings prior to division. The DamX rings maintain consistent thickness during constriction and remain at the septum until after membrane fusion. Deletion of damX affects vegetative cell division in UTI89 (but not in the model E. coli K-12), and, during infection, blocks filamentation and reduces bacterial cell integrity. IRF therefore involves DamX distribution throughout the membrane and prevention of FtsZ ring stabilization, leading to cell division arrest. DamX then reassembles into stable division rings for filament division, promoting dispersal and survival during infection.
Collapse
Affiliation(s)
- Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia.
| | - Matthew J Pittorino
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia
| |
Collapse
|
12
|
Abstract
Bacterial persisters are nongrowing cells highly tolerant to bactericidal antibiotics. However, this tolerance is reversible and not mediated by heritable genetic changes. Lon, an ATP-dependent protease, has repeatedly been shown to play a critical role in fluoroquinolone persistence in Escherichia coli. Although lon deletion (Δlon) is thought to eliminate persister cells via accumulation of the cell division inhibitor protein SulA, the exact mechanism underlying this phenomenon is not yet elucidated. Here, we show that Lon is an important regulatory protein for the resuscitation of the fluoroquinolone persisters in E. coli, and lon deletion impairs the ability of persister cells to form colonies during recovery through a sulA- and ftsZ-dependent mechanism. Notably, this observed "viable but nonculturable" state of antibiotic-tolerant Δlon cells is transient, as environmental conditions, such as starvation, can restore their culturability. Our data further indicate that starvation-induced SulA degradation or expression of Lon during recovery facilitates Z-ring formation in Δlon persisters, and Z-ring architecture is important for persister resuscitation in both wild-type and Δlon strains. Our in-depth image analysis clearly shows that the ratio of cell length to number of FtsZ rings for each intact ofloxacin-treated cell predicts the probability of resuscitation and, hence, can be used as a potential biomarker for persisters. IMPORTANCE The ATP-dependent Lon protease is one of the most studied bacterial proteases. Although deletion of lon has been frequently shown to reduce fluoroquinolone persistence, the proposed mechanisms underlying this phenomenon are highly controversial. Here, we have shown that lon deletion in Escherichia coli impairs the ability of persister cells to form colonies during recovery and that this reduction of persister levels in lon-deficient cells can be transient. We also found that altered Z-ring architecture is a key biomarker in both wild-type and lon-deficient persister cells transitioning to a normal cell state. Collectively, our findings highlight the importance of differentiating persister formation mechanisms from resuscitation mechanisms and underscore the critical role of the nonculturable cell state in antibiotic tolerance.
Collapse
|
13
|
Perez AJ, Villicana JB, Tsui HCT, Danforth ML, Benedet M, Massidda O, Winkler ME. FtsZ-Ring Regulation and Cell Division Are Mediated by Essential EzrA and Accessory Proteins ZapA and ZapJ in Streptococcus pneumoniae. Front Microbiol 2021; 12:780864. [PMID: 34938281 PMCID: PMC8687745 DOI: 10.3389/fmicb.2021.780864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
The bacterial FtsZ-ring initiates division by recruiting a large repertoire of proteins (the divisome; Z-ring) needed for septation and separation of cells. Although FtsZ is essential and its role as the main orchestrator of cell division is conserved in most eubacteria, the regulators of Z-ring presence and positioning are not universal. This study characterizes factors that regulate divisome presence and placement in the ovoid-shaped pathogen, Streptococcus pneumoniae (Spn), focusing on FtsZ, EzrA, SepF, ZapA, and ZapJ, which is reported here as a partner of ZapA. Epi-fluorescence microscopy (EFm) and high-resolution microscopy experiments showed that FtsZ and EzrA co-localize during the entire Spn cell cycle, whereas ZapA and ZapJ are late-arriving divisome proteins. Depletion and conditional mutants demonstrate that EzrA is essential in Spn and required for normal cell growth, size, shape homeostasis, and chromosome segregation. Moreover, EzrA(Spn) is required for midcell placement of FtsZ-rings and PG synthesis. Notably, overexpression of EzrA leads to the appearance of extra Z-rings in Spn. Together, these observations support a role for EzrA as a positive regulator of FtsZ-ring formation in Spn. Conversely, FtsZ is required for EzrA recruitment to equatorial rings and for the organization of PG synthesis. In contrast to EzrA depletion, which causes a bacteriostatic phenotype in Spn, depletion of FtsZ results in enlarged spherical cells that are subject to LytA-dependent autolysis. Co-immunoprecipitation and bacterial two-hybrid assays show that EzrA(Spn) is in complexes with FtsZ, Z-ring regulators (FtsA, SepF, ZapA, MapZ), division proteins (FtsK, StkP), and proteins that mediate peptidoglycan synthesis (GpsB, aPBP1a), consistent with a role for EzrA at the interface of cell division and PG synthesis. In contrast to the essentiality of FtsZ and EzrA, ZapA and SepF have accessory roles in regulating pneumococcal physiology. We further show that ZapA interacts with a non-ZapB homolog, named here as ZapJ, which is conserved in Streptococcus species. The absence of the accessory proteins, ZapA, ZapJ, and SepF, exacerbates growth defects when EzrA is depleted or MapZ is deleted. Taken together, these results provide new information about the spatially and temporally distinct proteins that regulate FtsZ-ring organization and cell division in Spn.
Collapse
Affiliation(s)
- Amilcar J Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Jesus Bazan Villicana
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Madeline L Danforth
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
14
|
Singh MK, Kenney LJ. Super-resolution imaging of bacterial pathogens and visualization of their secreted effectors. FEMS Microbiol Rev 2021; 45:5911101. [PMID: 32970796 DOI: 10.1093/femsre/fuaa050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in super-resolution imaging techniques, together with new fluorescent probes have enhanced our understanding of bacterial pathogenesis and their interplay within the host. In this review, we provide an overview of what these techniques have taught us about the bacterial lifestyle, the nucleoid organization, its complex protein secretion systems, as well as the secreted virulence factors.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Linda J Kenney
- Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Abstract
Since the nucleoid was isolated from bacteria in the 1970s, two fundamental questions emerged and are still in the spotlight: how bacteria organize their chromosomes to fit inside the cell and how nucleoid organization enables essential biological processes. During the last decades, knowledge of bacterial chromosome organization has advanced considerably, and today, such chromosomes are considered to be highly organized and dynamic structures that are shaped by multiple factors in a multiscale manner. Here we review not only the classical well-known factors involved in chromosome organization but also novel components that have recently been shown to dynamically shape the 3D structuring of the bacterial genome. We focus on the different functional elements that control short-range organization and describe how they collaborate in the establishment of the higher-order folding and disposition of the chromosome. Recent advances have opened new avenues for a deeper understanding of the principles and mechanisms of chromosome organization in bacteria. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
16
|
Bohrer CH, Yang X, Thakur S, Weng X, Tenner B, McQuillen R, Ross B, Wooten M, Chen X, Zhang J, Roberts E, Lakadamyali M, Xiao J. A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat Methods 2021; 18:669-677. [PMID: 34059826 PMCID: PMC9040192 DOI: 10.1038/s41592-021-01154-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.
