1
|
Faino AV, Gordon WW, Buckingham K, Stilp AM, Pace RG, Raraigh KS, Collaco JM, Zhou YH, Dang H, O'Neal W, Knowles MK, Cutting GR, Rosenfeld M, Bamshad MJ, Gibson RL, Blue EE. CHP2 Modifies Chronic Pseudomonas aeruginosa Airway Infection Risk in Cystic Fibrosis. Ann Am Thorac Soc 2025; 22:715-723. [PMID: 39746161 DOI: 10.1513/annalsats.202408-868oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Rationale: Chronic Pseudomonas aeruginosa (Pa) airway infection is common and a key contributor to diminished lung function and early mortality in persons with cystic fibrosis (PwCF). Risk factors for chronic Pa among PwCF include CFTR (cystic fibrosis transmembrane conductance regulator) genotype, genetic modifiers, and environmental factors. Intensive antibiotic therapy and highly effective modulators do not eradicate Pa in most adolescents and adults with cystic fibrosis. Objectives: To identify new genetic modifiers contributing to the pathophysiology of chronic Pa infection in PwCF. Methods: A total of 4,945 participants in the CF Genome Project with whole-genome sequencing linked to longitudinal clinical data from the 2017 Cystic Fibrosis Foundation Patient Registry were used to conduct a time-to-event genome-wide association study using two definitions of chronic Pa infection. Results: We identified a genome-wide significant association (P = 2.2 × 10-8) between delayed onset of chronic Pa infection and rs194810, a common variant near the gene CHP2, which encodes calcineurin B homolog protein 2 (minor A allele frequency 43%). Survival curves by rs198410 allele dosage show that PwCF homozygous for the A allele are an average of 3 years older when achieving chronic Pa infection compared with G allele homozygotes. Conclusions: Variants near CHP2 are associated with a significant delay in the age of chronic Pa infection among PwCF.
Collapse
Affiliation(s)
- Anna V Faino
- Children's Core for Biostatistics, Epidemiology and Analytics in Research
| | | | | | | | - Rhonda G Pace
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Yi-Hui Zhou
- Bioinformatics Research Center and
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; and
| | - Hong Dang
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wanda O'Neal
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael K Knowles
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Margaret Rosenfeld
- Center for Clinical and Translational Research, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine
| | - Michael J Bamshad
- Division of Genetic Medicine and
- Department of Genome Sciences
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Ronald L Gibson
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, and
- Institute for Public Health Genetics, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| |
Collapse
|
2
|
Hack JB, Watkins JC, Schreiber JM, Hammer MF. Patients carrying pathogenic SCN8A variants with loss- and gain-of-function effects can be classified into five subgroups exhibiting varying developmental and epileptic components of encephalopathy. Epilepsia 2024; 65:3324-3334. [PMID: 39556335 DOI: 10.1111/epi.18118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE Phenotypic heterogeneity presents challenges in providing clinical care to patients with pathogenic SCN8A variants, which underly a wide disease spectrum ranging from neurodevelopmental delays without seizures to a continuum of mild to severe developmental and epileptic encephalopathies (DEEs). An important unanswered question is whether there are clinically important subgroups within this wide spectrum. Using both supervised and unsupervised machine learning (ML) approaches, we previously found statistical support for two and three subgroups associated with loss- and gain- of- function vari-ants, respectively. Here, we test the hypothesis that the unsupervised subgroups (U1-U3) are distinguished by differential contributions of developmental and epileptic components. METHODS We predicted that patients in the U1 and U2 subgroups would differ in timing of developmental delay and seizure onset, with earlier and concurrent onset of both features for the U3 subgroup. Standard statistical procedures were used to test these predictions, as well as to investigate clinically relevant associations among all five subgroups. RESULTS Two-population proportion and Kruskal-Wallis tests supported the hypothesis of a reversed order of developmental delay and seizure onset for patients in U1 and U2, and nearly synchronous developmental delay/seizure onset for the U3 (termed DEE) subgroup. Association testing identified subgroup variation in treatment response, frequency of initial seizure type, and comorbidities, as well as different median ages of developmental delay onset for all five subgroups. SIGNIFICANCE Unsupervised ML approaches discern differential developmental and epileptic components among patients with SCN8A-related epilepsy. Patients in U1 (termed developmental encephalopathy) typically gain seizure control yet rarely experience improvements in development, whereas those in U2 (termed epileptic encephalopathy) have fewer if any developmental impairments despite difficulty in achieving seizure control. This understanding improves prognosis and clinical management and provides a framework to discover mechanisms underlying variability in clinical outcome of patients with SCN8A-related disorders.
Collapse
Affiliation(s)
- Joshua B Hack
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
| | - John M Schreiber
- Epilepsy Genetics Program, Children's National Medical Center, Washington, DC, USA
| | - Michael F Hammer
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Neurology Department, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Ward A, Mauleon R, Ooi CY, Rosic N. Impact of Gene Modifiers on Cystic Fibrosis Phenotypic Profiles: A Systematic Review. Hum Mutat 2024; 2024:6165547. [PMID: 40225935 PMCID: PMC11919198 DOI: 10.1155/2024/6165547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 04/15/2025]
Abstract
Cystic fibrosis (CF) is a complex monogenic disorder with a large variability in disease severity. Growing evidence suggests that the variation observed depends not only on variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene but also on modifier genes. Utilizing five databases (including CINAHL, PubMed, Science Direct, Scopus, and Web of Science), a systematic review was conducted to examine the current literature on the known impacts of genomic variations in modifier genes on the CF disease progression, severity, and therapeutic response. A total of 70 full-text articles describing over 80 gene modifiers associated with CF were selected. The modifier genes included genes associated with the CFTR interactome, the inflammatory response, microbial profiles, and other genes affecting the critical physiological pathways of multiple organ systems, such as the respiratory and gastrointestinal systems. Limitations of the existing literature embrace the lack of clinical studies investigating pharmacogenetic impacts and the significance of gene modifiers on the CF clinical picture, including a limited number of replication and validation studies. Further investigations into other potential gene modifiers using genome-wide association studies are needed to critically explore new therapeutic targets and provide a better understanding of the CF disease phenotype under specific drug treatments.
Collapse
Affiliation(s)
- Anastasia Ward
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
| | - Ramil Mauleon
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
- Rice Breeding Innovations, International Rice Research Institute, Los Banos, Laguna, Philippines
| | - Chee Y. Ooi
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, Randwick Clinical Campus, UNSW Medicine & Health, UNSW, Sydney, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Nedeljka Rosic
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Luo S, Rollins S, Schmitz-Abe K, Tam A, Li Q, Shi J, Lin J, Wang R, Agrawal PB. The solute carrier family 26 member 9 modifies rapidly progressing cystic fibrosis associated with homozygous F508del CFTR mutation. Clin Chim Acta 2024; 561:119765. [PMID: 38852790 DOI: 10.1016/j.cca.2024.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND AIMS Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role. MATERIALS AND METHODS Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF). Data was analyzed using an unbiased genome-wide genetic burden test against 3076 controls. Single cell RNA sequencing data from LungMAP was utilized to evaluate unique and co-expression of candidate genes, and structural modeling to evaluate the deleterious effects of identified candidate variants. RESULTS We have identified solute carrier family 26 member 9 (SLC26A9) as a modifier gene to be associated with RPCF. Two rare missense SLC26A9 variants were discovered in three of six individuals deemed to have RPCF: c.229G > A; p.G77S (present in two patients), and c.1885C > T; p.P629S. Co-expression of SLC26A9 and CFTR mRNA is limited across different lung cell types, with the highest level of co-expression seen in human (6.3 %) and mouse (9.0 %) alveolar type 2 (AT2) cells. Structural modeling suggests deleterious effects of these mutations as they are in critical protein domains which might affect the anion transport capability of SLC26A9. CONCLUSION The enrichment of rare and potentially deleterious SLC26A9 mutations in patients with RPCF suggests SLC26A9 may act as an alternative anion transporter in CF and is a modifier gene associated with this lung phenotype.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stuart Rollins
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA
| | - Klaus Schmitz-Abe
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amy Tam
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmine Lin
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ruobing Wang
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA; Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02115, USA.
