1
|
Wang R, Ren B, Zhang X, Liu B, Zhou W. Identification of AKTIP as a biomarker for fibrolamellar carcinoma using WGCNA and machine learning. 3 Biotech 2025; 15:181. [PMID: 40417661 PMCID: PMC12095112 DOI: 10.1007/s13205-025-04323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare form of liver carcinoma with limited diagnostic and therapeutic options. In this study, we utilized the GSE57727 and E-MTAB-1503 datasets, downloaded from GEO and ArrayExpress, respectively, to explore hub genes for FLC diagnosis and potential therapeutic agents. Through the integration of multiple machine learning approaches and drug sensitivity databases, we identified AKTIP as a potential diagnostic biomarker for FLC. AKTIP exhibited markedly elevated expression in FLC compared to non-FLC, demonstrating superior diagnostic and prognostic performance over other FLC-specific biomarkers. Four compounds (PI-103, BVT-948, Digitoxigenin, and SB-218078) were identified as potential therapeutic agents targeting AKTIP. Molecular docking analysis revealed strong binding affinities of these compounds to AKTIP, and molecular dynamics simulations further validated the reliability and rationality of the molecular docking results. Pan-cancer analysis indicated that AKTIP expression varies across different tissues and is significantly associated with patient prognosis. qRT-PCR analysis confirmed that AKTIP mRNA levels were markedly overexpressed in normal liver epithelial cells compared to human hepatocellular carcinoma cell lines. In conclusion, AKTIP was successfully identified as a diagnostic and prognostic biomarker for FLC, and four compounds were proposed as potential therapeutic agents. This study uncovers new perspectives on diagnosing and managing of this rare type of liver carcinoma, offering promising avenues for future research and clinical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04323-4.
Collapse
Affiliation(s)
- Rui Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030 China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Bo Ren
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030 China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Xijie Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030 China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Bo Liu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030 China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Wence Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030 China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030 China
- Gansu Province Hepatobiliary Pancreatic Disease Precision Diagnosis and Treatment Engineering Research Center, Lanzhou, 730030 China
| |
Collapse
|
2
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
3
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Burla R, Carcuro M, La Torre M, Fratini F, Crescenzi M, D'Apice MR, Spitalieri P, Raffa GD, Astrologo L, Lattanzi G, Cundari E, Raimondo D, Biroccio A, Gatti M, Saggio I. Correction to: 'The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence' (2016), by Burla et al.. Open Biol 2024; 14:240314. [PMID: 39532151 PMCID: PMC11557223 DOI: 10.1098/rsob.240314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Romina Burla
- Sapienza, Università di Roma, Dipartimento di Biologia e Biotechnologie, Roma, Italy
| | - Mariateresa Carcuro
- Sapienza, Università di Roma, Dipartimento di Biologia e Biotechnologie, Roma, Italy
| | - Mattia La Torre
- Sapienza, Università di Roma, Dipartimento di Biologia e Biotechnologie, Roma, Italy
| | | | | | | | | | - Grazia Daniela Raffa
- Sapienza, Università di Roma, Dipartimento di Biologia e Biotechnologie, Roma, Italy
| | - Letizia Astrologo
- Sapienza, Università di Roma, Dipartimento di Biologia e Biotechnologie, Roma, Italy
| | | | - Enrico Cundari
- Istituto di Biologia e Patologia Molecolari del CNR, Rome00185, Italy
| | - Domenico Raimondo
- Università degli Studi di Roma La Sapienza Facolta di Medicina e Psicologia, Roma, Lazio, Italy
| | | | - Maurizio Gatti
- Sapienza, Università di Roma, Dipartimento di Biologia e Biotechnologie, Roma, Italy
| | - Isabella Saggio
- Sapienza, Università di Roma, Dipartimento di Biologia e Biotechnologie, Roma, Italy
| |
Collapse
|
5
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
6
|
Yuan Y, Wang P, Zhang H, Liu Y. Identification of M2 Macrophage-Related Key Genes in Advanced Atherosclerotic Plaques by Network-Based Analysis. J Cardiovasc Pharmacol 2024; 83:276-288. [PMID: 38194604 DOI: 10.1097/fjc.0000000000001528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
ABSTRACT Atherosclerotic plaque accounts for major adverse cardiovascular events because of its vulnerability. The classically activated macrophage (M1) and alternatively activated macrophage (M2) are implicated in the progression and regression of plaque, respectively. However, the therapeutic targets related to M2 macrophages still remain largely elusive. In this study, cell-type identification by estimating relative subsets of RNA transcripts and weighted gene coexpression network analysis algorithms were used to establish a weighted gene coexpression network for identifying M2 macrophage-related hub genes using GSE43292 data set. The results showed that genes were classified into 7 modules, with the blue module (Cor = 0.67, P = 3e-05) being the one that was most related to M2 macrophage infiltration in advanced plaques, and then 99 hub genes were identified from blue module. Meanwhile, 1289 differentially expressed genes were produced in GSE43292 data set. Subsequently, the intersection genes of hub genes and differentially expressed genes, including AKTIP , ASPN , FAM26E , RAB23 , PLS3 , and PLSCR4 , were obtained by Venn diagrams and named as key genes. Further validation using data sets GSE100927 and GSE41571 showed that 6 key genes all downregulated in advanced and vulnerable plaques compared with early and stable plaque samples (|Log2 (fold change)| > 0.5, P < 0.05 or 0.001), respectively. Receiver operator characteristic curve analysis indicated that the 6 key genes might have potential diagnostic value. The validation of key genes in the model in vitro and in vivo also demonstrated decreased mRNA expressions of AKTIP , ASPN , FAM26E , RAB23 , PLS3 , and PLSCR4 ( P < 0.05 or 0.001). Collectively, we identified AKTIP, ASPN, FAM26E, RAB23, PLS3, and PLSCR4 as M2 macrophage-related key genes during atherosclerotic progression, proposing potential intervention targets for advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Yao Yuan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Military Medical University), Chongqing, China
| | | | | | | |
Collapse
|
7
|
La Torre M, Centofante E, Nicoletti C, Burla R, Giampietro A, Cannistrà F, Schirone L, Valenti V, Sciarretta S, Musarò A, Saggio I. Impact of diffused versus vasculature targeted DNA damage on the heart of mice depleted of telomeric factor Ft1. Aging Cell 2023; 22:e14022. [PMID: 37960940 PMCID: PMC10726857 DOI: 10.1111/acel.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
DNA damage is emerging as a driver of heart disease, although the cascade of events, its timing, and the cell types involved are yet to be fully clarified. In this context, the implication of cardiomyocytes has been highlighted, while that of vasculature smooth muscle cells has been implicated but not explored exhaustively. In our previous work we characterized a factor called Ft1 in mice and AKTIP in humans whose depletion generates telomere instability and DNA damage. Herein, we explored the effect of the reduction of Ft1 on the heart with the goal of comparatively defining the impact of DNA damage targeted to vasculature smooth muscle cells to that of diffuse damage. Using two newly generated mouse models, Ft1 constitutively knocked out (Ft1ko) mice, and mice in which we targeted the Ft1 depletion to the smooth muscle cells (Ft1sm22ko), it is shown that both genetic models display cardiac defects but with differences. Both Ft1ko and Ft1sm22ko mice display hypertrophy, fibrosis, and functional heart defects. Interestingly, Ft1sm22ko mice have early milder pathological traits that become manifest with age. Significantly, the defects of Ft1ko mice, including the alteration of the left ventricle and functional heart defects, are rescued by depletion of the DNA damage sensor p53. These results point to Ft1 deficiency as a driver of cardiac disease and show that Ft1 deficiency targeted to vasculature smooth muscle cells generates a pre-pathological profile exacerbated by age.
