1
|
McAllester CS, Pool JE. The potential of inversions to accumulate balanced sexual antagonism is supported by simulations and Drosophila experiments. eLife 2025; 12:RP93338. [PMID: 40237307 PMCID: PMC12002796 DOI: 10.7554/elife.93338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with In(3 R)K favoring survival and In(3 L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, In(3 L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas In(3 R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.
Collapse
Affiliation(s)
| | - John E Pool
- Laboratory of Genetics, University of WisconsinMadisonUnited States
| |
Collapse
|
2
|
Sassi FDMC, Garrido-Ramos MA, Utsunomia R, Dos Santos RZ, Ezaz T, Deon GA, Porto-Foresti F, Liehr T, Cioffi MDB. Independent evolution of satellite DNA sequences in homologous sex chromosomes of Neotropical armored catfish (Harttia). Commun Biol 2025; 8:524. [PMID: 40159539 PMCID: PMC11955569 DOI: 10.1038/s42003-025-07891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The Neotropical armored catfish Harttia is a valuable model for studying sex chromosome evolution, featuring two independently evolved male-heterogametic systems. This study examined satellitomes-sets of satellite DNAs-from four Amazonian species: H. duriventris (X1X2Y), H. rondoni (XY), H. punctata (X1X2Y), and H. villasboas (X1X2Y). These species share homologous sex chromosomes, with their satellitomes showing a high number of homologous satellite DNAs (satDNAs), primarily located on centromeres or telomeres, and varying by species. Each species revealed a distinct satDNA profile, with independent amplification and homogenization events occurring, suggesting an important role of these repetitive sequences in sex chromosome differentiation in a short evolutionary time, especially in recently originated sex chromosomes. Whole chromosome painting and bioinformatics revealed that in Harttia species without heteromorphic sex chromosomes, a specific satDNA (HviSat08-4011) is amplified in the same linkage group associated with sex chromosomes, suggesting an ancestral system. Such sequence (HviSat08-4011) has partial homology with the ZP4 gene responsible for the formation of the egg envelope, in which its role is discussed. This study indicates that these homologous sex chromosomes have diverged rapidly, recently, and independently in their satDNA content, with transposable elements playing a minor role when compared their roles on autosomal chromosome evolution.
Collapse
Affiliation(s)
- Francisco de M C Sassi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Geize A Deon
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Thomas Liehr
- Universitätsklinikum Jena, Friedrich-Schiller Universität, Institut für Humangenetik, Jena, Thüringen, 07747, Germany.
| | - Marcelo de B Cioffi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
3
|
Guimarães EMC, Viana PF, Pinheiro-Figliuolo VS, Marajó L, de Sousa E Souza JF, Feldberg E. Repetitive DNA Mapping Reveals Multiple Sex Chromosomes X1X1X2X2/X1X2Y in Pseudotylosurus microps (Günther 1866) (Beloniformes, Teleostei) from the Amazon. Sex Dev 2025; 18:70-80. [PMID: 39993387 DOI: 10.1159/000544037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
INTRODUCTION Needlefish (Belonidae family) comprises 44 known species distributed worldwide. These species are predominantly marine but include estuarine representatives and 12 freshwater species. Among the recognized species, 8 are endemic to South American rivers. Cytogenetic studies of Belonidae are scarce and mostly limited to describing the diploid chromosome number (2n) and karyotypic structure. METHODS We used classical and molecular cytogenetic markers to karyotypically characterize Pseudotylosurus microps to understand the evolutionary processes of Belonidae species in the Amazon basin. RESULTS P. microps exhibited different diploid numbers between males (2n = 47, 3m + 3sm + 41st/a FN = 53) and females (2n = 48, 4m + 4sm + 40st/a FN = 56). Our study revealed the first case of multiple sex chromosomes in the Belonidae family. CONCLUSION These findings describe a multiple sex chromosome system of the type X1X1X2X2/X1X2Y. The C-banding pattern and 5S rDNA mapping suggest that this system likely resulted from a tandem fusion between a homolog of pair 1 and a homolog of pair 3, producing a large acrocentric Y chromosome. We propose that karyotypic changes due to internal chromosomal rearrangements, as observed in P. microps, can lead to species diversification and, in some cases, the emergence of a heteromorphic and multiple sex chromosome system.
Collapse
Affiliation(s)
- Erika Milena Corrêa Guimarães
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Patrik Ferreira Viana
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Vanessa Susan Pinheiro-Figliuolo
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Leandro Marajó
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - José Francisco de Sousa E Souza
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Eliana Feldberg
- Postgraduate Program in Genetics, Conservation and Evolutionary Biology - PPG-GCBEv, Laboratory of Animal Genetics, National Institute of Amazonian Research (INPA), Manaus, Brazil
- Laboratory of Animal Genetics, Biodiversity Coordination, National Institute of Amazonian Research (INPA), Manaus, Brazil
| |
Collapse
|
4
|
McAllester CS, Pool JE. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.02.560529. [PMID: 37873205 PMCID: PMC10592935 DOI: 10.1101/2023.10.02.560529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with ln(3R)K favoring survival and ln(3L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, ln(3L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas ln(3R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.
Collapse
Affiliation(s)
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin - Madison, USA
| |
Collapse
|
5
|
Zhu Z, Younas L, Zhou Q. Evolution and regulation of animal sex chromosomes. Nat Rev Genet 2025; 26:59-74. [PMID: 39026082 DOI: 10.1038/s41576-024-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Animal sex chromosomes typically carry the upstream sex-determining gene that triggers testis or ovary development and, in some species, are regulated by global dosage compensation in response to functional decay of the Y chromosome. Despite the importance of these pathways, they exhibit striking differences across species, raising fundamental questions regarding the mechanisms underlying their evolutionary turnover. Recent studies of non-model organisms, including insects, reptiles and teleosts, have yielded a broad view of the diversity of sex chromosomes that challenges established theories. Moreover, continued studies in model organisms with recently developed technologies have characterized the dynamics of sex determination and dosage compensation in three-dimensional nuclear space and at single-cell resolution. Here, we synthesize recent insights into sex chromosomes from a variety of species to review their evolutionary dynamics with respect to the canonical model, as well as their diverse mechanisms of regulation.
Collapse
Affiliation(s)
- Zexian Zhu
- Evolutionary and Organismal Biology Research Center and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Palmer Droguett DH, Fletcher M, Alston BT, Kocher S, Cabral-de-Mello DC, Wright AE. Neo-Sex Chromosome Evolution in Treehoppers Despite Long-Term X Chromosome Conservation. Genome Biol Evol 2024; 16:evae264. [PMID: 39657114 DOI: 10.1093/gbe/evae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Sex chromosomes follow distinct evolutionary trajectories compared to the rest of the genome. In many cases, sex chromosomes (X and Y or Z and W) significantly differentiate from one another resulting in heteromorphic sex chromosome systems. Such heteromorphic systems are thought to act as an evolutionary trap that prevents subsequent turnover of the sex chromosome system. For old, degenerated sex chromosome systems, chromosomal fusion with an autosome may be one way that sex chromosomes can "refresh" their sequence content. We investigated these dynamics using treehoppers (hemipteran insects of the family Membracidae), which ancestrally have XX/X0 sex chromosomes. We assembled the most complete reference assembly for treehoppers to date for Umbonia crassicornis and employed comparative genomic analyses of 12 additional treehopper species to analyze X chromosome variation across different evolutionary timescales. We find that the X chromosome is largely conserved, with one exception being an X-autosome fusion in Calloconophora caliginosa. We also compare the ancestral treehopper X with other X chromosomes in Auchenorrhyncha (the clade containing treehoppers, leafhoppers, spittlebugs, cicadas, and planthoppers), revealing X conservation across more than 300 million years. These findings shed light on chromosomal evolution dynamics in treehoppers and the role of chromosomal rearrangements in sex chromosome evolution.