Collapse
Affiliation(s)
- Christopher H. Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Tenner
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Ross
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Matthew Wooten
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Melike Lakadamyali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Bohrer CH, Yang X, Thakur S, Weng X, Tenner B, McQuillen R, Ross B, Wooten M, Chen X, Zhang J, Roberts E, Lakadamyali M, Xiao J. A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat Methods 2021. [PMID: 34059826 DOI: 10.1101/768051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.
Collapse
Affiliation(s)
- Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Tenner
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Ross
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Matthew Wooten
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Yang X, McQuillen R, Lyu Z, Phillips-Mason P, De La Cruz A, McCausland JW, Liang H, DeMeester KE, Santiago CC, Grimes CL, de Boer P, Xiao J. A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW. Nat Microbiol 2021; 6:584-593. [PMID: 33495624 PMCID: PMC8085133 DOI: 10.1038/s41564-020-00853-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
Synthesis of septal peptidoglycan (sPG) is crucial for bacterial cell division. FtsW, an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a peptidoglycan glycosyltransferase (PGTase). Despite its importance, the septal PGTase activity of FtsW has not been demonstrated in vivo. How its activity is spatiotemporally regulated in vivo has also remained elusive. Here, we confirmed FtsW as an essential septum-specific PGTase in vivo using an N-acetylmuramic acid analogue incorporation assay. Next, using single-molecule tracking coupled with genetic manipulations, we identified two populations of processively moving FtsW molecules: a fast-moving population correlated with the treadmilling dynamics of the essential cytoskeletal FtsZ protein and a slow-moving population dependent on active sPG synthesis. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving population. Our results suggest a two-track model, in which inactive sPG synthases follow the 'Z-track' to be distributed along the septum and FtsN promotes their release from the Z-track to become active in sPG synthesis on the slow 'sPG-track'. This model provides a mechanistic framework for the spatiotemporal coordination of sPG synthesis in bacterial cell division.
Collapse
Affiliation(s)
- Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Polly Phillips-Mason
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | - Ana De La Cruz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Joshua W. McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Kristen E. DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Cintia C. Santiago
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Piet de Boer
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| |
Collapse
|
19
|
Mehla J, Liechti G, Morgenstein RM, Caufield JH, Hosseinnia A, Gagarinova A, Phanse S, Goodacre N, Brockett M, Sakhawalkar N, Babu M, Xiao R, Montelione GT, Vorobiev S, den Blaauwen T, Hunt JF, Uetz P. ZapG (YhcB/DUF1043), a novel cell division protein in gamma-proteobacteria linking the Z-ring to septal peptidoglycan synthesis. J Biol Chem 2021; 296:100700. [PMID: 33895137 PMCID: PMC8163987 DOI: 10.1016/j.jbc.2021.100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 01/26/2023] Open
Abstract
YhcB, a poorly understood protein conserved across gamma-proteobacteria, contains a domain of unknown function (DUF1043) and an N-terminal transmembrane domain. Here, we used an integrated approach including X-ray crystallography, genetics, and molecular biology to investigate the function and structure of YhcB. The Escherichia coli yhcB KO strain does not grow at 45 °C and is hypersensitive to cell wall–acting antibiotics, even in the stationary phase. The deletion of yhcB leads to filamentation, abnormal FtsZ ring formation, and aberrant septum development. The Z-ring is essential for the positioning of the septa and the initiation of cell division. We found that YhcB interacts with proteins of the divisome (e.g., FtsI, FtsQ) and elongasome (e.g., RodZ, RodA). Seven of these interactions are also conserved in Yersinia pestis and/or Vibrio cholerae. Furthermore, we mapped the amino acid residues likely involved in the interactions of YhcB with FtsI and RodZ. The 2.8 Å crystal structure of the cytosolic domain of Haemophilus ducreyi YhcB shows a unique tetrameric α-helical coiled-coil structure likely to be involved in linking the Z-ring to the septal peptidoglycan-synthesizing complexes. In summary, YhcB is a conserved and conditionally essential protein that plays a role in cell division and consequently affects envelope biogenesis. Based on these findings, we propose to rename YhcB to ZapG (Z-ring-associated protein G). This study will serve as a starting point for future studies on this protein family and on how cells transit from exponential to stationary survival.
Collapse
Affiliation(s)
- Jitender Mehla
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - George Liechti
- Department of Microbiology and Immunology, Henry Jackson Foundation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Randy M Morgenstein
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - J Harry Caufield
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ali Hosseinnia
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Alla Gagarinova
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary Brockett
- Department of Microbiology and Immunology, Henry Jackson Foundation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Neha Sakhawalkar
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Rong Xiao
- Nexomics Biosciences Inc., Rocky Hill, New Jersey, USA; Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sergey Vorobiev
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - John F Hunt
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
20
|
Fernández-Fernández R, Hernández SB, Puerta-Fernández E, Sánchez-Romero MA, Urdaneta V, Casadesús J. Evidence for Involvement of the Salmonella enterica Z-Ring Assembly Factors ZapA and ZapB in Resistance to Bile. Front Microbiol 2021; 12:647305. [PMID: 33717045 PMCID: PMC7947894 DOI: 10.3389/fmicb.2021.647305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Genes annotated as ygfE and yiiU in the genome of Salmonella enterica serovar Typhimurium encode proteins homologous to Escherichia coli cell division factors ZapA and ZapB, respectively. ZapA- and ZapB- mutants of S. enterica are bile-sensitive. The amount of zapB mRNA increases in the presence of a sublethal concentration of sodium deoxycholate (DOC) while zapA mRNA remains unaffected. Increased zapB mRNA level in the presence of DOC is not caused by upregulation of zapB transcription but by increased stability of zapB mRNA. This increase is suppressed by an hfq mutation, suggesting the involvement of a small regulatory RNA. We provide evidence that such sRNA is MicA. The ZapB protein is degraded in the presence of DOC, and degradation appears to involve the Lon protease. We propose that increased stability of zapB mRNA in the presence of DOC may counter degradation of bile-damaged ZapB, thereby providing sufficient level of functional ZapB protein to permit Z-ring assembly in the presence of bile.
