1
|
Schmok JC, Jain M, Street LA, Tankka AT, Schafer D, Her HL, Elmsaouri S, Gosztyla ML, Boyle EA, Jagannatha P, Luo EC, Kwon EJ, Jovanovic M, Yeo GW. Large-scale evaluation of the ability of RNA-binding proteins to activate exon inclusion. Nat Biotechnol 2024; 42:1429-1441. [PMID: 38168984 PMCID: PMC11389820 DOI: 10.1038/s41587-023-02014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
RNA-binding proteins (RBPs) modulate alternative splicing outcomes to determine isoform expression and cellular survival. To identify RBPs that directly drive alternative exon inclusion, we developed tethered function luciferase-based splicing reporters that provide rapid, scalable and robust readouts of exon inclusion changes and used these to evaluate 718 human RBPs. We performed enhanced cross-linking immunoprecipitation, RNA sequencing and affinity purification-mass spectrometry to investigate a subset of candidates with no prior association with splicing. Integrative analysis of these assays indicates surprising roles for TRNAU1AP, SCAF8 and RTCA in the modulation of hundreds of endogenous splicing events. We also leveraged our tethering assays and top candidates to identify potent and compact exon inclusion activation domains for splicing modulation applications. Using these identified domains, we engineered programmable fusion proteins that outperform current artificial splicing factors at manipulating inclusion of reporter and endogenous exons. This tethering approach characterizes the ability of RBPs to induce exon inclusion and yields new molecular parts for programmable splicing control.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Manya Jain
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alex T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sara Elmsaouri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Evan A Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Lv Z, Ren Y, Li Y, Niu F, Li Z, Li M, Li X, Li Q, Huang D, Yu Y, Xiong Y, Qian L. RNA-binding protein GIGYF2 orchestrates hepatic insulin resistance through STAU1/PTEN-mediated disruption of the PI3K/AKT signaling cascade. Mol Med 2024; 30:124. [PMID: 39138413 PMCID: PMC11323356 DOI: 10.1186/s10020-024-00889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Fanglin Niu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710018, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Man Li
- Department of Endocrinology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Xiaofang Li
- Department of Gastroenterology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Qinhua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Deqing Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Mental Health Center, Xi'an, 710100, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| |
Collapse
|
3
|
Ocharán-Mercado A, Loaeza-Loaeza J, Castro-Coronel Y, Acosta-Saavedra LC, Hernández-Kelly LC, Hernández-Sotelo D, Ortega A. RNA-Binding Proteins: A Role in Neurotoxicity? Neurotox Res 2023; 41:681-697. [PMID: 37776476 PMCID: PMC10682104 DOI: 10.1007/s12640-023-00669-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/15/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Despite sustained efforts to treat neurodegenerative diseases, little is known at the molecular level to understand and generate novel therapeutic approaches for these malignancies. Therefore, it is not surprising that neurogenerative diseases are among the leading causes of death in the aged population. Neurons require sophisticated cellular mechanisms to maintain proper protein homeostasis. These cells are generally sensitive to loss of gene expression control at the post-transcriptional level. Post-translational control responds to signals that can arise from intracellular processes or environmental factors that can be regulated through RNA-binding proteins. These proteins recognize RNA through one or more RNA-binding domains and form ribonucleoproteins that are critically involved in the regulation of post-transcriptional processes from splicing to the regulation of association of the translation machinery allowing a relatively rapid and precise modulation of the transcriptome. Neurotoxicity is the result of the biological, chemical, or physical interaction of agents with an adverse effect on the structure and function of the central nervous system. The disruption of the proper levels or function of RBPs in neurons and glial cells triggers neurotoxic events that are linked to neurodegenerative diseases such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), fragile X syndrome (FXS), and frontotemporal dementia (FTD) among many others. The connection between RBPs and neurodegenerative diseases opens a new landscape for potentially novel therapeutic targets for the intervention of these neurodegenerative pathologies. In this contribution, a summary of the recent findings of the molecular mechanisms involved in the plausible role of RBPs in RNA processing in neurodegenerative disease is discussed.
Collapse
Affiliation(s)
- Andrea Ocharán-Mercado
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Jaqueline Loaeza-Loaeza
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Yaneth Castro-Coronel
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas 88, Chilpancingo, Guerrero, 39086, México
| | - Leonor C Acosta-Saavedra
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas 88, Chilpancingo, Guerrero, 39086, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
4
|
Jiang S, Meng X, Gu H, Sun J, Chen S, Chen Z, Liu D, Liang X. STAU1 promotes adipogenesis by regulating the alternative splicing of Pparγ2 mRNA. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159293. [PMID: 36871938 DOI: 10.1016/j.bbalip.2023.159293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
During adipocyte differentiation, specific genes such as peroxisome proliferator-activated receptor γ (PPARγ) are transcribed and post-transcriptional pre-mRNA is processed into mature mRNA. Since Pparγ2 pre-mRNAs contain putative binding sites for STAUFEN1 (STAU1), which can affect the alternative splicing of pre-mRNA, we hypothesized that STAU1 might regulate the alternative splicing of Pparγ2 pre-mRNA. In this study, we found that STAU1 affects the differentiation of 3 T3-L1 pre-adipocytes. Through RNA-seq analysis, we confirmed that STAU1 can regulate alternative splicing events during adipocyte differentiation, mainly through exon skipping, which suggests that STAU1 is mainly involved in exon splicing. In addition, gene annotation and cluster analysis revealed that the genes affected by alternative splicing were enriched in lipid metabolism pathways. We further demonstrated that STAU1 can regulate the alternative splicing of Pparγ2 pre-mRNA and affect the splicing of exon E1 through RNA immuno-precipitation, photoactivatable ribonucleotide enhanced crosslinking and immunoprecipitation, and sucrose density gradient centrifugation assays. Finally, we confirmed that STAU1 can regulate the alternative splicing of Pparγ2 pre-mRNA in stromal vascular fraction cells. In summary, this study improves our understanding of the function of STAU1 in adipocyte differentiation and the regulatory network of adipocyte differentiation-related gene expression.
