1
|
Spiridon-Bodi M, Ros-Carrero C, Igual JC, Gomar-Alba M. Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress. Cell Commun Signal 2025; 23:31. [PMID: 39819572 PMCID: PMC11737188 DOI: 10.1186/s12964-025-02027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Many different stress signaling pathways converge in a common response: slowdown or arrest cell cycle in the G1 phase. The G1/S transition (called Start in budding yeast) is a key checkpoint controlled by positive and negative regulators. Among them, Whi7 and Whi5 are transcriptional repressors of the G1/S transcriptional program, yeast functional homologs of the Retinoblastoma family proteins in mammalian cells. Under standard conditions, Whi7 plays a lesser role than Whi5 in Start inhibition. However, under cell wall stress, Whi7 is induced and plays a more important role in G1/S control. In this work, we investigated the functional hallmarks of Whi7 and Whi5, which determine their strength as Start inhibitors under cell wall stress. METHODS The response of Saccharomyces cerevisiae to Calcofluor White was investigated to characterize the regulation and function of Whi7 and Whi5 under cell wall stress. To control their protein levels, we used dose-dependent β-estradiol-induced expression and auxin-induced degron protein fusions. We also performed Chromatin Immunoprecipitation assays to investigate Whi7 and Whi5 association with Start promoters and scored cell cycle arrest and re-entry using cell microscopy assays. RESULTS We found that cell wall stress promoted the specific upregulation of the Whi7 Start repressor. First, although cell wall stress increases Whi7 protein levels, this is not the only determinant behind the Whi7 function in promoting G1 arrest. Indeed, artificial induction of Whi5 at the same protein level resulted in a lower G1 block. Second, under cell wall stress, Whi7 was specifically recruited to SBF-target promoters, independent of the increase in its protein levels or cell cycle stage. Finally, we found that Whi7 protein instability further increased during cell wall stress and that Whi7 degradation triggered advanced cell cycle re-entry. CONCLUSIONS Here, we show that cell wall stress signaling specifically enhances Whi7 function as a Start transcriptional repressor. Importantly, we identified new Whi7-specific regulatory mechanisms that do not operate in the Whi5 repressor. Our results indicate that cells may benefit from stress-specific repressors to ensure the stress-induced G1 arrest and that Whi7 rapid degradation may be particularly important to resume cell cycle upon adaptation.
Collapse
Affiliation(s)
- Mihai Spiridon-Bodi
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain
| | - Cristina Ros-Carrero
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain
| | - J Carlos Igual
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain
| | - Mercè Gomar-Alba
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain.
| |
Collapse
|
2
|
Gal C, Cochrane GA, Morgan BA, Rallis C, Bähler J, Whitehall SK. The longevity and reversibility of quiescence in Schizosaccharomyces pombe are dependent upon the HIRA histone chaperone. Cell Cycle 2023; 22:1921-1936. [PMID: 37635373 PMCID: PMC10599175 DOI: 10.1080/15384101.2023.2249705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest.
Collapse
Affiliation(s)
- Csenge Gal
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Grace A. Cochrane
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Brian A. Morgan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charalampos Rallis
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment and Institute of Healthy Ageing, University College London, London, UK
| | - Simon K. Whitehall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 PMCID: PMC10297366 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (H.T.); (A.P.); (J.R.); (D.W.-S.)
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (H.T.); (A.P.); (J.R.); (D.W.-S.)
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (H.T.); (A.P.); (J.R.); (D.W.-S.)
| | - Bogna J. Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (H.T.); (A.P.); (J.R.); (D.W.-S.)
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (H.T.); (A.P.); (J.R.); (D.W.-S.)
| |
Collapse
|
4
|
Miles S, Lee C, Breeden L. BY4741 cannot enter quiescence from rich medium. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000742. [PMID: 37012989 PMCID: PMC10066452 DOI: 10.17912/micropub.biology.000742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
In rich medium, W303 Saccharomyces cerevisiae begins to accumulate in G1 an hour before it exhausts the available glucose. It undergoes one more asymmetrical cell division, then stops dividing in G1. In contrast, BY4741, stops dividing four hours before glucose exhaustion, at one-fourth the cell density achieved by W303. There is no asymmetrical cell division and only 50% of the cells arrest in G1. We conclude that BY4741 growth is not limited by glucose and they do not go through the stereotypical events carried out by other strains as they enter quiescence from rich medium. In W303, the timing of glucose limitation and the transition to quiescence is correlated with the rate of biomass accumulation and cell doubling time.