Collapse
Affiliation(s)
| | - Sara B Hernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
21
|
Abstract
In bacteria, a condensed structure of FtsZ (Z-ring) recruits cell division machinery at the midcell, and Z-ring formation is discouraged over the chromosome by a poorly understood phenomenon called nucleoid occlusion. In B. subtilis, nucleoid occlusion has been reported to be mediated, at least in part, by the DNA-membrane bridging protein, Noc. Bacteria that divide by binary fission form FtsZ rings at the geometric midpoint of the cell between the bulk of the replicated nucleoids. In Bacillus subtilis, the DNA- and membrane-binding Noc protein is thought to participate in nucleoid occlusion by preventing FtsZ rings from forming over the chromosome. To explore the role of Noc, we used time-lapse fluorescence microscopy to monitor FtsZ and the nucleoid of cells growing in microfluidic channels. Our data show that Noc does not prevent de novo FtsZ ring formation over the chromosome nor does Noc control cell division site selection. Instead, Noc corrals FtsZ at the cytokinetic ring and reduces migration of protofilaments over the chromosome to the future site of cell division. Moreover, we show that FtsZ protofilaments travel due to a local reduction in ZapA association, and the diffuse FtsZ rings observed in the Noc mutant can be suppressed by ZapA overexpression. Thus, Noc sterically hinders FtsZ migration away from the Z-ring during cytokinesis and retains FtsZ at the postdivisional polar site for full disassembly by the Min system.
Collapse
|
22
|
McCausland JW, Yang X, Squyres GR, Lyu Z, Bruce KE, Lamanna MM, Söderström B, Garner EC, Winkler ME, Xiao J, Liu J. Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism. Nat Commun 2021; 12:609. [PMID: 33504807 PMCID: PMC7840769 DOI: 10.1038/s41467-020-20873-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ's treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme's diffusion and FtsZ's treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.
Collapse
Affiliation(s)
- Joshua W McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Melissa M Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Bill Söderström
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
23
|
Raghunathan S, Chimthanawala A, Krishna S, Vecchiarelli AG, Badrinarayanan A. Asymmetric chromosome segregation and cell division in DNA damage-induced bacterial filaments. Mol Biol Cell 2020; 31:2920-2931. [PMID: 33112716 PMCID: PMC7927188 DOI: 10.1091/mbc.e20-08-0547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Faithful propagation of life requires coordination of DNA replication and segregation with cell growth and division. In bacteria, this results in cell size homeostasis and periodicity in replication and division. The situation is perturbed under stress such as DNA damage, which induces filamentation as cell cycle progression is blocked to allow for repair. Mechanisms that release this morphological state for reentry into wild-type growth are unclear. Here we show that damage-induced Escherichia coli filaments divide asymmetrically, producing short daughter cells that tend to be devoid of damage and have wild-type size and growth dynamics. The Min-system primarily determines division site location in the filament, with additional regulation of division completion by chromosome segregation. Collectively, we propose that coordination between chromosome (and specifically terminus) segregation and cell division may result in asymmetric division in damage-induced filaments and facilitate recovery from a stressed state.
Collapse
Affiliation(s)
- Suchitha Raghunathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore 560064, India
| | - Afroze Chimthanawala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Sandeep Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,Simons Centre for the Study of Living Machines, Bangalore 560065, India
| | - Anthony G Vecchiarelli
- Molecular, Cellular, and Developmental Biology Department, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
24
|
Liang B, Quan B, Li J, Loton C, Bredeche MF, Lindner AB, Xu L. Artificial modulation of cell width significantly affects the division time of Escherichia coli. Sci Rep 2020; 10:17847. [PMID: 33082450 PMCID: PMC7576201 DOI: 10.1038/s41598-020-74778-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial cells have characteristic spatial and temporal scales. For instance, Escherichia coli, the typical rod-shaped bacteria, always maintains a relatively constant cell width and cell division time. However, whether the external physical perturbation of cell width has an impact on cell division time remains largely unexplored. In this work, we developed two microchannel chips, namely straight channels and ‘necked’ channels, to precisely regulate the width of E. coli cells and to investigate the correlation between cell width and division time of the cells. Our results show that, in the straight channels, the wide cells divide much slower than narrow cells. In the ‘necked’ channels, the cell division is remarkably promoted compared to that in straight channels with the same width. Besides, fluorescence time-lapse microscopy imaging of FtsZ dynamics shows that the cell pre-constriction time is more sensitive to cell width perturbation than cell constriction time. Finally, we revealed a significant anticorrelation between the death rate and the division rate of cell populations with different widths. Our work provides new insights into the correlation between the geometrical property and division time of E. coli cells and sheds new light on the future study of spatial–temporal correlation in cell physiology.
Collapse
Affiliation(s)
- Baihui Liang
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Baogang Quan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China
| | - Chantal Loton
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | - Marie-Florence Bredeche
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | - Ariel B Lindner
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France.,Centre for Research and Interdisciplinarity (CRI), Paris Descartes University, 75014, Paris, France
| | - Luping Xu
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
25
|
Abstract
Most bacteria divide by corralling the tubulin-like FtsZ protein to mid-cell, where it assembles into a ring of treadmilling membrane-tethered oligomers. A study in this issue reveals new details about how FtsZ finds its way to the ring.
Collapse
|
26
|
Post-replicative pairing of sister ter regions in Escherichia coli involves multiple activities of MatP. Nat Commun 2020; 11:3796. [PMID: 32732900 PMCID: PMC7394560 DOI: 10.1038/s41467-020-17606-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
The ter region of the bacterial chromosome, where replication terminates, is the last to be segregated before cell division in Escherichia coli. Delayed segregation is controlled by the MatP protein, which binds to specific sites (matS) within ter, and interacts with other proteins such as ZapB. Here, we investigate the role of MatP by combining short-time mobility analyses of the ter locus with biochemical approaches. We find that ter mobility is similar to that of a non ter locus, except when sister ter loci are paired after replication. This effect depends on MatP, the persistence of catenanes, and ZapB. We characterise MatP/DNA complexes and conclude that MatP binds DNA as a tetramer, but bridging matS sites in a DNA-rich environment remains infrequent. We propose that tetramerisation of MatP links matS sites with ZapB and/or with non-specific DNA to promote optimal pairing of sister ter regions until cell division. Protein, MatP, binds to and delays segregation of the ter region of the bacterial chromosome before cell division. Here, the authors show that MatP displays multiple activities to promote optimal pairing of sister ter regions until cell division.