Collapse
Affiliation(s)
- Shuo Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Xuanyu Meng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Hao Gu
- Department of Laparoscopic Surgery, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830002, China
| | - Jialei Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Siyuan Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Zhe Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Dihui Liu
- Pathology Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830002, China
| | - Xiaodi Liang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
5
|
Misquitta NS, Ravel-Chapuis A, Jasmin BJ. Combinatorial treatment with exercise and AICAR potentiates the rescue of myotonic dystrophy type 1 mouse muscles in a sex-specific manner. Hum Mol Genet 2023; 32:551-566. [PMID: 36048859 DOI: 10.1093/hmg/ddac222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
Targeting AMP-activated protein kinase (AMPK) is emerging as a promising strategy for treating myotonic dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy. We previously demonstrated that 5-aminomidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and exercise, two potent AMPK activators, improve disease features in DM1 mouse skeletal muscles. Here, we employed a combinatorial approach with these AMPK activators and examined their joint impact on disease severity in male and female DM1 mice. Our data reveal that swimming exercise additively enhances the effect of AICAR in mitigating the nuclear accumulation of toxic CUGexp RNA foci. In addition, our findings show a trend towards an enhanced reversal of MBNL1 sequestration and correction in pathogenic alternative splicing events. Our results further demonstrate that the combinatorial impact of exercise and AICAR promotes muscle fiber hypertrophy in DM1 skeletal muscle. Importantly, these improvements occur in a sex-specific manner with greater benefits observed in female DM1 mice. Our findings demonstrate that combining AMPK-activating interventions may prove optimal for rescuing the DM1 muscle phenotype and uncover important sex differences in the response to AMPK-based therapeutic strategies in DM1 mice.
Collapse
Affiliation(s)
- Naomi S Misquitta
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Ravel-Chapuis A, Duchesne E, Jasmin BJ. Pharmacological and exercise-induced activation of AMPK as emerging therapies for myotonic dystrophy type 1 patients. J Physiol 2022; 600:3249-3264. [PMID: 35695045 DOI: 10.1113/jp282725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder with variable clinical features. Currently, there is no cure or effective treatment for DM1. The disease is caused by an expansion of CUG repeats in the 3' UTR of DMPK mRNAs. Mutant DMPK mRNAs accumulate in nuclei as RNA foci and trigger an imbalance in the level and localization of RNA-binding proteins causing the characteristic missplicing events that account for the varied DM1 symptoms, a disease mechanism referred to as RNA toxicity. In recent years, multiple signalling pathways have been identified as being aberrantly regulated in skeletal muscle in response to the CUG expansion, including AMPK, a sensor of energy status, as well as a master regulator of cellular energy homeostasis. Converging lines of evidence highlight the benefits of activating AMPK signalling pharmacologically on RNA toxicity, as well as on muscle histology and function, in preclinical DM1 models. Importantly, a clinical trial with metformin, an activator of AMPK, resulted in functional benefits in DM1 patients. In addition, exercise, a known AMPK activator, has shown promising effects on RNA toxicity and muscle function in DM1 mice. Finally, clinical trials involving moderate-intensity exercise also induced functional benefits for DM1 patients. Taken together, these studies clearly demonstrate the molecular, histological and functional benefits of AMPK activation and exercise-based interventions on the DM1 phenotype. Despite these advances, several key questions remain; in particular, the extent of the true implication of AMPK in the observed beneficial improvements, as well as how, mechanistically, activation of AMPK signalling improves the DM1 pathophysiology.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elise Duchesne
- Département des sciences de la santé, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada.,Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, QC, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Almasi S, Jasmin BJ. The multifunctional RNA-binding protein Staufen1: an emerging regulator of oncogenesis through its various roles in key cellular events. Cell Mol Life Sci 2021; 78:7145-7160. [PMID: 34633481 PMCID: PMC8629789 DOI: 10.1007/s00018-021-03965-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
The double-stranded multifunctional RNA-binding protein (dsRBP) Staufen was initially discovered in insects as a regulator of mRNA localization. Later, its mammalian orthologs have been described in different organisms, including humans. Two human orthologues of Staufen, named Staufen1 (STAU1) and Staufen2 (STAU2), share some structural and functional similarities. However, given their different spatio-temporal expression patterns, each of these orthologues plays distinct roles in cells. In the current review, we focus on the role of STAU1 in cell functions and cancer development. Since its discovery, STAU1 has mostly been studied for its involvement in various aspects of RNA metabolism. Given the pivotal role of RNA metabolism within cells, recent studies have explored the mechanistic impact of STAU1 in a wide variety of cell functions ranging from cell growth to cell death, as well as in various disease states. In particular, there has been increasing attention on the role of STAU1 in neuromuscular disorders, neurodegeneration, and cancer. Here, we provide an overview of the current knowledge on the role of STAU1 in RNA metabolism and cell functions. We also highlight the link between STAU1-mediated control of cellular functions and cancer development, progression, and treatment. Hence, our review emphasizes the potential of STAU1 as a novel biomarker and therapeutic target for cancer diagnosis and treatment, respectively.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada.