Collapse
Affiliation(s)
- Daniela H Palmer Droguett
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Micah Fletcher
- Department of Ecology and Evolutionary Biology, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ben T Alston
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Sarah Kocher
- Department of Ecology and Evolutionary Biology, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Diogo C Cabral-de-Mello
- Department of General and Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Mackintosh A, Vila R, Martin SH, Setter D, Lohse K. Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies. Mol Ecol 2024; 33:e17146. [PMID: 37807966 PMCID: PMC11628658 DOI: 10.1111/mec.17146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Large-scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long-term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.
Collapse
Affiliation(s)
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Simon H. Martin
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Derek Setter
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Konrad Lohse
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Mora P, Hospodářská M, Voleníková AC, Koutecký P, Štundlová J, Dalíková M, Walters JR, Nguyen P. Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol Ecol 2024; 33:e17256. [PMID: 38180347 PMCID: PMC11628659 DOI: 10.1111/mec.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.
Collapse
Affiliation(s)
- Pablo Mora
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Present address:
University of JaénJaénSpain
| | - Monika Hospodářská
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | | | - Petr Koutecký
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Jana Štundlová
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Martina Dalíková
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - James R. Walters
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Petr Nguyen
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
9
|
Wang J, Tao W, Kocher TD, Wang D. Sex chromosome turnover and biodiversity in fishes. J Genet Genomics 2024; 51:1351-1360. [PMID: 39233051 DOI: 10.1016/j.jgg.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The impact of sex chromosomes and their turnover in speciation remains a subject of ongoing debate in the field of evolutionary biology. Fishes are the largest group of vertebrates, and they exhibit unparalleled sexual plasticity, as well as diverse sex-determining (SD) genes, sex chromosomes, and sex-determination mechanisms. This diversity is hypothesized to be associated with the frequent turnover of sex chromosomes in fishes. Although it is evident that amh and amhr2 are repeatedly and independently recruited as SD genes, their relationship with the rapid turnover of sex chromosomes and the biodiversity of fishes remains unknown. We summarize the canonical models of sex chromosome turnover and highlight the vital roles of gene mutation and hybridization with empirical evidence. We revisit Haldane's rule and the large X-effect and propose the hypothesis that sex chromosomes accelerate speciation by multiplying genotypes via hybridization. By integrating recent findings on the turnover of SD genes, sex chromosomes, and sex-determination systems in fish species, this review provides insights into the relationship between sex chromosome evolution and biodiversity in fishes.
Collapse
Affiliation(s)
- Jingrong Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Swanepoel CM, Mueller JL. Out with the old, in with the new: Meiotic driving of sex chromosome evolution. Semin Cell Dev Biol 2024; 163:14-21. [PMID: 38664120 PMCID: PMC11351068 DOI: 10.1016/j.semcdb.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024]
Abstract
Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.
Collapse
Affiliation(s)
- Callie M Swanepoel
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Hughes JJ, Lagunas-Robles G, Campbell P. The role of conflict in the formation and maintenance of variant sex chromosome systems in mammals. J Hered 2024; 115:601-624. [PMID: 38833450 DOI: 10.1093/jhered/esae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
The XX/XY sex chromosome system is deeply conserved in therian mammals, as is the role of Sry in testis determination, giving the impression of stasis relative to other taxa. However, the long tradition of cytogenetic studies in mammals documents sex chromosome karyotypes that break this norm in myriad ways, ranging from fusions between sex chromosomes and autosomes to Y chromosome loss. Evolutionary conflict, in the form of sexual antagonism or meiotic drive, is the primary predicted driver of sex chromosome transformation and turnover. Yet conflict-based hypotheses are less considered in mammals, perhaps because of the perceived stability of the sex chromosome system. To address this gap, we catalog and characterize all described sex chromosome variants in mammals, test for family-specific rates of accumulation, and consider the role of conflict between the sexes or within the genome in the evolution of these systems. We identify 152 species with sex chromosomes that differ from the ancestral state and find evidence for different rates of ancestral to derived transitions among families. Sex chromosome-autosome fusions account for 79% of all variants whereas documented sex chromosome fissions are limited to three species. We propose that meiotic drive and drive suppression provide viable explanations for the evolution of many of these variant systems, particularly those involving autosomal fusions. We highlight taxa particularly worthy of further study and provide experimental predictions for testing the role of conflict and its alternatives in generating observed sex chromosome diversity.
Collapse
Affiliation(s)
- Jonathan J Hughes
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - German Lagunas-Robles
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Polly Campbell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
12
|
Jonika MM, Wilhoit KT, Chin M, Arekere A, Blackmon H. Drift drives the evolution of chromosome number II: The impact of range size on genome evolution in Carnivora. J Hered 2024; 115:524-531. [PMID: 38712909 PMCID: PMC11334210 DOI: 10.1093/jhered/esae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Chromosome number is a fundamental genomic trait that is often the first recorded characteristic of a genome. Across large clades, a common pattern emerges: many or even most lineages exhibit relative stasis, while a handful of lineages or species exhibit striking variation. Despite recent developments in comparative methods, most of this heterogeneity is still poorly understood. It is essential to understand why some lineages have rapid rates of chromosome number evolution, as it can impact a variety of other traits. Previous research suggests that biased female meiotic drive may shape rates of karyotype evolution in some mammals. However, Carnivora exhibits variation that this female meiotic drive model cannot explain. We hypothesize that variation in effective population size may underlie rate variation in Carnivora. To test this hypothesis, we estimated rates of fusions and fissions while accounting for range size, which we use as a proxy for effective population size. We reason fusions and fissions are deleterious or underdominant and that only in lineages with small range sizes will these changes be able to fix due to genetic drift. In this study, we find that the rates of fusions and fissions are elevated in taxa with small range sizes relative to those with large range sizes. Based on these findings, we conclude that 1) naturally occurring structural mutations that change chromosome number are underdominant or mildly deleterious, and 2) when population sizes are small, structural rearrangements may play an important role in speciation and reduction in gene flow among populations.
Collapse
Affiliation(s)
- Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
| | - Kayla T Wilhoit
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Maximos Chin
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Abhimanyu Arekere
- Department of Biology, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Ecology and Evolutionary Biology Interdepartmental Program, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Wilhoit KT, Alexander EP, Blackmon H. Worse than nothing at all: the inequality of fusions joining autosomes to the PAR and non-PAR portions of sex chromosomes. PeerJ 2024; 12:e17740. [PMID: 39071118 PMCID: PMC11276758 DOI: 10.7717/peerj.17740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Chromosomal fusions play an integral role in genome remodeling and karyotype evolution. Fusions that join a sex chromosome to an autosome are particularly abundant across the tree of life. However, previous models on the establishment of such fusions have not accounted for the physical structure of the chromosomes. We predict a fusion joining an autosome to the pseudoautosomal region (PAR) of a sex chromosome will not remain stable, and the fusion will switch from the X to the Y chromosome each generation due to recombination. We have produced a forward-time population genetic simulation to explore the outcomes of fusions to both the PAR and non-PAR of sex chromosomes. The model can simulate the fusion of an autosome containing a sexually antagonistic locus to either the PAR or non-PAR end of a sex chromosome. Our model is diploid, two-locus, and biallelic. Our results show a clear pattern where fusions to the non-PAR are favored in the presence of sexual antagonism, whereas fusions to the PAR are disfavored in the presence of sexual antagonism.