Collapse
|
27
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
28
|
Visualizing the inner life of microbes: practices of multi-color single-molecule localization microscopy in microbiology. Biochem Soc Trans 2019; 47:1041-1065. [PMID: 31296734 DOI: 10.1042/bst20180399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
Abstract
In this review, we discuss multi-color single-molecule imaging and tracking strategies for studying microbial cell biology. We first summarize and compare the methods in a detailed literature review of published studies conducted in bacteria and fungi. We then introduce a guideline on which factors and parameters should be evaluated when designing a new experiment, from fluorophore and labeling choices to imaging routines and data analysis. Finally, we give some insight into some of the recent and promising applications and developments of these techniques and discuss the outlook for this field.
Collapse
|
29
|
Cramer K, Bolender AL, Stockmar I, Jungmann R, Kasper R, Shin JY. Visualization of Bacterial Protein Complexes Labeled with Fluorescent Proteins and Nanobody Binders for STED Microscopy. Int J Mol Sci 2019; 20:ijms20143376. [PMID: 31295803 PMCID: PMC6678925 DOI: 10.3390/ijms20143376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
In situ visualization of molecular assemblies near their macromolecular scale is a powerful tool to investigate fundamental cellular processes. Super-resolution light microscopies (SRM) overcome the diffraction limit and allow researchers to investigate molecular arrangements at the nanoscale. However, in bacterial cells, visualization of these assemblies can be challenging because of their small size and the presence of the cell wall. Thus, although conceptually promising, successful application of SRM techniques requires careful optimization in labeling biochemistry, fluorescent dye choice, bacterial biology and microscopy to gain biological insights. Here, we apply Stimulated Emission Depletion (STED) microscopy to visualize cell division proteins in bacterial cells, specifically E. coli and B. subtilis. We applied nanobodies that specifically recognize fluorescent proteins, such as GFP, mCherry2 and PAmCherry, fused to targets for STED imaging and evaluated the effect of various organic fluorescent dyes on the performance of STED in bacterial cells. We expect this research to guide scientists for in situ macromolecular visualization using STED in bacterial systems.
Collapse
Affiliation(s)
- Kimberly Cramer
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Anna-Lena Bolender
- Max Plank Institute of Neurobiology, 82152 Martinsried, 82152 Munich, Germany
| | - Iris Stockmar
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Ralf Jungmann
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Robert Kasper
- Max Plank Institute of Neurobiology, 82152 Martinsried, 82152 Munich, Germany.
| | - Jae Yen Shin
- Max Plank Institute of Biochemistry, 82152 Martinsried, 82152 Munich, Germany.
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany.
| |
Collapse
|
30
|
Endesfelder U. From single bacterial cell imaging towards in vivo single-molecule biochemistry studies. Essays Biochem 2019; 63:187-196. [PMID: 31197072 PMCID: PMC6610453 DOI: 10.1042/ebc20190002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Bacteria as single-cell organisms are important model systems to study cellular mechanisms and functions. In recent years and with the help of advanced fluorescence microscopy techniques, immense progress has been made in characterizing and quantifying the behavior of single bacterial cells on the basis of molecular interactions and assemblies in the complex environment of live cultures. Importantly, single-molecule imaging enables the in vivo determination of the stoichiometry and molecular architecture of subcellular structures, yielding detailed, quantitative, spatiotemporally resolved molecular maps and unraveling dynamic heterogeneities and subpopulations on the subcellular level. Nevertheless, open challenges remain. Here, we review the past and current status of the field, discuss example applications and give insights into future trends.
Collapse
Affiliation(s)
- Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
31
|
At the Heart of Bacterial Cytokinesis: The Z Ring. Trends Microbiol 2019; 27:781-791. [PMID: 31171437 DOI: 10.1016/j.tim.2019.04.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022]
Abstract
Bacterial cell division is mediated by the divisome which is organized by the Z ring, a cytoskeletal element formed by the polymerization of the tubulin homologue FtsZ. Despite billions of years of bacterial evolution, the Z ring is nearly universal among bacteria that have a cell wall and divide by binary fission. Recent studies have revealed the mechanism of cooperative assembly of FtsZ and that the Z ring consists of patches of FtsZ filaments tethered to the membrane that treadmill to distribute the septal biosynthetic machinery. Here, we summarize these advances and discuss questions raised by these new findings.
Collapse
|
32
|
The Bacterial DNA Binding Protein MatP Involved in Linking the Nucleoid Terminal Domain to the Divisome at Midcell Interacts with Lipid Membranes. mBio 2019; 10:mBio.00376-19. [PMID: 31138739 PMCID: PMC6538776 DOI: 10.1128/mbio.00376-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The division of an E. coli cell into two daughter cells with equal genomic information and similar size requires duplication and segregation of the chromosome and subsequent scission of the envelope by a protein ring, the Z-ring. MatP is a DNA binding protein that contributes both to the positioning of the Z-ring at midcell and the temporal control of nucleoid segregation. Our integrated in vivo and in vitro analysis provides evidence that MatP can interact with lipid membranes reproducing the phospholipid mixture in the E. coli inner membrane, without concomitant recruitment of the short DNA sequences specifically targeted by MatP. This observation strongly suggests that the membrane may play a role in the regulation of the function and localization of MatP, which could be relevant for the coordination of the two fundamental processes in which this protein participates, nucleoid segregation and cell division. Division ring formation at midcell is controlled by various mechanisms in Escherichia coli, one of them being the linkage between the chromosomal Ter macrodomain and the Z-ring mediated by MatP, a DNA binding protein that organizes this macrodomain and contributes to the prevention of premature chromosome segregation. Here we show that, during cell division, just before splitting the daughter cells, MatP seems to localize close to the cytoplasmic membrane, suggesting that this protein might interact with lipids. To test this hypothesis, we investigated MatP interaction with lipids in vitro. We found that, when encapsulated inside vesicles and microdroplets generated by microfluidics, MatP accumulates at phospholipid bilayers and monolayers matching the lipid composition in the E. coli inner membrane. MatP binding to lipids was independently confirmed using lipid-coated microbeads and biolayer interferometry assays, which suggested that the recognition is mainly hydrophobic. Interaction of MatP with the lipid membranes also occurs in the presence of the DNA sequences specifically targeted by the protein, but there is no evidence of ternary membrane/protein/DNA complexes. We propose that the association of MatP with lipids may modulate its spatiotemporal localization and its recognition of other ligands.
