1
|
Ashi A, Awaji AA, Bond J, Johnson CA, Shaaban AM, Bell SM. Threonine and tyrosine kinase (TTK) mRNA and protein expression in breast cancer; prognostic significance in the neoadjuvant setting. Histopathology 2025; 86:916-932. [PMID: 39775836 PMCID: PMC11964583 DOI: 10.1111/his.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
AIMS Threonine and tyrosine kinase (TTK) is up-regulated in triple-negative breast cancer (TNBC), yet its expression in patients undergoing neoadjuvant chemotherapy (NACT) remains unexplored. This investigation aims to assess TTK protein expression in treatment-naïve pre-treatment cores and paired pre- and post-NACT breast cancer (BC) cohorts, as well as its correlation with microcephaly 1 (MCPH1) protein expression. METHODS AND RESULTS Transcriptomic data were sourced from the Gene Expression Omnibus microarray database for mRNA expression analysis. TTK protein expression was evaluated using immunohistochemistry staining, employing receiver operating characteristic curve analysis to determine an optimal TTK expression cut-off point. The association between TTK expression, clinicopathological parameters and survival outcomes was examined. Additionally, MCPH1 protein expression was assessed in a pilot study. Analysis revealed a significantly elevated TTK mRNA expression in BC tissue compared to normal breast tissue, with high TTK mRNA levels predicting reduced overall survival. Notably, TTK protein expression increased significantly post-NACT in a paired cohort. Conversely, decreased TTK protein expression pre-NACT was correlated with improved overall survival. CONCLUSIONS High TTK and low MCPH1 protein expression was significantly correlated, highlighting TTK's potential as a biomarker for BC and a therapeutic target for MCPH1-deficient cancer cells.
Collapse
Affiliation(s)
- Abrar Ashi
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| | - Aeshah A Awaji
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| | - Jacquelyn Bond
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| | - Abeer M Shaaban
- Histopathology, St James's Institute for OncologySt James's University HospitalLeedsUK
- Histopathology and Cancer SciencesQueen Elizabeth Hospital Birmingham and University of BirminghamBirminghamUK
| | - Sandra M Bell
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| |
Collapse
|
2
|
Tervasmäki A, Kumpula TA, Grip M, Koivuluoma S, Seuranen M, Winqvist R, Mantere T, Pylkäs K. Population-based study of recurrent DNA damage response gene variants in breast cancer cases. Breast Cancer Res Treat 2025; 211:195-202. [PMID: 40009290 PMCID: PMC11953123 DOI: 10.1007/s10549-025-07634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Several variants in DNA damage response (DDR) genes increase the probability to develop breast cancer and show enrichment in Northern Finland. Here, the population prevalence and risk estimations were refined for sixteen recurrent pathogenic/likely pathogenic DDR gene variants. METHODS Variant genotyping was performed in 2343 unselected Northern Finnish breast cancer cases and 4607 cancer-free controls, and tumor features and family history of cancer for the carriers were examined. RESULTS Based on their prevalence and carrier family history, the studied BRCA1 and BRCA2 variants, PALB2 c.1592delT, and ATM c.7570G > C were confirmed as high-risk alleles, whereas CHEK2 c.1100delC, MCPH1 c.909_921del, and RAD50 c.687delT were moderate-risk alleles. FANCM c.5101C > T and c.5791C > T did not associate with overall breast cancer risk. Double carriers were significantly more common in cases (0.5%, 11/2343) than controls (0.07%, 3/4601, OR 7.2). The BRCA1/2 and PALB2 c.1592delT carrier tumors all had high proliferation rates, PALB2 c.1592delT associating also with grade 3 tumors (p = 0.002). Progesterone receptor (p < 0.05) and estrogen receptor positive tumors were enriched in ATM c.7570G > C and CHEK2 c.1100delC carriers, whereas MCPH1 c.904_916del carriers had a significantly high percentage of multifocal tumors (38%, p = 0.001). Moreover, one FANCM c.5101C > T homozygote case suffered severe side effects from chemotherapy. CONCLUSION The studied DDR gene variants were present in 9% of the unselected cases. As the presence of germline pathogenic variants can provide additional value for surgical decision-making and affect the choice of oncological treatments, the results promote the benefits of genetic testing as a part of breast cancer diagnostics.
Collapse
Affiliation(s)
- Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
- Biocenter Oulu and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Timo A Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
- Biocenter Oulu and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
- Biocenter Oulu and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Meeri Seuranen
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
- Biocenter Oulu and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
- Biocenter Oulu and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
- Biocenter Oulu and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
- Biocenter Oulu and Medical Research Center Oulu, University of Oulu, Oulu, Finland.
- Northern Finland Laboratory Centre Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Kumpula TA, Vorimo S, Mattila TT, O’Gorman L, Astuti G, Tervasmäki A, Koivuluoma S, Mattila TM, Grip M, Winqvist R, Kuismin O, Moilanen J, Hoischen A, Gilissen C, Mantere T, Pylkäs K. Exome sequencing identified rare recurrent copy number variants and hereditary breast cancer susceptibility. PLoS Genet 2023; 19:e1010889. [PMID: 37578974 PMCID: PMC10449128 DOI: 10.1371/journal.pgen.1010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/24/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
Copy number variants (CNVs) are a major source of genetic variation and can disrupt genes or affect gene dosage. They are known to be causal or underlie predisposition to various diseases. However, the role of CNVs in inherited breast cancer susceptibility has not been thoroughly investigated. To address this, we performed whole-exome sequencing based analysis of rare CNVs in 98 high-risk Northern Finnish breast cancer cases. After filtering, selected candidate alleles were validated and characterized with a combination of orthogonal methods, including PCR-based approaches, optical genome mapping and long-read sequencing. This revealed three recurrent alterations: a 31 kb deletion co-occurring with a retrotransposon insertion (delins) in RAD52, a 13.4 kb deletion in HSD17B14 and a 64 kb partial duplication of RAD51C. Notably, all these genes encode proteins involved in pathways previously identified as essential for breast cancer development. Variants were genotyped in geographically matched cases and controls (altogether 278 hereditary and 1983 unselected breast cancer cases, and 1229 controls). The RAD52 delins and HSD17B14 deletion both showed significant enrichment among cases with indications of hereditary disease susceptibility. RAD52 delins was identified in 7/278 cases (2.5%, P = 0.034, OR = 2.86, 95% CI = 1.10-7.45) and HSD17B14 deletion in 8/278 cases (2.9%, P = 0.014, OR = 3.28, 95% CI = 1.31-8.23), the frequency of both variants in the controls being 11/1229 (0.9%). This suggests a role for RAD52 and HSD17B14 in hereditary breast cancer susceptibility. The RAD51C duplication was very rare, identified only in 2/278 of hereditary cases and 2/1229 controls (P = 0.157, OR = 4.45, 95% CI = 0.62-31.70). The identification of recurrent CNVs in these genes, and especially the relatively high frequency of RAD52 and HSD17B14 alterations in the Finnish population, highlights the importance of studying CNVs alongside single nucleotide variants when searching for genetic factors underlying hereditary disease predisposition.