Collapse
Affiliation(s)
- Kayla T. Wilhoit
- Biomedical Sciences Program, Texas A&M University, College Station, TX, United States of America
- Department of Biology, Texas A&M University, College Station, TX, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, NC, United States of America
| | - Emmarie P. Alexander
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States of America
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States of America
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
14
|
Rueda-M N, Pardo-Diaz C, Montejo-Kovacevich G, McMillan WO, Kozak KM, Arias CF, Ready J, McCarthy S, Durbin R, Jiggins CD, Meier JI, Salazar C. Genomic evidence reveals three W-autosome fusions in Heliconius butterflies. PLoS Genet 2024; 20:e1011318. [PMID: 39024186 PMCID: PMC11257349 DOI: 10.1371/journal.pgen.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Sex chromosomes are evolutionarily labile in many animals and sometimes fuse with autosomes, creating so-called neo-sex chromosomes. Fusions between sex chromosomes and autosomes have been proposed to reduce sexual conflict and to promote adaptation and reproductive isolation among species. Recently, advances in genomics have fuelled the discovery of such fusions across the tree of life. Here, we discovered multiple fusions leading to neo-sex chromosomes in the sapho subclade of the classical adaptive radiation of Heliconius butterflies. Heliconius butterflies generally have 21 chromosomes with very high synteny. However, the five Heliconius species in the sapho subclade show large variation in chromosome number ranging from 21 to 60. We find that the W chromosome is fused with chromosome 4 in all of them. Two sister species pairs show subsequent fusions between the W and chromosomes 9 or 14, respectively. These fusions between autosomes and sex chromosomes make Heliconius butterflies an ideal system for studying the role of neo-sex chromosomes in adaptive radiations and the degeneration of sex chromosomes over time. Our findings emphasize the capability of short-read resequencing to detect genomic signatures of fusion events between sex chromosomes and autosomes even when sex chromosomes are not explicitly assembled.
Collapse
Affiliation(s)
- Nicol Rueda-M
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | | | - Krzysztof M. Kozak
- Smithsonian Tropical Research Institute, Panama City, Panama
- Museum of Vertebrate Zoology, Berkeley, California, United States of America
| | - Carlos F. Arias
- Smithsonian Tropical Research Institute, Panama City, Panama
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, Washington DC, United States of America
| | - Jonathan Ready
- Institute for Biological Sciences, Federal University of Pará - UFPA, Belém, Brazil
- Centre for Advanced Studies of Biodiversity - CEABIO, Belém, Brazil
| | - Shane McCarthy
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Richard Durbin
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Joana I. Meier
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
15
|
Pensabene E, Augstenová B, Kratochvíl L, Rovatsos M. Differentiated sex chromosomes, karyotype evolution, and spontaneous triploidy in carphodactylid geckos. J Hered 2024; 115:262-276. [PMID: 38366660 DOI: 10.1093/jhered/esae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Geckos exhibit derived karyotypes without a clear distinction between macrochromosomes and microchromosomes and intriguing diversity in sex determination mechanisms. We conducted cytogenetic analyses in six species from the genera Nephrurus, Phyllurus, and Saltuarius of the gecko family Carphodactylidae. We confirmed the presence of a female heterogametic system with markedly differentiated and heteromorphic sex chromosomes in all examined species, typically with the W chromosome notably larger than the Z chromosome. One species, Nephrurus cinctus, possesses unusual multiple Z1Z1Z2Z2/Z1Z2W sex chromosomes. The morphology of the sex chromosomes, along with repetitive DNA content, suggests that the differentiation or emergence of sex chromosomes occurred independently in the genus Phyllurus. Furthermore, our study unveils a case of spontaneous triploidy in a fully grown individual of Saltuarius cornutus (3n = 57) and explores its implications for reproduction in carphodactylid geckos. We revealed that most carphodactylids retain the putative ancestral gekkotan karyotype of 2n = 38, characterized by predominantly acrocentric chromosomes that gradually decrease in size. If present, biarmed chromosomes emerge through pericentric inversions, maintaining the chromosome (and centromere) numbers. However, Phyllurus platurus is a notable exception, with a karyotype of 2n = 22 chromosomes. Its eight pairs of biarmed chromosomes were probably formed by Robertsonian fusions of acrocentric chromosomes. The family underscores a remarkable instance of evolutionary stability in chromosome numbers, followed by a profound transformation through parallel interchromosomal rearrangements. Our study highlights the need to continue generating cytogenetic data in order to test long-standing ideas about reproductive biology and the evolution of genome and sex determination.
Collapse
Affiliation(s)
- Eleonora Pensabene
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Rovatsos M, Mazzoleni S, Augstenová B, Altmanová M, Velenský P, Glaw F, Sanchez A, Kratochvíl L. Heteromorphic ZZ/ZW sex chromosomes sharing gene content with mammalian XX/XY are conserved in Madagascan chameleons of the genus Furcifer. Sci Rep 2024; 14:4898. [PMID: 38418601 PMCID: PMC10901801 DOI: 10.1038/s41598-024-55431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.
Collapse
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | | | - Frank Glaw
- Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany
| | - Antonio Sanchez
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
18
|
Behrens KA, Zimmermann H, Blažek R, Reichard M, Koblmüller S, Kocher TD. Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae). Sci Rep 2024; 14:2471. [PMID: 38291228 PMCID: PMC10828463 DOI: 10.1038/s41598-024-53021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Holger Zimmermann
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
19
|
Scarparo G, Palanchon M, Brelsford A, Purcell J. Social antagonism facilitates supergene expansion in ants. Curr Biol 2023; 33:5085-5095.e4. [PMID: 37979579 PMCID: PMC10860589 DOI: 10.1016/j.cub.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Abstract
Antagonistic selection has long been considered a major driver of the formation and expansion of sex chromosomes. For example, sexually antagonistic variation on an autosome can select for suppressed recombination between that autosome and the sex chromosome, leading to a neo-sex chromosome. Autosomal supergenes, chromosomal regions containing tightly linked variants affecting the same complex trait, share similarities with sex chromosomes, raising the possibility that sex chromosome evolution models can explain the evolution of genome structure and recombination in other contexts. We tested this premise in a Formica ant species, wherein we identified four supergene haplotypes on chromosome 3 underlying colony social organization and sex ratio. We discovered a novel rearranged supergene variant (9r) on chromosome 9 underlying queen miniaturization. The 9r is in strong linkage disequilibrium with one chromosome 3 haplotype (P2) found in multi-queen (polygyne) colonies. We suggest that queen miniaturization is strongly disfavored in the single-queen (monogyne) background and is thus socially antagonistic. As such, divergent selection experienced by ants living in alternative social "environments" (monogyne and polygyne) may have contributed to the emergence of a genetic polymorphism on chromosome 9 and associated queen-size dimorphism. Consequently, an ancestral polygyne-associated haplotype may have expanded to include the polymorphism on chromosome 9, resulting in a larger region of suppressed recombination spanning two chromosomes. This process is analogous to the formation of neo-sex chromosomes and consistent with models of expanding regions of suppressed recombination. We propose that miniaturized queens, 16%-20% smaller than queens without 9r, could be incipient intraspecific social parasites.
Collapse
Affiliation(s)
- Giulia Scarparo
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg. Citrus Drive, Riverside, CA 92521, USA.
| | - Marie Palanchon
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 2710 Life Science Bldg., Riverside, CA 92521, USA
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 2710 Life Science Bldg., Riverside, CA 92521, USA
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg. Citrus Drive, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
de Menezes Cavalcante Sassi F, Sember A, Deon GA, Liehr T, Padutsch N, Oyakawa OT, Vicari MR, Bertollo LAC, Moreira-Filho O, de Bello Cioffi M. Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X 1X 2Y sex chromosome system origin. Sci Rep 2023; 13:15756. [PMID: 37735233 PMCID: PMC10514344 DOI: 10.1038/s41598-023-42617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.
Collapse
Affiliation(s)
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská, 89, Liběchov, Czech Republic
| | - Geize Aparecida Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany.
| | - Niklas Padutsch
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany
| | | | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
21
|
Sassi FDMC, Deon GA, Sember A, Liehr T, Oyakawa OT, Moreira Filho O, Bertollo LAC, Vicari MR, Cioffi MDB. Turnover of multiple sex chromosomes in Harttia catfish (Siluriformes, Loricariidae): a glimpse from whole chromosome painting. Front Genet 2023; 14:1226222. [PMID: 37576550 PMCID: PMC10421700 DOI: 10.3389/fgene.2023.1226222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
The remarkable fish biodiversity encompasses also great sex chromosome variability. Harttia catfish belong to Neotropical models for karyotype and sex chromosome research. Some species possess one of the three male-heterogametic sex chromosome systems, XY, X1X2Y or XY1Y2, while other members of the genus have yet uncharacterized modes of sex determination. Particularly the XY1Y2 multiple sex chromosome system shows a relatively low incidence among vertebrates, and it has not been yet thoroughly investigated. Previous research suggested two independent X-autosome fusions in Harttia which led to the emergence of XY1Y2 sex chromosome system in three of its species. In this study, we investigated evolutionary trajectories of synteny blocks involved in this XY1Y2 system by probing six Harttia species with whole chromosome painting (WCP) probes derived from the X (HCA-X) and the chromosome 9 (HCA-9) of H. carvalhoi. We found that both painting probes hybridize to two distinct chromosome pairs in Amazonian species, whereas the HCA-9 probe paints three chromosome pairs in H. guianensis, endemic to Guyanese drainages. These findings demonstrate distinct evolutionary fates of mapped synteny blocks and thereby elevated karyotype dynamics in Harttia among the three evolutionary clades.