Collapse
|
33
|
Altinoglu I, Merrifield CJ, Yamaichi Y. Single molecule super-resolution imaging of bacterial cell pole proteins with high-throughput quantitative analysis pipeline. Sci Rep 2019; 9:6680. [PMID: 31040310 PMCID: PMC6491441 DOI: 10.1038/s41598-019-43051-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteria show sophisticated control of their cellular organization, and many bacteria deploy different polar landmark proteins to organize the cell pole. Super-resolution microscopy, such as Photo-Activated Localization Microscopy (PALM), provides the nanoscale localization of molecules and is crucial for better understanding of organization and dynamics in single-molecule. However, analytical tools are not fully available yet, in particular for bacterial cell biology. For example, quantitative and statistical analyses of subcellular localization with multiple cells from multiple fields of view are lacking. Furthermore, brightfield images are not sufficient to get accurate contours of small and low contrast bacterial cells, compared to subpixel presentation of target molecules. Here we describe a novel analytic tool for PALM which integrates precisely drawn cell outlines, of either inner membrane or periplasm, labelled by PALM-compatible fluorescent protein fusions, with molecule data for >10,000 molecules from >100 cells by fitting each cell into an oval arc. In the vibrioid bacterium Vibrio cholerae, the polar anchor HubP constitutes a big polar complex which includes multiple proteins involved in chemotaxis and the flagellum. With this pipeline, HubP is shown to be slightly skewed towards the inner curvature side of the cell, while its interaction partners showed rather loose polar localization.
Collapse
Affiliation(s)
- Ipek Altinoglu
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.,Graduate School of Structure and Dynamics of Living Systems, Univ. Paris-Sud, Orsay, France
| | - Christien J Merrifield
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France
| | - Yoshiharu Yamaichi
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.
| |
Collapse
|
34
|
Affiliation(s)
- Ashoka Chary Taviti
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Manipal Academy of Higher Education, Manipal, India
| | - Tushar Kant Beuria
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
35
|
Dewachter L, Verstraeten N, Fauvart M, Michiels J. An integrative view of cell cycle control in Escherichia coli. FEMS Microbiol Rev 2018; 42:116-136. [PMID: 29365084 DOI: 10.1093/femsre/fuy005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/19/2018] [Indexed: 11/14/2022] Open
Abstract
Bacterial proliferation depends on the cells' capability to proceed through consecutive rounds of the cell cycle. The cell cycle consists of a series of events during which cells grow, copy their genome, partition the duplicated DNA into different cell halves and, ultimately, divide to produce two newly formed daughter cells. Cell cycle control is of the utmost importance to maintain the correct order of events and safeguard the integrity of the cell and its genomic information. This review covers insights into the regulation of individual key cell cycle events in Escherichia coli. The control of initiation of DNA replication, chromosome segregation and cell division is discussed. Furthermore, we highlight connections between these processes. Although detailed mechanistic insight into these connections is largely still emerging, it is clear that the different processes of the bacterial cell cycle are coordinated to one another. This careful coordination of events ensures that every daughter cell ends up with one complete and intact copy of the genome, which is vital for bacterial survival.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium.,Department of Life Sciences and Imaging, Smart Electronics Unit, imec, B-3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| |
Collapse
|
36
|
Sundararajan K, Vecchiarelli A, Mizuuchi K, Goley ED. Species- and C-terminal linker-dependent variations in the dynamic behavior of FtsZ on membranes in vitro. Mol Microbiol 2018; 110:47-63. [PMID: 30010220 DOI: 10.1111/mmi.14081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Bacterial cell division requires the assembly of FtsZ protofilaments into a dynamic structure called the 'Z-ring'. The Z-ring recruits the division machinery and directs local cell wall remodeling for constriction. The organization and dynamics of protofilaments within the Z-ring coordinate local cell wall synthesis during cell constriction, but their regulation is largely unknown. The disordered C-terminal linker (CTL) region of Caulobacter crescentus FtsZ (CcFtsZ) regulates polymer structure and turnover in solution in vitro, and regulates Z-ring structure and activity of cell wall enzymes in vivo. To investigate the contributions of the CTL to the polymerization properties of FtsZ on its physiological platform, the cell membrane, we reconstituted CcFtsZ polymerization on supported lipid bilayers (SLB) and visualized polymer dynamics and structure using total internal reflection fluorescence microscopy. Unlike Escherichia coli FtsZ protofilaments that organized into large, bundled patterns, CcFtsZ protofilaments assembled into small, dynamic clusters on SLBs. Moreover, CcFtsZ lacking its CTL formed large networks of straight filament bundles that underwent slower turnover than the dynamic clusters of wildtype FtsZ. Our in vitro characterization provides novel insights into species- and CTL-dependent differences between FtsZ assembly properties that are relevant to Z-ring assembly and function on membranes in vivo.
Collapse
Affiliation(s)
- Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anthony Vecchiarelli
- Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature Science and the Arts, Ann Arbor, MI, 48109, USA
| | - Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
37
|
Corrales-Guerrero L, Camargo S, Valladares A, Picossi S, Luque I, Ochoa de Alda JAG, Herrero A. FtsZ of Filamentous, Heterocyst-Forming Cyanobacteria Has a Conserved N-Terminal Peptide Required for Normal FtsZ Polymerization and Cell Division. Front Microbiol 2018; 9:2260. [PMID: 30333801 PMCID: PMC6175996 DOI: 10.3389/fmicb.2018.02260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/05/2018] [Indexed: 12/03/2022] Open
Abstract
Filamentous cyanobacteria grow by intercalary cell division, which should involve distinct steps compared to those producing separate daughter cells. The N-terminal region of FtsZ is highly conserved in the clade of filamentous cyanobacteria capable of cell differentiation. A derivative of the model strain Anabaena sp. PCC 7120 expressing only an FtsZ lacking the amino acids 2–51 of the N-terminal peptide (ΔN-FtsZ) could not be segregated. Strain CSL110 expresses both ΔN-FtsZ, from the endogenous ftsZ gene promoter, and the native FtsZ from a synthetic regulated promoter. Under conditions of ΔN-FtsZ predominance, cells of strain CSL110 progressively enlarge, reflecting reduced cell division, and show instances of asymmetric cell division and aberrant Z-structures notably differing from the Z-ring formed by FtsZ in the wild type. In bacterial 2-hybrid assays FtsZ interacted with ΔN-FtsZ. However, ΔN-FtsZ-GFP appeared impaired for incorporation into Z-rings when expressed together with FtsZ. FtsZ, but not ΔN-FtsZ, interacted with the essential protein SepF. Both FtsZ and ΔN-FtsZ polymerize in vitro exhibiting comparable GTPase activities. However, filaments of FtsZ show a distinct curling forming toroids, whereas ΔN-FtsZ form thick bundles of straight filaments. Thus, the N-terminal FtsZ sequence appears to contribute to a distinct FtsZ polymerization mode that is essential for cell division and division plane location in Anabaena.
