1
|
Penadés JR, Seed KD, Chen J, Bikard D, Rocha EPC. Genetics, ecology and evolution of phage satellites. Nat Rev Microbiol 2025:10.1038/s41579-025-01156-z. [PMID: 40148600 DOI: 10.1038/s41579-025-01156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/29/2025]
Abstract
Phage satellites are defined as viruses that have a life cycle dependent on a helper virus. Thus, they are often considered as parasites of parasites, although recent work suggests it may be more accurate to consider them as symbionts that evolved along a parasitism-mutualism continuum. Over the past years, multiple studies have examined the fascinating life cycle of these elements, focusing on the characterization of the molecular mechanisms they use to hijack the helper phage machinery for their own packaging and transfer. As some phage satellites encode toxins and other virulence and resistance genes, the impact of these elements on bacterial virulence has also been extensively analysed. Recent studies suggest that satellites have unprecedented roles in the ecology and evolution of bacteria and their mobile genetic elements. In this Review, we explore the genetics and the life cycle of these elements, with special emphasis on the new mechanisms involved in their spread in nature. We discuss the unexpected impact of these elements on the evolution of other mobile genetic elements and their host bacteria, and examine their potential origins.
Collapse
Affiliation(s)
- José R Penadés
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain.
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - John Chen
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Bikard
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Synthetic Biology, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
2
|
Dewar AE, Belcher LJ, West SA. A phylogenetic approach to comparative genomics. Nat Rev Genet 2025:10.1038/s41576-024-00803-0. [PMID: 39779997 PMCID: PMC7617348 DOI: 10.1038/s41576-024-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Comparative genomics, whereby the genomes of different species are compared, has the potential to address broad and fundamental questions at the intersection of genetics and evolution. However, species, genomes and genes cannot be considered as independent data points within statistical tests. Closely related species tend to be similar because they share genes by common descent, which must be accounted for in analyses. This problem of non-independence may be exacerbated when examining genomes or genes but can be addressed by applying phylogeny-based methods to comparative genomic analyses. Here, we review how controlling for phylogeny can change the conclusions of comparative genomics studies. We address common questions on how to apply these methods and illustrate how they can be used to test causal hypotheses. The combination of rapidly expanding genomic datasets and phylogenetic comparative methods is set to revolutionize the biological insights possible from comparative genomic studies.
Collapse
Affiliation(s)
- Anna E Dewar
- Department of Biology, University of Oxford, Oxford, UK.
- St John's College, Oxford, UK.
| | | | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
del Arco A, Fischer MG, Becks L. Evolution of exploitation and replication of giant viruses and virophages. Virus Evol 2024; 10:veae021. [PMID: 38562952 PMCID: PMC10984621 DOI: 10.1093/ve/veae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Tripartite biotic interactions are inherently complex, and the strong interdependence of species and often one-sided exploitation can make these systems vulnerable to extinction. The persistence of species depends then on the balance between exploitation and avoidance of exploitation beyond the point where sustainable resource use is no longer possible. We used this general prediction to test the potential role of trait evolution for persistence in a tripartite microbial system consisting of a marine heterotrophic flagellate preyed upon by a giant virus, which in turn is parasitized by a virophage. Host and virophage may benefit from this interaction because the virophage reduces the harmful effects of the giant virus on the host population and the virophage can persist integrated into the host genome when giant viruses are scarce. We grew hosts and virus in the presence and absence of the virophage over ∼280 host generations and tested whether levels of exploitation and replication in the giant virus and/or virophage population evolved over the course of the experiment, and whether the changes were such that they could avoid overexploitation and extinction. We found that the giant virus evolved toward lower levels of replication and the virophage evolved toward increased replication but decreased exploitation of the giant virus. These changes reduced overall host exploitation by the virus and virus exploitation by the virophage and are predicted to facilitate persistence.
Collapse
Affiliation(s)
- Ana del Arco
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Mainaustraße 252, Konstanz/Egg 78464, Germany
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Lutz Becks
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Mainaustraße 252, Konstanz/Egg 78464, Germany
| |
Collapse
|
4
|
Leeks A, Bono LM, Ampolini EA, Souza LS, Höfler T, Mattson CL, Dye AE, Díaz-Muñoz SL. Open questions in the social lives of viruses. J Evol Biol 2023; 36:1551-1567. [PMID: 37975507 PMCID: PMC11281779 DOI: 10.1111/jeb.14203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 11/19/2023]
Abstract
Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Lisa M. Bono
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth A. Ampolini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas S. Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas Höfler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Courtney L. Mattson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
| | - Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| |
Collapse
|
5
|
Sanz-Frasquet C, Ciges-Tomas JR, Alite C, Penadés JR, Marina A. The Bacteriophage-Phage-Inducible Chromosomal Island Arms Race Designs an Interkingdom Inhibitor of dUTPases. Microbiol Spectr 2023; 11:e0323222. [PMID: 36622213 PMCID: PMC9927489 DOI: 10.1128/spectrum.03232-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/18/2022] [Indexed: 01/10/2023] Open
Abstract
Stl, the master repressor of the Staphylococcus aureus pathogenicity islands (SaPIs), targets phage-encoded proteins to derepress and synchronize the SaPI and the helper phage life cycles. To activate their cycle, some SaPI Stls target both phage dimeric and phage trimeric dUTPases (Duts) as antirepressors, which are structurally unrelated proteins that perform identical functions for the phage. This intimate link between the SaPI's repressor and the phage inducer has imposed an evolutionary optimization of Stl that allows the interaction with Duts from unrelated organisms. In this work, we structurally characterize this sophisticated mechanism of specialization by solving the structure of the prototypical SaPIbov1 Stl in complex with a prokaryotic and a eukaryotic trimeric Dut. The heterocomplexes with Mycobacterium tuberculosis and Homo sapiens Duts show the molecular strategy of Stl to target trimeric Duts from different kingdoms. Our structural results confirm the participation of the five catalytic motifs of trimeric Duts in Stl binding, including the C-terminal flexible motif V that increases the affinity by embracing Stl. In silico and in vitro analyses with a monomeric Dut support the capacity of Stl to recognize this third family of Duts, confirming this protein as a universal Dut inhibitor in the different kingdoms of life. IMPORTANCE Stl, the Staphylococcus aureus pathogenicity island (SaPI) master repressor, targets phage-encoded proteins to derepress and synchronize the SaPI and the helper phage life cycles. This fascinating phage-SaPI arms race is exemplified by the Stl from SaPIbov1 which targets phage dimeric and trimeric dUTPases (Duts), structurally unrelated proteins with identical functions in the phages. By solving the structure of the Stl in complex with a prokaryotic (M. tuberculosis) and a eukaryotic (human) trimeric Dut, we showed that Stl has developed a sophisticated substrate mimicry strategy to target trimeric Duts. Since all these Duts present identical catalytic mechanisms, Stl is able to interact with Duts from different kingdoms. In addition, in silico modeling with monomeric Dut supports the capacity of Stl to recognize this third family of Duts, confirming this protein as a universal Dut inhibitor.