Collapse
Affiliation(s)
| | - Geize Aparecida Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Jena, Germany
| | | | - Orlando Moreira Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
22
|
Marajó L, Viana PF, Ferreira AMV, Py-Daniel LHR, Cioffi MDB, Sember A, Feldberg E. Chromosomal rearrangements and the first indication of an ♀X 1 X 1 X 2 X 2 /♂X 1 X 2 Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). JOURNAL OF FISH BIOLOGY 2023; 102:443-454. [PMID: 36427042 DOI: 10.1111/jfb.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Rineloricaria is the most diverse genus within the freshwater fish subfamily Loricariinae, and it is widely distributed in the Neotropical region. Despite limited cytogenetic data, records from southern and south-eastern Brazil suggest a high rate of chromosomal rearrangements in this genus, mirrored in remarkable inter- and intraspecific karyotype variability. In the present work, we investigated the karyotype features of Rineloricaria teffeana, an endemic representative from northern Brazil, using both conventional and molecular cytogenetic techniques. We revealed different diploid chromosome numbers (2n) between sexes (33♂/34♀), which suggests the presence of an ♀X1 X1 X2 X2 /♂X1 X2 Y multiple sex chromosome system. The male-limited Y chromosome was the largest and the only biarmed element in the karyotype, implying Y-autosome fusion as the most probable mechanism behind its origination. C-banding revealed low amounts of constitutive heterochromatin, mostly confined to the (peri)centromeric regions of most chromosomes (including the X2 and the Y) but also occupying the distal regions of a few chromosomal pairs. The chromosomal localization of the 18S ribosomal DNA (rDNA) clusters revealed a single site on chromosome pair 4, which was adjacent to the 5S rDNA cluster. Additional 5S rDNA loci were present on the autosome pair 8, X1 chromosome, and in the presumed fusion point on the Y chromosome. The probe for telomeric repeat motif (TTAGGG)n revealed signals of variable intensities at the ends of all chromosomes except for the Y chromosome, where no detectable signals were evidenced. Male-to-female comparative genomic hybridization revealed no sex-specific or sex-biased repetitive DNA accumulations, suggesting a presumably low level of neo-Y chromosome differentiation. We provide evidence that rDNA sites might have played a role in the formation of this putative multiple sex chromosome system and that chromosome fusions originate through different mechanisms among different Rineloricaria species.
Collapse
Affiliation(s)
- Leandro Marajó
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Ferreira Viana
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Alex Matheus Viana Ferreira
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Lúcia Helena Rapp Py-Daniel
- Coleção de Peixes, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Eliana Feldberg
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
23
|
Höök L, Näsvall K, Vila R, Wiklund C, Backström N. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res 2023; 31:2. [PMID: 36662301 PMCID: PMC9859909 DOI: 10.1007/s10577-023-09713-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
Karyotypes are generally conserved between closely related species and large chromosome rearrangements typically have negative fitness consequences in heterozygotes, potentially driving speciation. In the order Lepidoptera, most investigated species have the ancestral karyotype and gene synteny is often conserved across deep divergence, although examples of extensive genome reshuffling have recently been demonstrated. The genus Leptidea has an unusual level of chromosome variation and rearranged sex chromosomes, but the extent of restructuring across the rest of the genome is so far unknown. To explore the genomes of the wood white (Leptidea) species complex, we generated eight genome assemblies using a combination of 10X linked reads and HiC data, and improved them using linkage maps for two populations of the common wood white (L. sinapis) with distinct karyotypes. Synteny analysis revealed an extensive amount of rearrangements, both compared to the ancestral karyotype and between the Leptidea species, where only one of the three Z chromosomes was conserved across all comparisons. Most restructuring was explained by fissions and fusions, while translocations appear relatively rare. We further detected several examples of segregating rearrangement polymorphisms supporting a highly dynamic genome evolution in this clade. Fusion breakpoints were enriched for LINEs and LTR elements, which suggests that ectopic recombination might be an important driver in the formation of new chromosomes. Our results show that chromosome count alone may conceal the extent of genome restructuring and we propose that the amount of genome evolution in Lepidoptera might still be underestimated due to lack of taxonomic sampling.
Collapse
Affiliation(s)
- L Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - K Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - R Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - C Wiklund
- Department of Zoology, Division of Ecology, Stockholm University, Stockholm, Sweden
| | - N Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
24
|
Gong G, Xiong Y, Xiao S, Li XY, Huang P, Liao Q, Han Q, Lin Q, Dan C, Zhou L, Ren F, Zhou Q, Gui JF, Mei J. Origin and chromatin remodeling of young X/Y sex chromosomes in catfish with sexual plasticity. Natl Sci Rev 2022; 10:nwac239. [PMID: 36846302 PMCID: PMC9945428 DOI: 10.1093/nsr/nwac239] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022] Open
Abstract
Assembly of a complete Y chromosome is a significant challenge in animals with an XX/XY sex-determination system. Recently, we created YY-supermale yellow catfish by crossing XY males with sex-reversed XY females, providing a valuable model for Y-chromosome assembly and evolution. Here, we assembled highly homomorphic Y and X chromosomes by sequencing genomes of the YY supermale and XX female in yellow catfish, revealing their nucleotide divergences with only less than 1% and with the same gene compositions. The sex-determining region (SDR) was identified to locate within a physical distance of 0.3 Mb by FST scanning. Strikingly, the incipient sex chromosomes were revealed to originate via autosome-autosome fusion and were characterized by a highly rearranged region with an SDR downstream of the fusion site. We found that the Y chromosome was at a very early stage of differentiation, as no clear evidence of evolutionary strata and classical structure features of recombination suppression for a rather late stage of Y-chromosome evolution were observed. Significantly, a number of sex-antagonistic mutations and the accumulation of repetitive elements were discovered in the SDR, which might be the main driver of the initial establishment of recombination suppression between young X and Y chromosomes. Moreover, distinct three-dimensional chromatin organizations of the Y and X chromosomes were identified in the YY supermales and XX females, as the X chromosome exhibited denser chromatin structure than the Y chromosome, while they respectively have significantly spatial interactions with female- and male-related genes compared with other autosomes. The chromatin configuration of the sex chromosomes as well as the nucleus spatial organization of the XX neomale were remodeled after sex reversal and similar to those in YY supermales, and a male-specific loop containing the SDR was found in the open chromatin region. Our results elucidate the origin of young sex chromosomes and the chromatin remodeling configuration in the catfish sexual plasticity.
