1
|
Gardeux V, Bevers RPJ, David FPA, Rosschaert E, Rochepeau R, Deplancke B. DGRPool, a web tool leveraging harmonized Drosophila Genetic Reference Panel phenotyping data for the study of complex traits. eLife 2024; 12:RP88981. [PMID: 39431984 PMCID: PMC11493408 DOI: 10.7554/elife.88981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Genome-wide association studies have advanced our understanding of complex traits, but studying how a GWAS variant can affect a specific trait in the human population remains challenging due to environmental variability. Drosophila melanogaster is in this regard an excellent model organism for studying the relationship between genetic and phenotypic variation due to its simple handling, standardized growth conditions, low cost, and short lifespan. The Drosophila Genetic Reference Panel (DGRP) in particular has been a valuable tool for studying complex traits, but proper harmonization and indexing of DGRP phenotyping data is necessary to fully capitalize on this resource. To address this, we created a web tool called DGRPool (dgrpool.epfl.ch), which aggregates phenotyping data of 1034 phenotypes across 135 DGRP studies in a common environment. DGRPool enables users to download data and run various tools such as genome-wide (GWAS) and phenome-wide (PheWAS) association studies. As a proof-of-concept, DGRPool was used to study the longevity phenotype and uncovered both established and unexpected correlations with other phenotypes such as locomotor activity, starvation resistance, desiccation survival, and oxidative stress resistance. DGRPool has the potential to facilitate new genetic and molecular insights of complex traits in Drosophila and serve as a valuable, interactive tool for the scientific community.
Collapse
Affiliation(s)
- Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Roel PJ Bevers
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Fabrice PA David
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Bioinformatics Competence Center, EPFLLausanneSwitzerland
| | - Emily Rosschaert
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Behavioral and Developmental Genetics, Center for Human Genetics, KU LeuvenLeuvenBelgium
| | - Romain Rochepeau
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
2
|
Sollazzo G, Nikolouli K, Gouvi G, Aumann RA, Schetelig MF, Bourtzis K. Deep orange gene editing triggers temperature-sensitive lethal phenotypes in Ceratitis capitata. BMC Biotechnol 2024; 24:7. [PMID: 38302991 PMCID: PMC10835909 DOI: 10.1186/s12896-024-00832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The Mediterranean fruit fly, Ceratitis capitata, is a significant agricultural pest managed through area-wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only releases increase the efficiency and cost-effectiveness of SIT programs, which can be achieved through the development of genetic sexing strains (GSS). The most successful GSS developed to date is the C. capitata VIENNA 8 GSS, constructed using classical genetic approaches and an irradiation-induced translocation with two selectable markers: the white pupae (wp) and temperature-sensitive lethal (tsl) genes. However, currently used methods for selecting suitable markers and inducing translocations are stochastic and non-specific, resulting in a laborious and time-consuming process. Recent efforts have focused on identifying the gene(s) and the causal mutation(s) for suitable phenotypes, such as wp and tsl, which could be used as selectable markers for developing a generic approach for constructing GSS. The wp gene was recently identified, and efforts have been initiated to identify the tsl gene. This study investigates Ceratitis capitata deep orange (Ccdor) as a tsl candidate gene and its potential to induce tsl phenotypes. RESULTS An integrated approach based on cytogenetics, genomics, bioinformatics, and gene editing was used to characterize the Ccdor. Its location was confirmed on the right arm of chromosome 5 in the putative tsl genomic region. Knock-out of Ccdor using CRISPR/Cas9-NHEJ and targeting the fourth exon resulted in lethality at mid- and late-pupal stage, while the successful application of CRISPR HDR introducing a point mutation on the sixth exon resulted in the establishment of the desired strain and two additional strains (dor 12del and dor 51dup), all of them expressing tsl phenotypes and presenting no (or minimal) fitness cost when reared at 25 °C. One of the strains exhibited complete lethality when embryos were exposed at 36 °C. CONCLUSIONS Gene editing of the deep orange gene in Ceratitis capitata resulted in the establishment of temperature-sensitive lethal mutant strains. The induced mutations did not significantly affect the rearing efficiency of the strains. As deep orange is a highly conserved gene, these data suggest that it can be considered a target for the development of tsl mutations which could potentially be used to develop novel genetic sexing strains in insect pests and disease vectors.
Collapse
Affiliation(s)
- Germano Sollazzo
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Friedensstrasse 1, Seibersdorf, 2444, Austria
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchesterstr. 2, Gießen, 35394, Germany
- Present address: Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, Imperial College Road, London, SW7 2AZ, UK
| | - Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Friedensstrasse 1, Seibersdorf, 2444, Austria
| | - Georgia Gouvi
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Friedensstrasse 1, Seibersdorf, 2444, Austria
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 G. Seferi St., Agrinio, 30100, Greece
- Present address: Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, Imperial College Road, London, SW7 2AZ, UK
| | - Roswitha A Aumann
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchesterstr. 2, Gießen, 35394, Germany
| | - Marc F Schetelig
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchesterstr. 2, Gießen, 35394, Germany.
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Friedensstrasse 1, Seibersdorf, 2444, Austria.
| |
Collapse
|
3
|
Abidi SNF, Hsu FTY, Smith-Bolton RK. Regenerative growth is constrained by brain tumor to ensure proper patterning in Drosophila. PLoS Genet 2023; 19:e1011103. [PMID: 38127821 PMCID: PMC10769103 DOI: 10.1371/journal.pgen.1011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Some animals respond to injury by inducing new growth to regenerate the lost structures. This regenerative growth must be carefully controlled and constrained to prevent aberrant growth and to allow correct organization of the regenerating tissue. However, the factors that restrict regenerative growth have not been identified. Using a genetic ablation system in the Drosophila wing imaginal disc, we have identified one mechanism that constrains regenerative growth, impairment of which also leads to erroneous patterning of the final appendage. Regenerating discs with reduced levels of the RNA-regulator Brain tumor (Brat) exhibit enhanced regeneration, but produce adult wings with disrupted margins that are missing extensive tracts of sensory bristles. In these mutants, aberrantly high expression of the pro-growth factor Myc and its downstream targets likely contributes to this loss of cell-fate specification. Thus, Brat constrains the expression of pro-regeneration genes and ensures that the regenerating tissue forms the proper final structure.