Collapse
Affiliation(s)
- Mattia La Torre
- Department Biology and Biotechnologies “Charles Darwin”Sapienza UniversityRomeItaly
| | - Eleonora Centofante
- Department Biology and Biotechnologies “Charles Darwin”Sapienza UniversityRomeItaly
| | - Carmine Nicoletti
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza UniversityRomeItaly
- Istituto Pasteur Fondazione Cenci BolognettiRomeItaly
| | - Romina Burla
- Department Biology and Biotechnologies “Charles Darwin”Sapienza UniversityRomeItaly
- CNR Institute of Molecular Biology and PathologyRomeItaly
| | | | - Federica Cannistrà
- Department Biology and Biotechnologies “Charles Darwin”Sapienza UniversityRomeItaly
| | | | | | - Sebastiano Sciarretta
- IRCCS NeuromedPozzilli ISItaly
- Department Medical and Surgical Sciences and BiotechnologiesSapienza UniversityRomeItaly
| | - Antonio Musarò
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza UniversityRomeItaly
- Istituto Pasteur Fondazione Cenci BolognettiRomeItaly
| | - Isabella Saggio
- Department Biology and Biotechnologies “Charles Darwin”Sapienza UniversityRomeItaly
- Istituto Pasteur Fondazione Cenci BolognettiRomeItaly
- CNR Institute of Molecular Biology and PathologyRomeItaly
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- NISB Institute of Structural BiologyNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
8
|
Pennarun G, Picotto J, Bertrand P. Close Ties between the Nuclear Envelope and Mammalian Telomeres: Give Me Shelter. Genes (Basel) 2023; 14:genes14040775. [PMID: 37107534 PMCID: PMC10137478 DOI: 10.3390/genes14040775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have been linked to different human diseases, such as laminopathies, and are a hallmark of cancer cells. Telomeres, the ends of eukaryotic chromosomes, are crucial for preserving genome stability. Their maintenance involves specific telomeric proteins, repair proteins and several additional factors, including NE proteins. Links between telomere maintenance and the NE have been well established in yeast, in which telomere tethering to the NE is critical for their preservation and beyond. For a long time, in mammalian cells, except during meiosis, telomeres were thought to be randomly localized throughout the nucleus, but recent advances have uncovered close ties between mammalian telomeres and the NE that play important roles for maintaining genome integrity. In this review, we will summarize these connections, with a special focus on telomere dynamics and the nuclear lamina, one of the main NE components, and discuss the evolutionary conservation of these mechanisms.
Collapse
Affiliation(s)
- Gaëlle Pennarun
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Julien Picotto
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Pahl MC, Grant SFA, Leibel RL, Stratigopoulos G. Technologies, strategies, and cautions when deconvoluting genome-wide association signals: FTO in focus. Obes Rev 2023; 24:e13558. [PMID: 36882962 DOI: 10.1111/obr.13558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
Genome-wide association studies have revealed a plethora of genetic variants that correlate with polygenic conditions. However, causal molecular mechanisms have proven challenging to fully define. Without such information, the associations are not physiologically useful or clinically actionable. By reviewing studies of the FTO locus in the genetic etiology of obesity, we wish to highlight advances in the field fueled by the evolution of technical and analytic strategies in assessing the molecular bases for genetic associations. Particular attention is drawn to extrapolating experimental findings from animal models and cell types to humans, as well as technical aspects used to identify long-range DNA interactions and their biological relevance with regard to the associated trait. A unifying model is proposed by which independent obesogenic pathways regulated by multiple FTO variants and genes are integrated at the primary cilium, a cellular antenna where signaling molecules that control energy balance convene.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolph L Leibel
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Gong L, Wang XF, Liu H, Li L. MiRNA-106a-5p Promotes Laryngeal Carcinoma Proliferation and Migration Through PI3K/AKT/m-TOR Pathway by AKTIP. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3339. [PMID: 36811106 PMCID: PMC9938931 DOI: 10.30498/ijb.2022.336501.3339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/10/2022] [Indexed: 02/24/2023]
Abstract
Background Laryngeal cancer (LC) remains one of the most common tumors of the respiratory tract, the exact pathogenesis remains unclear. MiRNA-106a-5p is aberrantly expressed in a variety of cancers and plays a pro- or anti-cancer role, but is indistinct in LC. Objectives Showing the role of miRNA-106a-5p in the development of LC. Materials and Methods Quantitative reverse transcription-polymerase chain reaction was used for miR-106a-5p measurement in clinical samples and LC cell lines (AMC-HN8 and TU212), first. The expression of miR-106a-5p was inhibited by inhibitor, then followed clonogenic and flow cytometric assays for cell proliferation; wood healing, and Transwell assays for cell migration. Dual luciferase reporter assay was performed for interaction verification, and the activation of the signal pathway was detected by western blots. Results MiR-106a-5p was significantly over-expressed in LC tissues and cell lines. The proliferation ability of the LC cells was significantly reduced after miR-106a-5p inhibition, and most LC cells were stagnated in the G1 phase. The migration and invasion ability of the LC cells was decreased after the miR-106a-5p knockdown. Further, we found that miR-106-5a is bound with 3'-UTR of AKT interacting protein (AKTIP) mRNA specifically, and then activate PI3K/AKT/m-TOR pathway in LC cells. Conclusions A new mechanism was uncovered that miR-106a-5p promotes LC development via AKTIP/PI3K/AKT/m-TOR axis, which guides clinical management and drug discovery.