Collapse
Affiliation(s)
- Gaorui Gong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Xiong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shijun Xiao
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing 314000, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Peipei Huang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Liao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Han
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaohong Lin
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Ren
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Jie Mei
- Corresponding author. E-mail:
| |
Collapse
|
25
|
Sigeman H, Zhang H, Ali Abed S, Hansson B. A novel neo-sex chromosome in Sylvietta brachyura (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds. J Evol Biol 2022; 35:1797-1805. [PMID: 36156325 PMCID: PMC10087220 DOI: 10.1111/jeb.14096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
We report the discovery of a novel neo-sex chromosome in an African warbler, Sylvietta brachyura (northern crombec; Macrosphenidae). This species is part of the Sylvioidea superfamily, where four separate autosome-sex chromosome translocation events have previously been discovered via comparative genomics of 11 of the 22 families in this clade. Our discovery here resulted from analyses of genomic data of single species-representatives from three additional Sylvioidea families (Macrosphenidae, Pycnonotidae and Leiothrichidae). In all three species, we confirmed the translocation of a part of chromosome 4A to the sex chromosomes, which originated basally in Sylvioidea. In S. brachyura, we found that a part of chromosome 8 has been translocated to the sex chromosomes, forming a unique neo-sex chromosome in this lineage. Furthermore, the non-recombining part of 4A in S. brachyura is smaller than in other Sylvioidea species, which suggests that recombination continued along this region after the fusion event in the Sylvioidea ancestor. These findings reveal additional sex chromosome diversity among the Sylvioidea, where five separate translocation events are now confirmed.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Lund, Sweden.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
27
|
Cīrulis A, Hansson B, Abbott JK. Sex-limited chromosomes and non-reproductive traits. BMC Biol 2022; 20:156. [PMID: 35794589 PMCID: PMC9261002 DOI: 10.1186/s12915-022-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Sex chromosomes are typically viewed as having originated from a pair of autosomes, and differentiated as the sex-limited chromosome (e.g. Y) has degenerated by losing most genes through cessation of recombination. While often thought that degenerated sex-limited chromosomes primarily affect traits involved in sex determination and sex cell production, accumulating evidence suggests they also influence traits not sex-limited or directly involved in reproduction. Here, we provide an overview of the effects of sex-limited chromosomes on non-reproductive traits in XY, ZW or UV sex determination systems, and discuss evolutionary processes maintaining variation at sex-limited chromosomes and molecular mechanisms affecting non-reproductive traits.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | |
Collapse
|
28
|
Jay P, Tezenas E, Véber A, Giraud T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol 2022; 20:e3001698. [PMID: 35853091 PMCID: PMC9295944 DOI: 10.1371/journal.pbio.3001698] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 12/19/2022] Open
Abstract
Many organisms have sex chromosomes with large nonrecombining regions that have expanded stepwise, generating "evolutionary strata" of differentiation. The reasons for this remain poorly understood, but the principal hypotheses proposed to date are based on antagonistic selection due to differences between sexes. However, it has proved difficult to obtain empirical evidence of a role for sexually antagonistic selection in extending recombination suppression, and antagonistic selection has been shown to be unlikely to account for the evolutionary strata observed on fungal mating-type chromosomes. We show here, by mathematical modeling and stochastic simulation, that recombination suppression on sex chromosomes and around supergenes can expand under a wide range of parameter values simply because it shelters recessive deleterious mutations, which are ubiquitous in genomes. Permanently heterozygous alleles, such as the male-determining allele in XY systems, protect linked chromosomal inversions against the expression of their recessive mutation load, leading to the successive accumulation of inversions around these alleles without antagonistic selection. Similar results were obtained with models assuming recombination-suppressing mechanisms other than chromosomal inversions and for supergenes other than sex chromosomes, including those without XY-like asymmetry, such as fungal mating-type chromosomes. However, inversions capturing a permanently heterozygous allele were found to be less likely to spread when the mutation load segregating in populations was lower (e.g., under large effective population sizes or low mutation rates). This may explain why sex chromosomes remain homomorphic in some organisms but are highly divergent in others. Here, we model a simple and testable hypothesis explaining the stepwise extensions of recombination suppression on sex chromosomes, mating-type chromosomes, and supergenes in general.
Collapse
Affiliation(s)
- Paul Jay
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - Emilie Tezenas
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
- Univ. Lille, CNRS, UMR 8198 –Evo-Eco-Paleo, F-59000 Lille, France
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| |
Collapse
|
29
|
Steinberg ER, Bressa MJ, Mudry MD. Sex chromosome systems in Neotropical Primates: What have we learnt so far from cytogenetics and genomics? J Evol Biol 2022; 35:1589-1600. [PMID: 35731796 DOI: 10.1111/jeb.14039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Neotropical Primates (Platyrrhini) show great diversity in their life histories, ecology, behaviour and genetics. This diversity extends to their chromosome complements, both to autosomes and to sex chromosomes. In this contribution, we will review what is currently known about sex chromosomes in this group, both from cytogenetic and from genomic evidence. The X and Y chromosomes in Neotropical Primates, also known as New World Monkeys, have striking structural differences compared with Old World Monkeys when Catarrhini sex chromosomes are considered. The XY bivalent displays a different meiotic behaviour in prophase I, and their Y chromosome shows extensive genomic differences. Even though the most widespread sex chromosome system is the XX/XY and thus considered the ancestral one for Platyrrhini, modifications of this sexual system are observed within this group. Multiple sex chromosome systems originated from Y-autosome translocations were described in several genera (Aotus, Callimico and Alouatta). In the howler monkeys, genus Alouatta, an independent origin of the sexual systems in South American and Mesoamerican species was postulated. All the above-mentioned evidence suggests that the Y chromosome of Platyrrhini has a different evolutionary history compared with the Catarrhini Y. There is still much to understand regarding their sex chromosome systems.
Collapse
Affiliation(s)
- Eliana Ruth Steinberg
- Grupo de Investigación en Biología Evolutiva (GIBE). Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - María José Bressa
- Grupo de Citogenética de Insectos. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marta Dolores Mudry
- Grupo de Investigación en Biología Evolutiva (GIBE). Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Ferchaud AL, Mérot C, Normandeau E, Ragoussis J, Babin C, Djambazian H, Bérubé P, Audet C, Treble M, Walkusz W, Bernatchez L. Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides). G3-GENES GENOMES GENETICS 2021; 12:6428537. [PMID: 34791178 DOI: 10.1093/g3journal/jkab376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022]
Abstract
Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. Here, we combined single-molecule sequencing of long reads (Pacific Sciences) with chromatin conformation capture sequencing (Hi-C) data to assemble the first chromosome-level reference genome for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96% of its total length distributed among 24 chromosomes. Investigation of the syntenic relationship with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that, similar to other teleost fishes, flatfishes also exhibit a high level of plasticity and turnover in sex-determination mechanisms. A low-coverage whole-genome sequence analysis of 198 individuals revealed that Greenland Halibut possesses a male heterogametic XY system and several putative candidate genes implied in the sex determination of this species. Our study also suggests for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of the early steps of sex chromosome evolution.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Charles Babin
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Haig Djambazian
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Pierre Bérubé
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Céline Audet
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Margaret Treble
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Wocjciech Walkusz
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
31
|
Yano CF, Sember A, Kretschmer R, Bertollo LAC, Ezaz T, Hatanaka T, Liehr T, Ráb P, Al-Rikabi A, Viana PF, Feldberg E, de Oliveira EA, Toma GA, de Bello Cioffi M. Against the mainstream: exceptional evolutionary stability of ZW sex chromosomes across the fish families Triportheidae and Gasteropelecidae (Teleostei: Characiformes). Chromosome Res 2021; 29:391-416. [PMID: 34694531 DOI: 10.1007/s10577-021-09674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Libechov, 277 21, Czech Republic.