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Patiño-García A, Guruceaga E, Andueza MP, Ocón M, Fodop Sokoudjou JJ, de Villalonga Zornoza N, Alkorta-Aranburu G, Uria IT, Gurpide A, Camps C, Jantus-Lewintre E, Navamuel-Andueza M, Sanmamed MF, Melero I, Elgendy M, Fusco JP, Zulueta JJ, de-Torres JP, Bastarrika G, Seijo L, Pio R, Montuenga LM, Hernáez M, Ochoa I, Perez-Gracia JL. Whole exome sequencing and machine learning germline analysis of individuals presenting with extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma. EBioMedicine 2024; 102:105048. [PMID: 38484556 PMCID: PMC10955643 DOI: 10.1016/j.ebiom.2024.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Tobacco is the main risk factor for developing lung cancer. Yet, while some heavy smokers develop lung cancer at a young age, other heavy smokers never develop it, even at an advanced age, suggesting a remarkable variability in the individual susceptibility to the carcinogenic effects of tobacco. We characterized the germline profile of subjects presenting these extreme phenotypes with Whole Exome Sequencing (WES) and Machine Learning (ML). METHODS We sequenced germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age (extreme cases) or who did not develop lung cancer at an advanced age (extreme controls), selected from databases including over 6600 subjects. We selected individual coding genetic variants and variant-rich genes showing a significantly different distribution between extreme cases and controls. We validated the results from our discovery cohort, in which we analysed by WES extreme cases and controls presenting similar phenotypes. We developed ML models using both cohorts. FINDINGS Mean age for extreme cases and controls was 50.7 and 79.1 years respectively, and mean tobacco consumption was 34.6 and 62.3 pack-years. We validated 16 individual variants and 33 variant-rich genes. The gene harbouring the most validated variants was HLA-A in extreme controls (4 variants in the discovery cohort, p = 3.46E-07; and 4 in the validation cohort, p = 1.67E-06). We trained ML models using as input the 16 individual variants in the discovery cohort and tested them on the validation cohort, obtaining an accuracy of 76.5% and an AUC-ROC of 83.6%. Functions of validated genes included candidate oncogenes, tumour-suppressors, DNA repair, HLA-mediated antigen presentation and regulation of proliferation, apoptosis, inflammation and immune response. INTERPRETATION Individuals presenting extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma show different germline profiles. Our strategy may allow the identification of high-risk subjects and the development of new therapeutic approaches. FUNDING See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.
Collapse
Affiliation(s)
- Ana Patiño-García
- Department of Pediatrics and Clinical Genetics, Clínica Universidad de Navarra (CUN), Cancer Center Clínica Universidad de Navarra (CCUN), Program in Solid Tumors, Center for Applied Medical Research (Cima) and Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Elizabeth Guruceaga
- Bioinformatics Platform, Cima and IdisNA, University of Navarra, Pamplona, Spain
| | - Maria Pilar Andueza
- Department of Oncology, CUN, CCUN and IdisNA, University of Navarra, Pamplona, Spain
| | - Marimar Ocón
- Pulmonary Department, CUN, CCUN and IdisNA, University of Navarra, Pamplona, Spain
| | | | | | | | - Ibon Tamayo Uria
- Bioinformatics Platform, Cima and IdisNA, University of Navarra, Pamplona, Spain
| | - Alfonso Gurpide
- Department of Oncology, CUN, CCUN and IdisNA, University of Navarra, Pamplona, Spain
| | - Carlos Camps
- Department of Medical Oncology, Hospital General Universitario de Valencia, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and CIBERONC, Valencia, Spain
| | | | - Miguel F Sanmamed
- Department of Oncology, CUN, Division of Immunology, Cima, CCUN, IdisNA and CIBERONC, University of Navarra, Pamplona, Spain
| | - Ignacio Melero
- Division of Immunology, Cima and Immunotherapy, CUN, CCUN, IdisNA and CIBERONC, University of Navarra, Pamplona, Spain
| | - Mohamed Elgendy
- Institute for Clinical Chemistry and Laboratory Medicine, Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC), University Hospital and Faculty of Medicine, Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Juan Pablo Fusco
- Department of Medical Oncology Hospital La Luz, Quirón, Madrid, Spain
| | - Javier J Zulueta
- Pulmonary, Critical Care, and Sleep Division, Mount Sinai Morningside Hospital, New York, USA
| | - Juan P de-Torres
- Pulmonary Department, CUN, CCUN and IdisNA, University of Navarra, Pamplona, Spain
| | | | - Luis Seijo
- Pulmonary Department, CUN, CCUN and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), University of Navarra, Madrid, Spain
| | - Ruben Pio
- Program in Solid Tumors, Cima -CCUN, Department of Biochemistry and Genetics, School of Science, IdisNA and CIBERONC, University of Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Cima, Department of Pathology, Anatomy and Physiology, Schools of Medicine and Sciences, CCUN, IdisNA and CIBERONC, University of Navarra, Pamplona, Spain
| | - Mikel Hernáez
- Computational Biology Program, Cima, Data Science and Artificial Intelligence Institute (DATAI), CCUN, IdisNA and CIBERONC, University of Navarra, Pamplona, Spain
| | - Idoia Ochoa
- Electrical and Electronic Engineering Department, Tecnun, DATAI, University of Navarra, San Sebastian, Spain
| | - Jose Luis Perez-Gracia
- Department of Oncology, CUN, CCUN, IdisNA and CIBERONC, University of Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Massart A, Danger R, Olsen C, Emond MJ, Viklicky O, Jacquemin V, Soblet J, Duerinckx S, Croes D, Perazzolo C, Hruba P, Daneels D, Caljon B, Sever MS, Pascual J, Miglinas M, the Renal Tolerance Investigators, Pirson I, Ghisdal L, Smits G, Giral M, Abramowicz D, Abramowicz M, Brouard S. An exome-wide study of renal operational tolerance. Front Med (Lausanne) 2023; 9:976248. [PMID: 37265662 PMCID: PMC10230038 DOI: 10.3389/fmed.2022.976248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 06/03/2023] Open
Abstract
Background Renal operational tolerance is a rare and beneficial state of prolonged renal allograft function in the absence of immunosuppression. The underlying mechanisms are unknown. We hypothesized that tolerance might be driven by inherited protein coding genetic variants with large effect, at least in some patients. Methods We set up a European survey of over 218,000 renal transplant recipients and collected DNAs from 40 transplant recipients who maintained good allograft function without immunosuppression for at least 1 year. We performed an exome-wide association study comparing the distribution of moderate to high impact variants in 36 tolerant patients, selected for genetic homogeneity using principal component analysis, and 192 controls, using an optimal sequence-kernel association test adjusted for small samples. Results We identified rare variants of HOMER2 (3/36, FDR 0.0387), IQCH (5/36, FDR 0.0362), and LCN2 (3/36, FDR 0.102) in 10 tolerant patients vs. 0 controls. One patient carried a variant in both HOMER2 and LCN2. Furthermore, the three genes showed an identical variant in two patients each. The three genes are expressed at the primary cilium, a key structure in immune responses. Conclusion Rare protein coding variants are associated with operational tolerance in a sizable portion of patients. Our findings have important implications for a better understanding of immune tolerance in transplantation and other fields of medicine.ClinicalTrials.gov, identifier: NCT05124444.
