1
|
Colomer-Winter C, Yong AMH, Chong KKL, Veleba M, Choo PY, Gao IH, Matysik A, Ho FK, Chen SL, Kline KA. The HtrA chaperone monitors sortase-assembled pilus biogenesis in Enterococcus faecalis. PLoS Genet 2024; 20:e1011071. [PMID: 39102428 PMCID: PMC11326707 DOI: 10.1371/journal.pgen.1011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/15/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.e. off-pathway). Here we show that the high temperature requirement A (HtrA) bifunctional chaperone/protease of E. faecalis is a quality control system that clears aberrant off-pathway pili from the cell membrane. In the absence of HtrA and SrtA, accumulation of membrane-bound pili leads to cell envelope stress and partially induces the regulon of the ceftriaxone resistance-associated CroRS two-component system, which in turn causes hyper-piliation and cell morphology alterations. Inactivation of croR in the OG1RF ΔsrtAΔhtrA background partially restores the observed defects of the ΔsrtAΔhtrA strain, supporting a role for CroRS in the response to membrane perturbations. Moreover, absence of SrtA and HtrA decreases basal resistance of E. faecalis against cephalosporins and daptomycin. The link between HtrA, pilus biogenesis and the CroRS two-component system provides new insights into the E. faecalis response to endogenous membrane perturbations.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Adeline M. H. Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Iris Hanxing Gao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Swaine L. Chen
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Genome #02–01, Singapore, Singapore
| | - Kimberly A. Kline
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
BELITSKY BORISR. Histidine kinase-mediated cross-regulation of the vancomycin-resistance operon in Clostridioides difficile. Mol Microbiol 2024; 121:1182-1199. [PMID: 38690761 PMCID: PMC11176017 DOI: 10.1111/mmi.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The dipeptide D-Ala-D-Ala is an essential component of peptidoglycan and the target of vancomycin. Most Clostridioides difficile strains possess the vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The C. difficile vanG operon is regulated by a two-component system, VanRS, but is not induced sufficiently by vancomycin to confer resistance to this antibiotic. Surprisingly, in the absence of the VanS histidine kinase (HK), the vanG operon is still induced by vancomycin and also by another antibiotic, ramoplanin, in a VanR-dependent manner. This suggested the cross-regulation of VanR by another HK or kinases that are activated in the presence of certain lipid II-targeting antibiotics. We identified these HKs as CD35990 and CD22880. However, mutations in either or both HKs did not affect the regulation of the vanG operon in wild-type cells suggesting that intact VanS prevents the cross-activation of VanR by non-cognate HKs. Overproduction of VanR in the absence of VanS, CD35990, and CD22880 led to high expression of the vanG operon indicating that VanR can potentially utilize at least one more phosphate donor for its activation. Candidate targets of CD35990- and CD22880-mediated regulation in the presence of vancomycin or ramoplanin were identified by RNA-Seq.
Collapse
Affiliation(s)
- BORIS R. BELITSKY
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
3
|
Hazarika M, Wangkheimayum J, Nath K, Singha KM, Chanda DD, Bhattacharjee A. Concentration dependent exposure of vancomycin and teicoplanin induces vanG regulon in Staphylococcus aureus. Indian J Med Microbiol 2024; 48:100563. [PMID: 38518847 DOI: 10.1016/j.ijmmb.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Therapeutic options for staphylococcus infections have been raised due to the emergence of VISA and VRSA. Six isolates of Staphylococcus aureus of clinical origin which were previously confirmed to carry vanG were selected for this study. Antimicrobial susceptibility was performed by disc diffusion method. Transcriptional expression of vanG and vanSG showed down regulation against vancomycin and teicoplanin but expression was increased with increasing concentration of antibiotics. vanUG, vanRG showed up regulation against glycopeptide exposure. The present study underscored that expression of vanG and its regulatory gene operons are dependent on concentration of vancomycin and teicoplanin exposure in S.aureus.