| |
Collapse
|
8
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
9
|
Todorow V, Hintze S, Kerr ARW, Hehr A, Schoser B, Meinke P. Transcriptome Analysis in a Primary Human Muscle Cell Differentiation Model for Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:8607. [PMID: 34445314 PMCID: PMC8395314 DOI: 10.3390/ijms22168607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by CTG-repeat expansions leading to a complex pathology with a multisystemic phenotype that primarily affects the muscles and brain. Despite a multitude of information, especially on the alternative splicing of several genes involved in the pathology, information about additional factors contributing to the disease development is still lacking. We performed RNAseq and gene expression analyses on proliferating primary human myoblasts and differentiated myotubes. GO-term analysis indicates that in myoblasts and myotubes, different molecular pathologies are involved in the development of the muscular phenotype. Gene set enrichment for splicing reveals the likelihood of whole, differentiation stage specific, splicing complexes that are misregulated in DM1. These data add complexity to the alternative splicing phenotype and we predict that it will be of high importance for therapeutic interventions to target not only mature muscle, but also satellite cells.
Collapse
Affiliation(s)
- Vanessa Todorow
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Stefan Hintze
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Alastair R W Kerr
- Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK
| | - Andreas Hehr
- Centre for Human Genetics, 93047 Regensburg, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
10
|
Bonnet-Magnaval F, DesGroseillers L. The Staufen1-dependent cell cycle regulon or how a misregulated RNA-binding protein leads to cancer. Biol Rev Camb Philos Soc 2021; 96:2192-2208. [PMID: 34018319 DOI: 10.1111/brv.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of reports have linked the RNA-binding protein Staufen1 (STAU1) to the control of cell decision making. In non-transformed cells, STAU1 balances the expression of messenger RNA (mRNA) regulons that regulate differentiation and well-ordered cell division. Misregulation of STAU1 expression and/or functions changes the fragile balance in the expression of pro- and anti-proliferative and apoptotic genes and favours a novel equilibrium that supports cell proliferation and cancer development. The misregulation of STAU1 functions causes multiple coordinated modest effects in the post-transcriptional regulation of many RNA targets that code for cell cycle regulators, leading to dramatic consequences at the cellular level. The new tumorigenic equilibrium in STAU1-mediated gene regulation observed in cancer cells can be further altered by a slight increase in STAU1 expression that favours expression of pro-apoptotic genes and cell death. The STAU1-dependent cell cycle regulon is a good model to study how abnormal expression of an RNA-binding protein promotes cell growth and provides an advantageous selection of malignant cells in the first step of cancer development.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
11
|
Almasi S, Crawford Parks TE, Ravel-Chapuis A, MacKenzie A, Côté J, Cowan KN, Jasmin BJ. Differential regulation of autophagy by STAU1 in alveolar rhabdomyosarcoma and non-transformed skeletal muscle cells. Cell Oncol (Dordr) 2021; 44:851-870. [PMID: 33899158 DOI: 10.1007/s13402-021-00607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Recent work has highlighted the therapeutic potential of targeting autophagy to modulate cell survival in a variety of diseases including cancer. Recently, we found that the RNA-binding protein Staufen1 (STAU1) is highly expressed in alveolar rhabdomyosarcoma (ARMS) and that this abnormal expression promotes tumorigenesis. Here, we asked whether STAU1 is involved in the regulation of autophagy in ARMS cells. METHODS We assessed the impact of STAU1 expression modulation in ARMS cell lines (RH30 and RH41), non-transformed skeletal muscle cells (C2C12) and STAU1-transgenic mice using complementary techniques. RESULTS We found that STAU1 silencing reduces autophagy in the ARMS cell lines RH30 and RH41, while increasing their apoptosis. Mechanistically, this inhibitory effect was found to be caused by a direct negative impact of STAU1 depletion on the stability of Beclin-1 (BECN1) and ATG16L1 mRNAs, as well as by an indirect inhibition of JNK signaling via increased expression of Dual specificity phosphatase 8 (DUSP8). Pharmacological activation of JNK or expression silencing of DUSP8 was sufficient to restore autophagy in STAU1-depleted cells. By contrast, we found that STAU1 downregulation in non-transformed skeletal muscle cells activates autophagy in a mTOR-dependent manner, without promoting apoptosis. A similar effect was observed in skeletal muscles obtained from STAU1-overexpressing transgenic mice. CONCLUSIONS Together, our data indicate an effect of STAU1 on autophagy regulation in ARMS cells and its differential role in non-transformed skeletal muscle cells. Our findings suggest a cancer-specific potential of targeting STAU1 for the treatment of ARMS.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alex MacKenzie
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Endocrinology, Department of Paediatric, CHEO, University of Ottawa, Ottawa, ON, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyle N Cowan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,Division of Paediatric Surgery, Department of Surgery, CHEO, University of Ottawa, Ottawa, ON, Canada.,Molecular Biomedicine Program, CHEO, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada. .,The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Marcellus KA, Crawford Parks TE, Almasi S, Jasmin BJ. Distinct roles for the RNA-binding protein Staufen1 in prostate cancer. BMC Cancer 2021; 21:120. [PMID: 33541283 PMCID: PMC7863451 DOI: 10.1186/s12885-021-07844-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most common malignant cancers with the second highest global rate of mortality in men. During the early stages of disease progression, tumour growth is local and androgen-dependent. Despite treatment, a large percentage of patients develop androgen-independent prostate cancer, which often results in metastases, a leading cause of mortality in these patients. Our previous work on the RNA-binding protein Staufen1 demonstrated its novel role in cancer biology, and in particular rhabdomyosarcoma tumorigenesis. To build upon this work, we have focused on the role of Staufen1 in other forms of cancer and describe here the novel and differential roles of Staufen1 in prostate cancer. METHODS Using a cell-based approach, three independent prostate cancer cell lines with different characteristics were used to evaluate the expression of Staufen1 in human prostate cancer relative to control prostate cells. The functional impact of Staufen1 on several key oncogenic features of prostate cancer cells including proliferation, apoptosis, migration and invasion were systematically investigated. RESULTS We show that Staufen1 levels are increased in all human prostate cancer cells examined in comparison to normal prostate epithelial cells. Furthermore, Staufen1 differentially regulates growth, migration, and invasion in the various prostate cancer cells assessed. In LNCaP prostate cancer cells, Staufen1 regulates cell proliferation through mTOR activation. Conversely, Staufen1 regulates migration and invasion of the highly invasive, bone metastatic-derived, PC3 prostate cells via the activation of focal adhesion kinase. CONCLUSIONS Collectively, these results show that Staufen1 has a direct impact in prostate cancer development and further demonstrate that its functions vary amongst the prostate cancer cell types. Accordingly, Staufen1 represents a novel target for the development of much-needed therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada. .,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada.