Collapse
Affiliation(s)
- Timo A. Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sandra Vorimo
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Taneli T. Mattila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Luke O’Gorman
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Galuh Astuti
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tiina M. Mattila
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jukka Moilanen
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Alexander Hoischen
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
- Northern Finland Laboratory Centre Nordlab, Oulu, Finland
| |
Collapse
|
4
|
Kumpula TA, Koivuluoma S, Soikkonen L, Vorimo S, Moilanen J, Winqvist R, Mantere T, Kuismin O, Pylkäs K. Evaluating the role of CHEK2 p.(Asp438Tyr) allele in inherited breast cancer predisposition. Fam Cancer 2023; 22:291-294. [PMID: 36653541 PMCID: PMC10276058 DOI: 10.1007/s10689-023-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
CHEK2 is a well-established breast cancer susceptibility gene. The most frequent pathogenic CHEK2 variant is 1100delC, a loss-of-function mutation conferring 2-fold risk for breast cancer. This gene also harbors other rare variants encountered in the clinical gene panels for hereditary cancer. One of these is CHEK2 c.1312 G > T, p.(Asp438Tyr) in the kinase domain of the protein, but due to its rarity its clinical significance for breast cancer predisposition has remained unclear. Here, we tested the prevalence of CHEK2 p.(Asp438Tyr) allele showing enrichment in the Northern Finnish population, in a total of 2284 breast cancer patients from this geographical region. Genotyping was performed for DNA samples extracted from peripheral blood using high-resolution melt analysis. Fourteen CHEK2 p.(Asp438Tyr) carriers were identified (14/2284, 0.6%, P = 0.67): two in the cohort of breast cancer cases with the indication of inherited disease susceptibility (2/281, 0.7%, P = 1.00) and twelve in the breast cancer cohort unselected for the family history of disease and age at disease onset (12/2003, 0.6%, P = 0.66). This frequency did not differ from the frequency in the general population (10/1299, 0.8%). No CHEK2 p.(Asp438Tyr) homozygotes were identified. Our results indicate that CHEK2 p.(Asp438Tyr) carriers do not have an increased risk for breast cancer and the classification of the CHEK2 p.(Asp438Tyr) variant can be changed from the variant of uncertain significance (VUS) to likely benign for breast cancer.
Collapse
Affiliation(s)
- Timo A Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Leila Soikkonen
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Sandra Vorimo
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Jukka Moilanen
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland.
| |
Collapse
|
5
|
Alsolami M, Aboalola D, Malibari D, Alghamdi T, Alshekhi W, Jad H, Rumbold-Hall R, Altowairqi AS, Bell SM, Alsiary RA. The emerging role of MCPH1/BRIT1 in carcinogenesis. Front Oncol 2023; 13:1047588. [PMID: 36845691 PMCID: PMC9951231 DOI: 10.3389/fonc.2023.1047588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The MCPH1 gene, also known as BRCT-repeat inhibitor of hTERT expression (BRIT1), has three BRCA1 carboxyl-terminal domains which is an important regulator of DNA repair, cell cycle checkpoints and chromosome condensation. MCPH1/BRIT1 is also known as a tumour suppressor in different types of human cancer. The expression level of the MCPH1/BRIT1 gene is decreased at the DNA, RNA or protein level in a number of types of cancers including breast cancer, lung cancer, cervical cancer, prostate cancer and ovarian cancer compared to normal tissue. This review also showed that deregulation of MCPH1/BRIT1 is significantly associated with reduced overall survival in 57% (12/21) and relapsed free survival in 33% (7/21) of cancer types especially in oesophageal squamous cell carcinoma and renal clear cell carcinoma. A common finding of this study is that the loss of MCPH1/BRIT1 gene expression plays a key role in promoting genome instability and mutations supporting its function as a tumour suppressor gene.
Collapse
Affiliation(s)
- Mona Alsolami
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Doaa Aboalola
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Dolal Malibari
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Tariq Alghamdi
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Walaa Alshekhi
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Hind Jad
- Oncology Department, Princess Nourah Cancer Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Rea Rumbold-Hall
- Division of Molecular Medicine, Leeds Institute of Medical Research (LIMR), St James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Ahlam S. Altowairqi
- Division of Molecular Medicine, Leeds Institute of Medical Research (LIMR), St James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Sandra M. Bell
- Division of Molecular Medicine, Leeds Institute of Medical Research (LIMR), St James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Rawiah Abdullah Alsiary
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia,*Correspondence: Rawiah Abdullah Alsiary,
| |
Collapse
|
6
|
Kristofova M, Ori A, Wang ZQ. Multifaceted Microcephaly-Related Gene MCPH1. Cells 2022; 11:cells11020275. [PMID: 35053391 PMCID: PMC8774270 DOI: 10.3390/cells11020275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
MCPH1, or BRIT1, is often mutated in human primary microcephaly type 1, a neurodevelopmental disorder characterized by a smaller brain size at birth, due to its dysfunction in regulating the proliferation and self-renewal of neuroprogenitor cells. In the last 20 years or so, genetic and cellular studies have identified MCPH1 as a multifaceted protein in various cellular functions, including DNA damage signaling and repair, the regulation of chromosome condensation, cell-cycle progression, centrosome activity and the metabolism. Yet, genetic and animal model studies have revealed an unpredicted essential function of MPCH1 in gonad development and tumorigenesis, although the underlying mechanism remains elusive. These studies have begun to shed light on the role of MPCH1 in controlling various pathobiological processes of the disorder. Here, we summarize the biological functions of MCPH1, and lessons learnt from cellular and mouse models of MCPH1.