Collapse
Affiliation(s)
- Carla Sanz-Frasquet
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - J. Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Christian Alite
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - José R. Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
6
|
Alqurainy N, Miguel-Romero L, Moura de Sousa J, Chen J, Rocha EPC, Fillol-Salom A, Penadés JR. A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature. Cell Host Microbe 2023; 31:69-82.e5. [PMID: 36596306 DOI: 10.1016/j.chom.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/06/2022] [Accepted: 12/01/2022] [Indexed: 01/03/2023]
Abstract
Phage satellites are genetic elements that couple their life cycle to that of helper phages they parasitize, interfering with phage packaging through the production of small capsids, where only satellites are packaged. So far, in all analyzed systems, the satellite-sized capsids are composed of phage proteins. Here, we report that a family of phage-inducible chromosomal islands (PICIs), a type of satellites, encodes all the proteins required for both the production of small-sized capsids and the exclusive packaging of the PICIs into these capsids. Therefore, this new family, named capsid-forming PICIs (cf-PICIs), only requires phage tails to generate PICI particles. Remarkably, the representative cf-PICIs are produced with no cost from their helper phages, suggesting that the relationship between these elements is not parasitic. Finally, our phylogenomic studies indicate that cf-PICIs are present both in gram-positive and gram-negative bacteria and have evolved at least three times independently to spread in nature.
Collapse
Affiliation(s)
- Nasser Alqurainy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Laura Miguel-Romero
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Jorge Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - John Chen
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - Alfred Fillol-Salom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; Universidad CEU Cardenal Herrera, CEU Universities, Valencia 46115, Spain.
| |
Collapse
|
7
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023; 186:47-62.e16. [PMID: 36608657 DOI: 10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.
Collapse
Affiliation(s)
- Thomas Hackl
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC Groningen, the Netherlands.
| | - Raphaël Laurenceau
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Markus J Ankenbrand
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; University of Würzburg, Center for Computational and Theoretical Biology, 97070 Würzburg, Germany
| | - Christina Bliem
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Zev Cariani
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaina Thomas
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Keven D Dooley
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Aldo A Arellano
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Shane L Hogle
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Paul Berube
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Gabriel E Leventhal
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Ahmed A Zayed
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Matthew B Sullivan
- Department of Microbiology & Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Steven J Biller
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA
| | - Sallie W Chisholm
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023. [DOI: doi.org/10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
When bacteria are phage playgrounds: interactions between viruses, cells, and mobile genetic elements. Curr Opin Microbiol 2022; 70:102230. [PMID: 36335712 DOI: 10.1016/j.mib.2022.102230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Studies of viral adaptation have focused on the selective pressures imposed by hosts. However, there is increasing evidence that interactions between viruses, cells, and other mobile genetic elements are determinant to the success of infections. These interactions are often associated with antagonism and competition, but sometimes involve cooperation or parasitism. We describe two key types of interactions - defense systems and genetic regulation - that allow the partners of the interaction to destroy or control the others. These interactions evolve rapidly by genetic exchanges, including among competing partners. They are sometimes followed by functional diversification. Gene exchanges also facilitate the emergence of cross-talk between elements in the same bacterium. In the end, these processes produce multilayered networks of interactions that shape the outcome of viral infections.
Collapse
|
10
|
Understanding the Mechanisms That Drive Phage Resistance in Staphylococci to Prevent Phage Therapy Failure. Viruses 2022; 14:v14051061. [PMID: 35632803 PMCID: PMC9146914 DOI: 10.3390/v14051061] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
Despite occurring at the microscopic scale, the armed race between phages and their bacterial hosts involves multiple mechanisms, some of which are just starting to be understood. On the one hand, bacteria have evolved strategies that can stop the viral infection at different stages (adsorption, DNA injection and replication, biosynthesis and assembly of the viral progeny and/or release of the newly formed virions); on the other, phages have gradually evolved counterattack strategies that allow them to continue infecting their prey. This co-evolutionary process has played a major role in the development of microbial populations in both natural and man-made environments. Notably, understanding the parameters of this microscopic war will be paramount to fully benefit from the application of phage therapy against dangerous, antibiotic-resistant human pathogens. This review gathers the current knowledge regarding the mechanisms of phage resistance in the Staphylococcus genus, which includes Staphylococcus aureus, one of the most concerning microorganisms in terms of antibiotic resistance acquisition. Some of these strategies involve permanent changes to the bacterial cell via mutations, while others are transient, adaptive changes whose expression depends on certain environmental cues or the growth phase. Finally, we discuss the most plausible strategies to limit the impact of phage resistance on therapy, with a special emphasis on the importance of a rational design of phage cocktails in order to thwart therapeutic failure.
Collapse
|
11
|
Borodovich T, Shkoporov AN, Ross RP, Hill C. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac012. [PMID: 35425613 PMCID: PMC9006064 DOI: 10.1093/gastro/goac012] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Horizontal gene transfer (HGT) in the microbiome has profound consequences for human health and disease. The spread of antibiotic resistance genes, virulence, and pathogenicity determinants predominantly occurs by way of HGT. Evidence exists of extensive horizontal transfer in the human gut microbiome. Phage transduction is a type of HGT event in which a bacteriophage transfers non-viral DNA from one bacterial host cell to another. The abundance of tailed bacteriophages in the human gut suggests that transduction could act as a significant mode of HGT in the gut microbiome. Here we review in detail the known mechanisms of phage-mediated HGT, namely specialized and generalized transduction, lateral transduction, gene-transfer agents, and molecular piracy, as well as methods used to detect phage-mediated HGT, and discuss its potential implications for the human gut microbiome.
Collapse
Affiliation(s)
- Tatiana Borodovich
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Corresponding author. APC Microbiome Ireland, Biosciences Institute, University College Cork, Room 3.63, College Road, Cork, T12 YT20, Ireland.