Collapse
Affiliation(s)
- Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Felicity Ting-Yu Hsu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
4
|
Huang J, Su X, Jia Q, Chen H, Zeng S, Xu H. Influence of Heat Treatment on Tea Polyphenols and Their Impact on Improving Heat Tolerance in Drosophila melanogaster. Foods 2023; 12:3874. [PMID: 37893767 PMCID: PMC10606210 DOI: 10.3390/foods12203874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated the potential mechanism of action of tea polyphenols (TPs), one of the major active ingredients in tea, to enhance heat resistance in Drosophila and the attenuating effect of heat treatment of TPs on their efficacy. The results showed that TPs were able to prolong the average survival time of Drosophila under high-temperature stress (p < 0.05), but the effect of TPs in prolonging the survival time of Drosophila melanogaster was significantly reduced (p < 0.05) with increasing TP heat-treatment time until it disappeared. The composition of TPs changed after heat treatment. It was also shown that the weakening of the effect of TPs in improving the heat tolerance of Drosophila was related to the decrease in the content of catechins and phenolic acids in their fractions as well as with the increase in the content of laccase. Transcriptomic analysis showed that the effect of TPs on heat tolerance in Drosophila melanogaster was closely related to the longevity regulation pathway, the neuroactive ligand-receptor interaction signaling pathway, and the drug metabolism-cytochrome P450 pathway. Metabolomics analysis showed that the effect of TP intervention in improving the body's heat tolerance was mainly related to amino acid metabolism and energy metabolism. However, thermal processing weakened the relevance of these transcriptomes and metabolomes. The present study reveals the mechanism of action by which heat-treated TPs affect the body's heat tolerance, which is important for the development and utilization of the heat-protection function of tea.
Collapse
Affiliation(s)
- Jianfeng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (X.S.); (Q.J.); (H.C.); (S.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (X.S.); (Q.J.); (H.C.); (S.Z.)
| | - Qiyan Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (X.S.); (Q.J.); (H.C.); (S.Z.)
| | - Haoran Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (X.S.); (Q.J.); (H.C.); (S.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (X.S.); (Q.J.); (H.C.); (S.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.H.); (X.S.); (Q.J.); (H.C.); (S.Z.)
| |
Collapse
|
5
|
Fausett SR, Sandjak A, Billard B, Braendle C. Higher-order epistasis shapes natural variation in germ stem cell niche activity. Nat Commun 2023; 14:2824. [PMID: 37198172 DOI: 10.1038/s41467-023-38527-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
To study how natural allelic variation explains quantitative developmental system variation, we characterized natural differences in germ stem cell niche activity, measured as progenitor zone (PZ) size, between two Caenorhabditis elegans isolates. Linkage mapping yielded candidate loci on chromosomes II and V, and we found that the isolate with a smaller PZ size harbours a 148 bp promoter deletion in the Notch ligand, lag-2/Delta, a central signal promoting germ stem cell fate. As predicted, introducing this deletion into the isolate with a large PZ resulted in a smaller PZ size. Unexpectedly, restoring the deleted ancestral sequence in the isolate with a smaller PZ did not increase-but instead further reduced-PZ size. These seemingly contradictory phenotypic effects are explained by epistatic interactions between the lag-2/Delta promoter, the chromosome II locus, and additional background loci. These results provide first insights into the quantitative genetic architecture regulating an animal stem cell system.
Collapse
Affiliation(s)
- Sarah R Fausett
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France.
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| | - Asma Sandjak
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | |
Collapse
|
6
|
Yassin A, Gidaszewski N, Debat V, David JR. Long-term evolution of quantitative traits in the Drosophila melanogaster species subgroup. Genetica 2022; 150:343-353. [PMID: 36242716 DOI: 10.1007/s10709-022-00171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
Abstract
Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 12 route 128, 91190, Gif- sur-Yvette, France.
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France.
| | - Nelly Gidaszewski
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France
| | - Vincent Debat
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France
| | - Jean R David
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 12 route 128, 91190, Gif- sur-Yvette, France
| |
Collapse
|
7
|
Gabrawy MM, Khosravian N, Morcos GS, Morozova TV, Jezek M, Walston JD, Huang W, Abadir PM, Leips J. Genome-Wide Analysis in Drosophila Reveals the Genetic Basis of Variation in Age-Specific Physical Performance and Response to ACE Inhibition. Genes (Basel) 2022; 13:143. [PMID: 35052483 PMCID: PMC8775566 DOI: 10.3390/genes13010143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/20/2023] Open
Abstract
Despite impressive results in restoring physical performance in rodent models, treatment with renin-angiotensin system (RAS) inhibitors, such as Lisinopril, have highly mixed results in humans, likely, in part, due to genetic variation in human populations. To date, the genetic determinants of responses to drugs, such as RAS inhibitors, remain unknown. Given the complexity of the relationship between physical traits and genetic background, genomic studies which predict genotype- and age-specific responses to drug treatments in humans or vertebrate animals are difficult. Here, using 126 genetically distinct lines of Drosophila melanogaster, we tested the effects of Lisinopril on age-specific climbing speed and endurance. Our data show that functional response and sensitivity to Lisinopril treatment ranges from significant protection against physical decline to increased weakness depending on genotype and age. Furthermore, genome-wide analyses led to identification of evolutionarily conserved genes in the WNT signaling pathway as being significantly associated with variations in physical performance traits and sensitivity to Lisinopril treatment. Genetic knockdown of genes in the WNT signaling pathway, Axin, frizzled, nemo, and wingless, diminished or abolished the effects of Lisinopril treatment on climbing speed traits. Our results implicate these genes as contributors to the genotype- and age-specific effects of Lisinopril treatment and because they have orthologs in humans, they are potential therapeutic targets for improvement of resiliency. Our approach should be widely applicable for identifying genomic variants that predict age- and sex-dependent responses to any type of pharmaceutical treatment.
Collapse
Affiliation(s)
- Mariann M. Gabrawy
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; (M.M.G.); (N.K.); (G.S.M.); (M.J.)
- Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; (J.D.W.); (P.M.A.)
| | - Nick Khosravian
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; (M.M.G.); (N.K.); (G.S.M.); (M.J.)
| | - George S. Morcos
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; (M.M.G.); (N.K.); (G.S.M.); (M.J.)
| | - Tatiana V. Morozova
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA;
| | - Meagan Jezek
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; (M.M.G.); (N.K.); (G.S.M.); (M.J.)
| | - Jeremy D. Walston
- Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; (J.D.W.); (P.M.A.)