Collapse
Affiliation(s)
- Annick Massart
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Nephrology, Antwerp University Hospital and Laboratory of Experimental Medicine, University of Antwerp, Antwerp, Belgium
| | - Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Valérie Jacquemin
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
| | - Julie Soblet
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Duerinckx
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
| | - Didier Croes
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
- Center for Human Genetics, Clinique Universitaires Saint Luc, Brussels, Belgium
| | - Camille Perazzolo
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Dorien Daneels
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Mehmet Sukru Sever
- Istanbul Tip Fakültesi, Istanbul School of Medicine, Internal Medicine, Nephrology, Istanbul, Türkiye
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Institute Mar for Medical Research, Barcelona, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | | | - Isabelle Pirson
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lidia Ghisdal
- Department of Nephrology, Hospital Centre EpiCURA, Baudour, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Daniel Abramowicz
- Department of Nephrology, Antwerp University Hospital and Laboratory of Experimental Medicine, University of Antwerp, Antwerp, Belgium
| | - Marc Abramowicz
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetic Medicine and Development, Faculty of Medicine, Université de Geneve, Geneva, Switzerland
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
7
|
Mésinèle J, Ruffin M, Guillot L, Corvol H. Modifier Factors of Cystic Fibrosis Phenotypes: A Focus on Modifier Genes. Int J Mol Sci 2022; 23:ijms232214205. [PMID: 36430680 PMCID: PMC9698440 DOI: 10.3390/ijms232214205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Although cystic fibrosis (CF) is recognized as a monogenic disease, due to variants within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene, an extreme clinical heterogeneity is described among people with CF (pwCF). Apart from the exocrine pancreatic status, most studies agree that there is little association between CFTR variants and disease phenotypes. Environmental factors have been shown to contribute to this heterogeneity, accounting for almost 50% of the variability of the lung function of pwCF. Nevertheless, pwCF with similar CFTR variants and sharing the same environment (such as in siblings) may have highly variable clinical manifestations not explained by CFTR variants, and only partly explained by environmental factors. It is recognized that genetic variants located outside the CFTR locus, named "modifier genes", influence the clinical expression of the disease. This short review discusses the latest studies that have described modifier factors associated with the various CF phenotypes as well as the response to the recent CFTR modulator therapies.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Inovarion, 75005 Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Correspondence: (L.G.); (H.C.)
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Service de Pneumologie Pédiatrique, 75012 Paris, France
- Correspondence: (L.G.); (H.C.)
| |
Collapse
|
8
|
Abbas T, Chaturvedi G, Prakrithi P, Pathak AK, Kutum R, Dakle P, Narang A, Manchanda V, Patil R, Aggarwal D, Girase B, Srivastava A, Kapoor M, Gupta I, Pandey R, Juvekar S, Dash D, Mukerji M, Prasher B. Whole Exome Sequencing in Healthy Individuals of Extreme Constitution Types Reveals Differential Disease Risk: A Novel Approach towards Predictive Medicine. J Pers Med 2022; 12:jpm12030489. [PMID: 35330488 PMCID: PMC8952204 DOI: 10.3390/jpm12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Precision medicine aims to move from traditional reactive medicine to a system where risk groups can be identified before the disease occurs. However, phenotypic heterogeneity amongst the diseased and healthy poses a major challenge for identification markers for risk stratification and early actionable interventions. In Ayurveda, individuals are phenotypically stratified into seven constitution types based on multisystem phenotypes termed “Prakriti”. It enables the prediction of health and disease trajectories and the selection of health interventions. We hypothesize that exome sequencing in healthy individuals of phenotypically homogeneous Prakriti types might enable the identification of functional variations associated with the constitution types. Exomes of 144 healthy Prakriti stratified individuals and controls from two genetically homogeneous cohorts (north and western India) revealed differential risk for diseases/traits like metabolic disorders, liver diseases, and body and hematological measurements amongst healthy individuals. These SNPs differ significantly from the Indo-European background control as well. Amongst these we highlight novel SNPs rs304447 (IFIT5) and rs941590 (SERPINA10) that could explain differential trajectories for immune response, bleeding or thrombosis. Our method demonstrates the requirement of a relatively smaller sample size for a well powered study. This study highlights the potential of integrating a unique phenotyping approach for the identification of predictive markers and the at-risk population amongst the healthy.
Collapse
Affiliation(s)
- Tahseen Abbas
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Informatics and Big Data Unit, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gaura Chaturvedi
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
| | - P. Prakrithi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
| | - Ankit Kumar Pathak
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
| | - Rintu Kutum
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Informatics and Big Data Unit, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Pushkar Dakle
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
| | - Ankita Narang
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Informatics and Big Data Unit, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India
| | - Vijeta Manchanda
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
| | - Rutuja Patil
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Dhiraj Aggarwal
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Bhushan Girase
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Ankita Srivastava
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA;
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India;
| | - Sanjay Juvekar
- Vadu Rural Health Program, KEM Hospital Research Centre, Pune 412216, India; (R.P.); (D.A.); (B.G.); (A.S.); (S.J.)
| | - Debasis Dash
- Informatics and Big Data Unit, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Correspondence: (D.D.); (M.M.); (B.P.)
| | - Mitali Mukerji
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Jodhpur 342037, India
- Correspondence: (D.D.); (M.M.); (B.P.)
| | - Bhavana Prasher
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR Ayurgenomics Unit-TRISUTRA, CSIR-Institute of Genomics & Integrative Biology, Delhi 110020, India; (T.A.); (G.C.); (R.K.); (P.D.); (A.N.); (V.M.)
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110020, India; (P.P.); (A.K.P.)
- Correspondence: (D.D.); (M.M.); (B.P.)
| |
Collapse
|
9
|
Pseudomonas aeruginosa in the Cystic Fibrosis Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:347-369. [DOI: 10.1007/978-3-031-08491-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Bojanowski CM, Lu S, Kolls JK. Mucosal Immunity in Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2901-2912. [PMID: 35802761 PMCID: PMC9270582 DOI: 10.4049/jimmunol.2100424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Collapse
Affiliation(s)
- Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care, and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA;
| | - Shiping Lu
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
11
|
Butnariu LI, Țarcă E, Cojocaru E, Rusu C, Moisă ȘM, Leon Constantin MM, Gorduza EV, Trandafir LM. Genetic Modifying Factors of Cystic Fibrosis Phenotype: A Challenge for Modern Medicine. J Clin Med 2021; 10:5821. [PMID: 34945117 PMCID: PMC8707808 DOI: 10.3390/jcm10245821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disease caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. CF is characterized by a high phenotypic variability present even in patients with the same genotype. This is due to the intervention of modifier genes that interact with both the CFTR gene and environmental factors. The purpose of this review is to highlight the role of non-CFTR genetic factors (modifier genes) that contribute to phenotypic variability in CF. We analyzed literature data starting with candidate gene studies and continuing with extensive studies, such as genome-wide association studies (GWAS) and whole exome sequencing (WES). The results of both types of studies revealed that the number of modifier genes in CF patients is impressive. Their identification offers a new perspective on the pathophysiological mechanisms of the disease, paving the way for the understanding of other genetic disorders. In conclusion, in the future, genetic analysis, such as GWAS and WES, should be performed routinely. A challenge for future research is to integrate their results in the process of developing new classes of drugs, with a goal to improve the prognosis, increase life expectancy, and enhance quality of life among CF patients.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Cristina Rusu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Ștefana Maria Moisă
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (Ș.M.M.); (L.M.T.)
| | | | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (Ș.M.M.); (L.M.T.)
| |
Collapse
|
12
|
Mésinèle J, Ruffin M, Kemgang A, Guillot L, Boëlle PY, Corvol H. Risk factors for Pseudomonas aeruginosa airway infection and lung function decline in children with cystic fibrosis. J Cyst Fibros 2021; 21:45-51. [PMID: 34629287 DOI: 10.1016/j.jcf.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
Background Cystic fibrosis (CF) lung disease is characterised by recurrent Pseudomonas aeruginosa (Pa) infections, leading to structural lung damage and decreased survival. The epidemiology of Pa infection and its impact on lung function in people with CF (pwCF), especially in recent birth cohorts, remain uncertain. Methods We included 1,231 French pwCF under 18 years of age. Age at initial acquisition (Pa-IA), chronic colonisation (Pa-CC), and duration from Pa-IA to Pa-CC were estimated using the Kaplan-Meier method. Demographic, clinical, and genetic characteristics were analysed as risk factors for Pa infection using Cox regression models. Lung function decline was assessed by modelling percent-predicted forced expiratory volume in 1 s (ppFEV1) before Pa infection, after Pa-IA, and after Pa-CC. Results Among the 1,231 pwCF, 50% had Pa-IA by the age of 5.1 years [95% confidence interval (CI) 3.8-6.2] and 25% had Pa-CC by the age of 14.7 years (95% CI 12.1 to ∞). We observed that CF-related diabetes and liver disease were risk factors for Pa, while gender, CFTR variants, and CF centre size were not. Genetic variants of TNF, DCTN4, SLC9A3, and CAV2 were confirmed to be associated with Pa. The annual rate of ppFEV1 decline before Pa was -0.38% predicted/year (95% CI -0.59 to -0.18), which decreased significantly after Pa-IA to -0.93% predicted/year (95% CI -1.14 to -0.71) and after Pa-CC to -1.51% predicted/year (95% CI -1.86 to -1.16). Conclusions We identified and replicated several risk factors associated with Pa infection and showed its deleterious impact on lung function in young pwCF. This large-scale study confirmed that Pa airway infection is a major determinant of lung disease severity.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, INSERM UMR S_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Sorbonne Université, Inserm, Institut Pierre Louis d'épidémiologie et de Santé Publique, IPLESP, APHP, Hôpital Saint-Antoine, Paris, France
| | - Manon Ruffin
- Sorbonne Université, INSERM UMR S_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Astrid Kemgang
- Sorbonne Université, INSERM UMR S_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Loïc Guillot
- Sorbonne Université, INSERM UMR S_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'épidémiologie et de Santé Publique, IPLESP, APHP, Hôpital Saint-Antoine, Paris, France
| | - Harriet Corvol
- Sorbonne Université, INSERM UMR S_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France.