Collapse
Affiliation(s)
- Liang Gong
- Department of Otolaryngology, First Affiliated Hospital of Jinzhou Medical University. Jinzhou City, Liaoning Province, China
| | - Xue-Feng Wang
- Department of Otolaryngology, First Affiliated Hospital of Jinzhou Medical University. Jinzhou City, Liaoning Province, China
| | - Hao Liu
- Department of Otolaryngology, First Affiliated Hospital of Jinzhou Medical University. Jinzhou City, Liaoning Province, China
| | - Li Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Jinzhou Medical University. Jinzhou City, Liaoning Province, China
| |
Collapse
|
11
|
La Torre M, Merigliano C, Maccaroni K, Chojnowski A, Goh WI, Giubettini M, Vernì F, Capanni C, Rhodes D, Wright G, Burke B, Soddu S, Burla R, Saggio I. Combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. J Exp Clin Cancer Res 2022; 41:273. [PMID: 36096808 PMCID: PMC9469526 DOI: 10.1186/s13046-022-02480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates genome instability and, in p53−/− mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated with alterations of lamins. Methods We performed super-resolution imaging, quantification of lamin expression and nuclear morphology on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant progerin that alters nuclear morphology. Results In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislocalizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP is mislocalized. Conclusions Our data show that the combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predictive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk biomarker. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02480-5.
Collapse
|
12
|
Maccaroni K, La Torre M, Burla R, Saggio I. Phase Separation in the Nucleus and at the Nuclear Periphery during Post-Mitotic Nuclear Envelope Reformation. Cells 2022; 11:1749. [PMID: 35681444 PMCID: PMC9179440 DOI: 10.3390/cells11111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane-enclosed organelle compartmentalization is not the only way by which cell processes are spatially organized. Phase separation is emerging as a new driver in the organization of membrane-less compartments and biological processes. Liquid-liquid phase separation has been indicated as a new way to control the kinetics of molecular reactions and is based on weak multivalent interactions affecting the stoichiometry of the molecules involved. In the nucleus, liquid-liquid phase separation may represent an ancestral means of controlling genomic activity by forming discrete chromatin regions, regulating transcriptional activity, contributing to the assembly of DNA damage response foci, and controlling the organization of chromosomes. Liquid-liquid phase separation also contributes to chromatin function through its role in the reorganization of the nuclear periphery in the post-mitotic phase. Herein, we describe the basic principles regulating liquid-liquid phase separation, analyze examples of phase separation occurring in the nucleus, and dedicate attention to the implication of liquid-liquid phase separation in the reorganization of the nuclear periphery by the endosomal sorting complexes required for transport (ESCRT) machinery. Although some caution is warranted, current scientific knowledge allows for the hypothesis that many factors and processes in the cell are yet to be discovered which are functionally associated with phase separation.
Collapse
Affiliation(s)
- Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
13
|
Merigliano C, Burla R, La Torre M, Del Giudice S, Teo H, Liew CW, Chojnowski A, Goh WI, Olmos Y, Maccaroni K, Giubettini M, Chiolo I, Carlton JG, Raimondo D, Vernì F, Stewart CL, Rhodes D, Wright GD, Burke BE, Saggio I. AKTIP interacts with ESCRT I and is needed for the recruitment of ESCRT III subunits to the midbody. PLoS Genet 2021; 17:e1009757. [PMID: 34449766 PMCID: PMC8428793 DOI: 10.1371/journal.pgen.1009757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/09/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission. To complete cell division, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by a machinery named “endosomal sorting complex required for transport” (ESCRT). The dissection of this machinery is important in basic biology and for investigating diseases in which cell division is altered. AKTIP, a factor discovered to be needed for chromosome integrity, shares similarities with a component of the ESCRT machinery named TSG101. Here we present evidence that AKTIP is part of the ESCRT machinery, as TSG101. More specifically, we show that AKTIP physically interacts with members of the ESCRT machinery and forms a characteristic circular structure at the center of the bridge linking the daughter cells. We also show that the reduction of AKTIP levels causes defects in the assembly of the ESCRT machinery and in cell division. In future work, it will be interesting to investigate the association of AKTIP with cancer, because in tumorigenesis cell division is altered and since an implication in cancer has been described for TSG101 and other ESCRT factors.
Collapse
Affiliation(s)
| | - Romina Burla
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | | | - Hsiangling Teo
- Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Chong Wai Liew
- Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Alexandre Chojnowski
- A*STAR, Developmental and Regenerative Biology, ASLR, Agency for Science, Technology and Research, Singapore
- A*STAR, Singapore Nuclear Dynamics and Architecture, ASLR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Wah Ing Goh
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore
| | - Yolanda Olmos
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Klizia Maccaroni
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | | | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Dept., Los Angeles, California, United States of America
| | - Jeremy G. Carlton
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Fiammetta Vernì
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | - Colin L. Stewart
- A*STAR, Developmental and Regenerative Biology, ASLR, Agency for Science, Technology and Research, Singapore
- Dept. of Physiology National University of Singapore, Singapore
| | - Daniela Rhodes
- Institute of Structural Biology, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Graham D. Wright
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore
| | - Brian E. Burke
- A*STAR, Singapore Nuclear Dynamics and Architecture, ASLR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Isabella Saggio
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
14
|
Interaction of TLK1 and AKTIP as a Potential Regulator of AKT Activation in Castration-Resistant Prostate Cancer Progression. PATHOPHYSIOLOGY 2021; 28:339-354. [PMID: 35366279 PMCID: PMC8830441 DOI: 10.3390/pathophysiology28030023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer (PCa) progression is characterized by the emergence of resistance to androgen deprivation therapy (ADT). AKT/PKB has been directly implicated in PCa progression, often due to the loss of PTEN and activation of PI3K>PDK1>AKT signaling. However, the regulatory network of AKT remains incompletely defined. Here, we describe the functional significance of AKTIP in PCa cell growth. AKTIP, identified in an interactome analysis as a substrate of TLK1B (that itself is elevated following ADT), enhances the association of AKT with PDK1 and its phosphorylation at T308 and S473. The interaction between TLK1 and AKTIP led to AKTIP phosphorylation at T22 and S237. The inactivation of TLK1 led to reduced AKT phosphorylation, which was potentiated with AKTIP knockdown. The TLK1 inhibitor J54 inhibited the growth of the LNCaP cells attributed to reduced AKT activation. However, LNCaP cells that expressed constitutively active, membrane-enriched Myr-AKT (which is expected to be active, even in the absence of AKTIP) were also growth-inhibited with J54. This suggested that other pathways (like TLK1>NEK1>YAP) regulating proliferation are also suppressed and can mediate growth inhibition, despite compensation by Myr-AKT. Nonetheless, further investigation of the potential role of TLK1>AKTIP>AKT in suppressing apoptosis, and conversely its reversal with J54, is warranted.