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Peter M. Abadir
- Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; (J.D.W.); (P.M.A.)
| | - Jeff Leips
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; (M.M.G.); (N.K.); (G.S.M.); (M.J.)
| |
Collapse
|
8
|
RNA-binding protein syncrip regulates starvation-induced hyperactivity in adult Drosophila. PLoS Genet 2021; 17:e1009396. [PMID: 33617535 PMCID: PMC7932510 DOI: 10.1371/journal.pgen.1009396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
How to respond to starvation determines fitness. One prominent behavioral response is increased locomotor activities upon starvation, also known as Starvation-Induced Hyperactivity (SIH). SIH is paradoxical as it promotes food seeking but also increases energy expenditure. Despite its importance in fitness, the genetic contributions to SIH as a behavioral trait remains unexplored. Here, we examined SIH in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association studies. We identified 23 significant loci, corresponding to 14 genes, significantly associated with SIH in adult Drosophila. Gene enrichment analyses indicated that genes encoding ion channels and mRNA binding proteins (RBPs) were most enriched in SIH. We are especially interested in RBPs because they provide a potential mechanism to quickly change protein expression in response to environmental challenges. Using RNA interference, we validated the role of syp in regulating SIH. syp encodes Syncrip (Syp), an RBP. While ubiquitous knockdown of syp led to semi-lethality in adult flies, adult flies with neuron-specific syp knockdown were viable and exhibited decreased SIH. Using the Temporal and Regional Gene Expression Targeting (TARGET) system, we further confirmed the role of Syp in adult neurons in regulating SIH. To determine how syp is regulated by starvation, we performed RNA-seq using the heads of flies maintained under either food or starvation conditions. RNA-seq analyses revealed that syp was alternatively spliced under starvation while its expression level was unchanged. We further generated an alternatively-spliced-exon-specific knockout (KO) line and found that KO flies showed reduced SIH. Together, this study demonstrates a significant genetic contribution to SIH as a behavioral trait, identifies syp as a SIH gene, and highlights the significance of RBPs and post-transcriptional processes in the brain in regulating behavioral responses to starvation. Animals living in the wild often face periods of starvation. How to physiologically and behaviorally respond to starvation is essential for survival. One behavioral response is Starvation-Induced Hyperactivity (SIH). We used the Drosophila melanogaster Genetic Reference Panel, derived from a wild population, to study the genetic basis of SIH. Our results show that there is a significant genetic contribution to SIH in this population, and that genes encoding RNA binding proteins (RBPs) are especially important. Using RNA interference and the TARGET system, we confirmed the role of an RBP Syp in adult neurons in SIH. Using RNA-seq and Western blotting, we found that syp was alternatively spliced under starvation while its expression level was unchanged. Further studies from syp exon-specific knockout flies showed that alternative splicing involving two exons in syp was important for SIH. Together, this study identifies syp as a SIH gene and highlights an essential role of post-transcriptional modification in regulating this behavior.
Collapse
|
9
|
Go AC, Civetta A. Hybrid Incompatibilities and Transgressive Gene Expression Between Two Closely Related Subspecies of Drosophila. Front Genet 2020; 11:599292. [PMID: 33362859 PMCID: PMC7758320 DOI: 10.3389/fgene.2020.599292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Genome-wide assays of expression between species and their hybrids have identified genes that become either over- or underexpressed relative to the parental species (i.e., transgressive). Transgressive expression in hybrids is of interest because it highlights possible changes in gene regulation linked to hybrid dysfunction. Previous studies in Drosophila that used long-diverged species pairs with complete or nearly complete isolation (i.e., full sterility and partial inviability of hybrids) and high-levels of genome misregulation have found correlations between expression and coding sequence divergence. The work highlighted the possible effects of directional selection driving sequence divergence and transgressive expression. Whether the same is true for taxa at early stages of divergence that have only achieved partial isolation remains untested. Here, we reanalyze previously published genome expression data and available genome sequence reads from a pair of partially isolated subspecies of Drosophila to compare expression and sequence divergence. We find a significant correlation in rates of expression and sequence evolution, but no support for directional selection driving transgressive expression in hybrids. We find that most transgressive genes in hybrids show no differential expression between parental subspecies and used SNP data to explore the role of stabilizing selection through compensatory mutations. We also examine possible misregulation through cascade effects that could be driven by interacting gene networks or co-option of off-target cis-regulatory elements.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Alberto Civetta
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Wilson KA, Beck JN, Nelson CS, Hilsabeck TA, Promislow D, Brem RB, Kapahi P. GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Curr Biol 2020; 30:2749-2760.e3. [PMID: 32502405 DOI: 10.1016/j.cub.2020.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Dietary restriction (DR) is the most robust means to extend lifespan and delay age-related diseases across species. An underlying assumption in the aging field is that DR enhances both lifespan and physical activity through similar mechanisms, but this has not been rigorously tested in different genetic backgrounds. Furthermore, nutrient response genes responsible for lifespan extension or age-related decline in functionality remain underexplored in natural populations. To address this, we measured nutrient-dependent changes in lifespan and age-related decline in climbing ability in the Drosophila Genetic Reference Panel fly strains. On average, DR extended lifespan and delayed decline in climbing ability, but there was a lack of correlation between these traits across individual strains, suggesting that distinct genetic factors modulate these traits independently and that genotype determines response to diet. Only 50% of strains showed positive response to DR for both lifespan and climbing ability, 14% showed a negative response for one trait but not both, and 35% showed no change in one or both traits. Through GWAS, we uncovered a number of genes previously not known to be diet responsive nor to influence lifespan or climbing ability. We validated decima as a gene that alters lifespan and daedalus as one that influences age-related decline in climbing ability. We found that decima influences insulin-like peptide transcription in the GABA receptor neurons downstream of short neuropeptide F precursor (sNPF) signaling. Modulating these genes produced independent effects on lifespan and physical activity decline, which suggests that these age-related traits can be regulated through distinct mechanisms.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Jennifer N Beck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA
| | | | - Tyler A Hilsabeck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Zhou X, St Pierre CL, Gonzales NM, Zou J, Cheng R, Chitre AS, Sokoloff G, Palmer AA. Genome-Wide Association Study in Two Cohorts from a Multi-generational Mouse Advanced Intercross Line Highlights the Difficulty of Replication Due to Study-Specific Heterogeneity. G3 (BETHESDA, MD.) 2020; 10:951-965. [PMID: 31974095 PMCID: PMC7056977 DOI: 10.1534/g3.119.400763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
There has been extensive discussion of the "Replication Crisis" in many fields, including genome-wide association studies (GWAS). We explored replication in a mouse model using an advanced intercross line (AIL), which is a multigenerational intercross between two inbred strains. We re-genotyped a previously published cohort of LG/J x SM/J AIL mice (F34; n = 428) using a denser marker set and genotyped a new cohort of AIL mice (F39-43; n = 600) for the first time. We identified 36 novel genome-wide significant loci in the F34 and 25 novel loci in the F39-43 cohort. The subset of traits that were measured in both cohorts (locomotor activity, body weight, and coat color) showed high genetic correlations, although the SNP heritabilities were slightly lower in the F39-43 cohort. For this subset of traits, we attempted to replicate loci identified in either F34 or F39-43 in the other cohort. Coat color was robustly replicated; locomotor activity and body weight were only partially replicated, which was inconsistent with our power simulations. We used a random effects model to show that the partial replications could not be explained by Winner's Curse but could be explained by study-specific heterogeneity. Despite this heterogeneity, we performed a mega-analysis by combining F34 and F39-43 cohorts (n = 1,028), which identified four novel loci associated with locomotor activity and body weight. These results illustrate that even with the high degree of genetic and environmental control possible in our experimental system, replication was hindered by study-specific heterogeneity, which has broad implications for ongoing concerns about reproducibility.