| |
Collapse
|
13
|
De Vilder EYG, Martin L, Lefthériotis G, Coucke P, Van Nieuwerburgh F, Vanakker OM. Rare Modifier Variants Alter the Severity of Cardiovascular Disease in Pseudoxanthoma Elasticum: Identification of Novel Candidate Modifier Genes and Disease Pathways Through Mixture of Effects Analysis. Front Cell Dev Biol 2021; 9:612581. [PMID: 34169069 PMCID: PMC8218811 DOI: 10.3389/fcell.2021.612581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Pseudoxanthoma elasticum (PXE), an ectopic mineralization disorder caused by pathogenic ABCC6 variants, is characterized by skin, ocular and cardiovascular (CV) symptoms. Due to striking phenotypic variability without genotype-phenotype correlations, modifier genes are thought to play a role in disease variability. In this study, we evaluated the collective modifying effect of rare variants on the cardiovascular phenotype of PXE. Materials and Methods: Mixed effects of rare variants were assessed by Whole Exome Sequencing in 11 PXE patients with an extreme CV phenotype (mild/severe). Statistical analysis (SKAT-O and C-alpha testing) was performed to identify new modifier genes for the CV PXE phenotype and enrichment analysis for genes significantly associated with the severe cohort was used to evaluate pathway and gene ontology features. Results Respectively 16 (SKAT-O) and 74 (C-alpha) genes were significantly associated to the severe cohort. Top significant genes could be stratified in 3 groups–calcium homeostasis, association with vascular disease and induction of apoptosis. Comparative analysis of both analyses led to prioritization of four genes (NLRP1, SELE, TRPV1, and CSF1R), all signaling through IL-1B. Conclusion This study explored for the first time the cumulative effect of rare variants on the severity of cardiovascular disease in PXE, leading to a panel of novel candidate modifier genes and disease pathways. Though further validation is essential, this panel may aid in risk stratification and genetic counseling of PXE patients and will help to gain new insights in the PXE pathophysiology.
Collapse
Affiliation(s)
- Eva Y G De Vilder
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,The Research Foundation - Flanders, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Ludovic Martin
- Department of Dermatology, Angers University Hospital, Angers, France
| | - Georges Lefthériotis
- Department of Vascular Physiology and Sports Medicine, Angers University, Angers, France
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Jiang Z, Fa B, Zhang X, Wang J, Feng Y, Shi H, Zhang Y, Sun D, Wang H, Yin S. Identifying genetic risk variants associated with noise-induced hearing loss based on a novel strategy for evaluating individual susceptibility. Hear Res 2021; 407:108281. [PMID: 34157653 DOI: 10.1016/j.heares.2021.108281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The overall genetic profile for noise-induced hearing loss (NIHL) remains elusive. Herein we proposed a novel machine learning (ML) based strategy to evaluate individual susceptibility to NIHL and identify the underlying genetic risk variants based on a subsample of participants with extreme phenotypes. METHODS Five features (age, sex, cumulative noise exposure [CNE], smoking, and alcohol drinking status) of 5,539 shipbuilding workers from large cross-sectional surveys were included in four ML classification models to predict their hearing levels. The area under the curve (AUC) and prediction accuracy were exploited to evaluate the performance of the models. Based on the prediction error of the ML models, the NIHL-susceptible group (n=150) and NIHL-resistant group (n=150) with a paradoxical relationship between hearing levels and features were separately screened, to identify the underlying variants associated with NIHL risk using whole-exome sequencing (WES). Subsequently, candidate risk variants were validated in an additional replication cohort (n=2108), followed by a meta-analysis. RESULTS With 10-fold cross-validation, the performances of the four ML models were robust and similar, with average AUCs and accuracies ranging from 0.783 to 0.798 and 73.7% to 73.8%, respectively. The phenotypes of the NIHL-susceptible and NIHL-resistant groups were significantly different (all p<0.001). After WES analysis and filtering, 12 risk variants contributing to NIHL susceptibility were identified and replicated. The meta-analyses showed that the A allele of CDH23 rs41281334 (odds ratio [OR]=1.506, 95% confidence interval [CI]=1.106-2.051) and the C allele of WHRN rs12339210 (OR=3.06, 95% CI=1.398-6.700) were significantly associated with increased risk of NIHL after adjustment for confounding factors. CONCLUSIONS This study revealed two genetic variants in CDH23 rs41281334 and WHRN rs12339210 that associated with NIHL risk, based on a promising approach for evaluating individual susceptibility using ML models.
Collapse
Affiliation(s)
- Zhuang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Botao Fa
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xunmiao Zhang
- Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jiping Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Haibo Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Daoyuan Sun
- Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| |
Collapse
|
15
|
Graustein AD, Berrington WR, Buckingham KJ, Nguyen FK, Joudeh LL, Rosenfeld M, Bamshad MJ, Gibson RL, Hawn TR, Emond MJ. Inflammasome Genetic Variants, Macrophage Function, and Clinical Outcomes in Cystic Fibrosis. Am J Respir Cell Mol Biol 2021; 65:157-166. [PMID: 33848452 DOI: 10.1165/rcmb.2020-0257oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic airway infection, inflammation, and tissue damage that lead to progressive respiratory failure. NLRP3 and NLRC4 are cytoplasmic pattern recognition receptors that activate the inflammasome, initiating a caspase-1-mediated response. We hypothesized that gain-of-function inflammasome responses are associated with worse outcomes in children with CF. We genotyped nonsynonymous variants in NLRP3 and the NLRC4 pathway from individuals in the EPIC (Early Pseudomonas Infection Control) Observational Study cohort and tested for association with CF outcomes. We generated knockouts of NLRP3 and NLRC4 in human macrophage-like cells and rescued knockouts with wild-type or variant forms of NLRP3 and NLRC4. We identified a SNP in NLRP3, p.(Q705K), that was associated with a higher rate of P. aeruginosa colonization (N = 609; P = 0.01; hazard ratio, 2.3 [Cox model]) and worsened lung function over time as measured by forced expiratory volume in 1 second (N = 445; P = 0.001 [generalized estimating equation]). We identified a SNP in NLRC4, p.(A929S), that was associated with a lower rate of P. aeruginosa colonization as part of a composite of rare variants (N = 405; P = 0.045; hazard ratio, 0.68 [Cox model]) and that was individually associated with protection from lung function decline (P < 0.001 [generalized estimating equation]). Rescue of the NLRP3 knockout with the p.(Q705K) variant produced significantly more IL-1β in response to NLRP3 stimulation than rescue with the wild type (P = 0.020 [Student's t test]). We identified a subset of children with CF at higher risk of early lung disease progression. Knowledge of these genetic modifiers could guide therapies targeting inflammasome pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Margaret Rosenfeld
- Department of Pediatrics, School of Medicine.,Division of Pulmonary and Sleep Medicine and
| | - Michael J Bamshad
- Department of Pediatrics, School of Medicine.,Department of Genome Sciences, and.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Ronald L Gibson
- Department of Pediatrics, School of Medicine.,Division of Pulmonary and Sleep Medicine and
| | | | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, Washington; and
| |
Collapse
|
16
|
Sepahzad A, Morris-Rosendahl DJ, Davies JC. Cystic Fibrosis Lung Disease Modifiers and Their Relevance in the New Era of Precision Medicine. Genes (Basel) 2021; 12:genes12040562. [PMID: 33924524 PMCID: PMC8069009 DOI: 10.3390/genes12040562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Our understanding of cystic fibrosis (CF) has grown exponentially since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989. With evolving genetic and genomic tools, we have come to better understand the role of CFTR genotypes in the pathophysiology of the disease. This, in turn, has paved the way for the development of modulator therapies targeted at mutations in the CFTR, which are arguably one of the greatest advances in the treatment of CF. These modulator therapies, however, do not target all the mutations in CFTR that are seen in patients with CF and, furthermore, a variation in response is seen in patients with the same genotype who are taking modulator therapies. There is growing evidence to support the role of non-CFTR modifiers, both genetic and environmental, in determining the variation seen in CF morbidity and mortality and also in the response to existing therapies. This review focusses on key findings from studies using candidate gene and genome-wide approaches to identify CF modifier genes of lung disease in cystic fibrosis and considers the interaction between modifiers and the response to modulator therapies. As the use of modulator therapies expands and we gain data around outcomes, it will be of great interest to investigate this interaction further. Going forward, it will also be crucial to better understand the relative influence of genomic versus environmental factors. With this understanding, we can truly begin to deliver personalised care by better profiling the likely disease phenotype for each patient and their response to treatment.