Collapse
|
15
|
Kychygina A, Dall'Osto M, Allen JAM, Cadoret JC, Piras V, Pickett HA, Crabbe L. Progerin impairs 3D genome organization and induces fragile telomeres by limiting the dNTP pools. Sci Rep 2021; 11:13195. [PMID: 34162976 PMCID: PMC8222272 DOI: 10.1038/s41598-021-92631-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/11/2021] [Indexed: 11/09/2022] Open
Abstract
Chromatin organization within the nuclear volume is essential to regulate many aspects of its function and to safeguard its integrity. A key player in this spatial scattering of chromosomes is the nuclear envelope (NE). The NE tethers large chromatin domains through interaction with the nuclear lamina and other associated proteins. This organization is perturbed in cells from Hutchinson–Gilford progeria syndrome (HGPS), a genetic disorder characterized by premature aging features. Here, we show that HGPS-related lamina defects trigger an altered 3D telomere organization with increased contact sites between telomeres and the nuclear lamina, and an altered telomeric chromatin state. The genome-wide replication timing signature of these cells is perturbed, with a shift to earlier replication for regions that normally replicate late. As a consequence, we detected a higher density of replication forks traveling simultaneously on DNA fibers, which relies on limiting cellular dNTP pools to support processive DNA synthesis. Remarkably, increasing dNTP levels in HGPS cells rescued fragile telomeres, and improved the replicative capacity of the cells. Our work highlights a functional connection between NE dysfunction and telomere homeostasis in the context of premature aging.
Collapse
Affiliation(s)
- Anna Kychygina
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.,INSERM UMR1291, CNRS UMR5051, UT3, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), 31059, Toulouse, France
| | - Marina Dall'Osto
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | | | - Vincent Piras
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Laure Crabbe
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
| |
Collapse
|
16
|
Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 2020; 11:205-218. [PMID: 32835589 PMCID: PMC7529417 DOI: 10.1080/19491034.2020.1806661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.
Collapse
Affiliation(s)
- Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Verni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Simona Giunta
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Rockefeller University, New York, NY, USA
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
- Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Yang Z, Takai KK, Lovejoy CA, de Lange T. Break-induced replication promotes fragile telomere formation. Genes Dev 2020; 34:1392-1405. [PMID: 32883681 PMCID: PMC7528700 DOI: 10.1101/gad.328575.119] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
TRF1 facilitates the replication of telomeric DNA in part by recruiting the BLM helicase, which can resolve G-quadruplexes on the lagging-strand template. Lagging-strand telomeres lacking TRF1 or BLM form fragile telomeres-structures that resemble common fragile sites (CFSs)-but how they are formed is not known. We report that analogous to CFSs, fragile telomeres in BLM-deficient cells involved double-strand break (DSB) formation, in this case by the SLX4/SLX1 nuclease. The DSBs were repaired by POLD3/POLD4-dependent break-induced replication (BIR), resulting in fragile telomeres containing conservatively replicated DNA. BIR also promoted fragile telomere formation in cells with FokI-induced telomeric DSBs and in alternative lengthening of telomeres (ALT) cells, which have spontaneous telomeric damage. BIR of telomeric DSBs competed with PARP1-, LIG3-, and XPF-dependent alternative nonhomologous end joining (alt-NHEJ), which did not generate fragile telomeres. Collectively, these findings indicate that fragile telomeres can arise from BIR-mediated repair of telomeric DSBs.
Collapse
Affiliation(s)
- Zhe Yang
- Laboratory for Cell Biology and Genetics, Rockefeller University; New York 10021, USA
| | - Kaori K Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University; New York 10021, USA
| | - Courtney A Lovejoy
- Laboratory for Cell Biology and Genetics, Rockefeller University; New York 10021, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University; New York 10021, USA
| |
Collapse
|
18
|
Guo Y, Chung W, Zhu Z, Shan Z, Li J, Liu S, Liang L. Genome-Wide Assessment for Resting Heart Rate and Shared Genetics With Cardiometabolic Traits and Type 2 Diabetes. J Am Coll Cardiol 2020; 74:2162-2174. [PMID: 31648709 DOI: 10.1016/j.jacc.2019.08.1055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/24/2019] [Accepted: 08/05/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND High resting heart rate (RHR) occurs in parallel with type 2 diabetes (T2D) and metabolic disorders, implying shared etiology between them. However, it is unknown if they are causally related, and no study has been conducted to investigate the shared mechanisms underlying these associations. OBJECTIVES The objective of this study was to understand the genetic basis of the association between resting heart rate and cardiometabolic disorders/T2D. METHODS This study examined the genetic correlation, causality, and shared genetics between RHR and T2D using LD Score regression, generalized summary data-based Mendelian randomization, and transcriptome wide association scan (TWAS) in UK Biobank data (n = 428,250) and summary-level data for T2D (74,124 cases and 824,006 control subjects) and 8 cardiometabolic traits (sample size ranges from 51,750 to 236,231). RESULTS Significant genetic correlation between RHR and T2D (rg = 0.22; 95% confidence interval: 0.18 to 0.26; p = 1.99 × 10-22), and 6 cardiometabolic traits (fasting insulin, fasting glucose, waist-hip ratio, triglycerides, high-density lipoprotein, and body mass index; rg range -0.12 to 0.24; all p < 0.05) were observed. RHR has significant estimated causal effect on T2D (odds ratio: 1.12 per 10-beats/min increment; p = 7.79 × 10-11) and weaker causal estimates from T2D to RHR (0.32 beats/min per doubling increment in T2D prevalence; p = 6.14 × 10-54). Sensitivity analysis by controlling for the included cardiometabolic traits did not modify the relationship between RHR and T2D. TWAS found locus chr2q23.3 (rs1260326) was highly pleiotropic among RHR, cardiometabolic traits, and T2D, and identified 7 genes (SMARCAD1, RP11-53O19.3, CTC-498M16.4, PDE8B, AKTIP, KDM4B, and TSHZ3) that were statistically independent and shared between RHR and T2D in tissues from the nervous and cardiovascular systems. These shared genes suggested the involvement of epigenetic regulation of energy and glucose metabolism, and AKT activation-related telomere dysfunction and vascular endothelial aging in the shared etiologies between RHR and T2D. Finally, FADS1 was found to be shared among RHR, fasting glucose, high-density lipoprotein, and triglycerides. CONCLUSIONS These findings provide evidence of significant genetic correlations and causation between RHR and T2D/cardiometabolic traits, advance our understanding of RHR, and provide insight into shared etiology for high RHR and T2D.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zhilei Shan
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Simin Liu
- Departments of Epidemiology, Medicine, and Center for Global Cardiometabolic Health (CGCH), Brown University, Providence, Rhode Island
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
19
|