Collapse
Affiliation(s)
- Martina Kristofova
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; (M.K.); (A.O.)
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Bachstrasse 18k, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-656415; Fax: +49-3641-656335
| |
Collapse
|
7
|
Koivuluoma S, Tervasmäki A, Kauppila S, Winqvist R, Kumpula T, Kuismin O, Moilanen J, Pylkäs K. Exome sequencing identifies a recurrent variant in SERPINA3 associating with hereditary susceptibility to breast cancer. Eur J Cancer 2020; 143:46-51. [PMID: 33279852 DOI: 10.1016/j.ejca.2020.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Breast cancer is strongly influenced by hereditary risk factors. Yet, the known susceptibility genes and genomic loci explain only about half of the familial component of the disease. To identify novel breast cancer predisposing gene defects, here we have performed massive parallel sequencing for Northern Finnish breast cancer cases. METHODS Ninety-eight breast cancer cases with indication of hereditary disease susceptibility were exome sequenced. Data filtering strategy focused on predictably deleterious rare variants that were still enriched in the sequenced cohort. Findings were confirmed with additional, geographically matched breast cancer cohorts. RESULTS A recurrent heterozygous splice acceptor variant, c.918-1G>C, in SERPINA3, was identified, and it was significantly enriched both in the hereditary (6/201, 3.0%, p = 0.006, OR 5.1, 95% CI 1.7-14.8) and unselected breast cancer cohort (26/1569, 1.7%, p = 0.009, OR 2.8, 95% CI 1.3-6.2). SERPINA3 c.918-1G>C carriers were also significantly more likely to have a rare tumor subtype, medullary breast cancer, than the non-carriers (4/26, 15.4%, p = 0.000014, OR 42.9, 95% CI 11.7-157.1). CONCLUSION These findings demonstrate that c.918-1G>C germline variant in SERPINA3 gene, encoding a member of the serine protease inhibitor class, is a novel breast cancer predisposing allele.
Collapse
Affiliation(s)
- Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland
| | - Timo Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Jukka Moilanen
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Nurmi A, Muranen TA, Pelttari LM, Kiiski JI, Heikkinen T, Lehto S, Kallioniemi A, Schleutker J, Bützow R, Blomqvist C, Aittomäki K, Nevanlinna H. Recurrent moderate-risk mutations in Finnish breast and ovarian cancer patients. Int J Cancer 2019; 145:2692-2700. [PMID: 30927251 PMCID: PMC6767104 DOI: 10.1002/ijc.32309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022]
Abstract
Mutations in BRCA1 and BRCA2 genes predispose to breast and ovarian cancer (BC/OC) with a high lifetime risk, whereas mutations in PALB2, CHEK2, ATM, FANCM, RAD51C and RAD51D genes cause a moderately elevated risk. In the Finnish population, recurrent mutations have been identified in all of these genes, the latest being CHEK2 c.319+2T>A and c.444+1G>A. By genotyping 3,156 cases and 2,089 controls, we estimated the frequencies of CHEK2 c.319+2T>A and c.444+1G>A in Finnish BC patients. CHEK2 c.319+2T>A was detected in 0.7% of the patients, and it was associated with a high risk of BC in the unselected patient group (OR = 5.40 [95% CI 1.58-18.45], p = 0.007) and similarly in the familial patient group. CHEK2 c.444+1G>A was identified in 0.1% of all patients. Additionally, we evaluated the combined prevalence of recurrent moderate-risk gene mutations in 2,487 BC patients, 556 OC patients and 261 BRCA1/2 carriers from 109 families. The overall frequency of the mutations was 13.3% in 1,141 BRCA1/2-negative familial BC patients, 7.5% in 1,727 unselected BC patients and 7.2% in 556 unselected OC patients. At least one moderate-risk gene mutation was found in 12.5% of BRCA1 families and 7.1% of BRCA1 index patients, as well as in 17.0% of BRCA2 families and 11.3% of BRCA2 index patients, and the mutations were associated with an additional risk in the BRCA1/2 index patients (OR = 2.63 [1.15-5.48], p = 0.011). These results support gene panel testing of even multiple members of BC families where several mutations may segregate in different individuals.
Collapse
Affiliation(s)
- Anna Nurmi
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Taru A. Muranen
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Liisa M. Pelttari
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Johanna I. Kiiski
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Tuomas Heikkinen
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Sini Lehto
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University and Fimlab LaboratoriesTampereFinland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and Department of Medical Genetics, Genomics, Laboratory DivisionTurku University HospitalTurkuFinland
| | - Ralf Bützow
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of Pathology and University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Carl Blomqvist
- Department of Oncology and University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Kristiina Aittomäki
- Department of Clinical GeneticsUniversity of Helsinki, and HUSLAB, Helsinki University HospitalHelsinkiFinland
| | - Heli Nevanlinna
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
9
|
Pan ZW, Wang XJ, Chen T, Ding XW, Jiang X, Gao Y, Mo WJ, Huang Y, Lou CJ, Cao WM. Deleterious Mutations in DNA Repair Gene FANCC Exist in BRCA1/2-Negative Chinese Familial Breast and/or Ovarian Cancer Patients. Front Oncol 2019; 9:169. [PMID: 30967997 PMCID: PMC6439399 DOI: 10.3389/fonc.2019.00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/26/2019] [Indexed: 01/17/2023] Open
Abstract
Introduction: FANCC is reported as a novel susceptibility gene for breast cancer, however, its mutation remains unclear in Chinese population. We aimed to identify the germline mutations of FANCC in high-risk breast cancer patients in China. Methods: 255 BRCA1/2-negative Chinese familial breast and/or ovarian cancer (FBOC) patients were recruited for FANCC germline mutations screen. For whom 90 patients were detected by PCR-sequencing assay, and another 165 patients were detected by a 98-gene panel sequencing assay. The 98-gene panel sequencing assay was also used to screen other possible gene mutations for the patients with FANCC mutations detected by PCR-sequencing assay. Two hundred and fifty sporadic breast cancer (SBC) patients and 248 female non-cancer controls (FNCCs) were recruited for the genotyping analysis. Immunohistochemistry (IHC) analysis was used to evaluate the FANCC expression in patients with FANCC mutation. Results: We found one rare FANCC deleterious mutation (c.339G>A, p.W113X, 0.4%) and two novel non-synonymous variants (c.51G>C, p.Q17H, 0.4% and c.758C>A, p.A253E, 0.4%) in FBOC patients, whereas none of above mutations was identified in SBC patients or FNCCs. We also found that one novel synonymous variant (c.903A>G, p.A301A) existed in one FBOC patient. Additionally, two non-synonymous SNPs rs201407189 (c.973G>A, p.A325T) and rs1800367 (c.1345G>A, p.V449M), and two synonymous SNPs rs55719336 (c.816C>T, p.I272I) and rs79722116 (c.1407G>A, p.T469T) were identified in FBOC patients. Conclusion: FANCC deleterious mutations exist in Chinese FBOC patients and investigations on the penetrance and spectrum of FANCC mutations need to be further conducted.