| |
Collapse
|
13
|
Scalia P, Giordano A, Martini C, Williams SJ. Isoform- and Paralog-Switching in IR-Signaling: When Diabetes Opens the Gates to Cancer. Biomolecules 2020; 10:biom10121617. [PMID: 33266015 PMCID: PMC7761347 DOI: 10.3390/biom10121617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (IR) and IR-related signaling defects have been shown to trigger insulin-resistance in insulin-dependent cells and ultimately to give rise to type 2 diabetes in mammalian organisms. IR expression is ubiquitous in mammalian tissues, and its over-expression is also a common finding in cancerous cells. This latter finding has been shown to associate with both a relative and absolute increase in IR isoform-A (IR-A) expression, missing 12 aa in its EC subunit corresponding to exon 11. Since IR-A is a high-affinity transducer of Insulin-like Growth Factor-II (IGF-II) signals, a growth factor is often secreted by cancer cells; such event offers a direct molecular link between IR-A/IR-B increased ratio in insulin resistance states (obesity and type 2 diabetes) and the malignant advantage provided by IGF-II to solid tumors. Nonetheless, recent findings on the biological role of isoforms for cellular signaling components suggest that the preferential expression of IR isoform-A may be part of a wider contextual isoform-expression switch in downstream regulatory factors, potentially enhancing IR-dependent oncogenic effects. The present review focuses on the role of isoform- and paralog-dependent variability in the IR and downstream cellular components playing a potential role in the modulation of the IR-A signaling related to the changes induced by insulin-resistance-linked conditions as well as to their relationship with the benign versus malignant transition in underlying solid tumors.
Collapse
Affiliation(s)
- Pierluigi Scalia
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- ISOPROG-Somatolink EPFP Network, Functional Research Unit, Philadelphia, PA 19104, USA and 93100 Caltanissetta, Italy
- Correspondence:
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- Department of Medical Biotechnologies, University of Siena, 52100 Siena, Italy
| | - Caroline Martini
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
| | - Stephen J. Williams
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- ISOPROG-Somatolink EPFP Network, Functional Research Unit, Philadelphia, PA 19104, USA and 93100 Caltanissetta, Italy
| |
Collapse
|
14
|
Zhong Y, Hu Z, Wu J, Dai F, Lee F, Xu Y. STAU1 selectively regulates the expression of inflammatory and immune response genes and alternative splicing of the nerve growth factor receptor signaling pathway. Oncol Rep 2020; 44:1863-1874. [PMID: 33000283 PMCID: PMC7551455 DOI: 10.3892/or.2020.7769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
Double‑stranded RNA‑binding protein Staufen homolog 1 (STAU1) is a highly conserved multifunctional double‑stranded RNA‑binding protein, and is a key factor in neuronal differentiation. RNA sequencing was used to analyze the overall transcriptional levels of the upregulated cells by STAU1 and control cells, and select alternative splicing (AS). It was determined that the high expression of STAU1 led to changes in the expression levels of a variety of inflammatory and immune response genes, including IFIT2, IFIT3, OASL, and CCL2. Furthermore, STAU1 was revealed to exert a significant regulatory effect on the AS of genes related to the 'nerve growth factor receptor signaling pathway'. This is of significant importance for neuronal survival, differentiation, growth, post‑damage repair, and regeneration. In conclusion, overexpression of STAU1 was associated with immune response and regulated AS of pathways related to neuronal growth and repair. In the present study, the whole transcriptome of STAU1 expression was first analyzed, which laid a foundation for further understanding the key functions of STAU1.