Collapse
Affiliation(s)
- Xinzhu Zhou
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92092
| | - Celine L St Pierre
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110
| | | | - Jennifer Zou
- Department of Computer Science, University of California, Los Angeles, CA, 90095
| | | | | | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IO, 52242
| | - Abraham A Palmer
- Department of Psychiatry,
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92037 and
| |
Collapse
|
13
|
Characterization of the Genetic Architecture Underlying Eye Size Variation Within Drosophila melanogaster and Drosophila simulans. G3-GENES GENOMES GENETICS 2020; 10:1005-1018. [PMID: 31919111 DOI: 10.1534/g3.119.400877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The compound eyes of insects exhibit striking variation in size, reflecting adaptation to different lifestyles and habitats. However, the genetic and developmental bases of variation in insect eye size is poorly understood, which limits our understanding of how these important morphological differences evolve. To address this, we further explored natural variation in eye size within and between four species of the Drosophila melanogaster species subgroup. We found extensive variation in eye size among these species, and flies with larger eyes generally had a shorter inter-ocular distance and vice versa We then carried out quantitative trait loci (QTL) mapping of intra-specific variation in eye size and inter-ocular distance in both D. melanogaster and D. simulans This revealed that different genomic regions underlie variation in eye size and inter-ocular distance in both species, which we corroborated by introgression mapping in D. simulans This suggests that although there is a trade-off between eye size and inter-ocular distance, variation in these two traits is likely to be caused by different genes and so can be genetically decoupled. Finally, although we detected QTL for intra-specific variation in eye size at similar positions in D. melanogaster and D. simulans, we observed differences in eye fate commitment between strains of these two species. This indicates that different developmental mechanisms and therefore, most likely, different genes contribute to eye size variation in these species. Taken together with the results of previous studies, our findings suggest that the gene regulatory network that specifies eye size has evolved at multiple genetic nodes to give rise to natural variation in this trait within and among species.
Collapse
|
14
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
15
|
Palu RAS, Ong E, Stevens K, Chung S, Owings KG, Goodman AG, Chow CY. Natural Genetic Variation Screen in Drosophila Identifies Wnt Signaling, Mitochondrial Metabolism, and Redox Homeostasis Genes as Modifiers of Apoptosis. G3 (BETHESDA, MD.) 2019; 9:3995-4005. [PMID: 31570502 PMCID: PMC6893197 DOI: 10.1534/g3.119.400722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
Apoptosis is the primary cause of degeneration in a number of neuronal, muscular, and metabolic disorders. These diseases are subject to a great deal of phenotypic heterogeneity in patient populations, primarily due to differences in genetic variation between individuals. This creates a barrier to effective diagnosis and treatment. Understanding how genetic variation influences apoptosis could lead to the development of new therapeutics and better personalized treatment approaches. In this study, we examine the impact of the natural genetic variation in the Drosophila Genetic Reference Panel (DGRP) on two models of apoptosis-induced retinal degeneration: overexpression of p53 or reaper (rpr). We identify a number of known apoptotic, neural, and developmental genes as candidate modifiers of degeneration. We also use Gene Set Enrichment Analysis (GSEA) to identify pathways that harbor genetic variation that impact these apoptosis models, including Wnt signaling, mitochondrial metabolism, and redox homeostasis. Finally, we demonstrate that many of these candidates have a functional effect on apoptosis and degeneration. These studies provide a number of avenues for modifying genes and pathways of apoptosis-related disease.
Collapse
Affiliation(s)
- Rebecca A S Palu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Elaine Ong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Kaitlyn Stevens
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Shani Chung
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Katie G Owings
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Alan G Goodman
- School of Molecular Biosciences, and
- Paul G. Allen School for Global Animal Health, Washington State University College of Veterinary Medicine, Pullman, WA 99164
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112,
| |
Collapse
|
16
|
Okada H, Yagi R, Gardeux V, Deplancke B, Hafen E. Sex-dependent and sex-independent regulatory systems of size variation in natural populations. Mol Syst Biol 2019; 15:e9012. [PMID: 31777173 PMCID: PMC6878047 DOI: 10.15252/msb.20199012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022] Open
Abstract
Size of organs/organisms is a polygenic trait. Many of the growth-regulatory genes constitute conserved growth signaling pathways. However, how these multiple genes are orchestrated at the systems level to attain the natural variation in size including sexual size dimorphism is mostly unknown. Here we take a multi-layered systems omics approach to study size variation in the Drosophila wing. We show that expression levels of many critical growth regulators such as Wnt and TGFβ pathway components significantly differ between sexes but not between lines exhibiting size differences within each sex, suggesting a primary role of these regulators in sexual size dimorphism. Only a few growth genes including a receptor of steroid hormone ecdysone exhibit association with between-line size differences. In contrast, we find that between-line size variation is largely regulated by genes with a diverse range of cellular functions, most of which have never been implicated in growth. In addition, we show that expression quantitative trait loci (eQTLs) linked to these novel growth regulators accurately predict population-wide, between-line wing size variation. In summary, our study unveils differential gene regulatory systems that control wing size variation between and within sexes.