| | - Rafael Kretschmer
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Libechov, 277 21, Czech Republic
| | - Ahmed Al-Rikabi
- Jena University Hospital, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Patrik Ferreira Viana
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petropolis, Manaus, AM, Brazil
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petropolis, Manaus, AM, Brazil
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| |
Collapse
|
32
|
Kratochvíl L, Stöck M, Rovatsos M, Bullejos M, Herpin A, Jeffries DL, Peichel CL, Perrin N, Valenzuela N, Pokorná MJ. Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200097. [PMID: 34304593 PMCID: PMC8310716 DOI: 10.1098/rstb.2020.0097] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are: Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And: What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Mónica Bullejos
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Las Lagunillas Campus S/N, 23071 Jaén, Spain
| | - Amaury Herpin
- INRAE, LPGP, 35000 Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Catherine L. Peichel
- Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martina Johnson Pokorná
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| |
Collapse
|
33
|
Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi MDB. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200098. [PMID: 34304595 PMCID: PMC8310710 DOI: 10.1098/rstb.2020.0098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Despite decades of cytogenetic and genomic research of dynamic sex chromosome evolution in teleost fishes, multiple sex chromosomes have been largely neglected. In this review, we compiled available data on teleost multiple sex chromosomes, identified major trends in their evolution and suggest further trajectories in their investigation. In a compiled dataset of 440 verified records of fish sex chromosomes, we counted 75 multiple sex chromosome systems with 60 estimated independent origins. We showed that male-heterogametic systems created by Y-autosome fusion predominate and that multiple sex chromosomes are over-represented in the order Perciformes. We documented a striking difference in patterns of differentiation of sex chromosomes between male and female heterogamety and hypothesize that faster W sex chromosome differentiation may constrain sex chromosome turnover in female-heterogametic systems. We also found no significant association between the mechanism of multiple sex chromosome formation and percentage of uni-armed chromosomes in teleost karyotypes. Last but not least, we hypothesized that interaction between fish populations, which differ in their sex chromosomes, can drive the evolution of multiple sex chromosomes in fishes. This underlines the importance of broader inter-population sampling in studies of fish sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Petr Nguyen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Manolo F. Perez
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| |
Collapse
|
34
|
El Taher A, Ronco F, Matschiner M, Salzburger W, Böhne A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. SCIENCE ADVANCES 2021; 7:eabe8215. [PMID: 34516923 PMCID: PMC8442896 DOI: 10.1126/sciadv.abe8215] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sex is a fundamental trait determined by environmental and/or genetic factors, including sex chromosomes. Sex chromosomes are studied in species scattered across the tree of life, yet little is known about tempo and mode of sex chromosome evolution among closely related species. Here, we examine sex chromosome evolution in the adaptive radiation of cichlid fishes in Lake Tanganyika. Through the analysis of male and female genomes from 244 cichlid taxa (189 described species with 5 represented with two local variants/populations; 50 undescribed species) and of 396 multitissue transcriptomes from 66 taxa, we identify signatures of sex chromosomes in 79 taxa, involving 12 linkage groups. We find that Tanganyikan cichlids have the highest rates of sex chromosome turnover and heterogamety transitions known to date. We show that sex chromosome recruitment is not at random. Moreover convergently emerged sex chromosomes in cichlids support the “limited options” hypothesis of sex chromosome evolution.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Paleontology and Museum, University of Zurich, Zurich, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Corresponding author.
| |
Collapse
|
35
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
36
|
Mezzasalma M, Guarino FM, Odierna G. Lizards as Model Organisms of Sex Chromosome Evolution: What We Really Know from a Systematic Distribution of Available Data? Genes (Basel) 2021; 12:1341. [PMID: 34573323 PMCID: PMC8468487 DOI: 10.3390/genes12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/19/2023] Open
Abstract
Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairaõ, Portugal
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| |
Collapse
|
37
|
Lisachov AP, Tishakova KV, Romanenko SA, Molodtseva AS, Prokopov DY, Pereira JC, Ferguson-Smith MA, Borodin PM, Trifonov VA. Whole-chromosome fusions in the karyotype evolution of Sceloporus (Iguania, Reptilia) are more frequent in sex chromosomes than autosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200099. [PMID: 34304596 DOI: 10.1098/rstb.2020.0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus, an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus. Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome-autosome fusions and the evolution of recombination rate. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Artem P Lisachov
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia.,Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
| | - Katerina V Tishakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna S Molodtseva
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
| | - Dmitry Yu Prokopov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
| | - Jorge C Pereira
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pavel M Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
38
|
Charlesworth D. The timing of genetic degeneration of sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200093. [PMID: 34247501 DOI: 10.1098/rstb.2020.0093] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic degeneration is an extraordinary feature of sex chromosomes, with the loss of functions of Y-linked genes in species with XY systems, and W-linked genes in ZW systems, eventually affecting almost all genes. Although degeneration is familiar to most biologists, important aspects are not yet well understood, including how quickly a Y or W chromosome can become completely degenerated. I review the current understanding of the time-course of degeneration. Degeneration starts after crossing over between the sex chromosome pair stops, and theoretical models predict an initially fast degeneration rate and a later much slower one. It has become possible to estimate the two quantities that the models suggest are the most important in determining degeneration rates-the size of the sex-linked region, and the time when recombination became suppressed (which can be estimated using Y-X or W-Z sequence divergence). However, quantifying degeneration is still difficult. I review evidence on gene losses (based on coverage analysis) or loss of function (by classifying coding sequences into functional alleles and pseudogenes). I also review evidence about whether small genome regions degenerate, or only large ones, whether selective constraints on the genes in a sex-linked region also strongly affect degeneration rates, and about how long it takes before all (or almost all) genes are lost. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| |
Collapse
|
39
|
Abstract
Chromosome size and morphology vary within and among species, but little is known about the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual giant chromosome that is ∼3 times longer than the other chromosomes. This giant chromosome functions as a sex chromosome in some of these species. We test two hypotheses of how this giant sex chromosome may have evolved. The first hypothesis proposes that it evolved by accumulating repetitive elements as recombination was reduced around a dominant sex determination locus, as suggested by canonical models of sex chromosome evolution. An alternative hypothesis is that the giant sex chromosome originated via the fusion of an autosome with a highly repetitive B chromosome, one of which carried a sex determination locus. We test these hypotheses using comparative analysis of chromosome-scale cichlid and teleost genomes. We find that the giant sex chromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. The WZ sex determination locus encompasses the last ∼105 Mb of the 134-Mb giant chromosome. The last 47 Mb of the giant chromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal that the giant sex chromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long noncoding RNAs. The results favor the B chromosome fusion hypothesis for the origin of the giant chromosome.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Frances E Clark
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
40
|
Ma WJ, Veltsos P. The Diversity and Evolution of Sex Chromosomes in Frogs. Genes (Basel) 2021; 12:483. [PMID: 33810524 PMCID: PMC8067296 DOI: 10.3390/genes12040483] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Paris Veltsos
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
41
|
Miura I, Shams F, Lin SM, de Bello Cioffi M, Liehr T, Al-Rikabi A, Kuwana C, Srikulnath K, Higaki Y, Ezaz T. Evolution of a Multiple Sex-Chromosome System by Three-Sequential Translocations among Potential Sex-Chromosomes in the Taiwanese Frog Odorrana swinhoana. Cells 2021; 10:cells10030661. [PMID: 33809726 PMCID: PMC8002213 DOI: 10.3390/cells10030661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Translocation between sex-chromosomes and autosomes generates multiple sex-chromosome systems. It happens unexpectedly, and therefore, the evolutionary meaning is not clear. The current study shows a multiple sex chromosome system comprising three different chromosome pairs in a Taiwanese brown frog (Odorrana swinhoana). The male-specific three translocations created a system of six sex-chromosomes, ♂X1Y1X2Y2X3Y3-♀X1X1X2X2X3X3. It is unique in that the translocations occurred among three out of the six members of potential sex-determining chromosomes, which are known to be involved in sex-chromosome turnover in frogs, and the two out of three include orthologs of the sex-determining genes in mammals, birds and fishes. This rare case suggests sex-specific, nonrandom translocations and thus provides a new viewpoint for the evolutionary meaning of the multiple sex chromosome system.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
- Correspondence: ; Tel.: +81-(82)-424-7323
| | - Foyez Shams
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
| | - Si-Min Lin
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- School of Life Sciences, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Road, Tapei 116, Taiwan
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-090, SP, Brazil;
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (T.L.); (A.A.-R.)