Collapse
Affiliation(s)
- Yi Zhong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhengchao Hu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jingcui Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fan Dai
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Feng Lee
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| | - Yangping Xu
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
15
|
Crawford Parks TE, Marcellus KA, Péladeau C, Jasmin BJ, Ravel-Chapuis A. Overexpression of Staufen1 in DM1 mouse skeletal muscle exacerbates dystrophic and atrophic features. Hum Mol Genet 2020; 29:2185-2199. [PMID: 32504084 DOI: 10.1093/hmg/ddaa111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), the CUG expansion (CUGexp) in the 3' untranslated region of the dystrophia myotonica protein kinase messenger ribonucleic acid affects the homeostasis of ribonucleic acid-binding proteins, causing the multiple symptoms of DM1. We have previously reported that Staufen1 is increased in skeletal muscles from DM1 mice and patients and that sustained Staufen1 expression in mature mouse muscle causes a progressive myopathy. Here, we hypothesized that the elevated levels of Staufen1 contributes to the myopathic features of the disease. Interestingly, the classic DM1 mouse model human skeletal actin long repeat (HSALR) lacks overt atrophy while expressing CUGexp transcripts and elevated levels of endogenous Staufen1, suggesting a lower sensitivity to atrophic signaling in this model. We report that further overexpression of Staufen1 in the DM1 mouse model HSALR causes a myopathy via inhibition of protein kinase B signaling through an increase in phosphatase tensin homolog, leading to the expression of atrogenes. Interestingly, we also show that Staufen1 regulates the expression of muscleblind-like splicing regulator 1 and CUG-binding protein elav-like family member 1 in wild-type and DM1 skeletal muscle. Together, data obtained from these new DM1 mouse models provide evidence for the role of Staufen1 as an atrophy-associated gene that impacts progressive muscle wasting in DM1. Accordingly, our findings highlight the potential of Staufen1 as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
16
|
Abstract
Studies on myotonic dystrophy type 1 (DM1) have led to the RNA-mediated disease model for hereditary disorders caused by noncoding microsatellite expansions. This model proposes that DM1 disease manifestations are caused by a reversion to fetal RNA processing patterns in adult tissues due to the expression of toxic CUG RNA expansions (CUGexp) leading to decreased muscleblind-like, but increased CUGBP1/ETR3-like factor 1 (CELF1), alternative splicing activities. Here, we test this model in vivo, using the mouse HSA LR poly(CUG) model for DM1 and recombinant adeno-associated virus (rAAV)-mediated transduction of specific splicing factors. Surprisingly, systemic overexpression of HNRNPA1, not previously linked to DM1, also shifted DM1-relevant splicing targets to fetal isoforms, resulting in more severe muscle weakness/myopathy as early as 4 to 6 wk posttransduction, whereas rAAV controls were unaffected. Overexpression of HNRNPA1 promotes fetal exon inclusion of representative DM1-relevant splicing targets in differentiated myoblasts, and HITS-CLIP of rAAV-mycHnrnpa1-injected muscle revealed direct interactions of HNRNPA1 with these targets in vivo. Similar to CELF1, HNRNPA1 protein levels decrease during postnatal development, but are elevated in both regenerating mouse muscle and DM1 skeletal muscle. Our studies suggest that CUGexp RNA triggers abnormal expression of multiple nuclear RNA binding proteins, including CELF1 and HNRNPA1, that antagonize MBNL activity to promote fetal splicing patterns.
Collapse
|
17
|
Song H, Wang L, Chen D, Li F. The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. Int J Biol Sci 2020; 16:38-48. [PMID: 31892844 PMCID: PMC6930371 DOI: 10.7150/ijbs.34422] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative pre-mRNA splicing plays important roles in co-transcriptional and post-transcriptional regulation of gene expression functioned during many developmental processes, such as spermatogenesis. The studies focusing on alternative splicing on spermatogenesis supported the notion that the development of testis is regulated by a higher level of alternative splicing than other tissues. Here, we aim to review the mechanisms underlying alternative splicing, particularly the splicing variants functioned in the process of spermatogenesis and the male infertility. There are five points regarding the alternative splicing including ⅰ) a brief introduction of alternative pre-mRNA splicing; ⅱ) the alternative splicing events in spermatogenesis-associated genes enriched in different stages of spermatogenesis; ⅲ) the mechanisms of alternative splicing regulation, such as splicing factors and m6A demethylation; ⅳ) the splice site recognition and alternative splicing, including the production and degradation of abnormal transcripts caused by gene variations and nonsense-mediated mRNA decay, respectively; ⅴ) abnormal alternative splicing correlated with male infertility. Taking together, this review highlights the impacts of alternative splicing and splicing variants in mammal spermatogenesis and provides new insights of the potential application of the alternative splicing into the therapy of male infertility.
Collapse
Affiliation(s)
- Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dake Chen
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| |
Collapse
|
18
|
Timchenko L. Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 21:ijms21010094. [PMID: 31877772 PMCID: PMC6982105 DOI: 10.3390/ijms21010094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3β-CUGBP1 pathway, is a promising option for this complex disease.