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Ibarra-Chávez R, Hansen MF, Pinilla-Redondo R, Seed KD, Trivedi U. Phage satellites and their emerging applications in biotechnology. FEMS Microbiol Rev 2021; 45:fuab031. [PMID: 34104956 PMCID: PMC8632786 DOI: 10.1093/femsre/fuab031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The arms race between (bacterio)phages and their hosts is a recognised hot spot for genome evolution. Indeed, phages and their components have historically paved the way for many molecular biology techniques and biotech applications. Further exploration into their complex lifestyles has revealed that phages are often parasitised by distinct types of hyperparasitic mobile genetic elements. These so-called phage satellites exploit phages to ensure their own propagation and horizontal transfer into new bacterial hosts, and their prevalence and peculiar lifestyle has caught the attention of many researchers. Here, we review the parasite-host dynamics of the known phage satellites, their genomic organisation and their hijacking mechanisms. Finally, we discuss how these elements can be repurposed for diverse biotech applications, kindling a new catalogue of exciting tools for microbiology and synthetic biology.
Collapse
Affiliation(s)
- Rodrigo Ibarra-Chávez
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Sommers P, Chatterjee A, Varsani A, Trubl G. Integrating Viral Metagenomics into an Ecological Framework. Annu Rev Virol 2021; 8:133-158. [PMID: 34033501 DOI: 10.1146/annurev-virology-010421-053015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Anushila Chatterjee
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA; .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
14
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Proteomic Characterization of Bacteriophage Peptides from the Mastitis Producer Staphylococcus aureus by LC-ESI-MS/MS and the Bacteriophage Phylogenomic Analysis. Foods 2021; 10:799. [PMID: 33917943 PMCID: PMC8068337 DOI: 10.3390/foods10040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The present work describes LC-ESI-MS/MS MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses of tryptic digestion peptides from phages that infect mastitis-causing Staphylococcus aureus isolated from dairy products. A total of 1933 nonredundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 79 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, eighteen of the phage origin peptides found were specific to S. aureus strains. These diagnostic peptides could be useful for the identification and characterization of S. aureus strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides that are present in closely related phages and the existing links between bacteriophage phylogeny and the respective Staphylococcus spp. infected.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain;
| | - José-Luis R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
15
|
Fernández L, Duarte AC, Rodríguez A, García P. The relationship between the phageome and human health: are bacteriophages beneficial or harmful microbes? Benef Microbes 2021; 12:107-120. [PMID: 33789552 DOI: 10.3920/bm2020.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the context of the global antibiotic resistance crisis, bacteriophages are increasingly becoming promising antimicrobial agents against multi-resistant bacteria. Indeed, a huge effort is being made to bring phage-derived products to the market, a process that will also require revising the current regulations in order to facilitate their approval. However, despite the evidence supporting the safety of phages for humans, the general public would still be reluctant to use 'viruses' for therapeutic purposes. In this scenario, we consider that it is important to discuss the role of these microorganisms in the equilibrium of the microbiota and how this relates to human health. To do that, this review starts by examining the role of phages as key players in bacterial communities (including those that naturally inhabit the human body), modulating the species composition and contributing to maintain a 'healthy' status quo. Additionally, in specific situations, e.g. an infectious disease, bacteriophages can be used as target-specific antimicrobials against pathogenic bacteria (phage therapy), while being harmless to the desirable microbiota. Apart from that, incipient research shows the potential application of these viruses to treat diseases caused by bacterial dysbiosis. This latter application would be comparable to the use of probiotics or prebiotics, since bacteriophages can indirectly improve the growth of beneficial bacteria in the gastrointestinal tract by removing undesirable competitors. On the other hand, possible adverse effects do not appear to be an impediment to promote phage therapy. Nonetheless, it is important to remember their potentially negative impact, mainly concerning their immunogenicity or their potential spread of virulence and antibiotic resistance genes, especially by temperate phages. Overall, we believe that phages should be largely considered beneficial microbes, although it is paramount not to overlook their potential risks.
Collapse
Affiliation(s)
- L Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - A C Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - A Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - P García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
16
|
Ene A, Miller-Ensminger T, Mores CR, Giannattasio-Ferraz S, Wolfe AJ, Abouelfetouh A, Putonti C. Examination of Staphylococcus aureus Prophages Circulating in Egypt. Viruses 2021; 13:337. [PMID: 33671574 PMCID: PMC7926752 DOI: 10.3390/v13020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus infections are of growing concern given the increased incidence of antibiotic resistant strains. Egypt, like several other countries, has seen alarming increases in methicillin-resistant S. aureus (MRSA) infections. This species can rapidly acquire genes associated with resistance, as well as virulence factors, through mobile genetic elements, including phages. Recently, we sequenced 56 S. aureus genomes from Alexandria Main University Hospital in Alexandria, Egypt, complementing 17 S. aureus genomes publicly available from other sites in Egypt. In the current study, we found that the majority (73.6%) of these strains contain intact prophages, including Biseptimaviruses, Phietaviruses, and Triaviruses. Further investigation of these prophages revealed evidence of horizontal exchange of the integrase for two of the prophages. These Egyptian S. aureus prophages are predicted to encode numerous virulence factors, including genes associated with immune evasion and toxins, including the Panton-Valentine leukocidin (PVL)-associated genes lukF-PV/lukS-PV. Thus, prophages are likely to be a major contributor to the virulence of S. aureus strains in circulation in Egypt.
Collapse
Affiliation(s)
- Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA; (A.E.); (T.M.-E.)
| | - Taylor Miller-Ensminger
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA; (A.E.); (T.M.-E.)
| | - Carine R. Mores
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (C.R.M.); (A.J.W.)
| | - Silvia Giannattasio-Ferraz
- Departmento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (C.R.M.); (A.J.W.)
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 25435, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alalamein International University, Alalamein 51718, Egypt
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA; (A.E.); (T.M.-E.)
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (C.R.M.); (A.J.W.)
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
17
|
Fillol-Salom A, Miguel-Romero L, Marina A, Chen J, Penadés JR. Beyond the CRISPR-Cas safeguard: PICI-encoded innate immune systems protect bacteria from bacteriophage predation. Curr Opin Microbiol 2020; 56:52-58. [PMID: 32653777 DOI: 10.1016/j.mib.2020.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
Phage satellites are genetic elements that depend on helper phages for induction, packaging and transfer. To promote their lifestyles, they have evolved elegant and sophisticated strategies to inhibit phage reproduction, which will be reviewed here. We will principally focus on the convergent interference mechanisms used by phage-inducible chromosomal islands (PICIs), which are a family of satellite phages present in both Gram-positive and Gram-negative bacteria. While some PICI elements have been extensively studied for their roles in virulence and antibiotic resistance, recent studies have highlighted their relevance in controlling phage ecology and diversity. In many cases, these interference mechanisms are complemented by additional strategies that promote the preferential PICI packaging and dissemination of these elements in nature. Since the PICI-encoded mechanisms target conserved phage mechanisms, we propose here that the PICIs form part of the initial innate immune system that phages must overcome to infect their bacterial host.