Collapse
Affiliation(s)
- Shawna Miles
- Basic Science, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Cameron Lee
- Tune Therapeutics, 1930 Boren Ave., Seattle, Washington, United States
| | - Linda Breeden
- Basic Science, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| |
Collapse
|
5
|
Irvali D, Schlottmann FP, Muralidhara P, Nadelson I, Kleemann K, Wood NE, Doncic A, Ewald JC. When yeast cells change their mind: cell cycle "Start" is reversible under starvation. EMBO J 2023; 42:e110321. [PMID: 36420556 PMCID: PMC9841329 DOI: 10.15252/embj.2021110321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic cells decide in late G1 phase of the cell cycle whether to commit to another round of division. This point of cell cycle commitment is termed "Restriction Point" in mammals and "Start" in the budding yeast Saccharomyces cerevisiae. At Start, yeast cells integrate multiple signals such as pheromones and nutrients, and will not pass Start if nutrients are lacking. However, how cells respond to nutrient depletion after the Start decision remains poorly understood. Here, we analyze how post-Start cells respond to nutrient depletion, by monitoring Whi5, the cell cycle inhibitor whose export from the nucleus determines Start. Surprisingly, we find that cells that have passed Start can re-import Whi5 into the nucleus. In these cells, the positive feedback loop activating G1/S transcription is interrupted, and the Whi5 repressor re-binds DNA. Cells which re-import Whi5 become again sensitive to mating pheromone, like pre-Start cells, and CDK activation can occur a second time upon replenishment of nutrients. These results demonstrate that upon starvation, the commitment decision at Start can be reversed. We therefore propose that cell cycle commitment in yeast is a multi-step process, similar to what has been suggested for mammalian cells.
Collapse
Affiliation(s)
- Deniz Irvali
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Fabian P Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Iliya Nadelson
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Katja Kleemann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - N Ezgi Wood
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Doncic
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer C Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Breeden L, Miles S. A common SSD1 truncation is toxic to cells entering quiescence and promotes sporulation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000671. [PMID: 36575737 PMCID: PMC9790081 DOI: 10.17912/micropub.biology.000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Ssd1p is an RNA binding protein in Saccharomyces cerevisiae that plays an important role in cell division, cell fate decisions, stress response and virulence. Lab strain W303 encodes the terminal truncation ssd1-2, which is typically interpreted to be a loss of function allele. We have shown that ssd1-2 is toxic to mpt5-Δ mutants and to diploids entering stationary phase and quiescence. The ssd1-Δ null shows no toxicity, indicating that ssd1-2 is disrupting an essential function that does not solely require Ssd1p. ssd1-2 cells are also more sensitive to stress than ssd1-Δ . These phenotypes are recessive to SSD1-1 . In contrast, ssd1-2 plays a dominant role in promoting sporulation.
Collapse
Affiliation(s)
- Linda Breeden
- Fred Hutchinson Cancer Center, Basic Science Division, Seattle, WA, USA
| | - Shawna Miles
- Fred Hutchinson Cancer Center, Basic Science Division, Seattle, WA, USA
| |
Collapse
|
7
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
8
|
Miles S, Breeden LL. Whi7/Srl3 polymorphisms reveal its role in cell size and quiescence. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000661. [PMID: 36406959 PMCID: PMC9667280 DOI: 10.17912/micropub.biology.000661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Whi5 and Srl3/Whi7 are related proteins that resulted from the whole genome duplication of S. cerevisiae (Wolfe and Shields 1997). Whi5 plays an Rb-like function in binding and inhibiting the late G1 transcription that promotes progression from G1 to S (Costanzo et al. 2004; de Bruin et al. 2004). Whi7 can also associate with G1 transcription complexes and promotes G1 arrest when overproduced (Gomar-Alba et al. 2017), but its transcription is primarily induced by stress (Ragni et al. 2011; Mendez et al. 2020). We have used polymorphisms in two laboratory yeast strains to uncover novel functions of Whi7 in log and quiescent cells. These include small cell size during log phase and defects in entry, maintenance and recovery from quiescence.