Collapse
Affiliation(s)
- Lubov Timchenko
- Departments of Neurology and Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Voellenkle C, Perfetti A, Carrara M, Fuschi P, Renna LV, Longo M, Sain SB, Cardani R, Valaperta R, Silvestri G, Legnini I, Bozzoni I, Furling D, Gaetano C, Falcone G, Meola G, Martelli F. Dysregulation of Circular RNAs in Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 20:ijms20081938. [PMID: 31010208 PMCID: PMC6515344 DOI: 10.3390/ijms20081938] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a recently re-discovered class of non-coding RNAs functioning as sponges for miRNAs and proteins, affecting RNA splicing and regulating transcription. CircRNAs are generated by “back-splicing”, which is the linking covalently of 3′- and 5′-ends of exons. Thus, circRNA levels might be deregulated in conditions associated with altered RNA-splicing. Significantly, growing evidence indicates their role in human diseases. Specifically, myotonic dystrophy type 1 (DM1) is a multisystemic disorder caused by expanded CTG repeats in the DMPK gene which results in abnormal mRNA-splicing. In this investigation, circRNAs expressed in DM1 skeletal muscles were identified by analyzing RNA-sequencing data-sets followed by qPCR validation. In muscle biopsies, out of nine tested, four transcripts showed an increased circular fraction: CDYL, HIPK3, RTN4_03, and ZNF609. Their circular fraction values correlated with skeletal muscle strength and with splicing biomarkers of disease severity, and displayed higher values in more severely affected patients. Moreover, Receiver-Operating-Characteristics curves of these four circRNAs discriminated DM1 patients from controls. The identified circRNAs were also detectable in peripheral-blood-mononuclear-cells (PBMCs) and the plasma of DM1 patients, but they were not regulated significantly. Finally, increased circular fractions of RTN4_03 and ZNF609 were also observed in differentiated myogenic cell lines derived from DM1 patients. In conclusion, this pilot study identified circRNA dysregulation in DM1 patients.
Collapse
Affiliation(s)
- Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Alessandra Perfetti
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Matteo Carrara
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Paola Fuschi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Marialucia Longo
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Simona Baghai Sain
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Rea Valaperta
- Research Laboratories, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Gabriella Silvestri
- Department of Geriatrics, Orthopaedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Fondazione Policlinico Gemelli, 00168 Rome, Italy.
| | - Ivano Legnini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Irene Bozzoni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France.
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy.
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| |
Collapse
|
20
|
Ravel-Chapuis A, Al-Rewashdy A, Bélanger G, Jasmin BJ. Pharmacological and physiological activation of AMPK improves the spliceopathy in DM1 mouse muscles. Hum Mol Genet 2019; 27:3361-3376. [PMID: 29982462 DOI: 10.1093/hmg/ddy245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a triplet repeat expansion in the 3' untranslated region of dystrophia myotonica protein kinase mRNAs. Mutant mRNAs accumulate in the nucleus of affected cells and misregulate RNA-binding proteins, thereby promoting characteristic missplicing events. However, little is known about the signaling pathways that may be affected in DM1. Here, we investigated the status of activated protein kinase (AMPK) signaling in DM1 skeletal muscle and found that the AMPK pathway is markedly repressed in a DM1 mouse model (human skeletal actin-long repeat, HSALR) and patient-derived DM1 myoblasts. Chronic pharmacological activation of AMPK signaling in DM1 mice with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has multiple beneficial effects on the DM1 phenotype. Indeed, a 6-week AICAR treatment of DM1 mice promoted expression of a slower, more oxidative phenotype, improved muscle histology and corrected several events associated with RNA toxicity. Importantly, AICAR also had a dose-dependent positive effect on the spliceopathy in patient-derived DM1 myoblasts. In separate experiments, we also show that chronic treatment of DM1 mice with resveratrol as well as voluntary wheel running also rescued missplicing events in muscle. Collectively, our findings demonstrate the therapeutic potential of chronic AMPK stimulation both physiologically and pharmacologically for DM1 patients.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ali Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
22
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
23
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
24
|
Nakka K, Ghigna C, Gabellini D, Dilworth FJ. Diversification of the muscle proteome through alternative splicing. Skelet Muscle 2018; 8:8. [PMID: 29510724 PMCID: PMC5840707 DOI: 10.1186/s13395-018-0152-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. Main body In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved “targeted” proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. Conclusions An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0152-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiran Nakka
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Claudia Ghigna
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Davide Gabellini
- Unit of Gene Expression and Muscular Dystrophy, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, DIBIT2, 5A3-44, via Olgettina 58, 20132, Milan, Italy.
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
25
|
Larsen PA, Hunnicutt KE, Larsen RJ, Yoder AD, Saunders AM. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Res 2018; 26:93-111. [PMID: 29460123 PMCID: PMC5857278 DOI: 10.1007/s10577-018-9573-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Alu elements are a highly successful family of primate-specific retrotransposons that have fundamentally shaped primate evolution, including the evolution of our own species. Alus play critical roles in the formation of neurological networks and the epigenetic regulation of biochemical processes throughout the central nervous system (CNS), and thus are hypothesized to have contributed to the origin of human cognition. Despite the benefits that Alus provide, deleterious Alu activity is associated with a number of neurological and neurodegenerative disorders. In particular, neurological networks are potentially vulnerable to the epigenetic dysregulation of Alu elements operating across the suite of nuclear-encoded mitochondrial genes that are critical for both mitochondrial and CNS function. Here, we highlight the beneficial neurological aspects of Alu elements as well as their potential to cause disease by disrupting key cellular processes across the CNS. We identify at least 37 neurological and neurodegenerative disorders wherein deleterious Alu activity has been implicated as a contributing factor for the manifestation of disease, and for many of these disorders, this activity is operating on genes that are essential for proper mitochondrial function. We conclude that the epigenetic dysregulation of Alu elements can ultimately disrupt mitochondrial homeostasis within the CNS. This mechanism is a plausible source for the incipient neuronal stress that is consistently observed across a spectrum of sporadic neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Peter A Larsen
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA.