Martins F, Sousa J, Pereira CD, Cruz e Silva OAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell 2020; 19:e13143. [PMID: 32291910 PMCID: PMC7253059 DOI: 10.1111/acel.13143] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear envelope (NE) is the central organizing unit of the eukaryotic cell serving as a genome protective barrier and mechanotransduction interface between the cytoplasm and the nucleus. The NE is mainly composed of a nuclear lamina and a double membrane connected at specific points where the nuclear pore complexes (NPCs) form. Physiological aging might be generically defined as a functional decline across lifespan observed from the cellular to organismal level. Therefore, during aging and premature aging, several cellular alterations occur, including nuclear‐specific changes, particularly, altered nuclear transport, increased genomic instability induced by DNA damage, and telomere attrition. Here, we highlight and discuss proteins associated with nuclear transport dysfunction induced by aging, particularly nucleoporins, nuclear transport factors, and lamins. Moreover, changes in the structure of chromatin and consequent heterochromatin rearrangement upon aging are discussed. These alterations correlate with NE dysfunction, particularly lamins’ alterations. Finally, telomere attrition is addressed and correlated with altered levels of nuclear lamins and nuclear lamina‐associated proteins. Overall, the identification of molecular mechanisms underlying NE dysfunction, including upstream and downstream events, which have yet to be unraveled, will be determinant not only to our understanding of several pathologies, but as here discussed, in the aging process.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Jéssica Sousa
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Cátia D. Pereira
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Odete A. B. Cruz e Silva
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
- The Discoveries CTR Aveiro Portugal
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| |
Collapse
|
20
|
Raimondo D, Remoli C, Astrologo L, Burla R, La Torre M, Vernì F, Tagliafico E, Corsi A, Del Giudice S, Persichetti A, Giannicola G, Robey PG, Riminucci M, Saggio I. Changes in gene expression in human skeletal stem cells transduced with constitutively active Gsα correlates with hallmark histopathological changes seen in fibrous dysplastic bone. PLoS One 2020; 15:e0227279. [PMID: 31999703 PMCID: PMC6991960 DOI: 10.1371/journal.pone.0227279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant activating mutations of the GNAS locus encoding for the α subunit of the G protein-coupled receptor complex (Gsα). The mutation involves a substitution of arginine at position 201 by histidine or cysteine (GsαR201H or R201C), which leads to overproduction of cAMP. Several signaling pathways are implicated downstream of excess cAMP in the manifestation of disease. However, the pathogenesis of FD remains largely unknown. The overall FD phenotype can be attributed to alterations of skeletal stem/progenitor cells which normally develop into osteogenic or adipogenic cells (in cis), and are also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human skeletal stem/progenitor cells with the GsαR201C mutation and performed transcriptomic analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal stem/progenitor cells by pushing them towards formation of disorganized bone with a concomitant alteration of adipogenic differentiation. In addition, the mutation creates an altered in trans environment that induces neovascularization, cytokine/chemokine changes and osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiesterase 7B), which can be considered as a buffering process, activated to compensate for excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Proteins) in both data sets, factors related to browning of white fat. This is the first analysis of the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation and we believe it provides a useful background for further studies on the molecular basis of the disease and for the identification of novel potential therapeutic targets.
Collapse
Affiliation(s)
- Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Letizia Astrologo
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Enrico Tagliafico
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Del Giudice
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Agnese Persichetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giannicola
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Pamela G. Robey
- National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, United States of America
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- * E-mail: (IS); (MR)
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- School of Biological Sciences, NTU Institute of Structural Biology, Nanyang Technological University, Singapore
- * E-mail: (IS); (MR)
| |
Collapse
|
21
|
Sechi S, Frappaolo A, Karimpour-Ghahnavieh A, Gottardo M, Burla R, Di Francesco L, Szafer-Glusman E, Schininà E, Fuller MT, Saggio I, Riparbelli MG, Callaini G, Giansanti MG. Drosophila Doublefault protein coordinates multiple events during male meiosis by controlling mRNA translation. Development 2019; 146:dev.183053. [PMID: 31645358 DOI: 10.1242/dev.183053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
During the extended prophase of Drosophila gametogenesis, spermatocytes undergo robust gene transcription and store many transcripts in the cytoplasm in a repressed state, until translational activation of select mRNAs in later steps of spermatogenesis. Here, we characterize the Drosophila Doublefault (Dbf) protein as a C2H2 zinc-finger protein, primarily expressed in testes, that is required for normal meiotic division and spermiogenesis. Loss of Dbf causes premature centriole disengagement and affects spindle structure, chromosome segregation and cytokinesis. We show that Dbf interacts with the RNA-binding protein Syncrip/hnRNPQ, a key regulator of localized translation in Drosophila We propose that the pleiotropic effects of dbf loss-of-function mutants are associated with the requirement of dbf function for translation of specific transcripts in spermatocytes. In agreement with this hypothesis, Dbf protein binds cyclin B mRNA and is essential for translation of cyclin B in mature spermatocytes.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Marco Gottardo
- Dipartimento di Scienze della Vita, Università di Siena, 53100 Siena, Italy
| | - Romina Burla
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Laura Di Francesco
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Edith Szafer-Glusman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Eugenia Schininà
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | | | - Giuliano Callaini
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
22
|
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC, Gomez DE. Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet 2019; 96:3-16. [PMID: 30820928 DOI: 10.1111/cge.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.
Collapse
Affiliation(s)
- Romina G Armando
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L Mengual Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julián Maggio
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María C Sanmartin
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
23
|
Katayama M, Wiklander OPB, Fritz T, Caidahl K, El-Andaloussi S, Zierath JR, Krook A. Circulating Exosomal miR-20b-5p Is Elevated in Type 2 Diabetes and Could Impair Insulin Action in Human Skeletal Muscle. Diabetes 2019; 68:515-526. [PMID: 30552111 DOI: 10.2337/db18-0470] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/01/2018] [Indexed: 11/13/2022]
Abstract
miRNAs are noncoding RNAs representing an important class of gene expression modulators. Extracellular circulating miRNAs are both candidate biomarkers for disease pathogenesis and mediators of cell-to-cell communication. We examined the miRNA expression profile of total serum and serum-derived exosome-enriched extracellular vesicles in people with normal glucose tolerance or type 2 diabetes. In contrast to total serum miRNA, which did not reveal any differences in miRNA expression, we identified differentially abundant miRNAs in patients with type 2 diabetes using miRNA expression profiles of exosome RNA (exoRNA). To validate the role of these differentially abundant miRNAs on glucose metabolism, we transfected miR-20b-5p, a highly abundant exoRNA in patients with type 2 diabetes, into primary human skeletal muscle cells. miR-20b-5p overexpression increased basal glycogen synthesis in human skeletal muscle cells. We identified AKTIP and STAT3 as miR-20b-5p targets. miR-20b-5p overexpression reduced AKTIP abundance and insulin-stimulated glycogen accumulation. In conclusion, exosome-derived extracellular miR-20b-5p is a circulating biomarker associated with type 2 diabetes that plays an intracellular role in modulating insulin-stimulated glucose metabolism via AKT signaling.