Collapse
Affiliation(s)
- Hirokazu Okada
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Ryohei Yagi
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and GeneticsInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and GeneticsInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Ernst Hafen
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, Flatt T. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life-history adaptation in Drosophila. Evolution 2019; 73:1774-1792. [PMID: 31111462 PMCID: PMC6771989 DOI: 10.1111/evo.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
A fundamental aim of adaptation genomics is to identify polymorphisms that underpin variation in fitness traits. In Drosophila melanogaster, latitudinal life-history clines exist on multiple continents and make an excellent system for dissecting the genetics of adaptation. We have previously identified numerous clinal single-nucleotide polymorphism in insulin/insulin-like growth factor signaling (IIS), a pathway known from mutant studies to affect life history. However, the effects of natural variants in this pathway remain poorly understood. Here we investigate how two clinal alternative alleles at foxo, a transcriptional effector of IIS, affect fitness components (viability, size, starvation resistance, fat content). We assessed this polymorphism from the North American cline by reconstituting outbred populations, fixed for either the low- or high-latitude allele, from inbred DGRP lines. Because diet and temperature modulate IIS, we phenotyped alleles across two temperatures (18°C, 25°C) and two diets differing in sugar source and content. Consistent with clinal expectations, the high-latitude allele conferred larger body size and reduced wing loading. Alleles also differed in starvation resistance and expression of insulin-like receptor, a transcriptional target of FOXO. Allelic reaction norms were mostly parallel, with few GxE interactions. Together, our results suggest that variation in IIS makes a major contribution to clinal life-history adaptation.
Collapse
Affiliation(s)
- Esra Durmaz
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Subhash Rajpurohit
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
- Division of Biological and Life SciencesAhmedabad UniversityAhmedabadIndia
| | - Nicolas Betancourt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Daniel K. Fabian
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome Campus, HinxtonCambridgeUnited Kingdom
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population, GeneticsViennaAustria
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Paul Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
18
|
Lafuente E, Duneau D, Beldade P. Genetic basis of thermal plasticity variation in Drosophila melanogaster body size. PLoS Genet 2018; 14:e1007686. [PMID: 30256798 PMCID: PMC6175520 DOI: 10.1371/journal.pgen.1007686] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
Body size is a quantitative trait that is closely associated to fitness and under the control of both genetic and environmental factors. While developmental plasticity for this and other traits is heritable and under selection, little is known about the genetic basis for variation in plasticity that can provide the raw material for its evolution. We quantified genetic variation for body size plasticity in Drosophila melanogaster by measuring thorax and abdomen length of females reared at two temperatures from a panel representing naturally segregating alleles, the Drosophila Genetic Reference Panel (DGRP). We found variation between genotypes for the levels and direction of thermal plasticity in size of both body parts. We then used a Genome-Wide Association Study (GWAS) approach to unravel the genetic basis of inter-genotype variation in body size plasticity, and used different approaches to validate selected QTLs and to explore potential pleiotropic effects. We found mostly “private QTLs”, with little overlap between the candidate loci underlying variation in plasticity for thorax versus abdomen size, for different properties of the plastic response, and for size versus size plasticity. We also found that the putative functions of plasticity QTLs were diverse and that alleles for higher plasticity were found at lower frequencies in the target population. Importantly, a number of our plasticity QTLs have been targets of selection in other populations. Our data sheds light onto the genetic basis of inter-genotype variation in size plasticity that is necessary for its evolution. Environmental conditions can influence development and lead to the production of phenotypes adjusted to the conditions adults will live in. This developmental plasticity, which can help organisms cope with environmental heterogeneity, is heritable and under selection. Its evolution will depend on available genetic variation. Using a panel of D. melanogaster flies representing naturally segregating alleles, we identified DNA sequence variants associated to variation in thermal plasticity for body size. We found that these variants correspond to a diverse set of functions and that their effects differ between body parts and properties of the thermal response. Our results shed new light onto the long discussed genes for plasticity.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (EL); (PB)
| | - David Duneau
- UMR5174-CNRS, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- UMR5174-CNRS, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
- * E-mail: (EL); (PB)
| |
Collapse
|
19
|
The Sleep Inbred Panel, a Collection of Inbred Drosophila melanogaster with Extreme Long and Short Sleep Duration. G3-GENES GENOMES GENETICS 2018; 8:2865-2873. [PMID: 29991508 PMCID: PMC6118319 DOI: 10.1534/g3.118.200503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding how genomic variation causes differences in observable phenotypes remains a major challenge in biology. It is difficult to trace the sequence of events originating from genomic variants to changes in transcriptional responses or protein modifications. Ideally, one would conduct experiments with individuals that are at either extreme of the trait of interest, but such resources are often not available. Further, advances in genome editing will enable testing of candidate polymorphisms individually and in combination. Here we have created a resource for the study of sleep with 39 inbred lines of Drosophila-the Sleep Inbred Panel (SIP). SIP lines have stable long- and short-sleeping phenotypes developed from naturally occurring polymorphisms. These lines are fully sequenced, enabling more accurate targeting for genome editing and transgenic constructs. This panel facilitates the study of intermediate transcriptional and proteomic correlates of sleep, and supports genome editing studies to verify polymorphisms associated with sleep duration.
Collapse
|
20
|
Groth BR, Huang Y, Monette MJ, Pool JE. Directional selection reduces developmental canalization against genetic and environmental perturbations in Drosophila wings. Evolution 2018; 72:10.1111/evo.13550. [PMID: 29985527 PMCID: PMC7003245 DOI: 10.1111/evo.13550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Natural selection may enhance or weaken the robustness of phenotypes against genetic or environmental perturbations. However, important aspects of the relationship between adaptive evolution and canalization remain unclear. Recent work showed that the evolution of larger wing size in a high altitude natural population of Drosophila melanogaster was accompanied by decanalized wing development--specifically a loss of robustness to genetic perturbation. But this study did not address environmental robustness, and it compared populations that may have numerous biological differences. Here, we perform artificial selection on this same trait in D. melanogaster (larger wing length) and directly test whether this directional selection resulted in decanalization. We find that in general, size-selected replicates show greater frequencies of wing defects than control replicates both after mutagenesis (genetic perturbation) and when subjected to high temperature stress (environmental perturbation), although the increase in defect frequency varies importantly among replicates. These results support the hypothesis that directional selection may result in the loss of both genetic and environmental robustness-offering a rare window into the relationship between adaptation and canalization.
Collapse
Affiliation(s)
- Benjamin R. Groth
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin 53706
| | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin 53706
| | - Matthew J. Monette
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin 53706
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin 53706
| |
Collapse
|
21
|
Signor SA, Nuzhdin SV. The Evolution of Gene Expression in cis and trans. Trends Genet 2018; 34:532-544. [PMID: 29680748 PMCID: PMC6094946 DOI: 10.1016/j.tig.2018.03.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
There is abundant variation in gene expression between individuals, populations, and species. The evolution of gene regulation and expression within and between species is thought to frequently contribute to adaptation. Yet considerable evidence suggests that the primary evolutionary force acting on variation in gene expression is stabilizing selection. We review here the results of recent studies characterizing the evolution of gene expression occurring in cis (via linked polymorphisms) or in trans (through diffusible products of other genes) and their contribution to adaptation and response to the environment. We review the evidence for buffering of variation in gene expression at the level of both transcription and translation, and the possible mechanisms for this buffering. Lastly, we summarize unresolved questions about the evolution of gene regulation.