Collapse
Affiliation(s)
- Monalisha Hazarika
- Department of Microbiology, Assam University Silchar, Silchar, Assam, India.
| | | | - Kathakali Nath
- Department of Microbiology, Assam University Silchar, Silchar, Assam, India.
| | - K Melson Singha
- Department of Microbiology, Silchar Medical College, and Hospital, Silchar, Assam, India.
| | - Debadatta Dhar Chanda
- Department of Microbiology, Silchar Medical College, and Hospital, Silchar, Assam, India.
| | | |
Collapse
|
4
|
The Regulations of Essential WalRK Two-Component System on Enterococcus faecalis. J Clin Med 2023; 12:jcm12030767. [PMID: 36769415 PMCID: PMC9917794 DOI: 10.3390/jcm12030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive, facultative anaerobic bacterium that is highly adaptable to its environment. In humans, it can cause serious infections with biofilm formation. With increasing attention on its health threat, prevention and control of biofilm formation in E. faecalis have been observed. Many factors including polysaccharides as well as autolysis, proteases, and eDNA regulate biofilm formation. Those contributors are regulated by several important regulatory systems involving the two-component signal transduction system (TCS) for its adaptation to the environment. Highly conserved WalRK as one of 17 TCSs is the only essential TCS in E. faecalis. In addition to biofilm formation, various metabolisms, including cell wall construction, drug resistance, as well as interactions among regulatory systems and resistance to the host immune system, can be modulated by the WalRK system. Therefore, WalRK has been identified as a key target for E. faecalis infection control. In the present review, the regulation of WalRK on E. faecalis pathogenesis and associated therapeutic strategies are demonstrated.
Collapse
|
5
|
BELITSKY BORISR. VanG- and D-Ala-D-Ser-dependent peptidoglycan synthesis and vancomycin resistance in Clostridioides difficile. Mol Microbiol 2022; 118:526-540. [PMID: 36065735 PMCID: PMC9671823 DOI: 10.1111/mmi.14980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
A Clostridioides difficile strain deficient in the ddl gene is unable to synthesize the dipeptide D-Ala-D-Ala, an essential component of peptidoglycan and the target of vancomycin. We isolated spontaneous suppressors of a ∆ddl mutation that allowed cell growth in the absence of D-Ala-D-Ala. The mutations caused constitutive or partly constitutive expression of the vancomycin-inducible vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The mutations mapped to the vanS or vanR genes, which regulate expression of the vanG operon. The constitutive level of vanG expression was about 10-fold above that obtained by vancomycin induction. The incorporation of D-Ala-D-Ser into peptidoglycan due to high expression of the vanG operon conferred only low-level resistance to vancomycin, but VanG was found to synthesize D-Ala-D-Ala in addition to D-Ala-D-Ser. However, the same, low resistance to vancomycin was also observed in cells completely unable to synthesize D-Ala-D-Ala and grown in the presence of D-Ala-D-Ser. D-Ala-D-Ala presence was required for efficient vancomycin induction of the vanG operon showing that vancomycin is not by itself able to activate VanS. D-Ala-D-Ser, similar to D-Ala-D-Ala, served as an anti-activator of DdlR, the positive regulator of the ddl gene, thereby coupling vanG and ddl expression.
Collapse
Affiliation(s)
- BORIS R. BELITSKY
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
6
|
Genetic Mechanisms of Vancomycin Resistance in Clostridioides difficile: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11020258. [PMID: 35203860 PMCID: PMC8868222 DOI: 10.3390/antibiotics11020258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial resistance to treatments for Clostridioides difficile infection (CDI) poses a significant threat to global health. C. difficile is widely thought to be susceptible to oral vancomycin, which is increasingly the mainstay of CDI treatment. However, clinical labs do not conduct C. difficile susceptibility testing, presenting a challenge to detecting the emergence and impact of resistance. In this systematic review, we describe gene determinants and associated clinical and laboratory mechanisms of vancomycin resistance in C. difficile, including drug-binding site alterations, efflux pumps, RNA polymerase mutations, and biofilm formation. Additional research is needed to further characterize these mechanisms and understand their clinical impact.