Collapse
Affiliation(s)
- Afsoon Sepahzad
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
| | | | - Jane C. Davies
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
- National Heart & Lung Institute, Imperial College London, Emmanuel Kay Building, 1b Manresa Rd, London SW3 6LR, UK
- Correspondence:
| |
Collapse
|
17
|
Patiño-García A, Guruceaga E, Segura V, Sánchez Bayona R, Andueza MP, Tamayo Uria I, Serrano G, Fusco JP, Pajares MJ, Gurpide A, Ocón M, Sanmamed MF, Rodriguez Ruiz M, Melero I, Lozano MD, de Andrea C, Pita G, Gonzalez-Neira A, Gonzalez A, Zulueta JJ, Montuenga LM, Pio R, Perez-Gracia JL. Whole exome sequencing characterization of individuals presenting extreme phenotypes of high and low risk of developing tobacco-induced lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:1327-1337. [PMID: 33889513 PMCID: PMC8044482 DOI: 10.21037/tlcr-20-1197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Tobacco is the main risk factor for developing lung cancer. Yet, some heavy smokers do not develop lung cancer at advanced ages while others develop it at young ages. Here, we assess for the first time the genetic background of these clinically relevant extreme phenotypes using whole exome sequencing (WES). Methods We performed WES of germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age (extreme cases, n=50) or did not present lung adenocarcinoma or other tumors at an advanced age (extreme controls, n=50). We selected non-synonymous variants located in exonic regions and consensus splice sites of the genes that showed significantly different allelic frequencies between both cohorts. We validated our results in all the additional extreme cases (i.e., heavy smokers who developed lung adenocarcinoma at an early age) available from The Cancer Genome Atlas (TCGA). Results The mean age for the extreme cases and controls was respectively 49.7 and 77.5 years. Mean tobacco consumption was 43.6 and 56.8 pack-years. We identified 619 significantly different variants between both cohorts, and we validated 108 of these in extreme cases selected from TCGA. Nine validated variants, located in relevant cancer related genes, such as PARP4, HLA-A or NQO1, among others, achieved statistical significance in the False Discovery Rate test. The most significant validated variant (P=4.48×10−5) was located in the tumor-suppressor gene ALPK2. Conclusions We describe genetic variants associated with extreme phenotypes of high and low risk for the development of tobacco-induced lung adenocarcinoma. Our results and our strategy may help to identify high-risk subjects and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Patiño-García
- Department of Pediatrics and Clinical Genetics, Clinica Universidad de Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Program in Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Elizabeth Guruceaga
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Bioinformatics Platform, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Victor Segura
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Bioinformatics Platform, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Rodrigo Sánchez Bayona
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maria Pilar Andueza
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ibon Tamayo Uria
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Bioinformatics Platform, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Guillermo Serrano
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Program in Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | | | - María José Pajares
- Biochemistry Area, Department of Health Science, Public University of Navarre, Pamplona, Spain
| | - Alfonso Gurpide
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Marimar Ocón
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Pulmonary, Clinica Universidad de Navarra, Pamplona, Spain
| | - Miguel F Sanmamed
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maria Rodriguez Ruiz
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Division of Immunology and Immunotherapy, CIMA, Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain.,Department of Immunology, Clinica Universidad de Navarra and CIMA, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Maria Dolores Lozano
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.,Department of Pathology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Carlos de Andrea
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Pathology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anna Gonzalez-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alvaro Gonzalez
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Biochemistry, Clinica Universidad de Navarra, Pamplona, Spain
| | - Javier J Zulueta
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Division of Immunology and Immunotherapy, CIMA, Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Luis M Montuenga
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Program in Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.,Department of Pathology, Anatomy and Physiology, Schools of Medicine and Sciences, University of Navarra, Pamplona, Spain
| | - Ruben Pio
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Program in Solid Tumors, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Jose Luis Perez-Gracia
- Health Research Institute of Navarra (IdisNA), Pamplona, Spain.,Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
18
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
19
|
Jiménez KM, Morel A, Parada-Niño L, Alejandra González-Rodriguez M, Flórez S, Bolívar-Salazar D, Becerra-Bayona S, Aguirre-García A, Gómez-Murcia T, Fernanda Castillo L, Carlosama C, Ardila J, Vaiman D, Serrano N, Laissue P. Identifying new potential genetic biomarkers for HELLP syndrome using massive parallel sequencing. Pregnancy Hypertens 2020; 22:181-190. [PMID: 33059327 DOI: 10.1016/j.preghy.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a frequently occurring multisystemic disease affecting ~5% of pregnancies. PE patients may develop HELLP syndrome (haemolysis, elevated liver enzymes, and low platelet), a mother and foetus life-threatening condition. Research into HELLP's genetic origin has been relatively unsuccessful, mainly because normal placental function and blood pressure regulation involve the fine-regulation of hundreds of genes. OBJECTIVE To identify new genes and mutations constituting potential biomarkers for HELLP syndrome. STUDY DESIGN The present case-control study involved whole-exome sequencing of 79 unrelated HELLP women. Candidate variants were screened in a control population constituted by 176 individuals. Stringent bioinformatics filters were used for selecting potentially etiological sequence variants in a subset of 487 genes. We used robust in silico mutation modelling for predicting the potential effect on protein structure. RESULTS We identified numerous sequence variants in genes related to angiogenesis/coagulation/blood pressure regulation, cell differentiation/communication/adhesion, cell cycle and transcriptional gene regulation, extracellular matrix biology, lipid metabolism and immunological response. Five sequence variants generated premature stop codons in genes playing an essential role in placental physiology (STOX1, PDGFD, IGF2, MMP1 and DNAH11). Six variants (ERAP1- p.Ile915Thr, ERAP2- p.Leu837Ser, COMT-p.His192Gln, CSAD-p.Pro418Ser, CDH1- p.Ala298Thr and CCR2-p.Met249Lys) led to destabilisation of protein structure as they had significant energy and residue interaction-related changes. We identified at least two mutations in 57% of patients, arguing in favour of a polygenic origin for the HELLP syndrome. CONCLUSION Our results provide novel evidence regarding PE/HELLP's genetic origin, leading to new biomarkers, having potential clinical usefulness, being proposed.