Collapse
Affiliation(s)
- Alfred Fillol-Salom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Laura Miguel-Romero
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK; Universidad CEU Cardenal Herrera, 46113, Moncada, Spain; MRC Centre for Molecular Bacteriology and Infection, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Ibarra-Chávez R, Haag AF, Dorado-Morales P, Lasa I, Penadés JR. Rebooting Synthetic Phage-Inducible Chromosomal Islands: One Method to Forge Them All. BIODESIGN RESEARCH 2020; 2020:5783064. [PMID: 37849900 PMCID: PMC10530653 DOI: 10.34133/2020/5783064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 10/19/2023] Open
Abstract
Phage-inducible chromosomal islands (PICIs) are a widespread family of mobile genetic elements, which have an important role in bacterial pathogenesis. These elements mobilize among bacterial species at extremely high frequencies, representing an attractive tool for the delivery of synthetic genes. However, tools for their genetic manipulation are limited and timing consuming. Here, we have adapted a synthetic biology approach for rapidly editing of PICIs in Saccharomyces cerevisiae based on their ability to excise and integrate into the bacterial chromosome of their cognate host species. As proof of concept, we engineered several PICIs from Staphylococcus aureus and Escherichia coli and validated this methodology for the study of the biology of these elements by generating multiple and simultaneous mutations in different PICI genes. For biotechnological purposes, we also synthetically constructed PICIs as Trojan horses to deliver different CRISPR-Cas9 systems designed to either cure plasmids or eliminate cells carrying the targeted genes. Our results demonstrate that the strategy developed here can be employed universally to study PICIs and enable new approaches for diagnosis and treatment of bacterial diseases.
Collapse
Affiliation(s)
- Rodrigo Ibarra-Chávez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andreas F. Haag
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pedro Dorado-Morales
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra-Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra-Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - José R. Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Hays SG, Seed KD. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 2020; 9:e53200. [PMID: 32329714 PMCID: PMC7182436 DOI: 10.7554/elife.53200] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
20
|
Abstract
Here we introduce methods for the detection, enumeration, and isolation of bacteriophages from Escherichia coli. In bacteria, horizontal gene transfer may be mediated by virulent and temperate phages. Strict virulent phages, able to propagate in a suitable strain following the lytic pathway, can be isolated directly from different natural environments. In temperate phages, the lytic cycle must be activated, and phages are detected after their induction. In both cases, detection is based on the production of visible plaques in a confluent lawn of the host strain using a double agar layer method. Further purification and characterization are achieved by density gradients, electron microscopy studies, and genomic analysis. This straightforward methodology can be applied to the detection, enumeration, and isolation of bacteriophages from any bacterial species, using the appropriate host strain, media, and culture conditions.
Collapse
Affiliation(s)
- Juan Jofre
- Department of Microbiology, University of Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Evolution of satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria. Nat Commun 2019; 10:5809. [PMID: 31863068 PMCID: PMC6925257 DOI: 10.1038/s41467-019-13709-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023] Open
Abstract
Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species. Here we report that laboratory populations of Escherichia coli with a newly acquired IncQ plasmid often evolve 'satellite plasmids' with deletions of accessory genes and genes required for plasmid replication. Satellite plasmids are molecular parasites: their presence reduces the copy number of the full-length plasmid on which they rely for their continued replication. Cells with satellite plasmids gain an immediate fitness advantage from reducing burdensome expression of accessory genes. Yet, they maintain copies of these genes and the complete plasmid, which potentially enables them to benefit from and transmit the traits they encode in the future. Evolution of satellite plasmids is transient. Cells that entirely lose accessory gene function or plasmid mobility dominate in the long run. Satellite plasmids also evolve in Snodgrassella alvi colonizing the honey bee gut, suggesting that this mechanism may broadly contribute to the importance of IncQ plasmids as agents of bacterial gene transfer in nature.
Collapse
|
22
|
Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun 2019; 10:4852. [PMID: 31649284 PMCID: PMC6813308 DOI: 10.1038/s41467-019-12825-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Prophages (viral genomes integrated within a host bacterial genome) can confer various phenotypic traits to their hosts, such as enhanced pathogenicity. Here we analyse >1300 genomes of 70 different Streptococcus species and identify nearly 800 prophages and satellite prophages (prophages that do not encode their own structural components but rely on the bacterial host and another helper prophage for survival). We show that prophages and satellite prophages are widely distributed among streptococci in a structured manner, and constitute two distinct entities with little effective genetic exchange between them. Cross-species transmission of prophages is not uncommon. Furthermore, a satellite prophage is associated with virulence in a mouse model of Streptococcus pneumoniae infection. Our findings highlight the potential importance of prophages in streptococcal biology and pathogenesis. Prophages are viral genomes integrated within bacterial genomes. Here, Rezaei Javan et al. identify nearly 800 prophages and satellite prophages in > 1300 Streptococcus genomes, and show that a satellite prophage is associated with virulence in a mouse model of pneumococcal infection.
Collapse
Affiliation(s)
| | | | - Asma Akter
- Department of Medicine, Imperial College London, London, UK
| | - Jeremy Brown
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Angela B Brueggemann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK. .,Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
HDX and Native Mass Spectrometry Reveals the Different Structural Basis for Interaction of the Staphylococcal Pathogenicity Island Repressor Stl with Dimeric and Trimeric Phage dUTPases. Biomolecules 2019; 9:biom9090488. [PMID: 31540005 PMCID: PMC6770826 DOI: 10.3390/biom9090488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/16/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
The dUTPase enzyme family plays an essential role in maintaining the genome integrity and are represented by two distinct classes of proteins; the β-pleated homotrimeric and the all-α homodimeric dUTPases. Representatives of both trimeric and dimeric dUTPases are encoded by Staphylococcus aureus phage genomes and have been shown to interact with the Stl repressor protein of S. aureus pathogenicity island SaPIbov1. In the present work we set out to characterize the interactions between these proteins based on a range of biochemical and biophysical methods and shed light on the binding mechanism of the dimeric φNM1 phage dUTPase and Stl. Using hydrogen deuterium exchange mass spectrometry, we also characterize the protein regions involved in the dUTPase:Stl interactions. Based on these results we provide reasonable explanation for the enzyme inhibitory effect of Stl observed in both types of complexes. Our experiments reveal that Stl employs different peptide segments and stoichiometry for the two different phage dUTPases which allows us to propose a functional plasticity of Stl. The malleable character of Stl serves as a basis for the inhibition of both dimeric and trimeric dUTPases.