Collapse
Affiliation(s)
- Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
22
|
Abstract
Recent years have seen an increase in studies that associate genomic loci with behavioral variation both within and across animal species. Ryan York compiles and analyzes over 1,000 of these loci, finding that the genetic... Although most animal behaviors are associated with some form of heritable genetic variation, we do not yet understand how genes sculpt behavior across evolution, either directly or indirectly. To address this, I here compile a data set comprised of over 1000 genomic loci representing a spectrum of behavioral variation across animal taxa. Comparative analyses reveal that courtship and feeding behaviors are associated with genomic regions of significantly greater effect than other traits, on average threefold greater than other behaviors. Investigations of whole-genome sequencing and phenotypic data for 87 behavioral traits from the Drosophila Genetics Reference Panel indicate that courtship and feeding behaviors have significantly greater genetic contributions and that, in general, behavioral traits overlap little in individual base pairs but increasingly interact at the levels of genes and traits. These results provide evidence that different types of behavior are associated with variable genetic bases and suggest that, across animal evolution, the genetic landscape of behavior is more rugged, yet predictable, than previously thought.
Collapse
|
23
|
Wu KJ, Kumar S, Serrano Negron YL, Harbison ST. Genotype Influences Day-to-Day Variability in Sleep in Drosophila melanogaster. Sleep 2018; 41:zsx205. [PMID: 29228366 PMCID: PMC6018780 DOI: 10.1093/sleep/zsx205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Patterns of sleep often vary among individuals. But sleep and activity may also vary within an individual, fluctuating in pattern across time. One possibility is that these daily fluctuations in sleep are caused by the underlying genotype of the individual. However, differences attributable to genetic causes are difficult to distinguish from environmental factors in outbred populations such as humans. We therefore employed Drosophila as a model of intra-individual variability in sleep using previously collected sleep and activity data from the Drosophila Genetic Reference Panel, a collection of wild-derived inbred lines. Individual flies had significant daily fluctuations in their sleep patterns, and these fluctuations were heritable. Using the standard deviation of sleep parameters as a metric, we conducted a genome-wide association study. We found 663 polymorphisms in 104 genes associated with daily fluctuations in sleep. We confirmed the effects of 12 candidate genes on the standard deviation of sleep parameters. Our results suggest that daily fluctuations in sleep patterns are due in part to gene activity.
Collapse
Affiliation(s)
- Katherine J Wu
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yazmin L Serrano Negron
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
24
|
Lee YCG, Yang Q, Chi W, Turkson SA, Du WA, Kemkemer C, Zeng ZB, Long M, Zhuang X. Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster. Genome Biol Evol 2018; 9:1357-1369. [PMID: 28472322 PMCID: PMC5452641 DOI: 10.1093/gbe/evx089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 01/04/2023] Open
Abstract
Foraging behavior is critical for the fitness of individuals. However, the genetic basis of variation in foraging behavior and the evolutionary forces underlying such natural variation have rarely been investigated. We developed a systematic approach to assay the variation in survival rate in a foraging environment for adult flies derived from a wild Drosophila melanogaster population. Despite being such an essential trait, there is substantial variation of foraging behavior among D. melanogaster strains. Importantly, we provided the first evaluation of the potential caveats of using inbred Drosophila strains to perform genome-wide association studies on life-history traits, and concluded that inbreeding depression is unlikely a major contributor for the observed large variation in adult foraging behavior. We found that adult foraging behavior has a strong genetic component and, unlike larval foraging behavior, depends on multiple loci. Identified candidate genes are enriched in those with high expression in adult heads and, demonstrated by expression knock down assay, are involved in maintaining normal functions of the nervous system. Our study not only identified candidate genes for foraging behavior that is relevant to individual fitness, but also shed light on the initial stage underlying the evolution of the behavior.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,Present address: Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory; Department of Molecular Biology and Cell Biology, University of California, Berkeley
| | - Qian Yang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Wanhao Chi
- Department of Neurobiology, The University of Chicago, Chicago, IL.,Present address: Committee on Genetics, Genomics & Systems Biology, The University of Chicago, Chicago, IL
| | - Susie A Turkson
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Wei A Du
- Department of Biology, Wayne State University, Detroit, MI
| | - Claus Kemkemer
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| | - Zhao-Bang Zeng
- Department of Statistical Genetics and Bioinformatics, North Carolina State University, Raleigh, NC
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| | - Xiaoxi Zhuang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| |
Collapse
|
25
|
Mackay TFC, Huang W. Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.289. [PMID: 28834395 PMCID: PMC5746472 DOI: 10.1002/wdev.289] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/08/2022]
Abstract
Understanding the genetic architecture (causal molecular variants, their effects, and frequencies) of quantitative traits is important for precision agriculture and medicine and predicting adaptive evolution, but is challenging in most species. The Drosophila melanogaster Genetic Reference Panel (DGRP) is a collection of 205 inbred strains with whole genome sequences derived from a single wild population in Raleigh, NC, USA. The large amount of quantitative genetic variation, lack of population structure, and rapid local decay of linkage disequilibrium in the DGRP and outbred populations derived from DGRP lines present a favorable scenario for performing genome-wide association (GWA) mapping analyses to identify candidate causal genes, polymorphisms, and pathways affecting quantitative traits. The many GWA studies utilizing the DGRP have revealed substantial natural genetic variation for all reported traits, little evidence for variants with large effects but enrichment for variants with low P-values, and a tendency for lower frequency variants to have larger effects than more common variants. The variants detected in the GWA analyses rarely overlap those discovered using mutagenesis, and often are the first functional annotations of computationally predicted genes. Variants implicated in GWA analyses typically have sex-specific and genetic background-specific (epistatic) effects, as well as pleiotropic effects on other quantitative traits. Studies in the DGRP reveal substantial genetic control of environmental variation. Taking account of genetic architecture can greatly improve genomic prediction in the DGRP. These features of the genetic architecture of quantitative traits are likely to apply to other species, including humans. WIREs Dev Biol 2018, 7:e289. doi: 10.1002/wdev.289 This article is categorized under: Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