Collapse
Affiliation(s)
- Mutsumi Katayama
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Tomas Fritz
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kenneth Caidahl
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
24
|
Bikkul MU, Faragher RGA, Worthington G, Meinke P, Kerr ARW, Sammy A, Riyahi K, Horton D, Schirmer EC, Hubank M, Kill IR, Anderson RM, Slijepcevic P, Makarov E, Bridger JM. Telomere elongation through hTERT immortalization leads to chromosome repositioning in control cells and genomic instability in Hutchinson-Gilford progeria syndrome fibroblasts, expressing a novel SUN1 isoform. Genes Chromosomes Cancer 2019; 58:341-356. [PMID: 30474255 PMCID: PMC6590296 DOI: 10.1002/gcc.22711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease—Hutchinson‐Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long‐term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT‐immortalized cell lines.
Collapse
Affiliation(s)
- Mehmet U. Bikkul
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | | | - Gemma Worthington
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Peter Meinke
- Friedrich‐Baur‐InstitutKlinikum der Universität MünchenMünchenGermany
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Alastair R. W. Kerr
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Aakila Sammy
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Kumars Riyahi
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Daniel Horton
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Michael Hubank
- Centre for Molecular PathologyThe Royal Marsden HospitalLondonEngland
| | - Ian R. Kill
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Rhona M. Anderson
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Predrag Slijepcevic
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Evgeny Makarov
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Joanna M. Bridger
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| |
Collapse
|
25
|
Burla R, La Torre M, Zanetti G, Bastianelli A, Merigliano C, Del Giudice S, Vercelli A, Di Cunto F, Boido M, Vernì F, Saggio I. p53-Sensitive Epileptic Behavior and Inflammation in Ft1 Hypomorphic Mice. Front Genet 2018; 9:581. [PMID: 30546381 PMCID: PMC6278696 DOI: 10.3389/fgene.2018.00581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a complex clinical condition characterized by repeated spontaneous seizures. Seizures have been linked to multiple drivers including DNA damage accumulation. Investigation of epilepsy physiopathology in humans imposes ethical and practical limitations, for this reason model systems are mostly preferred. Among animal models, mouse mutants are particularly valuable since they allow conjoint behavioral, organismal, and genetic analyses. Along with this, since aging has been associated with higher frequency of seizures, prematurely aging mice, simulating human progeroid diseases, offer a further useful modeling element as they recapitulate aging over a short time-window. Here we report on a mouse mutant with progeroid traits that displays repeated spontaneous seizures. Mutant mice were produced by reducing the expression of the gene Ft1 (AKTIP in humans). In vitro, AKTIP/Ft1 depletion causes telomere aberrations, DNA damage, and cell senescence. AKTIP/Ft1 interacts with lamins, which control nuclear architecture and DNA function. Premature aging defects of Ft1 mutant mice include skeletal alterations and lipodystrophy. The epileptic behavior of Ft1 mutant animals was age and sex linked. Seizures were observed in 18 mutant mice (23.6% of aged ≥ 21 weeks), at an average frequency of 2.33 events/mouse. Time distribution of seizures indicated non-random enrichment of seizures over the follow-up period, with 75% of seizures happening in consecutive weeks. The analysis of epileptic brains did not reveal overt brain morphological alterations or severe neurodegeneration, however, Ft1 reduction induced expression of the inflammatory markers IL-6 and TGF-β. Importantly, Ft1 mutant mice with concomitant genetic reduction of the guardian of the genome, p53, showed no seizures or inflammatory marker activation, implicating the DNA damage response into these phenotypes. This work adds insights into the connection among DNA damage, brain function, and aging. In addition, it further underscores the importance of model organisms for studying specific phenotypes, along with permitting the analysis of genetic interactions at the organismal level.
Collapse
Affiliation(s)
- Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giorgia Zanetti
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Alex Bastianelli
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Chiara Merigliano
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy.,Nanyang Technological University, Singapore, Singapore
| | - Simona Del Giudice
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Torino, Italy.,Department of Neuroscience, University of Torino, Piedmont, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Torino, Italy.,Department of Neuroscience, University of Torino, Piedmont, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Torino, Italy.,Department of Neuroscience, University of Torino, Piedmont, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy.,Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
26
|
La Torre M, Merigliano C, Burla R, Mottini C, Zanetti G, Del Giudice S, Carcuro M, Virdia I, Bucciarelli E, Manni I, Vinciguerra GR, Piaggio G, Riminucci M, Cumano A, Bartolazzi A, Vernì F, Soddu S, Gatti M, Saggio I. Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits. Aging Cell 2018; 17:e12730. [PMID: 29635765 PMCID: PMC6052474 DOI: 10.1111/acel.12730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2017] [Indexed: 01/14/2023] Open
Abstract
Human AKTIP and mouse Ft1 are orthologous ubiquitin E2 variant proteins involved in telomere maintenance and DNA replication. AKTIP also interacts with A‐ and B‐type lamins. These features suggest that Ft1 may be implicated in aging regulatory pathways. Here, we show that cells derived from hypomorph Ft1 mutant (Ft1kof/kof) mice exhibit telomeric defects and that Ft1kof/kof animals develop progeroid traits, including impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. We also demonstrate a genetic interaction between Ft1 and p53. The analysis of mice carrying mutations in both Ft1 and p53 (Ft1kof/kof; p53ko/ko and Ft1kof/kof; p53+/ko) showed that reduction in p53 rescues the progeroid traits of Ft1 mutants, suggesting that they are at least in part caused by a p53‐dependent DNA damage response. Conversely, Ft1 reduction alters lymphomagenesis in p53 mutant mice. These results identify Ft1 as a new player in the aging process and open the way to the analysis of its interactions with other progeria genes using the mouse model.