Collapse
|
24
|
Ciges-Tomas JR, Alite C, Humphrey S, Donderis J, Bowring J, Salvatella X, Penadés JR, Marina A. The structure of a polygamous repressor reveals how phage-inducible chromosomal islands spread in nature. Nat Commun 2019; 10:3676. [PMID: 31417084 PMCID: PMC6695447 DOI: 10.1038/s41467-019-11504-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
Stl is a master repressor encoded by Staphylococcus aureus pathogenicity islands (SaPIs) that maintains integration of these elements in the bacterial chromosome. After infection or induction of a resident helper phage, SaPIs are de-repressed by specific interactions of phage proteins with Stl. SaPIs have evolved a fascinating mechanism to ensure their promiscuous transfer by targeting structurally unrelated proteins performing identically conserved functions for the phage. Here we decipher the molecular mechanism of this elegant strategy by determining the structure of SaPIbov1 Stl alone and in complex with two structurally unrelated dUTPases from different S. aureus phages. Remarkably, SaPIbov1 Stl has evolved different domains implicated in DNA and partner recognition specificity. This work presents the solved structure of a SaPI repressor protein and the discovery of a modular repressor that acquires multispecificity through domain recruiting. Our results establish the mechanism that allows widespread dissemination of SaPIs in nature.
Collapse
Affiliation(s)
- J Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
| | - Christian Alite
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - J Donderis
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
| | - Janine Bowring
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Xavier Salvatella
- ICREA and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08010, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain.
| |
Collapse
|
25
|
Fitness Restoration of a Genetically Tractable Enterococcus faecalis V583 Derivative To Study Decoration-Related Phenotypes of the Enterococcal Polysaccharide Antigen. mSphere 2019; 4:4/4/e00310-19. [PMID: 31292230 PMCID: PMC6620374 DOI: 10.1128/msphere.00310-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
E. faecalis strain VE14089 was derived from V583 cured of its plasmids. Although VE14089 had no major DNA rearrangements, it presented significant growth and host adaptation differences from the reference strain V583 of our collection. To construct a strain with better fitness, we sequenced the genome of VE14089, identified single nucleotide polymorphisms (SNPs), and repaired the genes that could account for these changes. Using this reference-derivative strain, we provide a novel genetic system to understand the role of the variable region of epa in the enterococcal lifestyle. Commensal and generally harmless in healthy individuals, Enterococcus faecalis causes opportunistic infections in immunocompromised patients. Plasmid-cured E. faecalis strain VE14089, derived from sequenced reference strain V583, is widely used for functional studies due to its improved genetic amenability. Although strain VE14089 has no major DNA rearrangements, with the exception of an ∼20-kb integrated region of pTEF1 plasmid, the strain presented significant growth differences from the V583 reference strain of our collection (renamed VE14002). In the present study, genome sequencing of strain VE14089 identified additional point mutations. Excision of the integrated pTEF1 plasmid region and sequential restoration of wild-type alleles showing nonsilent mutations were performed to obtain the VE18379 reference-derivative strain. Recovery of the growth ability of the restored VE18379 strain at a level similar to that seen with the reference strain points to GreA and Spx as bacterial fitness determinants. Virulence potential in Galleria mellonella and intestinal colonization in mouse demonstrated host adaptation of the VE18379 strain equivalent to VE14002 host adaptation. We further demonstrated that deletion of the 16.8-kb variable region of the epa locus recapitulates the key role of Epa decoration in host adaptation, providing a genetic system to study the role of specific epa-variable regions in host adaptation independently of other genetic variations. IMPORTANCEE. faecalis strain VE14089 was derived from V583 cured of its plasmids. Although VE14089 had no major DNA rearrangements, it presented significant growth and host adaptation differences from the reference strain V583 of our collection. To construct a strain with better fitness, we sequenced the genome of VE14089, identified single nucleotide polymorphisms (SNPs), and repaired the genes that could account for these changes. Using this reference-derivative strain, we provide a novel genetic system to understand the role of the variable region of epa in the enterococcal lifestyle.
Collapse
|
26
|
Abstract
Bacteria in the genus Staphylococcus are important targets for phage therapy due to their prevalence as pathogens and increasing antibiotic resistance. Here we review Staphylococcus outer surface features and specific phage resistance mechanisms that define the host range, the set of strains that an individual phage can potentially infect. Phage infection goes through five distinct phases: attachment, uptake, biosynthesis, assembly, and lysis. Adsorption inhibition, encompassing outer surface teichoic acid receptor alteration, elimination, or occlusion, limits successful phage attachment and entry. Restriction-modification systems (in particular, type I and IV systems), which target phage DNA inside the cell, serve as the major barriers to biosynthesis as well as transduction and horizontal gene transfer between clonal complexes and species. Resistance to late stages of infection occurs through mechanisms such as assembly interference, in which staphylococcal pathogenicity islands siphon away superinfecting phage proteins to package their own DNA. While genes responsible for teichoic acid biosynthesis, capsule, and restriction-modification are found in most Staphylococcus strains, a variety of other host range determinants (e.g., clustered regularly interspaced short palindromic repeats, abortive infection, and superinfection immunity) are sporadic. The fitness costs of phage resistance through teichoic acid structure alteration could make staphylococcal phage therapies promising, but host range prediction is complex because of the large number of genes involved, and the roles of many of these are unknown. In addition, little is known about the genetic determinants that contribute to host range expansion in the phages themselves. Future research must identify host range determinants, characterize resistance development during infection and treatment, and examine population-wide genetic background effects on resistance selection.
Collapse
Affiliation(s)
- Abraham G Moller
- Program in Microbiology and Molecular Genetics (MMG), Graduate Division of Biological and Biomedical Sciences (GDBBS), Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jodi A Lindsay
- Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Novick RP. Pathogenicity Islands and Their Role in Staphylococcal Biology. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0062-2019. [PMID: 31172913 PMCID: PMC11257176 DOI: 10.1128/microbiolspec.gpp3-0062-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
Pathogenicity islands are members of a vast collection of genomic islands that encode important virulence, antibiotic resistance and other accessory functions and have a critical role in bacterial gene transfer. Staphylococcus aureus is host to a large family of such islands, known as SaPIs, which encode super antigen and other virulence determinants, are mobilized by helper phages and transferred at extremely high frequencies. They benefit their host cells by interfering with phage predation and enhancing horizontal gene transfer. This chapter describes their life cycle, the bases of their phage interference mechanisms, their transfer system and their conversion to antibacterial agents for treatment ofstaphylococcal infections.