26
|
Mackay TFC, Huang W. Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.289. [PMID: 28834395 PMCID: PMC5746472 DOI: 10.1002/wdev.289+10.1002/wdev.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2024]
Abstract
Understanding the genetic architecture (causal molecular variants, their effects, and frequencies) of quantitative traits is important for precision agriculture and medicine and predicting adaptive evolution, but is challenging in most species. The Drosophila melanogaster Genetic Reference Panel (DGRP) is a collection of 205 inbred strains with whole genome sequences derived from a single wild population in Raleigh, NC, USA. The large amount of quantitative genetic variation, lack of population structure, and rapid local decay of linkage disequilibrium in the DGRP and outbred populations derived from DGRP lines present a favorable scenario for performing genome-wide association (GWA) mapping analyses to identify candidate causal genes, polymorphisms, and pathways affecting quantitative traits. The many GWA studies utilizing the DGRP have revealed substantial natural genetic variation for all reported traits, little evidence for variants with large effects but enrichment for variants with low P-values, and a tendency for lower frequency variants to have larger effects than more common variants. The variants detected in the GWA analyses rarely overlap those discovered using mutagenesis, and often are the first functional annotations of computationally predicted genes. Variants implicated in GWA analyses typically have sex-specific and genetic background-specific (epistatic) effects, as well as pleiotropic effects on other quantitative traits. Studies in the DGRP reveal substantial genetic control of environmental variation. Taking account of genetic architecture can greatly improve genomic prediction in the DGRP. These features of the genetic architecture of quantitative traits are likely to apply to other species, including humans. WIREs Dev Biol 2018, 7:e289. doi: 10.1002/wdev.289 This article is categorized under: Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
27
|
Mackay TFC, Huang W. Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.289. [PMID: 28834395 PMCID: PMC5746472 DOI: 10.1002/wdev.289 10.1002/wdev.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2023]
Abstract
Understanding the genetic architecture (causal molecular variants, their effects, and frequencies) of quantitative traits is important for precision agriculture and medicine and predicting adaptive evolution, but is challenging in most species. The Drosophila melanogaster Genetic Reference Panel (DGRP) is a collection of 205 inbred strains with whole genome sequences derived from a single wild population in Raleigh, NC, USA. The large amount of quantitative genetic variation, lack of population structure, and rapid local decay of linkage disequilibrium in the DGRP and outbred populations derived from DGRP lines present a favorable scenario for performing genome-wide association (GWA) mapping analyses to identify candidate causal genes, polymorphisms, and pathways affecting quantitative traits. The many GWA studies utilizing the DGRP have revealed substantial natural genetic variation for all reported traits, little evidence for variants with large effects but enrichment for variants with low P-values, and a tendency for lower frequency variants to have larger effects than more common variants. The variants detected in the GWA analyses rarely overlap those discovered using mutagenesis, and often are the first functional annotations of computationally predicted genes. Variants implicated in GWA analyses typically have sex-specific and genetic background-specific (epistatic) effects, as well as pleiotropic effects on other quantitative traits. Studies in the DGRP reveal substantial genetic control of environmental variation. Taking account of genetic architecture can greatly improve genomic prediction in the DGRP. These features of the genetic architecture of quantitative traits are likely to apply to other species, including humans. WIREs Dev Biol 2018, 7:e289. doi: 10.1002/wdev.289 This article is categorized under: Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
28
|
The Effect of Common Inversion Polymorphisms In(2L)t and In(3R)Mo on Patterns of Transcriptional Variation in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2017; 7:3659-3668. [PMID: 28916647 PMCID: PMC5677173 DOI: 10.1534/g3.117.1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chromosomal inversions are a ubiquitous feature of genetic variation. Theoretical models describe several mechanisms by which inversions can drive adaptation and be maintained as polymorphisms. While inversions have been shown previously to be under selection, or contain genetic variation under selection, the specific phenotypic consequences of inversions leading to their maintenance remain unclear. Here we use genomic sequence and expression data from the Drosophila Genetic Reference Panel (DGRP) to explore the effects of two cosmopolitan inversions, In(2L)t and In(3R)Mo, on patterns of transcriptional variation. We demonstrate that each inversion has a significant effect on transcript abundance for hundreds of genes across the genome. Inversion-affected loci (IAL) appear both within inversions as well as on unlinked chromosomes. Importantly, IAL do not appear to be influenced by the previously reported genome-wide expression correlation structure. We found that five genes involved with sterol uptake, four of which are Niemann-Pick Type 2 orthologs, are upregulated in flies with In(3R)Mo but do not have SNPs in linkage disequilibrium (LD) with the inversion. We speculate that this upregulation is driven by genetic variation in mod(mdg4) that is in LD with In(3R)Mo. We find that there is little evidence for a regional or position effect of inversions on gene expression at the chromosomal level, but do find evidence for the distal breakpoint of In(3R)Mo interrupting one gene and possibly disassociating the two flanking genes from regulatory elements.
Collapse
|
29
|
The road less traveled: from genotype to phenotype in flies and humans. Mamm Genome 2017; 29:5-23. [DOI: 10.1007/s00335-017-9722-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
|
30
|
Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. PLoS Genet 2017; 13:e1006937. [PMID: 28753614 PMCID: PMC5550008 DOI: 10.1371/journal.pgen.1006937] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth. Regenerating tissue must initiate the signaling that drives regenerative growth, and then sustain that signaling long enough for regeneration to complete. Drosophila imaginal discs, the epithelial structures in the larva that will form the adult animal during metamorphosis, have been an important model system for tissue repair and regeneration for over 60 years. Here we show that damage-induced JNK signaling leads to the upregulation of a gene called moladietz, which encodes a co-factor for an enzyme, NADPH dual oxidase (Duox), that generates reactive oxygen species (ROS), a key tissue-damage signal. High expression of moladietz induces continuous production of ROS in the regenerating tissue. The sustained production of ROS then continues to activate JNK signaling throughout the course of regeneration, ensuring maximal tissue regrowth.