Collapse
|
7
|
Guffey AA, Loll PJ. Regulation of Resistance in Vancomycin-Resistant Enterococci: The VanRS Two-Component System. Microorganisms 2021; 9:2026. [PMID: 34683347 PMCID: PMC8541618 DOI: 10.3390/microorganisms9102026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are a serious threat to human health, with few treatment options being available. New therapeutics are urgently needed to relieve the health and economic burdens presented by VRE. A potential target for new therapeutics is the VanRS two-component system, which regulates the expression of vancomycin resistance in VRE. VanS is a sensor histidine kinase that detects vancomycin and in turn activates VanR; VanR is a response regulator that, when activated, directs expression of vancomycin-resistance genes. This review of VanRS examines how the expression of vancomycin resistance is regulated, and provides an update on one of the field's most pressing questions: How does VanS sense vancomycin?
Collapse
Affiliation(s)
| | - Patrick J. Loll
- Department of Biochemistry & Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| |
Collapse
|
8
|
Uzma, Halim Z. Optimizing the DNA fragment assembly using metaheuristic-based overlap layout consensus approach. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci 2020; 29:654-669. [PMID: 31899563 DOI: 10.1002/pro.3819] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Vancomycin and related glycopeptides are drugs of last resort for the treatment of severe infections caused by Gram-positive bacteria such as Enterococcus species, Staphylococcus aureus, and Clostridium difficile. Vancomycin was long considered immune to resistance due to its bactericidal activity based on binding to the bacterial cell envelope rather than to a protein target as is the case for most antibiotics. However, two types of complex resistance mechanisms, each comprised of a multi-enzyme pathway, emerged and are now widely disseminated in pathogenic species, thus threatening the clinical efficiency of vancomycin. Vancomycin forms an intricate network of hydrogen bonds with the d-Ala-d-Ala region of Lipid II, interfering with the peptidoglycan layer maturation process. Resistance to vancomycin involves degradation of this natural precursor and its replacement with d-Ala-d-lac or d-Ala-d-Ser alternatives to which vancomycin has low affinity. Through extensive research over 30 years after the initial discovery of vancomycin resistance, remarkable progress has been made in molecular understanding of the enzymatic cascades responsible. Progress has been driven by structural studies of the key components of the resistance mechanisms which provided important molecular understanding such as, for example, the ability of this cascade to discriminate between vancomycin sensitive and resistant peptidoglycan precursors. Important structural insights have been also made into the molecular evolution of vancomycin resistance enzymes. Altogether this molecular data can accelerate inhibitor discovery and optimization efforts to reverse vancomycin resistance. Here, we overview our current understanding of this complex resistance mechanism with a focus on the structural and molecular aspects.
Collapse
Affiliation(s)
- Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID)
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID).,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Du F, Lv X, Duan D, Wang L, Huang J. Characterization of a Linezolid- and Vancomycin-Resistant Streptococcus suis Isolate That Harbors optrA and vanG Operons. Front Microbiol 2019; 10:2026. [PMID: 31551963 PMCID: PMC6746840 DOI: 10.3389/fmicb.2019.02026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Linezolid and vancomycin are among the last-resort antimicrobial agents in the treatment of multidrug-resistant Gram-positive bacterial infections. Linezolid- and vancomycin-resistant (LVR) Gram-positive bacteria may pose severe threats to public health. In this study, three optrA- and vanG-positive Streptococcus suis strains were isolated from two farms of different cities. There were only 1 and 343 single-nucleotide polymorphisms in coding region (cSNPs) of HCB4 and YSJ7 to YSJ17, respectively. Mobilome analysis revealed the presence of vanG, erm(B), tet(O/W/32/O), and aadE-apt-sat4-aphA3 cluster on an integrative and conjugative element, ICESsuYSJ17, and erm(B), aphA3, aac(6')-aph(2″), catpC194, and optrA on a prophage, ΦSsuYSJ17-3. ICESsuYSJ17 exhibited a mosaic structure and belongs to a highly prevalent and transferable ICESa2603 family of Streptococcus species. ΦSsuYSJ17-3 shared conserved backbone to a transferable prophage Φm46.1. A novel composite transposon, IS1216E-araC-optrA-hp-catpC194-IS1216E, which can be circulated as translocatable unit (TU) by IS1216E, was integrated on ΦSsuYSJ17-3. Vancomycin resistance phenotype and vanG transcription assays revealed that the vanG operon was inducible. The LVR strain YSJ17 exhibited moderate virulence in a zebrafish infection model. To our knowledge, this is the first report of LVR isolate, which is mediated by acquired resistance genes optrA and vanG operons in Gram-positive bacteria. Since S. suis has been recognized as an antimicrobial resistance reservoir in the spread of resistance genes to major streptococcal pathogens, the potential risks of disseminating of optrA and vanG from S. suis to other Streptococcus spp. are worrisome and routine surveillance should be strengthened.