Collapse
Affiliation(s)
- Richard P Novick
- NYU School of Medicine, Skirball Institute of Biomolecular Medicine and Departments of Medicine and Microbiology, New York, NY 10016
| |
Collapse
|
28
|
Mobilisation Mechanism of Pathogenicity Islands by Endogenous Phages in Staphylococcus aureus clinical strains. Sci Rep 2018; 8:16742. [PMID: 30425253 PMCID: PMC6233219 DOI: 10.1038/s41598-018-34918-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/16/2018] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are a type of mobile genetic element that play a significant role in the pathogenesis and virulence of this microorganism. SaPIs are integrated in the chromosome under the control of the master repressor Stl, but they can be horizontally transferred at a high frequency due to certain bacteriophages. Thus, a phage protein can bind to the SaPI Stl and induce the SaPI cycle, spreading the SaPI virulence factors to other bacterial populations. We report the dissemination mechanism of SaPIs mediated by endogenous prophages in S. aureus clinical strains. We reveal the induction of SaPIs by a co-resident prophage in seven clinically relevant strains, and we further study this mechanism in MW2, a community-acquired methicillin-resistant S. aureus strain that contains two bacteriophages (ɸSa2mw and ɸSa3mw) and one SaPI (SaPImw2) encoding for three enterotoxins (sec, sel and ear). ɸSa2mw was identified as responsible for SaPImw2 induction, and the specific phage derepressor protein DUF3113 was determined. The Stl-DUF3113 protein interaction was demonstrated, along with the existence of variants of this protein in S. aureus phages with different abilities to induce SaPI. Both Stl and DUF3113 are present in other Staphylococcus species, which indicates that this is a generalised mechanism.
Collapse
|
29
|
Fillol-Salom A, Martínez-Rubio R, Abdulrahman RF, Chen J, Davies R, Penadés JR. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. THE ISME JOURNAL 2018; 12:2114-2128. [PMID: 29875435 PMCID: PMC6092414 DOI: 10.1038/s41396-018-0156-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/20/2018] [Accepted: 05/01/2018] [Indexed: 11/15/2022]
Abstract
Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a universal class of mobile genetic elements.
Collapse
Affiliation(s)
- Alfred Fillol-Salom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Roser Martínez-Rubio
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113, Moncada, Valencia, Spain
| | - Rezheen F Abdulrahman
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, Singapore
| | - Robert Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
30
|
Anti-phage islands force their target phage to directly mediate island excision and spread. Nat Commun 2018; 9:2348. [PMID: 29904071 PMCID: PMC6002521 DOI: 10.1038/s41467-018-04786-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, is antagonized by the lytic phage ICP1 in the aquatic environment and in human hosts. Mobile genetic elements called PLEs (phage-inducible chromosomal island-like elements) protect V. cholerae from ICP1 infection and initiate their anti-phage response by excising from the chromosome. Here, we show that PLE 1 encodes a large serine recombinase, Int, that exploits an ICP1-specific protein as a recombination directionality factor (RDF) to excise PLE 1 in response to phage infection. We show that this phage-encoded protein is sufficient to direct Int-mediated recombination in vitro and that it is highly conserved in all sequenced ICP1 genomes. Our results uncover an aspect of the molecular specificity underlying the conflict between a single predatory phage and V. cholerae PLE and contribute to our understanding of long-term evolution between phage and their bacterial hosts. Mobile genetic elements called PLEs protect Vibrio cholerae from infection with phage ICP1 by unclear mechanisms. Here, McKitterick and Seed show that a PLE-encoded large serine recombinase exploits an ICP1 protein as a recombination directionality factor to excise this PLE in response to phage infection.
Collapse
|
31
|
Rodríguez-Rubio L, Jofre J, Muniesa M. Is Genetic Mobilization Considered When Using Bacteriophages in Antimicrobial Therapy? Antibiotics (Basel) 2017; 6:antibiotics6040032. [PMID: 29206153 PMCID: PMC5745475 DOI: 10.3390/antibiotics6040032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
The emergence of multi-drug resistant bacteria has undermined our capacity to control bacterial infectious diseases. Measures needed to tackle this problem include controlling the spread of antibiotic resistance, designing new antibiotics, and encouraging the use of alternative therapies. Phage therapy seems to be a feasible alternative to antibiotics, although there are still some concerns and legal issues to overcome before it can be implemented on a large scale. Here we highlight some of those concerns, especially those related to the ability of bacteriophages to transport bacterial DNA and, in particular, antibiotic resistance genes.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Joan Jofre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
32
|
Carpena N, Manning KA, Dokland T, Marina A, Penadés JR. Convergent evolution of pathogenicity islands in helper cos phage interference. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0505. [PMID: 27672154 PMCID: PMC5052747 DOI: 10.1098/rstb.2015.0505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are phage satellites that exploit the life cycle of their helper phages for their own benefit. Most SaPIs are packaged by their helper phages using a headful (pac) packaging mechanism. These SaPIs interfere with pac phage reproduction through a variety of strategies, including the redirection of phage capsid assembly to form small capsids, a process that depends on the expression of the SaPI-encoded cpmA and cpmB genes. Another SaPI subfamily is induced and packaged by cos-type phages, and although these cos SaPIs also block the life cycle of their inducing phages, the basis for this mechanism of interference remains to be deciphered. Here we have identified and characterized one mechanism by which the SaPIs interfere with cos phage reproduction. This mechanism depends on a SaPI-encoded gene, ccm, which encodes a protein involved in the production of small isometric capsids, compared with the prolate helper phage capsids. As the Ccm and CpmAB proteins are completely unrelated in sequence, this strategy represents a fascinating example of convergent evolution. Moreover, this result also indicates that the production of SaPI-sized particles is a widespread strategy of phage interference conserved during SaPI evolution. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Nuria Carpena
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
33
|
Novick RP, Ram G. Staphylococcal pathogenicity islands-movers and shakers in the genomic firmament. Curr Opin Microbiol 2017; 38:197-204. [PMID: 29100762 DOI: 10.1016/j.mib.2017.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
The staphylococcal pathogenicity islands (SaPIs) are highly mobile 15kb genomic islands that carry superantigen genes and other virulence factors and are mobilized by helper phages. Helper phages counteract the SaPI repressor to induce the SaPI replication cycle, resulting in encapsidation in phage like particles, enabling high frequency transfer. The SaPIs split from a protophage lineage in the distant past, have evolved a variety of novel and salient features, and have become an invaluable component of the staphylococcal genome. This review focuses on recent studies describing three different mechanisms of SaPI interference with helper phage reproduction and other studies demonstrating that helper phage mutations to resistance against this interference impact phage evolution. Also described are recent results showing that SaPIs contribute in a major way to lateral transfer of host genes as well as enabling their own transfer. SaPI-like elements, readily identifiable in the bacterial genome, are widespread throughout the Gram-positive cocci, though functionality has thus far been demonstrated for only a single one of these.