Collapse
Affiliation(s)
- Laura Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | | | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
38
|
Eswara PJ, Brzozowski RS, Viola MG, Graham G, Spanoudis C, Trebino C, Jha J, Aubee JI, Thompson KM, Camberg JL, Ramamurthi KS. An essential Staphylococcus aureus cell division protein directly regulates FtsZ dynamics. eLife 2018; 7:38856. [PMID: 30277210 PMCID: PMC6168285 DOI: 10.7554/elife.38856] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022] Open
Abstract
Binary fission has been well studied in rod-shaped bacteria, but the mechanisms underlying cell division in spherical bacteria are poorly understood. Rod-shaped bacteria harbor regulatory proteins that place and remodel the division machinery during cytokinesis. In the spherical human pathogen Staphylococcus aureus, we found that the essential protein GpsB localizes to mid-cell during cell division and co-constricts with the division machinery. Depletion of GpsB arrested cell division and led to cell lysis, whereas overproduction of GpsB inhibited cell division and led to the formation of enlarged cells. We report that S. aureus GpsB, unlike other Firmicutes GpsB orthologs, directly interacts with the core divisome component FtsZ. GpsB bundles and organizes FtsZ filaments and also stimulates the GTPase activity of FtsZ. We propose that GpsB orchestrates the initial stabilization of the Z-ring at the onset of cell division and participates in the subsequent remodeling of the divisome during cytokinesis. A bacterium called Staphylococcus aureus causes many infections in humans, especially in hospital patients with weakened immune systems. These infections are generally treated with drugs known as antibiotics that interact with specific proteins in the bacteria to kill the cells, or stop them from growing. However, some S. aureus infections are resistant to the antibiotics currently available so there is a need to develop new drugs that target different bacterial proteins. Bacteria multiply by dividing to make identical copies of themselves. When a bacterium is preparing to divide, filaments made of a protein called FtsZ form a ring at the site where the cell will split. Many other proteins are involved in controlling how and when a cell divides. For example, several species of bacteria harbor a dispensable cell division protein called GpsB. In at least one organism, it helps to maintain the proper shape of the cell during cell division. In S. aureus, though, GpsB is essential for cells to survive and could therefore be a potential target for new antibiotics. However, its role in S. aureus has not been studied. Eswara et al. have now used genetic and biochemical approaches to study the S. aureus form of the GpsB protein. The experiments show that GpsB moves to the middle of S. aureus cells just before they begin to divide and binds directly to FtsZ. This helps to secure the position of FtsZ across the middle of the cell and activates the protein so that the cell can begin to divide into two. In cells that produce too much GpsB, the FtsZ proteins become active too early, leading to the cells growing larger and larger until they burst. The findings of Eswara et al. reveal that GpsB plays a different role in S. aureus cells than in some other species of bacteria. Further studies into such differences could help researchers to develop new antibiotics, as well as improving our understanding of why bacteria are so diverse.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Robert S Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Marissa G Viola
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States
| | - Gianni Graham
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Catherine Spanoudis
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Catherine Trebino
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States
| | - Jyoti Jha
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Joseph I Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, United States
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, United States
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States.,Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
39
|
Roseboom W, Nazir MG, Meiresonne NY, Mohammadi T, Verheul J, Buncherd H, Bonvin AMJJ, de Koning LJ, de Koster CG, de Jong L, den Blaauwen T. Mapping the Contact Sites of the Escherichia coli Division-Initiating Proteins FtsZ and ZapA by BAMG Cross-Linking and Site-Directed Mutagenesis. Int J Mol Sci 2018; 19:ijms19102928. [PMID: 30261644 PMCID: PMC6213154 DOI: 10.3390/ijms19102928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
Cell division in bacteria is initiated by the polymerization of FtsZ at midcell in a ring-like structure called the Z-ring. ZapA and other proteins assist Z-ring formation and ZapA binds ZapB, which senses the presence of the nucleoids. The FtsZ–ZapA binding interface was analyzed by chemical cross-linking mass spectrometry (CXMS) under in vitro FtsZ-polymerizing conditions in the presence of GTP. Amino acids residue K42 from ZapA was cross-linked to amino acid residues K51 and K66 from FtsZ, close to the interphase between FtsZ molecules in protofilaments. Five different cross-links confirmed the tetrameric structure of ZapA. A number of FtsZ cross-links suggests that its C-terminal domain of 55 residues, thought to be largely disordered, has a limited freedom to move in space. Site-directed mutagenesis of ZapA reveals an interaction site in the globular head of the protein close to K42. Using the information on the cross-links and the mutants that lost the ability to interact with FtsZ, a model of the FtsZ protofilament–ZapA tetramer complex was obtained by information-driven docking with the HADDOCK2.2 webserver.
Collapse
Affiliation(s)
- Winfried Roseboom
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Madhvi G Nazir
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Nils Y Meiresonne
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Tamimount Mohammadi
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Jolanda Verheul
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Hansuk Buncherd
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Alexandre M J J Bonvin
- Computational Structural Biology, Faculty of Science-Chemistry, University of Utrecht, Padualaan 83584CH Utrecht, The Netherlands.
| | - Leo J de Koning
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Chris G de Koster
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Luitzen de Jong
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Schoenemann KM, Krupka M, Rowlett VW, Distelhorst SL, Hu B, Margolin W. Gain-of-function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling. Mol Microbiol 2018; 109:676-693. [PMID: 29995995 DOI: 10.1111/mmi.14069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2018] [Indexed: 01/19/2023]
Abstract
Escherichia coli requires FtsZ, FtsA and ZipA proteins for early stages of cell division, the latter two tethering FtsZ polymers to the cytoplasmic membrane. Hypermorphic mutants of FtsA such as FtsA* (R286W) map to the FtsA self-interaction interface and can bypass the need for ZipA. Purified FtsA forms closed minirings on lipid monolayers that antagonize bundling of FtsZ protofilaments, whereas FtsA* forms smaller oligomeric arcs that enable bundling. Here, we examined three additional FtsA*-like mutant proteins for their ability to form oligomers on lipid monolayers and bundle FtsZ. Surprisingly, all three formed distinct structures ranging from mostly arcs (T249M), a mixture of minirings, arcs and straight filaments (Y139D) or short straight double filaments (G50E). All three could form filament sheets at higher concentrations with added ATP. Despite forming these diverse structures, all three mutant proteins acted like FtsA* to enable FtsZ protofilament bundling on lipid monolayers. Synthesis of the FtsA*-like proteins in vivo suppressed the toxic effects of a bundling-defective FtsZ, exacerbated effects of a hyper-bundled FtsZ, and rescued some thermosensitive cell division alleles. Together, the data suggest that conversion of FtsA minirings into any type of non-miniring oligomer can promote progression of cytokinesis through FtsZ bundling and other mechanisms.