Collapse
Affiliation(s)
- Zhi-Wen Pan
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiao-Jia Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Tianhui Chen
- Group of Molecular Epidemiology & Cancer Precision Prevention (GMECPP), Zhejiang Academy of Medical Sciences (ZJAMS), Hangzhou, China
| | - Xiao-Wen Ding
- Department of Breast Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiyi Jiang
- Group of Molecular Epidemiology & Cancer Precision Prevention (GMECPP), Zhejiang Academy of Medical Sciences (ZJAMS), Hangzhou, China
| | - Yun Gao
- Institute of Cancer Research, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wen-Ju Mo
- Department of Breast Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuan Huang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Cai-Jin Lou
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
10
|
Tervasmäki A, Mantere T, Eshraghi L, Laurila N, Tuppurainen H, Ronkainen VP, Koivuluoma S, Devarajan R, Peltoketo H, Pylkäs K. Tumor suppressor MCPH1 regulates gene expression profiles related to malignant conversion and chromosomal assembly. Int J Cancer 2019; 145:2070-2081. [PMID: 30809794 PMCID: PMC6767439 DOI: 10.1002/ijc.32234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 01/05/2023]
Abstract
Strong inherited predisposition to breast cancer is estimated to cause about 5–10% of all breast cancer cases. As the known susceptibility genes, such as BRCA1 and BRCA2, explain only a fraction of this, additional predisposing genes and related biological mechanisms are actively being searched for. We have recently identified a recurrent MCPH1 germline mutation, p.Arg304ValfsTer3, as a breast cancer susceptibility allele. MCPH1 encodes a multifunctional protein involved in maintenance of genomic integrity and it is also somatically altered in various cancer types, including breast cancer. Additionally, biallelic MCPH1 mutations are causative for microcephaly and at cellular level premature chromosome condensation. To study the molecular mechanisms leading to cancer predisposition and malignant conversion, here we have modeled the effect of MCPH1 p.Arg304ValfsTer3 mutation using gene‐edited MCF10A breast epithelial cells. As a complementary approach, we also sought for additional potential cancer driver mutations in MCPH1 p.Arg304ValfsTer3 carrier breast tumors. We show that mutated MCPH1 de‐regulates transcriptional programs related to invasion and metastasis and leads to downregulation of histone genes. These global transcriptional changes are mirrored by significantly increased migration and invasion potential of the cells as well as abnormal chromosomal condensation both before and after mitosis. These findings provide novel molecular insights to MCPH1 tumor suppressor functions and establish a role in regulation of transcriptional programs related to malignant conversion and chromosomal assembly. The MCPH1 p.Arg304ValfsTer3 carrier breast tumors showed recurrent tumor suppressor gene TP53 mutations, which were also significantly over‐represented in breast tumors with somatically inactivated MCPH1. What's new? Even though several breast cancer susceptibility genes have been identified, additional molecular mechanisms behind predisposition and the promotion of malignant conversion remain obscure. Here, the authors show that a previously‐identified breast cancer predisposing allele in tumor suppressor MCPH1 deregulates transcriptional programs related to invasion and metastasis and leads to down‐regulation of histone genes. These global transcriptional changes are mirrored by increased cell migration and invasion potential and abnormal chromosomal condensation. The findings provide novel molecular insights into MCPH1 tumor suppressor functions and establish a role in the regulation of transcriptional programs related to malignant conversion and chromosomal assembly.
Collapse
Affiliation(s)
- Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Leila Eshraghi
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Niina Laurila
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Hanna Tuppurainen
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Veli-Pekka Ronkainen
- Biocenter Oulu, Light Microscopy Core Facility, University of Oulu, Oulu, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Raman Devarajan
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Hellevi Peltoketo
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Meyer SK, Dunn M, Vidler DS, Porter A, Blain PG, Jowsey PA. Phosphorylation of MCPH1 isoforms during mitosis followed by isoform-specific degradation by APC/C-CDH1. FASEB J 2019; 33:2796-2808. [PMID: 30303738 PMCID: PMC6338662 DOI: 10.1096/fj.201801353r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/17/2018] [Indexed: 11/11/2022]
Abstract
Microcephalin-1 (MCPH1) exists as 2 isoforms that regulate cyclin-dependent kinase-1 activation and chromosome condensation during mitosis, with MCPH1 mutations causing primary microcephaly. MCPH1 is also a tumor suppressor protein, with roles in DNA damage repair/checkpoints. Despite these important roles, there is little information on the cellular regulation of MCPH1. We show that both MCPH1 isoforms are phosphorylated in a cyclin-dependent kinase-1-dependent manner in mitosis and identify several novel phosphorylation sites. Upon mitotic exit, MCPH1 isoforms were degraded by the anaphase-promoting complex/cyclosome-CDH1 E3 ligase complex. Anaphase-promoting complex/cyclosome-CDH1 target proteins generally have D-Box or KEN-Box degron sequences. We found that MCPH1 isoforms are degraded independently, with the long isoform degradation being D-Box dependent, whereas the short isoform was KEN-Box dependent. Our research identifies several novel mechanisms regulating MCPH1 and also highlights important issues with several commercial MCPH1 antibodies, with potential relevance to previously published data.-Meyer, S. K., Dunn, M., Vidler, D. S., Porter, A., Blain, P. G., Jowsey, P. A. Phosphorylation of MCPH1 isoforms during mitosis followed by isoform-specific degradation by APC/C-CDH1.