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (T.L.); (A.A.-R.)
| | - Chiao Kuwana
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (C.K.); (Y.H.)
| | - Kornsorn Srikulnath
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Yuya Higaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (C.K.); (Y.H.)
| | - Tariq Ezaz
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
| |
Collapse
|
42
|
Hill P, Shams F, Burridge CP, Wapstra E, Ezaz T. Differences in Homomorphic Sex Chromosomes Are Associated with Population Divergence in Sex Determination in Carinascincus ocellatus (Scincidae: Lygosominae). Cells 2021; 10:291. [PMID: 33535518 PMCID: PMC7912723 DOI: 10.3390/cells10020291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
Sex determination directs development as male or female in sexually reproducing organisms. Evolutionary transitions in sex determination have occurred frequently, suggesting simple mechanisms behind the transitions, yet their detail remains elusive. Here we explore the links between mechanisms of transitions in sex determination and sex chromosome evolution at both recent and deeper temporal scales (<1 Myr; ~79 Myr). We studied a rare example of a species with intraspecific variation in sex determination, Carinascincus ocellatus, and a relative, Liopholis whitii, using c-banding and mapping of repeat motifs and a custom Y chromosome probe set to identify the sex chromosomes. We identified both unique and conserved regions of the Y chromosome among C. ocellatus populations differing in sex determination. There was no evidence for homology of sex chromosomes between C. ocellatus and L. whitii, suggesting independent evolutionary origins. We discuss sex chromosome homology between members of the subfamily Lygosominae and propose links between sex chromosome evolution, sex determination transitions, and karyotype evolution.
Collapse
Affiliation(s)
- Peta Hill
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, TAS 7000, Australia; (C.P.B.); (E.W.)
| | - Foyez Shams
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia; (F.S.); (T.E.)
| | - Christopher P. Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, TAS 7000, Australia; (C.P.B.); (E.W.)
| | - Erik Wapstra
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, TAS 7000, Australia; (C.P.B.); (E.W.)
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia; (F.S.); (T.E.)
| |
Collapse
|
43
|
Highly Rearranged Karyotypes and Multiple Sex Chromosome Systems in Armored Catfishes from the Genus Harttia (Teleostei, Siluriformes). Genes (Basel) 2020; 11:genes11111366. [PMID: 33218104 PMCID: PMC7698909 DOI: 10.3390/genes11111366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Harttia comprises an armored catfish genus endemic to the Neotropical region, including 27 valid species with low dispersion rates that are restricted to small distribution areas. Cytogenetics data point to a wide chromosomal diversity in this genus due to changes that occurred in isolated populations, with chromosomal fusions and fissions explaining the 2n number variation. In addition, different multiple sex chromosome systems and rDNA loci location are also found in some species. However, several Harttia species and populations remain to be investigated. In this study, Harttia intermontana and two still undescribed species, morphologically identified as Harttia sp. 1 and Harttia sp. 2, were cytogenetically analyzed. Harttia intermontana has 2n = 52 and 2n = 53 chromosomes, while Harttia sp. 1 has 2n = 56 and 2n = 57 chromosomes in females and males, respectively, thus highlighting the occurrence of an XX/XY1Y2 multiple sex chromosome system in both species. Harttia sp. 2 presents 2n = 62 chromosomes for both females and males, with fission events explaining its karyotype diversification. Chromosomal locations of the rDNA sites were also quite different among species, reinforcing that extensive rearrangements had occurred in their karyotype evolution. Comparative genomic hybridization (CGH) experiments among some Harttia species evidenced a shared content of the XY1Y2 sex chromosomes in three of them, thus pointing towards their common origin. Therefore, the comparative analysis among all Harttia species cytogenetically studied thus far allowed us to provide an evolutionary scenario related to the speciation process of this fish group.
Collapse
|
44
|
Berdan EL, Fuller RC, Kozak GM. Genomic landscape of reproductive isolation in Lucania killifish: The role of sex loci and salinity. J Evol Biol 2020; 34:157-174. [PMID: 33118222 PMCID: PMC7894299 DOI: 10.1111/jeb.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 01/24/2023]
Abstract
Adaptation to different environments can directly and indirectly generate reproductive isolation between species. Bluefin killifish (Lucania goodei) and rainwater killifish (L. parva) are sister species that have diverged across a salinity gradient and are reproductively isolated by habitat, behavioural, extrinsic and intrinsic post-zygotic isolation. We asked if salinity adaptation contributes indirectly to other forms of reproductive isolation via linked selection and hypothesized that low recombination regions, such as sex chromosomes or chromosomal rearrangements, might facilitate this process. We conducted QTL mapping in backcrosses between L. parva and L. goodei to explore the genetic architecture of salinity tolerance, behavioural isolation and intrinsic isolation. We mapped traits relative to a chromosome that has undergone a centric fusion in L. parva (relative to L. goodei). We found that the sex locus appears to be male determining (XX-XY), was located on the fused chromosome and was implicated in intrinsic isolation. QTL associated with salinity tolerance were spread across the genome and did not overly co-localize with regions associated with behavioural or intrinsic isolation. This preliminary analysis of the genetic architecture of reproductive isolation between Lucania species does not support the hypothesis that divergent natural selection for salinity tolerance led to behavioural and intrinsic isolation as a by-product. Combined with previous studies in this system, our work suggests that adaptation as a function of salinity contributes to habitat isolation and that reinforcement may have contributed to the evolution of behavioural isolation instead, possibly facilitated by linkage between behavioural isolation and intrinsic isolation loci on the fused chromosome.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rebecca C Fuller
- Department of Animal Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts-Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
45
|
Anderson NW, Hjelmen CE, Blackmon H. The probability of fusions joining sex chromosomes and autosomes. Biol Lett 2020; 16:20200648. [PMID: 33232649 PMCID: PMC7728677 DOI: 10.1098/rsbl.2020.0648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Chromosome fusion and fission are primary mechanisms of karyotype evolution. In particular, the fusion of a sex chromosome and an autosome has been proposed as a mechanism to resolve intralocus sexual antagonism. If sexual antagonism is common throughout the genome, we should expect to see an excess of fusions that join sex chromosomes and autosomes. Here, we present a null model that provides the probability of a sex chromosome autosome fusion, assuming all chromosomes have an equal probability of being involved in a fusion. This closed-form expression is applicable to both male and female heterogametic sex chromosome systems and can accommodate unequal proportions of fusions originating in males and females. We find that over 25% of all chromosomal fusions are expected to join a sex chromosome and an autosome whenever the diploid autosome count is fewer than 16, regardless of the sex chromosome system. We also demonstrate the utility of our model by analysing two contrasting empirical datasets: one from Drosophila and one from the jumping spider genus Habronattus. We find that in the case of Habronattus, there is a significant excess of sex chromosome autosome fusions but that in Drosophila there are far fewer sex chromosome autosome fusions than would be expected under our null model.
Collapse
Affiliation(s)
- Nathan W. Anderson
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Carl E. Hjelmen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
46
|
Ruckman SN, Jonika MM, Casola C, Blackmon H. Chromosome number evolves at equal rates in holocentric and monocentric clades. PLoS Genet 2020; 16:e1009076. [PMID: 33048946 PMCID: PMC7584213 DOI: 10.1371/journal.pgen.1009076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/23/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the fundamental role of centromeres two different types are observed across plants and animals. Monocentric chromosomes possess a single region that function as the centromere while in holocentric chromosomes centromere activity is spread across the entire chromosome. Proper segregation may fail in species with monocentric chromosomes after a fusion or fission, which may lead to chromosomes with no centromere or multiple centromeres. In contrast, species with holocentric chromosomes should still be able to safely segregate chromosomes after fusion or fission. This along with the observation of high chromosome number in some holocentric clades has led to the hypothesis that holocentricity leads to higher rates of chromosome number evolution. To test for differences in rates of chromosome number evolution between these systems, we analyzed data from 4,393 species of insects in a phylogenetic framework. We found that insect orders exhibit striking differences in rates of fissions, fusions, and polyploidy. However, across all insects we found no evidence that holocentric clades have higher rates of fissions, fusions, or polyploidy than monocentric clades. Our results suggest that holocentricity alone does not lead to higher rates of chromosome number changes. Instead, we suggest that other co-evolving traits must explain striking differences between clades.