Collapse
Affiliation(s)
- Fanshu Du
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Duan Duan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Sassi M, Guérin F, Lesec L, Isnard C, Fines-Guyon M, Cattoir V, Giard JC. Genetic characterization of a VanG-type vancomycin-resistant Enterococcus faecium clinical isolate. J Antimicrob Chemother 2019; 73:852-855. [PMID: 29346643 DOI: 10.1093/jac/dkx510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023] Open
Abstract
Objectives To characterize, phenotypically and genotypically, the first Enterococcus faecium clinical isolate harbouring a vanG operon. Methods The antibiotic resistance profile of E. faecium 16-346 was determined and its whole genome sequenced using PacBio technology. Attempts to transfer vancomycin resistance by filter mating were performed and the inducibility of expression of the vanG operon was studied by reverse-transcription quantitative PCR (RT-qPCR) in the presence or absence of subinhibitory concentrations of vancomycin. Results E. faecium 16-346 was resistant to rifampicin (MIC >4 mg/L), erythromycin (MIC >4 mg/L), tetracycline (MIC >16 mg/L) and vancomycin (MIC 8 mg/L), but susceptible to teicoplanin (MIC 0.5 mg/L). The strain harboured the vanG operon in its chromosome, integrated in a 45.5 kb putative mobile genetic element, similar to that of Enterococcus faecalis BM4518. We were unable to transfer vancomycin resistance from E. faecium 16-346 to E. faecium BM4107 and E. faecalis JH2-2. Lastly, transcription of the vanG gene was inducible by vancomycin. Conclusions This is, to the best of our knowledge, the first report of a VanG-type vancomycin-resistant strain of E. faecium. Despite the alarm pulled because of the therapeutic problems caused by VRE, our work shows that new resistant loci can still be found in E. faecium.
Collapse
Affiliation(s)
- Mohamed Sassi
- Université Rennes 1, Laboratoire de Biochimie Pharmaceutique, Inserm U1230 - UPRES EA 2311, Rennes, France
| | - François Guérin
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France.,CHU de Caen, Service de Microbiologie, Caen, France
| | - Léonie Lesec
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France
| | - Christophe Isnard
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France.,CHU de Caen, Service de Microbiologie, Caen, France
| | - Marguerite Fines-Guyon
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France.,CHU de Caen, Service de Microbiologie, Caen, France
| | - Vincent Cattoir
- CHU de Rennes - Hôpital Ponchaillou, Service de Bactériologie-Hygiène hospitalière, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France
| | - Jean-Christophe Giard
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France
| |
Collapse
|
12
|
Abstract
The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that are of great relevance to human health for their role as major causative agents of health care-associated infections. The enterococci are resilient and versatile species able to survive under harsh conditions, making them well adapted to the health care environment. Two species cause the majority of enterococcal infections: Enterococcus faecalis and Enterococcus faecium Both species demonstrate intrinsic resistance to common antibiotics, such as virtually all cephalosporins, aminoglycosides, clindamycin, and trimethoprim-sulfamethoxazole. Additionally, a remarkably plastic genome allows these two species to readily acquire resistance to further antibiotics, such as high-level aminoglycoside resistance, high-level ampicillin resistance, and vancomycin resistance, either through mutation or by horizontal transfer of genetic elements conferring resistance determinants.