Collapse
Affiliation(s)
- Karen Marcela Jiménez
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Adrien Morel
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Parada-Niño
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - María Alejandra González-Rodriguez
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Stephanie Flórez
- Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - David Bolívar-Salazar
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Angel Aguirre-García
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Tatiana Gómez-Murcia
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Fernanda Castillo
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Carlosama
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Javier Ardila
- Hospital Universitario Mayor Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Daniel Vaiman
- Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014 Paris, France
| | - Norma Serrano
- Research Centre, Fundación Cardiovascular de Colombia (FCV), Bucaramanga, Colombia
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014 Paris, France; Orphan Diseases Group, Biopas Laboratoires, Bogotá, Colombia.
| |
Collapse
|
20
|
Andolfo I, Rosato BE, Marra R, De Rosa G, Manna F, Gambale A, Iolascon A, Russo R. The BMP-SMAD pathway mediates the impaired hepatic iron metabolism associated with the ERFE-A260S variant. Am J Hematol 2019; 94:1227-1235. [PMID: 31400017 DOI: 10.1002/ajh.25613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
The erythroferrone (ERFE) is the erythroid regulator of hepatic iron metabolism by suppressing the expression of hepcidin. Congenital dyserythropoietic anemia type II (CDAII) is an inherited hyporegenerative anemia due to biallelic mutations in the SEC23B gene. Patients with CDAII exhibit marked clinical variability, even among individuals sharing the same pathogenic variants. The ERFE expression in CDAII is increased and related to abnormal erythropoiesis. We identified a recurrent low-frequency variant, A260S, in the ERFE gene in 12.5% of CDAII patients with a severe phenotype. We demonstrated that the ERFE-A260S variant leads to increased levels of ERFE, with subsequently marked impairment of iron regulation pathways at the hepatic level. Functional characterization of ERFE-A260S in the hepatic cell system demonstrated its modifier role in iron overload by impairing the BMP/SMAD pathway. We herein described for the first time an ERFE polymorphism as a genetic modifier variant. This was with a mild effect on disease expression, under a multifactorial-like model, in a condition of iron-loading anemia due to ineffective erythropoiesis.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Roberta Marra
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Gianluca De Rosa
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | | | - Antonella Gambale
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento Assistenziale di Medicina di Laboratorio (DAIMedLab)UOC Genetica Medica, AOU Federico II Naples Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| |
Collapse
|
21
|
Shanthikumar S, Neeland MN, Saffery R, Ranganathan S. Gene modifiers of cystic fibrosis lung disease: A systematic review. Pediatr Pulmonol 2019; 54:1356-1366. [PMID: 31140758 DOI: 10.1002/ppul.24366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung disease is the major source of morbidity and mortality in cystic fibrosis (CF), with large variability in severity between patients. Although accurate prediction of lung disease severity would be extremely useful, no robust methods exist. Twin and sibling studies have highlighted the importance of non-cystic fibrosis transmembrane conductance regulator (CFTR) genes in determining lung disease severity but how these impact on the severity in CF remains unclear. METHODS A systematic review was undertaken to answer the question "In patients with CF which non-CFTR genes modify the severity of lung disease?" The method for this systematic review was based upon the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)" statement, with a narrative synthesis of results planned. RESULTS A total of 1168 articles were screened for inclusion, with 275 articles undergoing detailed assessment for inclusion. One hundred and forty articles were included. Early studies focused on candidate genes, whereas more recent studies utilized genome-wide approaches and also examined epigenetic mechanisms, gene expression, and therapeutic response. DISCUSSION A large body of evidence regarding non-CFTR gene modifiers of lung disease severity has been generated, examining a wide array of genes. Limitations to existing studies include heterogeneity in outcome measures used, limited replication, and relative lack of clinical impact. Future work examining non-CFTR gene modifiers will have to overcome these limitations if gene modifiers are to have a meaningful role in the care of patients with CF.
Collapse
Affiliation(s)
- Shivanthan Shanthikumar
- Respiratory and Sleep Medicine Department, Royal Children's Hospital, Melbourne, Australia.,Respiratory Diseases Department, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Australia
| | - Melanie N Neeland
- Department of Paediatrics, The University of Melbourne, Australia.,Centre of Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Richard Saffery
- Department of Paediatrics, The University of Melbourne, Australia.,Cancer & Disease Epigenetics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarath Ranganathan
- Respiratory and Sleep Medicine Department, Royal Children's Hospital, Melbourne, Australia.,Respiratory Diseases Department, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Australia
| |
Collapse
|
22
|
Abstract
RATIONALE Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. OBJECTIVES To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. METHODS Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. RESULTS Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. CONCLUSIONS Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). RECENT FINDINGS CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. SUMMARY Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.
Collapse
|
24
|
Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. THE PHARMACOGENOMICS JOURNAL 2018; 19:375-389. [PMID: 30442921 PMCID: PMC6522337 DOI: 10.1038/s41397-018-0063-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
An extreme phenotype sampling (EPS) model with targeted next-generation sequencing (NGS) identified genetic variants associated with tacrolimus (Tac) metabolism in subjects from the Deterioration of Kidney Allograft Function (DeKAF) Genomics cohort which included 1,442 European Americans (EA) and 345 African Americans (AA). This study included 48 subjects separated into 4 groups of 12 (AA high, AA low, EA high, EA low). Groups were selected by the extreme phenotype of dose-normalized Tac trough concentrations after adjusting for common genetic variants and clinical factors. NGS spanned >3 Mb of 28 genes and identified 18,661 genetic variants (3,961 previously unknown). A group of 125 deleterious variants, by SIFT analysis, were associated with Tac troughs in EAs (burden test, p=0.008), CYB5R2 was associated with Tac troughs in AAs (SKAT, p=0.00079). In CYB5R2, rs61733057 (increased allele frequency in AAs) was predicted to disrupt protein function by SIFT and PolyPhen2 analysis. The variants merit further validation.
Collapse
|
25
|
Hamvas A, Feng R, Bi Y, Wang F, Bhattacharya S, Mereness J, Kaushal M, Cotten CM, Ballard PL, Mariani TJ. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet 2018; 19:94. [PMID: 30342483 PMCID: PMC6195962 DOI: 10.1186/s12863-018-0679-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/01/2018] [Indexed: 12/28/2022] Open
Abstract
Background Previous studies have identified genetic variants associated with bronchopulmonary dysplasia (BPD) in extremely preterm infants. However, findings with genome-wide significance have been rare, and not replicated. We hypothesized that whole exome sequencing (WES) of premature subjects with extremely divergent phenotypic outcomes could facilitate the identification of genetic variants or gene networks contributing disease risk. Results The Prematurity and Respiratory Outcomes Program (PROP) recruited a cohort of > 765 extremely preterm infants for the identification of markers of respiratory morbidity. We completed WES on 146 PROP subjects (85 affected, 61 unaffected) representing extreme phenotypes of early respiratory morbidity. We tested for association between disease status and individual common variants, screened for rare variants exclusive to either affected or unaffected subjects, and tested the combined association of variants across gene loci. Pathway analysis was performed and disease-related expression patterns were assessed. Marginal association with BPD was observed for numerous common and rare variants. We identified 345 genes with variants unique to BPD-affected preterm subjects, and 292 genes with variants unique to our unaffected preterm subjects. Of these unique variants, 28 (19 in the affected cohort and 9 in unaffected cohort) replicate a prior WES study of BPD-associated variants. Pathway analysis of sets of variants, informed by disease-related gene expression, implicated protein kinase A, MAPK and Neuregulin/epidermal growth factor receptor signaling. Conclusions We identified novel genes and associated pathways that may play an important role in susceptibility/resilience for the development of lung disease in preterm infants. Electronic supplementary material The online version of this article (10.1186/s12863-018-0679-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Hamvas
- Department of Pediatrics, Northwestern University, Chicago, IL, USA. .,Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern University, Chicago, IL, USA.
| | - Rui Feng
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingtao Bi
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Fan Wang
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jared Mereness
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Madhurima Kaushal
- Center for Biomedical Informatics, Washington University, St. Louis, MO, USA
| | | | - Philip L Ballard
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester, Rochester, NY, USA. .,Division of Neonatology and Pediatric Molecular and Personalized Medicine Program University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY, 14642, USA.
| | | |
Collapse
|
26
|
O'Neal WK, Knowles MR. Cystic Fibrosis Disease Modifiers: Complex Genetics Defines the Phenotypic Diversity in a Monogenic Disease. Annu Rev Genomics Hum Genet 2018; 19:201-222. [DOI: 10.1146/annurev-genom-083117-021329] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In many respects, genetic studies in cystic fibrosis (CF) serve as a paradigm for a human Mendelian genetic success story. From recognition of the condition as a heritable pathological entity to implementation of personalized treatments based on genetic findings, this multistep pathway of progress has focused on the genetic underpinnings of CF clinical disease. Along this path was the recognition that not all CFTR gene mutations produce the same disease and the recognition of the complex, multifactorial nature of CF genotype–phenotype relationships. The non- CFTR genetic components (gene modifiers) that contribute to variation in phenotype are the focus of this review. A multifaceted approach involving candidate gene studies, genome-wide association studies, and gene expression studies has revealed significant gene modifiers for multiple CF phenotypes. The bold challenges for the future are to integrate the findings into our understanding of CF pathogenesis and to use the knowledge to develop novel therapies.