Collapse
Affiliation(s)
- Kara M Schoenemann
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Steven L Distelhorst
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| |
Collapse
|
41
|
Stockmar I, Feddersen H, Cramer K, Gruber S, Jung K, Bramkamp M, Shin JY. Optimization of sample preparation and green color imaging using the mNeonGreen fluorescent protein in bacterial cells for photoactivated localization microscopy. Sci Rep 2018; 8:10137. [PMID: 29973667 PMCID: PMC6031688 DOI: 10.1038/s41598-018-28472-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
mNeonGreen fluorescent protein is capable of photo-switching, hence in principle applicable for super-resolution imaging. However, difficult-to-control blinking kinetics that lead to simultaneous emission of multiple nearby mNeonGreen molecules impedes its use for PALM. Here, we determined the on- and off- switching rate and the influence of illumination power on the simultaneous emission. Increasing illumination power reduces the probability of simultaneous emission, but not enough to generate high quality PALM images. Therefore, we introduce a simple data post-processing step that uses temporal and spatial information of molecule localizations to further reduce artifacts arising from simultaneous emission of nearby emitters. We also systematically evaluated various sample preparation steps to establish an optimized protocol to preserve cellular morphology and fluorescence signal. In summary, we propose a workflow for super-resolution imaging with mNeonGreen based on optimization of sample preparation, data acquisition and simple post-acquisition data processing. Application of our protocol enabled us to resolve the expected double band of bacterial cell division protein DivIVA, and to visualize that the chromosome organization protein ParB organized into sub-clusters instead of the typically observed diffraction-limited foci. We expect that our workflow allows a broad use of mNeonGreen for super-resolution microscopy, which is so far difficult to achieve.
Collapse
Affiliation(s)
- Iris Stockmar
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Max Plank Institute for Biochemistry, Martinsried, Germany
| | - Helge Feddersen
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kimberly Cramer
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Max Plank Institute for Biochemistry, Martinsried, Germany
| | - Stephan Gruber
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Jae Yen Shin
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany.
- Max Plank Institute for Biochemistry, Martinsried, Germany.
| |
Collapse
|
42
|
Escherichia coli ZipA Organizes FtsZ Polymers into Dynamic Ring-Like Protofilament Structures. mBio 2018; 9:mBio.01008-18. [PMID: 29921670 PMCID: PMC6016244 DOI: 10.1128/mbio.01008-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZipA is an essential cell division protein in Escherichia coli. Together with FtsA, ZipA tethers dynamic polymers of FtsZ to the cytoplasmic membrane, and these polymers are required to guide synthesis of the cell division septum. This dynamic behavior of FtsZ has been reconstituted on planar lipid surfaces in vitro, visible as GTP-dependent chiral vortices several hundred nanometers in diameter, when anchored by FtsA or when fused to an artificial membrane binding domain. However, these dynamics largely vanish when ZipA is used to tether FtsZ polymers to lipids at high surface densities. This, along with some in vitro studies in solution, has led to the prevailing notion that ZipA reduces FtsZ dynamics by enhancing bundling of FtsZ filaments. Here, we show that this is not the case. When lower, more physiological levels of the soluble, cytoplasmic domain of ZipA (sZipA) were attached to lipids, FtsZ assembled into highly dynamic vortices similar to those assembled with FtsA or other membrane anchors. Notably, at either high or low surface densities, ZipA did not stimulate lateral interactions between FtsZ protofilaments. We also used E. coli mutants that are either deficient or proficient in FtsZ bundling to provide evidence that ZipA does not directly promote bundling of FtsZ filaments in vivo. Together, our results suggest that ZipA does not dampen FtsZ dynamics as previously thought, and instead may act as a passive membrane attachment for FtsZ filaments as they treadmill. Bacterial cells use a membrane-attached ring of proteins to mark and guide formation of a division septum at midcell that forms a wall separating the two daughter cells and allows cells to divide. The key protein in this ring is FtsZ, a homolog of tubulin that forms dynamic polymers. Here, we use electron microscopy and confocal fluorescence imaging to show that one of the proteins required to attach FtsZ polymers to the membrane during E. coli cell division, ZipA, can promote dynamic swirls of FtsZ on a lipid surface in vitro. Importantly, these swirls are observed only when ZipA is present at low, physiologically relevant surface densities. Although ZipA has been thought to enhance bundling of FtsZ polymers, we find little evidence for bundling in vitro. In addition, we present several lines of in vivo evidence indicating that ZipA does not act to directly bundle FtsZ polymers.
Collapse
|
43
|
Holden S. Probing the mechanistic principles of bacterial cell division with super-resolution microscopy. Curr Opin Microbiol 2018; 43:84-91. [DOI: 10.1016/j.mib.2017.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
|
44
|
den Blaauwen T. Is Longitudinal Division in Rod-Shaped Bacteria a Matter of Swapping Axis? Front Microbiol 2018; 9:822. [PMID: 29867786 PMCID: PMC5952006 DOI: 10.3389/fmicb.2018.00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/11/2018] [Indexed: 01/21/2023] Open
Abstract
The morphology of bacterial species shows a wealth of variation from star-shaped to spherical and rod- to spiral-shaped, to mention a few. Their mode of growth and division is also very diverse and flexible ranging from polar growth and lateral surface increase to midcell expansion and from perpendicular to longitudinal asymmetric division. Gammaproteobacterial rod-shaped species such as Escherchia coli divide perpendicularly and grow in length, whereas the genetically very similar rod-shaped symbiotic Thiosymbion divide longitudinally, and some species even divide asynchronously while growing in width. The ovococcal Streptococcus pneumoniae also lengthens and divides perpendicularly, yet it is genetically very different from E. coli. Are these differences as dramatic as is suggested by visual inspection, or can they all be achieved by subtle variation in the regulation of the same protein complexes that synthesize the cell envelope? Most bacteria rely on the cytoskeletal polymer FtsZ to organize cell division, but only a subset of species use the actin homolog MreB for length growth, although some of them are morphologically not that different. Poles are usually negative determinant for cell division. Curved cell poles can be inert or active with respect to peptidoglycan synthesis, can localize chemotaxis and other sensing proteins or other bacterial equipment, such as pili, depending on the species. But what is actually the definition of a pole? This review discusses the possible common denominators for growth and division of distinct and similar bacterial species.