Collapse
Affiliation(s)
- Mattia La Torre
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Romina Burla
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Carla Mottini
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Giorgia Zanetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Simona Del Giudice
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Mariateresa Carcuro
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Ilaria Virdia
- Dipartimento di Ricerca, Diagnostica Avanzata e Innovazione Tecnologica; Istituto Nazionale Tumori Regina Elena; Rome Italy
| | | | - Isabella Manni
- Dipartimento di Ricerca, Diagnostica Avanzata e Innovazione Tecnologica; Istituto Nazionale Tumori Regina Elena; Rome Italy
| | | | - Giulia Piaggio
- Dipartimento di Ricerca, Diagnostica Avanzata e Innovazione Tecnologica; Istituto Nazionale Tumori Regina Elena; Rome Italy
| | - Mara Riminucci
- Dipartimento di Medicina Molecolare; Sapienza Università di Roma; Rome Italy
| | - Ana Cumano
- Lymphopoiesis Unit; Institut Pasteur; Paris France
| | | | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Silvia Soddu
- Dipartimento di Ricerca, Diagnostica Avanzata e Innovazione Tecnologica; Istituto Nazionale Tumori Regina Elena; Rome Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
- Istituto di Biologia e Patologia Molecolari del CNR; Rome Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
- Istituto di Biologia e Patologia Molecolari del CNR; Rome Italy
| |
Collapse
|
27
|
Burla R, La Torre M, Merigliano C, Vernì F, Saggio I. Genomic instability and DNA replication defects in progeroid syndromes. Nucleus 2018; 9:368-379. [PMID: 29936894 PMCID: PMC7000143 DOI: 10.1080/19491034.2018.1476793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Progeroid syndromes induced by mutations in lamin A or in its interactors – named progeroid laminopathies – are model systems for the dissection of the molecular pathways causing physiological and premature aging. A large amount of data, based mainly on the Hutchinson Gilford Progeria syndrome (HGPS), one of the best characterized progeroid laminopathy, has highlighted the role of lamins in multiple DNA activities, including replication, repair, chromatin organization and telomere function. On the other hand, the phenotypes generated by mutations affecting genes directly acting on DNA function, as mutations in the helicases WRN and BLM or in the polymerase polδ, share many of the traits of progeroid laminopathies. These evidences support the hypothesis of a concerted implication of DNA function and lamins in aging. We focus here on these aspects to contribute to the comprehension of the driving forces acting in progeroid syndromes and premature aging.
Collapse
Affiliation(s)
- Romina Burla
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Mattia La Torre
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Chiara Merigliano
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy
| | - Fiammetta Vernì
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy
| | - Isabella Saggio
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy.,c Istituto Pasteur Fondazione Cenci Bolognetti , Rome , Italy
| |
Collapse
|
28
|
Serebryannyy L, Misteli T. Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. J Cell Biol 2017; 217:21-37. [PMID: 29051264 PMCID: PMC5748986 DOI: 10.1083/jcb.201706061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Serebryannyy and Misteli provide a perspective on how protein sequestration at the inner nuclear membrane and nuclear lamina might influence aging. Despite the extensive description of numerous molecular changes associated with aging, insights into the driver mechanisms of this fundamental biological process are limited. Based on observations in the premature aging syndrome Hutchinson–Gilford progeria, we explore the possibility that protein regulation at the inner nuclear membrane and the nuclear lamina contributes to the aging process. In support, sequestration of nucleoplasmic proteins to the periphery impacts cell stemness, the response to cytotoxicity, proliferation, changes in chromatin state, and telomere stability. These observations point to the nuclear periphery as a central regulator of the aging phenotype.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
Guastafierro T, Bacalini MG, Marcoccia A, Gentilini D, Pisoni S, Di Blasio AM, Corsi A, Franceschi C, Raimondo D, Spanò A, Garagnani P, Bondanini F. Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clin Epigenetics 2017; 9:92. [PMID: 28861129 PMCID: PMC5577832 DOI: 10.1186/s13148-017-0389-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Werner syndrome is a progeroid disorder characterized by premature age-related phenotypes. Although it is well established that autosomal recessive mutations in the WRN gene is responsible for Werner syndrome, the molecular alterations that lead to disease phenotype remain still unidentified. Results To address whether epigenetic changes can be associated with Werner syndrome phenotype, we analysed genome-wide DNA methylation profile using the Infinium MethylationEPIC BeadChip in the whole blood from three patients affected by Werner syndrome compared with three age- and sex-matched healthy controls. Hypermethylated probes were enriched in glycosphingolipid biosynthesis, FoxO signalling and insulin signalling pathways, while hypomethylated probes were enriched in PI3K-Akt signalling and focal adhesion pathways. Twenty-two out of 47 of the differentially methylated genes belonging to the enriched pathways resulted differentially expressed in a publicly available dataset on Werner syndrome fibroblasts. Interestingly, differentially methylated regions identified CERS1 and CERS3, two members of the ceramide synthase family. Moreover, we found differentially methylated probes within ITGA9 and ADAM12 genes, whose methylation is altered in systemic sclerosis, and within the PRDM8 gene, whose methylation is affected in dyskeratosis congenita and Down syndrome. Conclusions DNA methylation changes in the peripheral blood from Werner syndrome patients provide new insight in the pathogenesis of the disease, highlighting in some cases a functional correlation of gene expression and methylation status. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0389-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Guastafierro
- UOC of Clinical Biochemistry, Sandro Pertini Hospital, Rome, Italy.,CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy
| | - M G Bacalini
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - A Marcoccia
- CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy.,UOSD Ischemic Microangiopathy and Sclerodermic Ulcers, Sandro Pertini Hospital, Rome, Italy
| | - D Gentilini
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - S Pisoni
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - A M Di Blasio
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - A Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - C Franceschi
- IRCCS Institute of Neurological Sciences, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy
| | - D Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - A Spanò
- UOC of Clinical Biochemistry, Sandro Pertini Hospital, Rome, Italy
| | - P Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Huddinge University Hospital, S-141 86 Stockholm, Sweden.,CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - F Bondanini
- CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy.,UOC of Clinical Pathology, Saint' Eugenio Hospital, Rome, Italy
| |
Collapse
|
30
|
Cicconi A, Micheli E, Vernì F, Jackson A, Gradilla AC, Cipressa F, Raimondo D, Bosso G, Wakefield JG, Ciapponi L, Cenci G, Gatti M, Cacchione S, Raffa GD. The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Res 2017; 45:3068-3085. [PMID: 27940556 PMCID: PMC5389638 DOI: 10.1093/nar/gkw1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin.
Collapse
Affiliation(s)
- Alessandro Cicconi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy
| | - Alison Jackson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ana Citlali Gradilla
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy.,Centro Fermi, Piazza del Viminale 1, 00184 Roma, Italy
| | - Domenico Raimondo
- Dipartimento di Medicina Molecolare, Sapienza, Università di Roma, 00185 Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, 00185 Roma, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| |
Collapse
|
31
|
Abstract
Chromosome ends are complex structures, which require a panel of factors for their elongation, replication, and protection. We describe here the mechanics of mammalian telomeres, dynamics and maintainance in relation to lamins. Multiple biochemical connections, including association of telomeres to the nuclear envelope and matrix, of telomeric proteins to lamins, and of lamin-associated proteins to chromosome ends, underline the interplay between lamins and telomeres. Paths toward senescence, such as defective telomere replication, altered heterochromatin organization, and impaired DNA repair, are common to lamins' and telomeres' dysfunction. The convergence of phenotypes can be interpreted through a model of dynamic, lamin-controlled functional platforms dedicated to the function of telomeres as fragile sites. The features of telomeropathies and laminopathies, and of animal models underline further overlapping aspects, including the alteration of stem cell compartments. We expect that future studies of basic biology and on aging will benefit from the analysis of this telomere-lamina interplay.