Collapse
Affiliation(s)
- Mónica García-Solache
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
13
|
Huang J, Chen L, Li D, Wang M, Du F, Gao Y, Wu Z, Wang L. Emergence of a vanG-carrying and multidrug resistant ICE in zoonotic pathogen Streptococccus suis. Vet Microbiol 2018; 222:109-113. [PMID: 30080664 DOI: 10.1016/j.vetmic.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/03/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
Vancomycin resistance occurs frequently in Enterococcus species, but has not yet been reported in Streptococcus suis, a previously neglected, newly emergent zoonotic pathogen. In this study, we tested the vancomycin susceptibility of 256 human and swine S. suis isolates from 2005 to 2016 and analyzed the mechanism of vancomycin resistance. We found that one isolate BSB6 was resistant to vancomycin with the MIC value of 4 mg/L and to another eleven kinds of tested antimicrobial agents. Whole genome sequencing showed that chromosomal gene mutations, and acquired genes in ICESsuBSB6 accounted for the resistance phenotypes. ICESsuBSB6 was ∼83-kb in size and encoded two resistance gene regions, ARGR1 and ARGR2. ARGR1 harbored six resistance genes, namely erm(B), aadE-apt-sat4-aphA3 cluster and tet(O/W/32/O), and showed highes similarity with corresponding sequences of S. suis ICESsu32457 and Enterococcus faecalis plasmid pEF418. ARGR2 encoded a vanG-type resistance operon. The resistance region showed highest similarity to that of E. faecalis BM4518 vanG1, but the regulatory region was more similar to that of S. agalactiae GBS-NM vanG2. Vancomycin resistance in isolate BSB6 was inducible. The study is the first report of vanG-type resistance in zoonotic pathogen S. suis and highlights importance of its surveillance.
Collapse
Affiliation(s)
- Jinhu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Daiwei Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Mengli Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanshu Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Liping Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Agrawal R, Sahoo BK, Saini DK. Cross-talk and specificity in two-component signal transduction pathways. Future Microbiol 2016; 11:685-97. [PMID: 27159035 DOI: 10.2217/fmb-2016-0001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Bikash Kumar Sahoo
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
15
|
Functional Dissection of the CroRS Two-Component System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis. J Bacteriol 2016; 198:1326-36. [PMID: 26883822 DOI: 10.1128/jb.00995-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteria use two-component signal transduction systems (TCSs) to sense and respond to environmental changes via a conserved phosphorelay between a sensor histidine kinase and its cognate response regulator. The opportunistic pathogen Enterococcus faecalis utilizes a TCS comprised of the histidine kinase CroS and the response regulator CroR to mediate resistance to cell wall stresses such as cephalosporin antibiotics, but the molecular details by which CroRS promotes cephalosporin resistance have not been elucidated. Here, we analyzed mutants of E. faecalis carrying substitutions in CroR and CroS to demonstrate that phosphorylated CroR drives resistance to cephalosporins, and that CroS exhibits kinase and phosphatase activities to control the level of CroR phosphorylation in vivo. Deletion of croS in various lineages of E. faecalis revealed a CroS-independent mechanism for CroR phosphorylation and led to the identification of a noncognate histidine kinase capable of influencing CroR (encoded by OG1RF_12162; here called cisS). Further analysis of this TCS network revealed that both systems respond to cell wall stress. IMPORTANCE TCSs allow bacteria to sense and respond to many different environmental conditions. The opportunistic pathogen Enterococcus faecalis utilizes the CroRS TCS to mediate resistance to cell wall stresses, including clinically relevant antibiotics such as cephalosporins and glycopeptides. In this study, we use genetic and biochemical means to investigate the relationship between CroRS signaling and cephalosporin resistance in E. faecalis cells. Through this, we uncovered a signaling network formed between the CroRS TCS and a previously uncharacterized TCS that also responds to cell wall stress. This study provides mechanistic insights into CroRS signaling and cephalosporin resistance in E. faecalis.
Collapse
|
16
|
Two-component regulatory systems: The moment of truth. Res Microbiol 2015; 167:1-3. [PMID: 26428247 DOI: 10.1016/j.resmic.2015.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022]
|