Collapse
Affiliation(s)
- Sumbul Jawed Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Andrea Skinner
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Yuan Tian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
31
|
Loci Contributing to Boric Acid Toxicity in Two Reference Populations of Drosophila melanogaster. G3-GENES GENOMES GENETICS 2017; 7:1631-1641. [PMID: 28592646 PMCID: PMC5473745 DOI: 10.1534/g3.117.041418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Populations maintain considerable segregating variation in the response to toxic, xenobiotic compounds. To identify variants associated with resistance to boric acid, a commonly-used household insecticide with a poorly understood mechanism of action, we assayed thousands of individuals from hundreds of strains. Using the Drosophila Synthetic Population Resource (DSPR), a multi-parental population (MPP) of inbred genotypes, we mapped six QTL to short genomic regions containing few protein-coding genes (3–188), allowing us to identify plausible candidate genes underlying resistance to boric acid toxicity. One interval contains multiple genes from the cytochrome P450 family, and we show that ubiquitous RNAi of one of these genes, Cyp9b2, markedly reduces resistance to the toxin. Resistance to boric acid is positively correlated with caffeine resistance. The two phenotypes additionally share a pair of QTL, potentially suggesting a degree of pleiotropy in the genetic control of resistance to these two distinct xenobiotics. Finally, we screened the Drosophila Genetic Reference Panel (DGRP) in an attempt to identify sequence variants within mapped QTL that are associated with boric acid resistance. The approach was largely unsuccessful, with only one QTL showing any associations at QTL-specific 20% False Discovery Rate (FDR) thresholds. Nonetheless, these associations point to a potential candidate gene that can be targeted in future validation efforts. Although the mapping data resulting from the two reference populations do not clearly overlap, our work provides a starting point for further genetic dissection of the processes underlying boric acid toxicity in insects.
Collapse
|
32
|
Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the Drosophila melanogaster Wing Imaginal Disc. Genetics 2017; 206:1505-1520. [PMID: 28512185 DOI: 10.1534/genetics.116.196832] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar (cnc), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling.
Collapse
|
33
|
Mitchell CL, Latuszek CE, Vogel KR, Greenlund IM, Hobmeier RE, Ingram OK, Dufek SR, Pecore JL, Nip FR, Johnson ZJ, Ji X, Wei H, Gailing O, Werner T. α-amanitin resistance in Drosophila melanogaster: A genome-wide association approach. PLoS One 2017; 12:e0173162. [PMID: 28241077 PMCID: PMC5328632 DOI: 10.1371/journal.pone.0173162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 11/17/2022] Open
Abstract
We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Reference Panel (DGRP) fly lines, using genome-wide association studies (GWAS). While Drosophila melanogaster avoids mushrooms in nature, some lines are surprisingly resistant to α-amanitin—a toxin found solely in mushrooms. This resistance may represent a pre-adaptation, which might enable this species to invade the mushroom niche in the future. Although our previous microarray study had strongly suggested that pesticide-metabolizing detoxification genes confer α-amanitin resistance in a Taiwanese D. melanogaster line Ama-KTT, none of the traditional detoxification genes were among the top candidate genes resulting from the GWAS in the current study. Instead, we identified Megalin, Tequila, and widerborst as candidate genes underlying the α-amanitin resistance phenotype in the North American DGRP lines, all three of which are connected to the Target of Rapamycin (TOR) pathway. Both widerborst and Tequila are upstream regulators of TOR, and TOR is a key regulator of autophagy and Megalin-mediated endocytosis. We suggest that endocytosis and autophagy of α-amanitin, followed by lysosomal degradation of the toxin, is one of the mechanisms that confer α-amanitin resistance in the DGRP lines.
Collapse
Affiliation(s)
- Chelsea L Mitchell
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Catrina E Latuszek
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Kara R Vogel
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 1300 University Ave., Madison, WI, United States of America
| | - Ian M Greenlund
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Rebecca E Hobmeier
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Olivia K Ingram
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Shannon R Dufek
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Jared L Pecore
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Felicia R Nip
- College of Human Medicine, Michigan State University, Clinical Center, East Lansing, MI, United States of America
| | - Zachary J Johnson
- U.S. Forest Service, Salt Lake Ranger District 6944 S, 3000 E, Salt Lake City, UT, United States of America
| | - Xiaohui Ji
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Hairong Wei
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Oliver Gailing
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| |
Collapse
|
34
|
Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila. Genetics 2017; 205:1215-1228. [PMID: 28064166 PMCID: PMC5340334 DOI: 10.1534/genetics.116.192260] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Drosophila females are larger than males. In this article, we describe how X-chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X-linked growth-regulating gene, and second, through female-specific activation of the sex-determination pathway. X-chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X-chromosome signal elements (XSEs), Sex-lethal (Sxl) is activated in female (XX) but not male (XY) animals. Sxl activates transformer (tra), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X-chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by >9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc, was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism.
Collapse
|
35
|
Nelson CS, Beck JN, Wilson KA, Pilcher ER, Kapahi P, Brem RB. Cross-phenotype association tests uncover genes mediating nutrient response in Drosophila. BMC Genomics 2016; 17:867. [PMID: 27809764 PMCID: PMC5095962 DOI: 10.1186/s12864-016-3137-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/28/2016] [Indexed: 11/14/2022] Open
Abstract
Background Obesity-related diseases are major contributors to morbidity and mortality in the developed world. Molecular diagnostics and targets of therapies to combat nutritional imbalance are urgently needed in the clinic. Invertebrate animals have been a cornerstone of basic research efforts to dissect the genetics of metabolism and nutrient response. We set out to use fruit flies reared on restricted and nutrient-rich diets to identify genes associated with starvation resistance, body mass and composition, in a survey of genetic variation across the Drosophila Genetic Reference Panel (DGRP). Results We measured starvation resistance, body weight and composition in DGRP lines on each of two diets and used several association mapping strategies to harness this panel of phenotypes for molecular insights. We tested DNA sequence variants for a relationship with single metabolic traits and with multiple traits at once, using a scheme for cross-phenotype association mapping; we focused our association tests on homologs of human disease genes and common polymorphisms; and we tested for gene-by-diet interactions. The results revealed gene and gene-by-diet associations between 17 variants and body mass, whole-body triglyceride and glucose content, or starvation resistance. Focused molecular experiments validated the role in body mass of an uncharacterized gene, CG43921 (which we rename heavyweight), and previously unknown functions for the diacylglycerol kinase rdgA, the huntingtin homolog htt, and the ceramide synthase schlank in nutrient-dependent body mass, starvation resistance, and lifespan. Conclusions Our findings implicate a wealth of gene candidates in fly metabolism and nutrient response, and ascribe novel functions to htt, rdgA, hwt and schlank. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3137-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher S Nelson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94947, USA
| | - Jennifer N Beck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94947, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94947, USA.,Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Elijah R Pilcher
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94947, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94947, USA. .,Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Department of Urology, University of California, San Francisco, CA, USA.
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94947, USA. .,Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
36
|
|
37
|
Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster. Nat Commun 2016; 7:12649. [PMID: 27582081 PMCID: PMC5025782 DOI: 10.1038/ncomms12649] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype–phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations. How genetic diversity generates complex phenotypes along a continuum remains a fundamental question of biology. Here—applying the emerging SWATH proteomics technology—the authors describe a proteome wide association study (PWAS) of Drosophila wing size and identify functional protein clusters associated with this trait.
Collapse
|