Collapse
Affiliation(s)
- Richard P Novick
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, Departments of Medicine and Microbiology, 540 First Ave., New York, NY 10016, USA.
| | - Geeta Ram
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, Departments of Medicine and Microbiology, 540 First Ave., New York, NY 10016, USA
| |
Collapse
|
34
|
Alite C, Humphrey S, Donderis J, Maiques E, Ciges-Tomas JR, Penadés JR, Marina A. Dissecting the link between the enzymatic activity and the SaPI inducing capacity of the phage 80α dUTPase. Sci Rep 2017; 7:11234. [PMID: 28894239 PMCID: PMC5593958 DOI: 10.1038/s41598-017-11234-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
The trimeric staphylococcal phage-encoded dUTPases (Duts) are signalling molecules that induce the cycle of some Staphylococcal pathogenicity islands (SaPIs) by binding to the SaPI-encoded Stl repressor. To perform this regulatory role, these Duts require an extra motif VI, as well as the Dut conserved motifs IV and V. While the apo form of Dut is required for the interaction with the Stl repressor, usually only those Duts with normal enzymatic activity can induce the SaPI cycle. To understand the link between the enzymatic activities and inducing capacities of the Dut protein, we analysed the structural, biochemical and physiological characteristics of the Dut80α D95E mutant, which loses the SaPI cycle induction capacity despite retaining enzymatic activity. Asp95 is located at the threefold central channel of the trimeric Dut where it chelates a divalent ion. Here, using state-of-the-art techniques, we demonstrate that D95E mutation has an epistatic effect on the motifs involved in Stl binding. Thus, ion binding in the central channel correlates with the capacity of motif V to twist and order in the SaPI-inducing disposition, while the tip of motif VI is disturbed. These alterations in turn reduce the affinity for the Stl repressor and the capacity to induce the SaPI cycle.
Collapse
Affiliation(s)
- Christian Alite
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jordi Donderis
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain
| | - Elisa Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain.,Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46115, Alfara del Patriarca, Valencia, Spain
| | - J Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010, Valencia, Spain.
| |
Collapse
|
35
|
Donderis J, Bowring J, Maiques E, Ciges-Tomas JR, Alite C, Mehmedov I, Tormo-Mas MA, Penadés JR, Marina A. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization. PLoS Pathog 2017; 13:e1006581. [PMID: 28892519 PMCID: PMC5608427 DOI: 10.1371/journal.ppat.1006581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/21/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules.
Collapse
Affiliation(s)
- Jorge Donderis
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Janine Bowring
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elisa Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - J. Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Christian Alite
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Iltyar Mehmedov
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - María Angeles Tormo-Mas
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| | - José R. Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (AM); (JRP)
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- * E-mail: (AM); (JRP)
| |
Collapse
|
36
|
Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Cell Host Microbe 2017; 22:343-353.e3. [PMID: 28826839 DOI: 10.1016/j.chom.2017.07.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022]
Abstract
CRISPR loci are a cluster of repeats separated by short "spacer" sequences derived from prokaryotic viruses and plasmids that determine the targets of the host's CRISPR-Cas immune response against its invaders. For type I and II CRISPR-Cas systems, single-nucleotide mutations in the seed or protospacer adjacent motif (PAM) of the target sequence cause immune failure and allow viral escape. This is overcome by the acquisition of multiple spacers that target the same invader. Here we show that targeting by the Staphylococcus epidermidis type III-A CRISPR-Cas system does not require PAM or seed sequences, and thus prevents viral escape via single-nucleotide substitutions. Instead, viral escapers can only arise through complete target deletion. Our work shows that, as opposed to type I and II systems, the relaxed specificity of type III CRISPR-Cas targeting provides robust immune responses that can lead to viral extinction with a single spacer targeting an essential phage sequence.
Collapse
|
37
|
Bowring J, Neamah MM, Donderis J, Mir-Sanchis I, Alite C, Ciges-Tomas JR, Maiques E, Medmedov I, Marina A, Penadés JR. Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer. eLife 2017; 6:26487. [PMID: 28826473 PMCID: PMC5779228 DOI: 10.7554/elife.26487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/07/2017] [Indexed: 11/15/2022] Open
Abstract
Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature’s most fascinating subcellular parasites. Many harmful microbes can produce different molecules that make them more effective in causing and spreading diseases. These molecules can also be obtained from ‘mobile genetic elements’ that can be transferred between bacteria within a population. Pathogenicity islands are one such type of mobile genetic element and are very common among bacteria known as staphylococci. They spread toxin-encoding genes between bacteria, including one that can lead to a condition called toxic shock syndrome in humans. Pathogenicity islands are normally found within the DNA of the bacteria, where they are deactivated by specific repressor proteins. However, in the presence of another type of mobile genetic element – the bacteriophages – the repressor proteins start to interact with specific proteins encoded by the bacteriophages. This allows the pathogenicity islands to become active and spread to other bacteria. Previous research has shown that in the bacterium known as Staphylococcus aureus, different pathogenicity islands have different repressors. Scientists therefore assumed that the repressors are only able to interact with certain bacteriophage proteins. However, since pathogenicity islands are widespread in nature, it could be possible that they use other ways to hijack the bacteriophage machinery to ensure their transfer. To test this hypothesis, Bowring et al. studied two types of pathogenicity islands in S. aureus and revealed that their two different repressors did not interact with specific bacteriophage proteins as previously hypothesized. Instead, each repressor could interact with multiple bacteriophage proteins that had a variety of different structures, including proteins from completely different bacteriophages. Bowring et al. also discovered that each of the analyzed repressor proteins did not actually recognize any specific shared structural features on the bacteriophage proteins, but rather evolved to target proteins that play the same role in various bacteriophages. This suggests the repressors target a specific process rather than a single protein. This strategy allows them to be transferred within the same species, but also between different ones. A next step will be to better understand how a repressor can recognize structurally unrelated proteins, and establish what evolutionary forces are driving this phenomenon. A deeper knowledge of how pathogenicity islands spread between staphylococci is vital to understand how these bacteria can become resistant to treatments such as antibiotics.