Collapse
Affiliation(s)
- Stephanie K. Meyer
- National Intitute for Health Research (NIHR) Health Protection Research Unit for Chemical and Radiation Threats and Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Michael Dunn
- National Intitute for Health Research (NIHR) Health Protection Research Unit for Chemical and Radiation Threats and Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Daniel S. Vidler
- National Intitute for Health Research (NIHR) Health Protection Research Unit for Chemical and Radiation Threats and Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Andrew Porter
- Newcastle University Protein and Proteome Analysis, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter G. Blain
- National Intitute for Health Research (NIHR) Health Protection Research Unit for Chemical and Radiation Threats and Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Paul A. Jowsey
- National Intitute for Health Research (NIHR) Health Protection Research Unit for Chemical and Radiation Threats and Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| |
Collapse
|
12
|
Bonache S, Esteban I, Moles-Fernández A, Tenés A, Duran-Lozano L, Montalban G, Bach V, Carrasco E, Gadea N, López-Fernández A, Torres-Esquius S, Mancuso F, Caratú G, Vivancos A, Tuset N, Balmaña J, Gutiérrez-Enríquez S, Diez O. Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. J Cancer Res Clin Oncol 2018; 144:2495-2513. [PMID: 30306255 DOI: 10.1007/s00432-018-2763-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Few and small studies have been reported about multigene testing usage by massively parallel sequencing in European cancer families. There is an open debate about what genes should be tested, and the actionability of some included genes is under research. METHODS We investigated a panel of 34 known high/moderate-risk cancer genes, including 16 related to breast or ovarian cancer (BC/OC) genes, and 63 candidate genes to BC/OC in 192 clinically suspicious of hereditary breast/ovarian cancer (HBOC) Spanish families without pathogenic variants in BRCA1 or BRCA2 (BRCA1/2). RESULTS We identified 16 patients who carried a high- or moderate-risk pathogenic variant in eight genes: 4 PALB2, 3 ATM, 2 RAD51D, 2 TP53, 2 APC, 1 BRIP1, 1 PTEN and 1 PMS2. These findings led to increased surveillance or prevention options in 12 patients and predictive testing in their family members. We detected 383 unique variants of uncertain significance in known cancer genes, of which 35 were prioritized in silico. Eighteen loss-of-function variants were detected in candidate BC/OC genes in 17 patients (1 BARD1, 1 ERCC3, 1 ERCC5, 2 FANCE, 1 FANCI, 2 FANCL, 1 FANCM, 1 MCPH1, 1 PPM1D, 2 RBBP8, 3 RECQL4 and 1 with SLX4 and XRCC2), three of which also carry pathogenic variants in known cancer genes. CONCLUSIONS Eight percent of the BRCA1/2 negative patients carry pathogenic variants in other actionable genes. The multigene panel usage improves the diagnostic yield in HBOC testing and it is an effective tool to identify potentially new candidate genes.
Collapse
Affiliation(s)
- Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Irene Esteban
- High Risk and Cancer Prevention Group, VHIO, Barcelona, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, Spain
| | - Alejandro Moles-Fernández
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Anna Tenés
- Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Laura Duran-Lozano
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Vanessa Bach
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain
| | - Estela Carrasco
- High Risk and Cancer Prevention Group, VHIO, Barcelona, Spain
| | - Neus Gadea
- High Risk and Cancer Prevention Group, VHIO, Barcelona, Spain
- Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | | | | - Francesco Mancuso
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, VHIO, Barcelona, Spain
| | - Ginevra Caratú
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, VHIO, Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, VHIO, Barcelona, Spain
| | - Noemí Tuset
- Medical Oncology Department, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, VHIO, Barcelona, Spain
- Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain.
| | - Orland Diez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology-VHIO, Lab 2.02A, CELLEX CENTER, c/Natzaret, 115-117, 08035, Barcelona, Catalonia, Spain.
- Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
13
|
Zhao EY, Shen Y, Pleasance E, Kasaian K, Leelakumari S, Jones M, Bose P, Ch'ng C, Reisle C, Eirew P, Corbett R, Mungall KL, Thiessen N, Ma Y, Schein JE, Mungall AJ, Zhao Y, Moore RA, Den Brok W, Wilson S, Villa D, Shenkier T, Lohrisch C, Chia S, Yip S, Gelmon K, Lim H, Renouf D, Sun S, Schrader KA, Young S, Bosdet I, Karsan A, Laskin J, Marra MA, Jones SJM. Homologous Recombination Deficiency and Platinum-Based Therapy Outcomes in Advanced Breast Cancer. Clin Cancer Res 2018; 23:7521-7530. [PMID: 29246904 DOI: 10.1158/1078-0432.ccr-17-1941] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/14/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Recent studies have identified mutation signatures of homologous recombination deficiency (HRD) in over 20% of breast cancers, as well as pancreatic, ovarian, and gastric cancers. There is an urgent need to understand the clinical implications of HRD signatures. Whereas BRCA1/2 mutations confer sensitivity to platinum-based chemotherapies, it is not yet clear whether mutation signatures can independently predict platinum response.Experimental Design: In this observational study, we sequenced tumor whole genomes (100× depth) and matched normals (60×) of 93 advanced-stage breast cancers (33 platinum-treated). We computed a published metric called HRDetect, independently trained to predict BRCA1/2 status, and assessed its capacity to predict outcomes on platinum-based chemotherapies. Clinical endpoints were overall survival (OS), total duration on platinum-based therapy (TDT), and radiographic evidence of clinical improvement (CI).Results: HRDetect predicted BRCA1/2 status with an area under the curve (AUC) of 0.94 and optimal threshold of 0.7. Elevated HRDetect was also significantly associated with CI on platinum-based therapy (AUC = 0.89; P = 0.006) with the same optimal threshold, even after adjusting for BRCA1/2 mutation status and treatment timing. HRDetect scores over 0.7 were associated with a 3-month extended median TDT (P = 0.0003) and 1.3-year extended median OS (P = 0.04).Conclusions: Our findings not only independently validate HRDetect, but also provide the first evidence of its association with platinum response in advanced breast cancer. We demonstrate that HRD mutation signatures may offer clinically relevant information independently of BRCA1/2 mutation status and hope this work will guide the development of clinical trials. Clin Cancer Res; 23(24); 7521-30. ©2017 AACR.