Collapse
Affiliation(s)
- Wanda K. O'Neal
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;,
| | - Michael R. Knowles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;,
| |
Collapse
|
27
|
Strug LJ, Stephenson AL, Panjwani N, Harris A. Recent advances in developing therapeutics for cystic fibrosis. Hum Mol Genet 2018; 27:R173-R186. [PMID: 30060192 PMCID: PMC6061831 DOI: 10.1093/hmg/ddy188] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
Despite hope that a cure was imminent when the causative gene was cloned nearly 30 years ago, cystic fibrosis (CF [MIM: 219700]) remains a life-shortening disease affecting more than 70 000 individuals worldwide. However, within the last 6 years the Food and Drug Administration's approval of Ivacaftor, the first drug that corrects the defective cystic fibrosis transmembrane conductance regulator protein [CFTR (MIM: 602421)] in patients with the G551D mutation, marks a watershed in the development of novel therapeutics for this devastating disease. Here we review recent progress in diverse research areas, which all focus on curing CF at the genetic, biochemical or physiological level. In the near future it seems probable that development of mutation-specific therapies will be the focus, since it is unlikely that any one approach will be efficient in correcting the more than 2000 disease-associated variants. We discuss the new drugs and combinations of drugs that either enhance delivery of misfolded CFTR protein to the cell membrane, where it functions as an ion channel, or that activate channel opening. Next we consider approaches to correct the causative genetic lesion at the DNA or RNA level, through repressing stop mutations and nonsense-mediated decay, modulating splice mutations, fixing errors by gene editing or using novel routes to gene replacement. Finally, we explore how modifier genes, loci elsewhere in the genome that modify CF disease severity, may be used to restore a normal phenotype. Progress in all of these areas has been dramatic, generating enthusiasm that CF may soon become a broadly treatable disease.
Collapse
Affiliation(s)
- Lisa J Strug
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne L Stephenson
- Department of Respirology, Adult Cystic Fibrosis Program, St. Michael’s Hospital, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
28
|
The impact of host genetic background in the Pseudomonas aeruginosa respiratory infections. Mamm Genome 2018; 29:550-557. [PMID: 29947963 PMCID: PMC7087806 DOI: 10.1007/s00335-018-9753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/05/2018] [Indexed: 12/27/2022]
Abstract
Understanding the significance of human genetic diversity in modulating host susceptibility to opportunistic infections is an emerging challenge in the field of respiratory illnesses. While it is recognized that diverse bacterial strains account for differential disease manifestations, emerging data indicate that host genetic diversity is an important determinant factor that influences the severity of opportunistic infections. With particular regard to respiratory illnesses mediated by the gram-negative bacterium Pseudomonas aeruginosa, diverse genetic background is also emerging as a key contributor. Human-genome-wide association studies are a common approach for determining the inter-individual genetic variation associated with variability of the pulmonary infections. Historically, diverse murine inbred mouse strains and ex-vivo cellular models were considered complementary to human studies for establishing the contribution of genetic background to P. aeruginosa respiratory infections. More recently, the development of a new mouse model of infection, mirroring human airway diseases, combined with innovative murine resource populations, modelling human genetic variation, provides additional insights into the mechanisms of genetic susceptibility. In this review, we cover the recent state of the art of human and animal studies and we discuss future potential challenges in the field of P. aeruginosa respiratory infections.
Collapse
|
29
|
Agrawal PB, Wang R, Li HL, Schmitz-Abe K, Simone-Roach C, Chen J, Shi J, Louie T, Sheng S, Towne MC, Brainson CF, Matthay MA, Kim CF, Bamshad M, Emond MJ, Gerard NP, Kleyman TR, Gerard C. The Epithelial Sodium Channel Is a Modifier of the Long-Term Nonprogressive Phenotype Associated with F508del CFTR Mutations. Am J Respir Cell Mol Biol 2017; 57:711-720. [PMID: 28708422 PMCID: PMC5765421 DOI: 10.1165/rcmb.2017-0166oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) remains the most lethal genetic disease in the Caucasian population. However, there is great variability in clinical phenotypes and survival times, even among patients harboring the same genotype. We identified five patients with CF and a homozygous F508del mutation in the CFTR gene who were in their fifth or sixth decade of life and had shown minimal changes in lung function over a longitudinal period of more than 20 years. Because of the rarity of this long-term nonprogressive phenotype, we hypothesized these individuals may carry rare genetic variants in modifier genes that ameliorate disease severity. Individuals at the extremes of survival time and lung-function trajectory underwent whole-exome sequencing, and the sequencing data were filtered to include rare missense, stopgain, indel, and splicing variants present with a mean allele frequency of <0.2% in general population databases. Epithelial sodium channel (ENaC) mutants were generated via site-directed mutagenesis and expressed for Xenopus oocyte assays. Four of the five individuals carried extremely rare or never reported variants in the SCNN1D and SCNN1B genes of the ENaC. Separately, an independently enriched rare variant in SCNN1D was identified in the Exome Variant Server database associated with a milder pulmonary disease phenotype. Functional analysis using Xenopus oocytes revealed that two of the three variants in δ-ENaC encoded by SCNN1D exhibited hypomorphic channel activity. Our data suggest a potential role for δ-ENaC in controlling sodium reabsorption in the airways, and advance the plausibility of ENaC as a therapeutic target in CF.
Collapse
Affiliation(s)
- Pankaj B. Agrawal
- Divisions of Newborn Medicine
- Genetics and Genomics
- Gene Discovery Core, Manton Center for Orphan Disease Research
| | | | - Hongmei Lisa Li
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Department of Genetics, and
| | - Klaus Schmitz-Abe
- Genetics and Genomics
- Gene Discovery Core, Manton Center for Orphan Disease Research
| | | | | | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Tin Louie
- Biostatistics and Center for Biomedical Statistics
| | | | - Meghan C. Towne
- Genetics and Genomics
- Gene Discovery Core, Manton Center for Orphan Disease Research
| | | | - Michael A. Matthay
- Departments of Medicine and
- Anesthesia, Cardiovascular Research Institute, University of California–San Francisco, San Francisco, California
| | - Carla F. Kim
- Pulmonary and Respiratory Diseases, and
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Department of Genetics, and
| | - Michael Bamshad
- Pediatrics and Genome Sciences, University of Washington, Seattle, Washington
| | | | - Norma P. Gerard
- Pulmonary and Respiratory Diseases, and
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Thomas R. Kleyman
- Departments of Medicine
- Cell Biology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
30
|
Abstract
Purpose of review Identification of genetic variants to aid in individualized treatment of solid organ allograft recipients would improve graft survival. We will review the current state of knowledge for associations of variants with transplant outcomes. Recent findings Many studies have yet to exhibit robust and reproducible results, however, pharmacogenomic studies focusing on cytochrome P450 (CYP) enzymes, transporters and HLA variants have shown strong associations with outcomes and have relevance towards drugs used in transplant. Genome wide association study data for the immunosuppressant tacrolimus have identified multiple variants in the CYP3A5 gene associated with trough concentrations. Additionally, APOL1 variants had been shown to confer risk to the development of end stage renal disease in African Americans. Summary The field is rapidly evolving and new technology such as next generation sequencing, along with larger cohorts, will soon be commonly applied in transplantation to understand genetic association with outcomes and personalized medicine.
Collapse
|
31
|
Fink AK, Loeffler DR, Marshall BC, Goss CH, Morgan WJ. Data that empower: The success and promise of CF patient registries. Pediatr Pulmonol 2017; 52:S44-S51. [PMID: 28910520 DOI: 10.1002/ppul.23790] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022]
Abstract
In this article, we describe existing CF registries with a focus on US registry data collected through the CF Foundation Patient Registry (CFFPR) and the Epidemiologic Study of CF (ESCF); highlight what registries have taught us regarding epidemiology of CF; showcase the impact of registries on research and clinical care; and discuss future directions. This manuscript complements the plenary address given by Dr Wayne Morgan at the 2016 North American CF Conference by summarizing the key points from the presentation and providing additional detail and information.