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC, 27708, USA.
| | | | - Roxanne J Larsen
- Duke University School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA
| | - Ann M Saunders
- Zinfandel Pharmaceuticals Inc, Chapel Hill, NC, 27709, USA
| |
Collapse
|
26
|
Abstract
Muscleblind-like (MBNL) proteins bind to hundreds of pre- and mature mRNAs to regulate their alternative splicing, alternative polyadenylation, stability and subcellular localization. Once MBNLs are withheld from transcript regulation, cellular machineries generate products inapt for precise embryonal/adult developmental tasks and myotonic dystrophy, a devastating multi-systemic genetic disorder, develops. We have recently demonstrated that all three MBNL paralogs are capable of fine-tuning cellular content of one of the three MBNL paralogs, MBNL1, by binding to the first coding exon (e1) of its pre-mRNA. Intriguingly, this autoregulatory feedback loop grounded on alternative splicing of e1 appears to play a crucial role in delaying the onset of myotonic dystrophy. Here, we describe this process in the context of other autoregulatory and regulatory loops that maintain the content and diverse functions of MBNL proteins at optimal level in health and disease, thus supporting the overall cellular homeostasis.
Collapse
Affiliation(s)
- Patryk Konieczny
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| | - Ewa Stepniak-Konieczna
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| | - Krzysztof Sobczak
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| |
Collapse
|
27
|
Ravel-Chapuis A, Bélanger G, Côté J, Michel RN, Jasmin BJ. Misregulation of calcium-handling proteins promotes hyperactivation of calcineurin-NFAT signaling in skeletal muscle of DM1 mice. Hum Mol Genet 2017; 26:2192-2206. [PMID: 28369518 DOI: 10.1093/hmg/ddx109] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/16/2017] [Indexed: 12/26/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is caused by an expansion of CUG repeats in DMPK mRNAs. This mutation affects alternative splicing through misregulation of RNA-binding proteins. Amongst pre-mRNAs that are mis-spliced, several code for proteins involved in calcium homeostasis suggesting that calcium-handling and signaling are perturbed in DM1. Here, we analyzed expression of such proteins in DM1 mouse muscle. We found that the levels of several sarcoplasmic reticulum proteins (SERCA1, sarcolipin and calsequestrin) are altered, likely contributing to an imbalance in calcium homeostasis. We also observed that calcineurin (CnA) signaling is hyperactivated in DM1 muscle. Indeed, CnA expression and phosphatase activity are both markedly increased in DM1 muscle. Coherent with this, we found that activators of the CnA pathway (MLP, FHL1) are also elevated. Consequently, NFATc1 expression is increased in DM1 muscle and becomes relocalized to myonuclei, together with an up-regulation of its transcriptional targets (RCAN1.4 and myoglobin). Accordingly, DM1 mouse muscles display an increase in oxidative metabolism and fiber hypertrophy. To determine the functional consequences of this CnA hyperactivation, we administered cyclosporine A, an inhibitor of CnA, to DM1 mice. Muscles of treated DM1 mice showed an increase in CUGBP1 levels, and an exacerbation of key alternative splicing events associated with DM1. Finally, inhibition of CnA in cultured human DM1 myoblasts also resulted in a splicing exacerbation of the insulin receptor. Together, these findings show for the first time that calcium-CnA signaling is hyperactivated in DM1 muscle and that such hyperactivation represents a beneficial compensatory adaptation to the disease.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Robin N Michel
- Department of Exercise Science, Faculty of Arts and Science, Concordia University, Montreal, QC, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Crawford Parks TE, Ravel-Chapuis A, Bondy-Chorney E, Renaud JM, Côté J, Jasmin BJ. Muscle-specific expression of the RNA-binding protein Staufen1 induces progressive skeletal muscle atrophy via regulation of phosphatase tensin homolog. Hum Mol Genet 2017; 26:1821-1838. [PMID: 28369467 DOI: 10.1093/hmg/ddx085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Converging lines of evidence have now highlighted the key role for post-transcriptional regulation in the neuromuscular system. In particular, several RNA-binding proteins are known to be misregulated in neuromuscular disorders including myotonic dystrophy type 1, spinal muscular atrophy and amyotrophic lateral sclerosis. In this study, we focused on the RNA-binding protein Staufen1, which assumes multiple functions in both skeletal muscle and neurons. Given our previous work that showed a marked increase in Staufen1 expression in various physiological and pathological conditions including denervated muscle, in embryonic and undifferentiated skeletal muscle, in rhabdomyosarcomas as well as in myotonic dystrophy type 1 muscle samples from both mouse models and humans, we investigated the impact of sustained Staufen1 expression in postnatal skeletal muscle. To this end, we generated a skeletal muscle-specific transgenic mouse model using the muscle creatine kinase promoter to drive tissue-specific expression of Staufen1. We report that sustained Staufen1 expression in postnatal skeletal muscle causes a myopathy characterized by significant morphological and functional deficits. These deficits are accompanied by a marked increase in the expression of several atrophy-associated genes and by the negative regulation of PI3K/AKT signaling. We also uncovered that Staufen1 mediates PTEN expression through indirect transcriptional and direct post-transcriptional events thereby providing the first evidence for Staufen1-regulated PTEN expression. Collectively, our data demonstrate that Staufen1 is a novel atrophy-associated gene, and highlight its potential as a biomarker and therapeutic target for neuromuscular disorders and conditions.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
29
|
Bondy-Chorney E, Baldwin RM, Didillon A, Chabot B, Jasmin BJ, Côté J. RNA binding protein RALY promotes Protein Arginine Methyltransferase 1 alternatively spliced isoform v2 relative expression and metastatic potential in breast cancer cells. Int J Biochem Cell Biol 2017; 91:124-135. [PMID: 28733251 DOI: 10.1016/j.biocel.2017.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/09/2017] [Accepted: 07/15/2017] [Indexed: 01/24/2023]