Collapse
Affiliation(s)
- Eric Y Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Sreeja Leelakumari
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Martin Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Pinaki Bose
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Carolyn Ch'ng
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Caralyn Reisle
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Peter Eirew
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Richard Corbett
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nina Thiessen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jacqueline E Schein
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Wendie Den Brok
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Sheridan Wilson
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Diego Villa
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Tamara Shenkier
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Caroline Lohrisch
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Stephen Chia
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Gelmon
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Howard Lim
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Daniel Renouf
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Sophie Sun
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kasmintan A Schrader
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean Young
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Bosdet
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Janessa Laskin
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Torrezan GT, de Almeida FGDSR, Figueiredo MCP, Barros BDDF, de Paula CAA, Valieris R, de Souza JES, Ramalho RF, da Silva FCC, Ferreira EN, de Nóbrega AF, Felicio PS, Achatz MI, de Souza SJ, Palmero EI, Carraro DM. Complex Landscape of Germline Variants in Brazilian Patients With Hereditary and Early Onset Breast Cancer. Front Genet 2018; 9:161. [PMID: 29868112 PMCID: PMC5949367 DOI: 10.3389/fgene.2018.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogenic variants in known breast cancer (BC) predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES) to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes (BRCA1/2, TP53, and CHEK2 c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1. For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes (ERCC1 and SXL4) and other cancer-related genes (NOTCH2, ERBB2, MST1R, and RAF1). Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.
Collapse
Affiliation(s)
- Giovana T Torrezan
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| | | | - Márcia C P Figueiredo
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Bruna D de Figueiredo Barros
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Cláudia A A de Paula
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Renan Valieris
- Laboratory of Bioinformatics and Computational Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Jorge E S de Souza
- Instituto de Bioinformática e Biotecnologia-2bio, Natal, Brazil.,Instituto Metrópole Digital, Federal University of Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo F Ramalho
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Felipe C C da Silva
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Elisa N Ferreira
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,Research and Development, Fleury Group, São Paulo, Brazil
| | | | - Paula S Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Maria I Achatz
- Oncogenetics Department, A.C. Camargo Cancer Center, São Paulo, Brazil.,Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Sandro J de Souza
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil.,Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil.,Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Dirce M Carraro
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
15
|
Tervasmäki A, Mantere T, Hartikainen JM, Kauppila S, Lee HM, Koivuluoma S, Grip M, Karihtala P, Jukkola-Vuorinen A, Mannermaa A, Winqvist R, Pylkäs K. Rare missense mutations in RECQL and POLG associate with inherited predisposition to breast cancer. Int J Cancer 2018; 142:2286-2292. [PMID: 29341116 DOI: 10.1002/ijc.31259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Several known breast cancer susceptibility genes with moderate-to-high risk alleles encode proteins involved in DNA damage response (DDR). As these explain less than half of the hereditary breast cancer cases, additional predisposing alleles are likely to be discovered. Many of the previous studies utilizing massive parallel sequencing have focused on the protein-truncating variants, and the role of rare missense mutations has remained poorly addressed. To identify novel susceptibility factors, we have systematically analyzed the data from our parallel sequencing of 796 DDR genes in 189 Northern Finnish hereditary breast cancer patients for rare missense variants, predicted as deleterious. Thirty-five variants were studied here for the disease association using Finnish breast cancer case (n = 492-2,035) and control (n = 277-1,539) cohorts. As a result, two missense variants in genes involved in DNA replication, RECQL p.I156M and POLG p.L392V, the former involving genomic and the latter mitochondrial DNA replication, showed significant association with risk of breast cancer. Rare RECQL p.I156M allele was observed in breast cancer cases only (6/1,946, 0.3%, p = 0.043), whereas POLG p.L392V was two times more frequent in breast cancer cases (53/2,238, 2.4%) compared to controls (18/1,539, 1.2%, OR = 2.1, 95% CI 1.2-3.5, p = 0.010). Based on the current genetic data, both RECQL p.I156M and POLG p.L392V represent novel breast cancer predisposing alleles.
Collapse
Affiliation(s)
- Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Pathology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Hang-Mao Lee
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Pathology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
16
|
Patwardhan D, Mani S, Passemard S, Gressens P, El Ghouzzi V. STIL balancing primary microcephaly and cancer. Cell Death Dis 2018; 9:65. [PMID: 29352115 PMCID: PMC5833631 DOI: 10.1038/s41419-017-0101-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022]
Abstract
Cell division and differentiation are two fundamental physiological processes that need to be tightly balanced to achieve harmonious development of an organ or a tissue without jeopardizing its homeostasis. The role played by the centriolar protein STIL is highly illustrative of this balance at different stages of life as deregulation of the human STIL gene expression has been associated with either insufficient brain development (primary microcephaly) or cancer, two conditions resulting from perturbations in cell cycle and chromosomal segregation. This review describes the recent advances on STIL functions in the control of centriole duplication and mitotic spindle integrity, and discusses how pathological perturbations of its finely tuned expression result in chromosomal instability in both embryonic and postnatal situations, highlighting the concept that common key factors are involved in developmental steps and tissue homeostasis.
Collapse
Affiliation(s)
- Dhruti Patwardhan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for Neuroscience, IISC Bangalore, India
| | - Shyamala Mani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Curadev Pharma, B 87, Sector 83, Noida, UP, 201305,, India
| | - Sandrine Passemard
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP HP, Hôpital Robert Debré, Service de Génétique Clinique, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Vincent El Ghouzzi
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
17
|
FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population. Breast Cancer Res Treat 2017; 166:217-226. [PMID: 28702895 PMCID: PMC5645429 DOI: 10.1007/s10549-017-4388-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/07/2017] [Indexed: 10/25/2022]
Abstract
PURPOSE The FANCM c.5101C>T nonsense mutation was previously found to associate with breast cancer in the Finnish population, especially among triple-negative cases. Here, we studied the prevalence of three other FANCM variants: c.5791C>T, which has been reported to predispose to familial breast cancer, and the c.4025_4026delCT and c.5293dupA variants recently identified in Finnish cancer patients. METHODS We genotyped the FANCM c.5791C>T mutation in 4806 invasive breast cancer patients, including BRCA1/2 mutation negative familial cases and unselected cases, and in 2734 healthy population controls from four different geographical areas of Finland. The association of the mutation with breast cancer risk among patient subgroups was statistically evaluated. We further analyzed the combined risk associated with c.5101C>T and c.5791C>T mutations. We also genotyped 526 unselected ovarian cancer patients for the c.5791C>T mutation and 862 familial breast cancer patients for the c.4025_4026delCT and c.5293dupA variants. RESULTS The frequency of the FANCM c.5791C>T mutation was higher among breast cancer cases than in controls (OR 1.94, 95% CI 0.87-4.32, P = 0.11), with a statistically significant association with triple-negative breast cancer (OR 5.14, 95% CI 1.65-16.0, P = 0.005). The combined analysis for c.5101C>T and c.5791C>T carriers confirmed a strong association with breast cancer (OR 1.86, 95% CI 1.32-2.49, P = 0.0002), especially among the triple-negative patients (OR 3.08, 95% CI 1.77-5.35, P = 0.00007). For the other variants, only one additional c.4025_4026delCT carrier and no c.5293dupA carriers were observed. CONCLUSIONS These results support the role of FANCM as a breast cancer susceptibility gene, particularly for triple-negative breast cancer.