Collapse
Affiliation(s)
- Romina Burla
- a Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma , Rome, Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Mattia La Torre
- a Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma , Rome, Italy
| | - Isabella Saggio
- a Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma , Rome, Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy.,c Istituto Pasteur Fondazione Cenci Bolognetti , Rome , Italy
| |
Collapse
|
32
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
33
|
Burla R, Carcuro M, Torre ML, Fratini F, Crescenzi M, D'Apice MR, Spitalieri P, Raffa GD, Astrologo L, Lattanzi G, Cundari E, Raimondo D, Biroccio A, Gatti M, Saggio I. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence. Open Biol 2016; 6:160103. [PMID: 27512140 PMCID: PMC5008010 DOI: 10.1098/rsob.160103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence.
Collapse
Affiliation(s)
- Romina Burla
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy Istituto Pasteur Fondazione Cenci Bolognetti, Rome 00185, Italy Istituto di Biologia e Patologia Molecolari CNR Roma, 00185, Italy
| | - Mariateresa Carcuro
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy
| | - Mattia La Torre
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy
| | | | | | | | - Paola Spitalieri
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Roma 00133, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy
| | - Letizia Astrologo
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy
| | | | - Enrico Cundari
- Istituto di Biologia e Patologia Molecolari CNR Roma, 00185, Italy
| | - Domenico Raimondo
- Dipartimento di Medicina Molecolare, Sapienza, Università di Roma, Rome 00185, Italy
| | - Annamaria Biroccio
- Unità di Oncogenomica ed Epigenetica, Istituto Nazionale Tumori Regina Elena, Roma 00144, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy Istituto di Biologia e Patologia Molecolari CNR Roma, 00185, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy Istituto di Biologia e Patologia Molecolari CNR Roma, 00185, Italy
| |
Collapse
|
34
|
Abstract
Drosophila telomeres are maintained by transposition to chromosome ends of the HeT-A, TART and TAHRE retrotransposons, collectively designated as HTT. Although all Drosophila telomeres terminate with HTT arrays and are capped by the terminin complex, they differ in the type of subtelomeric chromatin. The HTT sequences of YS, YL, XR, and 4L are juxtaposed to constitutive heterochromatin, while the HTTs of the other telomeres are linked to either the TAS repeat-associated chromatin (XL, 2L, 2R, 3L, 3R) or to the specialized 4R chromatin. We found that mutations in pendolino (peo) cause (telomeric fusions) that preferentially involve the heterochromatin-associated telomeres (Ha-telomeres), a telomeric fusion pattern never observed in the other 10 telomere-capping mutants characterized so far. Peo, is homologous to the E2 variant ubiquitin-conjugating enzymes and is required for DNA replication. Our analyses lead us to hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in Ha-telomeres. These data provide the first demonstration that subtelomeres can affect telomere fusion.
Collapse
Affiliation(s)
- Marta Marzullo
- a Department of Biology and Biotechnology ; University of Rome ; Sapienza , Italy
| | - Maurizio Gatti
- a Department of Biology and Biotechnology ; University of Rome ; Sapienza , Italy.,b IBPM CNR, University of Rome ; Rome , Italy
| |
Collapse
|
35
|
Cipressa F, Morciano P, Bosso G, Mannini L, Galati A, Raffa GD, Cacchione S, Musio A, Cenci G. A role for Separase in telomere protection. Nat Commun 2016; 7:10405. [PMID: 26778495 PMCID: PMC4735636 DOI: 10.1038/ncomms10405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/08/2015] [Indexed: 12/04/2022] Open
Abstract
Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity and are assembled independently of the sequence. Fly telomeres are protected by the terminin complex that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. We show that mutations in the Drosophila Separase encoding gene Sse lead not only to endoreduplication but also telomeric fusions (TFs), suggesting a role for Sse in telomere capping. We demonstrate that Separase binds terminin proteins and HP1, and that it is enriched at telomeres. Furthermore, we show that loss of Sse strongly reduces HP1 levels, and that HP1 overexpression in Sse mutants suppresses TFs, suggesting that TFs are caused by a HP1 diminution. Finally, we find that siRNA-induced depletion of ESPL1, the Sse human orthologue, causes telomere dysfunction and HP1 level reduction in primary fibroblasts, highlighting a conserved role of Separase in telomere protection. Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity. Here, the authors show that Separase is enriched at Drosophila telomeres and loss of Sse, the gene encoding Separase, leads to telomere defects, suggesting a role for Separase in telomere protection.
Collapse
Affiliation(s)
- Francesca Cipressa
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Patrizia Morciano
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Giuseppe Bosso
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, c/o Area di Ricerca di S. Cataldo Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Alessandra Galati
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, c/o Area di Ricerca di S. Cataldo Via G. Moruzzi 1, 56124 Pisa, Italy.,Istituto Toscano Tumori, Via T. Alderotti 26N, 50139 Firenze, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| |
Collapse
|
36
|
Cenci G, Ciapponi L, Marzullo M, Raffa GD, Morciano P, Raimondo D, Burla R, Saggio I, Gatti M. The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres. PLoS Genet 2015; 11:e1005260. [PMID: 26110638 PMCID: PMC4481407 DOI: 10.1371/journal.pgen.1005260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/04/2015] [Indexed: 01/08/2023] Open
Abstract
Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping. Telomeres are specialized structures that protect chromosome ends from incomplete replication, degradation and end-to-end fusion. Abnormalities in telomere structure or maintenance can promote a variety of human diseases including premature aging and cancer. Although all human telomeres contain the same DNA sequences, they differ from each other in the subtelomeric regions or subtelomeres. Recent work has shown that human subtelomeres control telomere replication and that abnormalities in these structures can lead to localized chromosome instability and disease. However, the relationships between subtelomeres and telomeres are currently poorly understood. Here, we have addressed this problem using the fruit fly Drosophila melanogaster as model system. Drosophila subtelomers are very different from each other as they contain different types of chromatin. We have found that mutations in a gene we called pendolino (peo) cause telomeric fusions (TFs) and that these fusions preferentially involve the telomeres associated with a tightly packed form of chromatin called heterochromatin. Interestingly, none of the 10 mutants with TFs so far described in Drosophila shows the pattern of TFs observed in peo mutants. Thus, our data provide the first demonstration that subtelomeres can affect telomere fusion. We believe that these results will stimulate further studies on the role of subtelomeres in the maintenance of genome stability.
Collapse
Affiliation(s)
- Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Marta Marzullo
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Grazia D. Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Patrizia Morciano
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | | | - Romina Burla
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
- IBPM CNR, Sapienza—Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
- IBPM CNR, Sapienza—Università di Roma, Roma, Italy
- * E-mail:
| |
Collapse
|