Collapse
Affiliation(s)
- Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
45
|
Lund VA, Wacnik K, Turner RD, Cotterell BE, Walther CG, Fenn SJ, Grein F, Wollman AJ, Leake MC, Olivier N, Cadby A, Mesnage S, Jones S, Foster SJ. Molecular coordination of Staphylococcus aureus cell division. eLife 2018; 7:32057. [PMID: 29465397 PMCID: PMC5821461 DOI: 10.7554/elife.32057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components.
Collapse
Affiliation(s)
- Victoria A Lund
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Wacnik
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert D Turner
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Bryony E Cotterell
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Christa G Walther
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Samuel J Fenn
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, German Center for Infection Research (DZIF), University of Bonn, Bonn, Germany
| | - Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Nicolas Olivier
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Ashley Cadby
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Simon J Foster
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
46
|
Oliveira AF, Folador EL, Gomide ACP, Goes-Neto A, Azevedo VAC, Wattam AR. Cell Division in genus Corynebacterium: protein-protein interaction and molecular docking of SepF and FtsZ in the understanding of cytokinesis in pathogenic species. AN ACAD BRAS CIENC 2018; 90:2179-2188. [PMID: 29451601 DOI: 10.1590/0001-3765201820170385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022] Open
Abstract
The genus Corynebacterium includes species of great importance in medical, veterinary and biotechnological fields. The genus-specific families (PLfams) from PATRIC have been used to observe conserved proteins associated to all species. Our results showed a large number of conserved proteins that are associated with the cellular division process. Was not observe in our results other proteins like FtsA and ZapA that interact with FtsZ. Our findings point that SepF overlaps the function of this proteins explored by molecular docking, protein-protein interaction and sequence analysis. Transcriptomic analysis showed that these two (Sepf and FtsZ) proteins can be expressed in different conditions together. The work presents novelties on molecules participating in the cell division event, from the interaction of FtsZ and SepF, as new therapeutic targets.
Collapse
Affiliation(s)
- Alberto F Oliveira
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Edson L Folador
- Centro de Biotecnologia/CBiotec, Universidade Federal da Paraíba/UFPB, s/n, Castelo Branco III, 58051-085 João Pessoa, PB, Brazil
| | - Anne C P Gomide
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Aristóteles Goes-Neto
- Departamento de Microbiologia, Laboratório de Biologia Molecular e Computacional de Fungos, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Vasco A C Azevedo
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Alice R Wattam
- Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Virginia Tech, 24060, Blacksburg, VA, U.S.A
| |
Collapse
|
47
|
Söderström B, Chan H, Shilling PJ, Skoglund U, Daley DO. Spatial separation of FtsZ and FtsN during cell division. Mol Microbiol 2017; 107:387-401. [DOI: 10.1111/mmi.13888] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Bill Söderström
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Helena Chan
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Patrick J. Shilling
- Department of Biochemistry and Biophysics; Stockholm University; Stockholm 106 91 Sweden
| | - Ulf Skoglund
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Daniel O. Daley
- Department of Biochemistry and Biophysics; Stockholm University; Stockholm 106 91 Sweden
| |
Collapse
|
48
|
Sundararajan K, Goley ED. The intrinsically disordered C-terminal linker of FtsZ regulates protofilament dynamics and superstructure in vitro. J Biol Chem 2017; 292:20509-20527. [PMID: 29089389 DOI: 10.1074/jbc.m117.809939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/17/2017] [Indexed: 11/06/2022] Open
Abstract
The bacterial tubulin FtsZ polymerizes to form a discontinuous ring that drives bacterial cell division by directing local cell wall synthesis. FtsZ comprises a polymerizing GTPase domain, an intrinsically disordered C-terminal linker (CTL), and a C-terminal conserved peptide (CTC). FtsZ protofilaments align circumferentially in the cell, with the CTC mediating attachment to membrane-associated division proteins. The assembly of FtsZ protofilaments into dynamic clusters is critical for cell division, but the interactions between protofilaments and regulatory mechanisms that mediate cluster assembly and dynamics are unknown. Here, we describe a role for the CTL of Caulobacter crescentus FtsZ as an intrinsic regulator of lateral interactions between protofilaments in vitro FtsZ lacking its CTL (ΔCTL) shows a dramatically increased propensity to form long multifilament bundles compared with wild type (WT). ΔCTL also displays a reduced GTP hydrolysis rate compared with WT, but this altered activity does not account for bundle formation, as reducing protofilament turnover in WT is not sufficient to induce bundling. Surprisingly, binding of the membrane-anchoring protein FzlC disrupts ΔCTL bundling in a CTC-dependent manner. Moreover, the CTL affects the ability of the FtsZ curving protein FzlA to promote formation of helical bundles. We conclude that the CTL of FtsZ influences polymer structure and dynamics both through intrinsic effects on lateral interactions and turnover and by influencing extrinsic regulation of FtsZ by binding partners. Our characterization of CTL function provides a biochemical handle for understanding the relationship between FtsZ-ring structure and function in bacterial cytokinesis.
Collapse
Affiliation(s)
- Kousik Sundararajan
- From the Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Erin D Goley
- From the Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
49
|
Govers SK, Adam A, Blockeel H, Aertsen A. Rapid phenotypic individualization of bacterial sister cells. Sci Rep 2017; 7:8473. [PMID: 28814770 PMCID: PMC5559607 DOI: 10.1038/s41598-017-08660-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
A growing bacterium typically divides into two genetically identical and morphologically similar sister cells and eventually gives rise to a clonal population. Nevertheless, significant phenotypic differentiation among isogenic cells frequently occurs, with the resulting heterogeneity in cellular behavior often ensuring population level growth and survival in complex and unpredictable environments. Although several mechanisms underlying the generation of phenotypic heterogeneity have been elucidated, the speed with which identical sister cells tend to phenotypically diverge from each other has so far remained unaddressed. Using Escherichia coli as a model organism, we therefore examined the timing and dynamics of phenotypic individualization among sister cells by scrutinizing and modeling microscopically tracked clonally growing populations before and after a semi-lethal heat challenge. This analysis revealed that both survival probability and post-stress physiology of sister cells shift from highly similar to uncorrelated within the first decile of their cell cycles. This nearly-immediate post-fission randomization of sister cell fates highlights the potential of stochastic fluctuations during clonal growth to rapidly generate phenotypically independent individuals.
Collapse
Affiliation(s)
- Sander K Govers
- KU Leuven, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, 3001, Leuven, Belgium.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Antoine Adam
- KU Leuven, Department of Computer Science, 3001, Leuven, Belgium
| | - Hendrik Blockeel
- KU Leuven, Department of Computer Science, 3001, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, 3001, Leuven, Belgium.
| |
Collapse
|
50
|
Abstract
The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus. This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620;
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5132;
| |
Collapse
|