Collapse
|
18
|
Mantere T, Tervasmäki A, Nurmi A, Rapakko K, Kauppila S, Tang J, Schleutker J, Kallioniemi A, Hartikainen JM, Mannermaa A, Nieminen P, Hanhisalo R, Lehto S, Suvanto M, Grip M, Jukkola-Vuorinen A, Tengström M, Auvinen P, Kvist A, Borg Å, Blomqvist C, Aittomäki K, Greenberg RA, Winqvist R, Nevanlinna H, Pylkäs K. Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility. Sci Rep 2017; 7:681. [PMID: 28386063 PMCID: PMC5429682 DOI: 10.1038/s41598-017-00766-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/13/2017] [Indexed: 11/26/2022] Open
Abstract
Several known breast cancer susceptibility genes encode proteins involved in DNA damage response (DDR) and are characterized by rare loss-of-function mutations. However, these explain less than half of the familial cases. To identify novel susceptibility factors, 39 rare truncating mutations, identified in 189 Northern Finnish hereditary breast cancer patients in parallel sequencing of 796 DDR genes, were studied for disease association. Mutation screening was performed for Northern Finnish breast cancer cases (n = 578–1565) and controls (n = 337–1228). Mutations showing potential cancer association were analyzed in additional Finnish cohorts. c.7253dupT in TEX15, encoding a DDR factor important in meiosis, associated with hereditary breast cancer (p = 0.018) and likely represents a Northern Finnish founder mutation. A deleterious c.2715 + 1G > A mutation in the Fanconi anemia gene, FANCD2, was over two times more common in the combined Finnish hereditary cohort compared to controls. A deletion (c.640_644del5) in RNF168, causative for recessive RIDDLE syndrome, had high prevalence in majority of the analyzed cohorts, but did not associate with breast cancer. In conclusion, truncating variants in TEX15 and FANCD2 are potential breast cancer risk factors, warranting further investigations in other populations. Furthermore, high frequency of RNF168 c.640_644del5 indicates the need for its testing in Finnish patients with RIDDLE syndrome symptoms.
Collapse
Affiliation(s)
- Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Anna Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katrin Rapakko
- Laboratory of Genetics, Northern Finland Laboratory Centre NordLab Oulu, Oulu, Finland.,Cancer Genetic Unit, Service and Central Laboratory of Haematology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jiangbo Tang
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johanna Schleutker
- Medical Biochemistry and Genetics Institute of Biomedicine, University of Turku, Turku, Finland.,Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, Turku, Finland
| | - Anne Kallioniemi
- BioMediTech and FimLab Laboratories, University of Tampere, Tampere, Finland
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.,Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.,Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Pentti Nieminen
- Medical Informatics and Statistics Research Group, University of Oulu, Oulu, Finland
| | - Riitta Hanhisalo
- Laboratory of Genetics, Northern Finland Laboratory Centre NordLab Oulu, Oulu, Finland
| | - Sini Lehto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Maria Tengström
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Päivi Auvinen
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Anders Kvist
- Department of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Åke Borg
- Department of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, Helsinki, Finland.,Department of Oncology, University of Örebro, Örebro, Sweden
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Roger A Greenberg
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland.
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
19
|
Shah V, Nowinski S, Levi D, Shinomiya I, Kebaier Ep Chaabouni N, Gillett C, Grigoriadis A, Graham TA, Roylance R, Simpson MA, Pinder SE, Sawyer EJ. PIK3CA mutations are common in lobular carcinoma in situ, but are not a biomarker of progression. Breast Cancer Res 2017; 19:7. [PMID: 28095868 PMCID: PMC5240238 DOI: 10.1186/s13058-016-0789-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/01/2016] [Indexed: 11/17/2022] Open
Abstract
Background Lobular carcinoma in situ (LCIS) is a non-invasive breast lesion that is typically found incidentally on biopsy and is often associated with invasive lobular carcinoma (ILC). LCIS is considered by some to be a risk factor for future breast cancer rather than a true precursor lesion. The aim of this study was to identify genetic changes that could be used as biomarkers of progression of LCIS to invasive disease using cases of pure LCIS and comparing their genetic profiles to LCIS which presented contemporaneously with associated ILC, on the hypothesis that the latter represents LCIS that has already progressed. Methods Somatic copy number aberrations (SCNAs) were assessed by SNP array in three subgroups: pure LCIS, LCIS associated with ILC and the paired ILC. In addition exome sequencing was performed on seven fresh frozen samples of LCIS associated with ILC, to identify recurrent somatic mutations. Results The copy number profiles of pure LCIS and LCIS associated with ILC were almost identical. However, four SCNAs were more frequent in ILC than LCIS associated with ILC, including gain/amplification of CCND1. CCND1 protein over-expression assessed by immunohistochemical analysis in a second set of samples from 32 patients with pure LCIS and long-term follow up, was associated with invasive recurrence (P = 0.02, Fisher’s exact test). Exome sequencing revealed that PIK3CA mutations were as frequent as CDH1 mutations in LCIS, but were not a useful biomarker of LCIS progression as they were as frequent in pure LCIS as in LCIS associated with ILC. We also observed heterogeneity of PIK3CA mutations and evidence of sub-clonal populations in LCIS irrespective of whether they were associated with ILC. Conclusions Our data shows that pure LCIS and LCIS co-existing with ILC have very similar SCNA profiles, supporting the hypothesis that LCIS is a true precursor lesion. We have provided evidence that over-expression of CCND1 may identify a subgroup of patients with pure LCIS who are more likely to develop invasive disease, in contrast to PIK3CA mutations, which occur too early in lobular tumorigenesis to be informative. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0789-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vandna Shah
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Salpie Nowinski
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Dina Levi
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Irek Shinomiya
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | | | - Cheryl Gillett
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Anita Grigoriadis
- Breast Cancer Now Unit, Research Oncology & Cancer Epidemiology, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Trevor A Graham
- Evolution and Cancer laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rebecca Roylance