Abstract
Aberrant expression of Protein Arginine Methyltransferases (PRMTs) has been observed in several cancer types, including breast cancer. We previously reported that the PRMT1v2 isoform, which is generated through inclusion of alternative exon 2, is overexpressed in breast cancer cells and promotes their invasiveness. However, the precise mechanism by which expression of this isoform is controlled and how it is dysregulated in breast cancer remains unknown. Using a custom RNA interference-based screen, we identified several RNA binding proteins (RBP) which, when knocked down, altered the relative abundance of the alternatively spliced PRMT1v2 isoform. Amongst the top hits were SNW Domain containing 1 (SNW1) and RBP-associated with lethal yellow mutation (RALY), which both associated with the PRMT1 pre-mRNA and upon depletion caused an increase or decrease in the relative abundance of PRMT1v2 isoform mRNA and protein. Most importantly, a significant decrease in invasion was observed upon RALY knockdown in aggressive breast cancer cells, consistent with targeting PRMT1v2 directly, and this effect was rescued by the exogenous re-expression of PRMT1v2. We show that SNW1 expression is decreased, while RALY expression is increased in breast cancer cells and tumours, which correlates with decreased patient survival. This work revealed crucial insight into the mechanisms regulating the expression of the PRMT1 alternatively spliced isoform v2 and its dysregulation in breast cancer. It also provides proof-of-concept support for the development of therapeutic strategies where regulators of PRMT1 exon 2 alternative splicing are targeted as an approach to selectively reduce PRMT1v2 levels and metastasis in breast cancer.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - R Mitchell Baldwin
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Andréanne Didillon
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Benoît Chabot
- Département de microbiologie et d'infectiologie, Faculté de Médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1 K 2R1, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Ontario, K1H 8L1, Canada.
| |
Collapse
|
30
|
Tudor Domain Containing Protein 3 Promotes Tumorigenesis and Invasive Capacity of Breast Cancer Cells. Sci Rep 2017; 7:5153. [PMID: 28698590 PMCID: PMC5506013 DOI: 10.1038/s41598-017-04955-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Tudor domain containing protein 3 (TDRD3) is a modular protein identified based on its ability to recognize methylated arginine motifs through its Tudor domain. We have previously shown that TDRD3 localizes to cytoplasmic stress granules, a structure shown to promote survival upon treatment with chemotherapeutic drugs in cancer cells. Here, we report TDRD3 as a novel regulator of cell proliferation and invasion in breast cancer cells. Our study also demonstrates that TDRD3 depletion inhibits tumor formation and metastasis to the lung in vivo. Furthermore, we show that TDRD3 regulates the expression of a number of key genes associated with promotion of breast cancer tumorigenesis and disease progression. Strikingly, we report that TDRD3 regulates some of these key targets at the level of translation. These findings provide the first experimental demonstration of a functional role for TDRD3 in promoting breast cancer development and progression, and identify TDRD3 as a potential new therapeutic target for breast cancer.
Collapse
|
31
|
Novel Roles for Staufen1 in Embryonal and Alveolar Rhabdomyosarcoma via c-myc-dependent and -independent events. Sci Rep 2017; 7:42342. [PMID: 28211476 PMCID: PMC5314364 DOI: 10.1038/srep42342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma in children and young adults. Rhabdomyosarcomas are skeletal muscle-like tumours that typically arise in muscle beds, and express key myogenic regulatory factors. However, their developmental program remains blocked in the proliferative phase with cells unable to exit the cell cycle to fuse into myotubes. Recently, we uncovered a key role for the RNA-binding protein Staufen1 during myogenic differentiation through the regulation of c-myc translation. Given the known implication of c-myc in rhabdomyosarcoma, we hypothesized in the current work that Staufen1 controls rhabdomyosarcoma tumorigenesis. Here, we report for the first time the novel role of Staufen1 in cancer, specifically in rhabdomyosarcoma. We demonstrate that Staufen1 is markedly upregulated in human rhabdomyosarcoma tumours and cell lines as compared to normal skeletal muscle. Moreover, we show that Staufen1 promotes the tumorigenesis of embryonal and alveolar rhabdomyosarcoma subtypes both in cell culture and in animal models. Finally, our data demonstrate that Staufen1 has differential roles in embryonal versus alveolar rhabdomyosarcoma through the control of proliferative and apoptotic pathways, respectively. Together, these results provide the first evidence for Staufen1’s direct implication in cancer biology. Accordingly, Staufen1 thus represents a novel target for the development of future therapeutic strategies for rhabdomyosarcoma.
Collapse
|
32
|
Smith CA, Gutmann L. Myotonic Dystrophy Type 1 Management and Therapeutics. Curr Treat Options Neurol 2016; 18:52. [DOI: 10.1007/s11940-016-0434-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Ravel-Chapuis A, Klein Gunnewiek A, Bélanger G, Crawford Parks TE, Côté J, Jasmin BJ. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients. Mol Biol Cell 2016; 27:1728-39. [PMID: 27030674 PMCID: PMC4884064 DOI: 10.1091/mbc.e15-06-0356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/25/2016] [Indexed: 11/11/2022] Open
Abstract
Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUG(exp)) in the DMPK mRNA 3'UTR. CUG(exp)-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1- and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type-specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUG(exp) mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amanda Klein Gunnewiek
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|