Collapse
Affiliation(s)
- Janine Bowring
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maan M Neamah
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Jorge Donderis
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - Ignacio Mir-Sanchis
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Christian Alite
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - J Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - Elisa Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain.,Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Iltyar Medmedov
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
38
|
A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLoS Genet 2017; 13:e1006838. [PMID: 28594826 PMCID: PMC5481146 DOI: 10.1371/journal.pgen.1006838] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/22/2017] [Accepted: 05/23/2017] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements) are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin) respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution. Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae is commonly recovered from patient samples with predatory bacteriophages (phages), which impose strong selective pressure favoring phage resistant strains over their vulnerable counterparts. Here, we investigated the activity of PLEs (phage-inducible chromosomal island-like elements), a novel group of mobile genetic elements that have contributed to phage resistance in V. cholerae over the last 60 years. Surprisingly, we found that PLEs are protective against a single, prevalent phage type. We found that PLE activity reduces phage genome replication and accelerates the kinetics of bacterial cell lysis. Our study shows that mobile genetic elements play a key role in phage resistance in successful epidemic V. cholerae.
Collapse
|
39
|
Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr Opin Microbiol 2017; 38:95-105. [PMID: 28600959 DOI: 10.1016/j.mib.2017.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023]
Abstract
Efforts to identify and characterize strategies for horizontal gene transfer (HGT) in prokaryotes could have overlooked some mechanisms that do not entirely fit in with the canonical ones most often described (conjugation of plasmids, phage transduction and transformation). The difficulty in distinguishing the different HGT strategies could have contributed to underestimate their real extent. Here we review non classical HGT strategies: some that require mobile genetic elements (MGEs) and others independent of MGE. Among those strategies that require MGEs, there is a range of newly reported, hybrid and intermediate MGEs mobilizing only their own DNA, others that mobilize preferentially bacterial DNA, or both. Considering HGT strategies independent of MGE, a few are even not restricted to DNA transfer, but can also mobilize other molecules. This review considers those HGT strategies that are less commonly dealt with in the literature. The real impact of these elements could, in some conditions, be more relevant than previously thought.
Collapse
|
40
|
Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G, Smyth D, Chen J, Novick RP, Penadés JR. Phage-inducible islands in the Gram-positive cocci. ISME JOURNAL 2016; 11:1029-1042. [PMID: 27959343 DOI: 10.1038/ismej.2016.163] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci.
Collapse
Affiliation(s)
- Roser Martínez-Rubio
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Moncada, Spain
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Miguel Martí
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Castellón, Spain
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Geeta Ram
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - Davida Smyth
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard P Novick
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - José R Penadés
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Moncada, Spain.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
41
|
Two Inducible Prophages of an Antarctic Pseudomonas sp. ANT_H14 Use the Same Capsid for Packaging Their Genomes - Characterization of a Novel Phage Helper-Satellite System. PLoS One 2016; 11:e0158889. [PMID: 27387973 PMCID: PMC4936722 DOI: 10.1371/journal.pone.0158889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Two novel prophages ФAH14a and ФAH14b of a psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H14 have been characterized. They were simultaneously induced with mitomycin C and packed into capsids of the same size and protein composition. The genome sequences of ФAH14a and ФAH14b have been determined. ФAH14b, the phage with a smaller genome (16,812 bp) seems to parasitize ФAH14a (55,060 bp) and utilizes its capsids, as only the latter encodes a complete set of structural proteins. Both viruses probably constitute a phage helper-satellite system, analogous to the P2-P4 duo. This study describes the architecture and function of the ФAH14a and ФAH14b genomes. Moreover, a functional analysis of a ФAH14a-encoded lytic enzyme and a DNA methyltransferase was performed. In silico analysis revealed the presence of the homologs of ФAH14a and ФAH14b in other Pseudomonas genomes, which may suggest that helper-satellite systems related to the one described in this work are common in pseudomonads.
Collapse
|
42
|
Maiques E, Quiles-Puchalt N, Donderis J, Ciges-Tomas JR, Alite C, Bowring JZ, Humphrey S, Penadés JR, Marina A. Another look at the mechanism involving trimeric dUTPases in Staphylococcus aureus pathogenicity island induction involves novel players in the party. Nucleic Acids Res 2016; 44:5457-69. [PMID: 27112567 PMCID: PMC4914113 DOI: 10.1093/nar/gkw317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/13/2016] [Indexed: 12/14/2022] Open
Abstract
We have recently proposed that the trimeric staphylococcal phage encoded dUTPases (Duts) are signaling molecules that act analogously to eukaryotic G-proteins, using dUTP as a second messenger. To perform this regulatory role, the Duts require their characteristic extra motif VI, present in all the staphylococcal phage coded trimeric Duts, as well as the strongly conserved Dut motif V. Recently, however, an alternative model involving Duts in the transfer of the staphylococcal islands (SaPIs) has been suggested, questioning the implication of motifs V and VI. Here, using state-of the-art techniques, we have revisited the proposed models. Our results confirm that the mechanism by which the Duts derepress the SaPI cycle depends on dUTP and involves both motifs V and VI, as we have previously proposed. Surprisingly, the conserved Dut motif IV is also implicated in SaPI derepression. However, and in agreement with the proposed alternative model, the dUTP inhibits rather than inducing the process, as we had initially proposed. In summary, our results clarify, validate and establish the mechanism by which the Duts perform regulatory functions.
Collapse
Affiliation(s)
- Elisa Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Nuria Quiles-Puchalt
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jorge Donderis
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - J Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Christian Alite
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Janine Z Bowring
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| |
Collapse
|
43
|
Novick RP, Ram G. The Floating (Pathogenicity) Island: A Genomic Dessert. Trends Genet 2016; 32:114-126. [PMID: 26744223 PMCID: PMC4733582 DOI: 10.1016/j.tig.2015.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022]
Abstract
Among the prokaryotic genomic islands (GIs) involved in horizontal gene transfer (HGT) are the classical pathogenicity islands, including the integrative and conjugative elements (ICEs), the gene-transfer agents (GTAs), and the staphylococcal pathogenicity islands (SaPIs), the primary focus of this review. While the ICEs and GTAs mediate HGT autonomously, the SaPIs are dependent on specific phages. The ICEs transfer primarily their own DNA, the GTAs exclusively transfer unlinked host DNA, and the SaPIs combine the capabilities of both. Thus the SaPIs derive their importance from the genes they carry (their genetic cargo) and the genes they move. They act not only as versatile high-frequency mobilizers but also as mediators of phage interference and consequently are major benefactors of their host bacteria.
Collapse
Affiliation(s)
- Richard P Novick
- Department of Medicine, Skirball Institute, New York University Medical School, New York, NY 10016, USA; Department of Microbiology, Skirball Institute, New York University Medical School, New York, NY 10016, USA.
| | - Geeta Ram
- Department of Medicine, Skirball Institute, New York University Medical School, New York, NY 10016, USA; Department of Microbiology, Skirball Institute, New York University Medical School, New York, NY 10016, USA
| |
Collapse
|