- Department of Oncology, UCLH Foundation Trust, London, NW1 2PG, UK
| | - Michael A Simpson
- Medical and Molecular Genetics, Guy's Hospital, King's College London, London, UK
| | - Sarah E Pinder
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Elinor J Sawyer
- Division of Cancer Studies, Guy's Hospital, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
20
|
Liu J, Lončar I, Collée JM, Bolla MK, Dennis J, Michailidou K, Wang Q, Andrulis IL, Barile M, Beckmann MW, Behrens S, Benitez J, Blomqvist C, Boeckx B, Bogdanova NV, Bojesen SE, Brauch H, Brennan P, Brenner H, Broeks A, Burwinkel B, Chang-Claude J, Chen ST, Chenevix-Trench G, Cheng CY, Choi JY, Couch FJ, Cox A, Cross SS, Cuk K, Czene K, Dörk T, dos-Santos-Silva I, Fasching PA, Figueroa J, Flyger H, García-Closas M, Giles GG, Glendon G, Goldberg MS, González-Neira A, Guénel P, Haiman CA, Hamann U, Hart SN, Hartman M, Hatse S, Hopper JL, Ito H, Jakubowska A, Kabisch M, Kang D, Kosma VM, Kristensen VN, Le Marchand L, Lee E, Li J, Lophatananon A, Jan Lubinski, Mannermaa A, Matsuo K, Milne RL, Neuhausen SL, Nevanlinna H, Orr N, Perez JIA, Peto J, Putti TC, Pylkäs K, Radice P, Sangrajrang S, Sawyer EJ, Schmidt MK, Schneeweiss A, Shen CY, Shrubsole MJ, Shu XO, Simard J, Southey MC, Swerdlow A, Teo SH, Tessier DC, Thanasitthichai S, Tomlinson I, Torres D, Truong T, Tseng CC, Vachon C, Winqvist R, Wu AH, Yannoukakos D, Zheng W, Hall P, Dunning AM, Easton DF, Hooning MJ, van den Ouweland AMW, Martens JWM, Hollestelle A. rs2735383, located at a microRNA binding site in the 3'UTR of NBS1, is not associated with breast cancer risk. Sci Rep 2016; 6:36874. [PMID: 27845421 PMCID: PMC5109293 DOI: 10.1038/srep36874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
NBS1, also known as NBN, plays an important role in maintaining genomic stability. Interestingly, rs2735383 G > C, located in a microRNA binding site in the 3'-untranslated region (UTR) of NBS1, was shown to be associated with increased susceptibility to lung and colorectal cancer. However, the relation between rs2735383 and susceptibility to breast cancer is not yet clear. Therefore, we genotyped rs2735383 in 1,170 familial non-BRCA1/2 breast cancer cases and 1,077 controls using PCR-based restriction fragment length polymorphism (RFLP-PCR) analysis, but found no association between rs2735383CC and breast cancer risk (OR = 1.214, 95% CI = 0.936-1.574, P = 0.144). Because we could not exclude a small effect size due to a limited sample size, we further analyzed imputed rs2735383 genotypes (r2 > 0.999) of 47,640 breast cancer cases and 46,656 controls from the Breast Cancer Association Consortium (BCAC). However, rs2735383CC was not associated with overall breast cancer risk in European (OR = 1.014, 95% CI = 0.969-1.060, P = 0.556) nor in Asian women (OR = 0.998, 95% CI = 0.905-1.100, P = 0.961). Subgroup analyses by age, age at menarche, age at menopause, menopausal status, number of pregnancies, breast feeding, family history and receptor status also did not reveal a significant association. This study therefore does not support the involvement of the genotype at NBS1 rs2735383 in breast cancer susceptibility.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ivona Lončar
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J. Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Irene L. Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Bram Boeckx
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Natalia V. Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E. Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Hermann Brenner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Annegien Broeks
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shou-Tung Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ching Y. Cheng
- Singapore Eye Research Institute and Singapore National Eye Center, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Academic Unit of Molecular Oncology, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montreal, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montreal, Canada
| | - Anna González-Neira
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven N. Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, National University Health System, Singapore, Singapore
| | - Sigrid Hatse
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Veli-Matti Kosma
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Vessela N. Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
- Institute of Population Health, University of Manchester, Manchester, UK
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Keitaro Matsuo
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nick Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Jose I. A. Perez
- Servicio de Cirugía General y Especialidades, Hospital Monte Naranco, Oviedo, Spain
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas C. Putti
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy
| | | | - Elinor J. Sawyer
- Research Oncology, Guy’s Hospital, King’s College London, London, UK
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Chen-Yang Shen
- School of Public Health, China Medical University, Taichung, Taiwan
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Martha J. Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Melissa C. Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Anthony Swerdlow
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Soo H. Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Daniel C. Tessier
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | | | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - John W. M. Martens
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Liu X, Zhou ZW, Wang ZQ. The DNA damage response molecule MCPH1 in brain development and beyond. Acta Biochim Biophys Sin (Shanghai) 2016; 48:678-85. [PMID: 27197793 DOI: 10.1093/abbs/gmw048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Microcephalin (MCPH1) is identified as being responsible for the neurodevelopmental disorder primary microcephaly type 1, which is characterized by a smaller-than-normal brain size and mental retardation. MCPH1 has originally been identified as an important regulator of telomere integrity and of cell cycle control. Genetic and cellular studies show that MCPH1 controls neurogenesis by coordinating the cell cycle and the centrosome cycle and thereby regulating the division mode of neuroprogenitors to prevent the exhaustion of the progenitor pool and thereby microcephaly. In addition to its role in neurogenesis, MCPH1 plays a role in gonad development. MCPH1 also functions as a tumor suppressor in several human cancers as well as in mouse models. Here, we review the role of MCPH1 in DNA damage response, cell cycle control, chromosome condensation and chromatin remodeling. We also summarize the studies on the biological functions of MCPH1 in brain size determination and in pathologies, including infertility and cancer.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhong-Wei Zhou
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|