Collapse
Affiliation(s)
| | | | | | - Christopher H Goss
- Department of Medicine and Pediatrics, University of Washington, Seattle, Washington
| | - Wayne J Morgan
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| |
Collapse
|
32
|
Ariana M, Arabi N, Pornour M, Vaseghi H, Ganji SM, Alivand MR, Salari M, Akbari ME. The diversity in the expression profile of caveolin II transcripts, considering its new transcript in breast cancer. J Cell Biochem 2017; 119:2168-2178. [PMID: 28857238 DOI: 10.1002/jcb.26378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
Most studies have revealed the effects of caveolins in cancer inhibition. However, due to a lack of reports about their new transcripts, their presence and their effects on different cancers are unclear. This study was conducted to evaluate the cavolin-2 (cav-2) transcripts expression changes in tumoral and corresponding tissues and in contralateral breast, to investigate their variation associated with the variation of caveolin-1 (cav-1) expression in breast cancer. There were 40 breast-derived tumoral, corresponding, and contralateral tissues obtained from the patients with breast cancer. The RNA and proteins were extracted from these samples. So, cav-1 and cav-2 transcripts' variation were assessed in whole tumoral, corresponding, and contralateral breast. Also, their expression modifications were evaluated via the Western blotting technique. The results derived from this study verified the presence of transcript III of cav-2 for the first time, which was reported only in the gene bank, but we could not detect and validate any protein associated with these transcripts. Also, the decreasing trend of cav-1 and the cav-2 (transcripts I and II) were observed in tumoral tissues compared to unaffected tissues especially in stages I and II. It seems that the descending expression levels of cav-1 and cav-2 (transcript I, II) besides the lasting expression of cav-2 (transcript III) are associated with the incidence and promotion of breast cancer, especially in the initial stages of breast cancer. So, this may show a potential in determining the patients who can undergo the prophylactic mastectomy. Moreover, the results of the study demonstrated that transcript III may be a candidate as a non-coding RNA.
Collapse
Affiliation(s)
- Mehdi Ariana
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Arabi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Pornour
- Photo Healing and Regeneration Research Group, Medical Laser research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hajar Vaseghi
- Photo Healing and Regeneration Research Group, Medical Laser research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | | | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Salari
- Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
33
|
Ung C, Sanchez AV, Shen L, Davoudi S, Ahmadi T, Navarro-Gomez D, Chen CJ, Hancock H, Penman A, Hoadley S, Consugar M, Restrepo C, Shah VA, Arboleda-Velasquez JF, Sobrin L, Gai X, Kim LA. Whole exome sequencing identification of novel candidate genes in patients with proliferative diabetic retinopathy. Vision Res 2017; 139:168-176. [PMID: 28431867 DOI: 10.1016/j.visres.2017.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Rare or novel gene variants in patients with proliferative diabetic retinopathy may contribute to disease development. We performed whole exome sequencing (WES) on patients at the phenotypic extremes of diabetic retinal complications: 57 patients diagnosed with proliferative diabetic retinopathy (PDR) as cases and 13 patients with no diabetic retinopathy despite at least 10years of type 2 diabetes as controls. Thirty-one out of the 57 cases and all 13 controls were from the African American Proliferative Diabetic Retinopathy Study (AA). The rest of the cases were of mixed ethnicities (ME). WES identified 721 candidate genes with rare or novel non-synonymous variants found in at least one case with PDR and not present in any controls. After filtering for genes with null alleles in greater than two cases, 28 candidate genes were identified in our ME cases and 16 genes were identified in our AA cases. Our analysis showed rare and novel variants within these genes that could contribute to the development of PDR, including rare non-synonymous variants in FAM132A, SLC5A9, ZNF600, and TMEM217. We also found previously unidentified variants in VEGFB and APOB. We found that VEGFB, VPS13B, PHF21A, NAT1, ZNF600, PKHD1L1 expression was reduced in human retinal endothelial cells (HRECs) cultured under high glucose conditions. In an exome sequence analysis of patients with PDR, we identified variants in genes that could contribute to pathogenesis. Six of these genes were further validated and found to have reduced expression in HRECs under high glucose conditions, suggestive of an important role in the development of PDR.
Collapse
Affiliation(s)
- Cindy Ung
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Angie V Sanchez
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lishuang Shen
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Samaneh Davoudi
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tina Ahmadi
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Daniel Navarro-Gomez
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ching J Chen
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heather Hancock
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alan Penman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Suzanne Hoadley
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mark Consugar
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Carlos Restrepo
- Basic Science Group, School of Medicine, CES University, Medellin, Colombia
| | - Vinay A Shah
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma, OK, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Lucia Sobrin
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| | - Xiaowu Gai
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Leo A Kim
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Perez-Gracia JL, Sanmamed MF, Bosch A, Patiño-Garcia A, Schalper KA, Segura V, Bellmunt J, Tabernero J, Sweeney CJ, Choueiri TK, Martín M, Fusco JP, Rodriguez-Ruiz ME, Calvo A, Prior C, Paz-Ares L, Pio R, Gonzalez-Billalabeitia E, Gonzalez Hernandez A, Páez D, Piulats JM, Gurpide A, Andueza M, de Velasco G, Pazo R, Grande E, Nicolas P, Abad-Santos F, Garcia-Donas J, Castellano D, Pajares MJ, Suarez C, Colomer R, Montuenga LM, Melero I. Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat Rev 2016; 53:79-97. [PMID: 28088073 DOI: 10.1016/j.ctrv.2016.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework-the DESIGN guidelines-to standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field.
Collapse
Affiliation(s)
- Jose Luis Perez-Gracia
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain.
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ana Bosch
- Division of Oncology and Pathology Department of Clinical Sciences, Lund University, Sweden
| | - Ana Patiño-Garcia
- Department of Pediatrics and CIMA LAB Diagnostics, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Victor Segura
- IDISNA and Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Joaquim Bellmunt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christopher J Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Miguel Martín
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | - Juan Pablo Fusco
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Maria Esperanza Rodriguez-Ruiz
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain
| | - Celia Prior
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Luis Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ruben Pio
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Program in Solid Tumors and Biomarkers, CIMA, University of Navarra, Spain
| | - Enrique Gonzalez-Billalabeitia
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | | | - David Páez
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose María Piulats
- Department of Medical Oncology, Institut Català d'Oncologia, Barcelona, Spain
| | - Alfonso Gurpide
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Mapi Andueza
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Guillermo de Velasco
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Roberto Pazo
- Department of Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Enrique Grande
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Pilar Nicolas
- Chair in Law and the Human Genome, University of the Basque Country, Bizkaia, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, University Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Jesus Garcia-Donas
- Department of Medical Oncology, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain
| | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María J Pajares
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; Program in Solid Tumors and Biomarkers, CIMA, University of Navarra, Spain
| | - Cristina Suarez
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Colomer
- Department of Oncology, Hospital Universitario de la Princesa, Spain
| | - Luis M Montuenga
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; Program in Solid Tumors and Biomarkers, CIMA, University of Navarra, Spain
| | - Ignacio Melero
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| |
Collapse
|
35
|
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene encodes an epithelial ion channel. Although one mutation remains the most common cause of CF (F508del), there have been more than 2000 reported variations in CFTR. For the most part, individuals who carry only one mutation (heterozygotes) have no symptoms; individuals who inherit deleterious mutations from both parents have CF. However, growing awareness of CFTR mutations that do not ever or do not always cause CF, and individuals with mild or single-organ system manifestations of CFTR-related disease have made this Mendelian relationship more complex.
Collapse
|
36
|
Emond MJ, Louie T, Emerson J, Chong JX, Mathias RA, Knowles MR, Rieder MJ, Tabor HK, Nickerson DA, Barnes KC, Go L, Gibson RL, Bamshad MJ. Correction: Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. PLoS Genet 2015; 11:e1005424. [PMID: 26284524 PMCID: PMC4540584 DOI: 10.1371/journal.pgen.1005424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|