Collapse
Affiliation(s)
- Sarah N. Ruckman
- Department of Biology, Texas A&M University, Texas, United States of America
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, Texas, United States of America
| | - Michelle M. Jonika
- Department of Biology, Texas A&M University, Texas, United States of America
- Genetics Interdisciplinary Program, Texas A&M University, Texas, United States of America
| | - Claudio Casola
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, Texas, United States of America
- Genetics Interdisciplinary Program, Texas A&M University, Texas, United States of America
- Department of Ecology and Conservation Biology, Texas A&M, Texas, United States of America
| | - Heath Blackmon
- Department of Biology, Texas A&M University, Texas, United States of America
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, Texas, United States of America
- Genetics Interdisciplinary Program, Texas A&M University, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Sassi FDMC, Deon GA, Moreira-Filho O, Vicari MR, Bertollo LAC, Liehr T, de Oliveira EA, Cioffi MB. Multiple Sex Chromosomes and Evolutionary Relationships in Amazonian Catfishes: The Outstanding Model of the Genus Harttia (Siluriformes: Loricariidae). Genes (Basel) 2020; 11:genes11101179. [PMID: 33050411 PMCID: PMC7600804 DOI: 10.3390/genes11101179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
The armored Harttia catfishes present great species diversity and remarkable cytogenetic variation, including different sex chromosome systems. Here we analyzed three new species, H. duriventris, H. villasboas and H. rondoni, using both conventional and molecular cytogenetic techniques (Giemsa-staining and C-banding), including the mapping of repetitive DNAs using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) experiments. Both H. duriventris and H. villasboas have 2n = ♀56/♂55 chromosomes, and an X1X1X2X2 /X1X2Y sex chromosome system, while a proto or neo-XY system is proposed for H. rondoni (2n = 54♀♂). Single motifs of 5S and 18S rDNA occur in all three species, with the latter being also mapped in the sex chromosomes. The results confirm the general evolutionary trend that has been noticed for the genus: an extensive variation on their chromosome number, single sites of rDNA sequences and the occurrence of multiple sex chromosomes. Comparative genomic analyses with another congeneric species, H. punctata, reveal that the X1X2Y sex chromosomes of these species share the genomic contents, indicating a probable common origin. The remarkable karyotypic variation, including sex chromosomes systems, makes Harttia a suitable model for evolutionary studies focusing on karyotype differentiation and sex chromosome evolution among lower vertebrates.
Collapse
Affiliation(s)
- Francisco de M. C. Sassi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
| | - Geize A. Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84010-330, Brazil;
| | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84010-330, Brazil;
| | - Marcelo R. Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84010-330, Brazil;
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena 07747, Germany
- Correspondence: ; Tel.: +49-3641-9396850; Fax: +49-3641-9396852
| | | | - Marcelo B. Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
| |
Collapse
|
48
|
Singchat W, Ahmad SF, Sillapaprayoon S, Muangmai N, Duengkae P, Peyachoknagul S, O’Connor RE, Griffin DK, Srikulnath K. Partial Amniote Sex Chromosomal Linkage Homologies Shared on Snake W Sex Chromosomes Support the Ancestral Super-Sex Chromosome Evolution in Amniotes. Front Genet 2020; 11:948. [PMID: 33014016 PMCID: PMC7461878 DOI: 10.3389/fgene.2020.00948] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Squamate reptile chromosome 2 (SR2) is thought to be an important remnant of an ancestral amniote super-sex chromosome, but a recent study showed that the Siamese cobra W sex chromosome is also a part of this larger ancestral chromosome. To confirm the existence of an ancestral amniote super-sex chromosome and understand the mechanisms of amniote sex chromosome evolution, chromosome maps of two snake species [Russell's viper: Daboia russelii (DRU) and the common tiger snake: Notechis scutatus (NSC)] were constructed using bacterial artificial chromosomes (BACs) derived from chicken and zebra finch libraries containing amniote sex chromosomal linkages. Sixteen BACs were mapped on the W sex chromosome of DRU and/or NSC, suggesting that these BACs contained a common genomic region shared with the W sex chromosome of these snakes. Two of the sixteen BACs were co-localized to DRU2 and NSC2, corresponding to SR2. Prediction of genomic content from all BACs mapped on snake W sex chromosomes revealed a large proportion of long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) retrotransposons. These results led us to predict that amplification of LINE and SINE may have occurred on snake W chromosomes during evolution. Genome compartmentalization, such as transposon amplification, might be the key factor influencing chromosome structure and differentiation. Multiple sequence alignments of all BACs mapped on snake W sex chromosomes did not reveal common sequences. Our findings indicate that the SR2 and snake W sex chromosomes may have been part of a larger ancestral amniote super-sex chromosome, and support the view of sex chromosome evolution as a colorful myriad of situations and trajectories in which many diverse processes are in action.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Prateep Duengkae
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
49
|
Junker J, Rick JA, McIntyre PB, Kimirei I, Sweke EA, Mosille JB, Wehrli B, Dinkel C, Mwaiko S, Seehausen O, Wagner CE. Structural genomic variation leads to genetic differentiation in Lake Tanganyika's sardines. Mol Ecol 2020; 29:3277-3298. [PMID: 32687665 DOI: 10.1111/mec.15559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Identifying patterns in genetic structure and the genetic basis of ecological adaptation is a core goal of evolutionary biology and can inform the management and conservation of species that are vulnerable to population declines exacerbated by climate change. We used reduced-representation genomic sequencing methods to gain a better understanding of genetic structure among and within populations of Lake Tanganyika's two sardine species, Limnothrissa miodon and Stolothrissa tanganicae. Samples of these ecologically and economically important species were collected across the length of Lake Tanganyika, as well as from nearby Lake Kivu, where L. miodon was introduced in 1959. Our results reveal differentiation within both S. tanganicae and L. miodon that is not explained by geography. Instead, this genetic differentiation is due to the presence of large sex-specific regions in the genomes of both species, but involving different polymorphic sites in each species. Our results therefore indicate rapidly evolving XY sex determination in the two species. Additionally, we found evidence of a large chromosomal rearrangement in L. miodon, creating two homokaryotypes and one heterokaryotype. We found all karyotypes throughout Lake Tanganyika, but the frequencies vary along a north-south gradient and differ substantially in the introduced Lake Kivu population. We do not find evidence for significant isolation by distance, even over the hundreds of kilometres covered by our sampling, but we do find shallow population structure.
Collapse
Affiliation(s)
- Julian Junker
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Jessica A Rick
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Peter B McIntyre
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Ismael Kimirei
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Emmanuel A Sweke
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania.,Deep Sea Fishing Authority (DSFA), Zanzibar, Tanzania
| | - Julieth B Mosille
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Bernhard Wehrli
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
| | - Christian Dinkel
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Salome Mwaiko
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Catherine E Wagner
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
50
|
Li M, Xu H, Xu W, Zhou Q, Xu X, Zhu Y, Zheng W, Li W, Pang Z, Chen S. Isolation of a Male-Specific Molecular Marker and Development of a Genetic Sex Identification Technique in Spotted Knifejaw (Oplegnathus punctatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:467-474. [PMID: 32424478 DOI: 10.1007/s10126-020-09966-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Sex-specific DNA markers are very helpful for identifying genetic sex and studying sex determination mechanisms in fish. To identify the sex-specific markers of spotted knifejaw (Oplegnathus punctatus), we performed a comparative analysis of the female and male genomes. In this study, an 18 bp insertion was identified in the male genome after verification by sequencing depth and PCR. An effective and rapid method based on PCR was then developed to identify the genetic sex. A male-female-shared primer pair and a male-specific primer were designed for PCR amplification to avoid false-negative phenomena. To examine the primers in practice, we utilized hundreds of spotted knifejaw fish from different groups to identify their genetic sex, and the results were consistent with their phenotypic sex. The male-specific DNA marker would be helpful for artificial breeding, Y chromosome assembly and further study of the sex determination mechanism. This study is the first to identify an effective sex-specific marker in spotted knifejaw.
Collapse
Affiliation(s)
- Ming Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hao Xu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenteng Xu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Qian Zhou
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Xiwen Xu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Ying Zhu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
| | - Weiwei Zheng
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Product Co., Ltd., Laizhou, Shandong, China
| | - Zunfang Pang
- Laizhou Mingbo Aquatic Product Co., Ltd., Laizhou, Shandong, China
| | - Songlin Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China.
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China.
| |
Collapse
|