Collapse
|
9
|
Miyata N, Ito T, Nakashima M, Fujii S, Kuge O. Mitochondrial phosphatidylethanolamine synthesis affects mitochondrial energy metabolism and quiescence entry through attenuation of Snf1/AMPK signaling in yeast. FASEB J 2022; 36:e22355. [PMID: 35639425 DOI: 10.1096/fj.202101600rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
The Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1. Inactivation of Snf1 by depletion of an Snf1-activating kinase, Sak1 canceled the changes in mitochondrial ATP production and quiescence entry observed in ups2∆ cells. Furthermore, among the factors regulated by Snf1, upregulation of pyruvate carboxylase, Pyc1 and downregulation of acetyl-CoA carboxylase, Acc1, respectively, were sufficient to increase mitochondrial ATP production and quiescence entry. These results suggested that a normal PE synthesis mediated by Ups2-Mdm35 complex attenuates Snf1/AMPK activity, and that Snf1-mediated regulation of carbon metabolisms has great impacts on mitochondrial energy metabolism and quiescence entry. We also found that depletion of Ups2 together with the cell-cycle regulators Whi5 and Whi7, functional orthologs of the Rb1 tumor suppressor, caused a synthetic growth defect in yeast. Similarly, knockdown of PRELID3b, the human homolog of Ups2, decreased the viability of Rb1-deficient breast cancer cells, suggesting that PRELID3b is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Non Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takanori Ito
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Miyu Nakashima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Satoru Fujii
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Osamu Kuge
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Miles S, Bradley GT, Breeden LL. The budding yeast transition to quiescence. Yeast 2021; 38:30-38. [PMID: 33350501 DOI: 10.1002/yea.3546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022] Open
Abstract
A subset of Saccharomyces cerevisiae cells in a stationary phase culture achieve a unique quiescent state characterized by increased cell density, stress tolerance, and longevity. Trehalose accumulation is necessary but not sufficient for conferring this state, and it is not recapitulated by abrupt starvation. The fraction of cells that achieve this state varies widely in haploids and diploids and can approach 100%, indicating that both mother and daughter cells can enter quiescence. The transition begins when about half the glucose has been taken up from the medium. The high affinity glucose transporters are turned on, glycogen storage begins, the Rim15 kinase enters the nucleus and the accumulation of cells in G1 is initiated. After the diauxic shift (DS), when glucose is exhausted from the medium, growth promoting genes are repressed by the recruitment of the histone deacetylase Rpd3 by quiescence-specific repressors. The final division that takes place post-DS is highly asymmetrical and G1 arrest is complete after 48 h. The timing of these events can vary considerably, but they are tightly correlated with total biomass of the culture, suggesting that the transition to quiescence is tightly linked to changes in external glucose levels. After 7 days in culture, there are massive morphological changes at the protein and organelle level. There are global changes in histone modification. An extensive array of condensin-dependent, long-range chromatin interactions lead to genome-wide chromatin compaction that is conserved in yeast and human cells. These interactions are required for the global transcriptional repression that occurs in quiescent yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| | | | - Linda L Breeden
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| |
Collapse
|
11
|
Méndez E, Gomar-Alba M, Bañó MC, Mendoza M, Quilis I, Igual JC. The budding yeast Start repressor Whi7 differs in regulation from Whi5, emerging as a major cell cycle brake in response to stress. J Cell Sci 2020; 133:133/24/jcs251413. [PMID: 33443080 PMCID: PMC7774886 DOI: 10.1242/jcs.251413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Start is the main decision point in the eukaryotic cell cycle at which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional programme through the inactivation of Start transcriptional repressors: the retinoblastoma family in mammals, or Whi5 and its recently identified paralogue Whi7 (also known as Srl3) in budding yeast. Here, we provide a comprehensive comparison of Whi5 and Whi7 that reveals significant qualitative differences. Indeed, the expression, subcellular localization and functionality of Whi7 and Whi5 are differentially regulated. Importantly, Whi7 shows specific properties in its association with promoters not shared by Whi5, and for the first time, we demonstrate that Whi7, and not Whi5, can be the main contributor to Start inhibition such as it occurs in the response to cell wall stress. Our results help to improve understanding of the interplay between multiple differentially regulated Start repressors in order to face specific cellular conditions. Highlighted Article: Cells can use the interplay between functionally redundant but differentially regulated cell-cycle repressors in order to confer new repression capabilities and to respond to specific cellular conditions.
Collapse
Affiliation(s)
- Ester Méndez
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Mercè Gomar-Alba
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - M Carmen Bañó
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Manuel Mendoza
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Inma Quilis
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain
| | - J Carlos Igual
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain
| |
Collapse
|
12
|
Krol K, Antoniuk-Majchrzak J, Skoneczny M, Sienko M, Jendrysek J, Rumienczyk I, Halas A, Kurlandzka A, Skoneczna A. Lack of G1/S control destabilizes the yeast genome via replication stress-induced DSBs and illegitimate recombination. J Cell Sci 2018; 131:jcs.226480. [PMID: 30463853 DOI: 10.1242/jcs.226480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
The protein Swi6 in Saccharomyces cerevisiae is a cofactor in two complexes that regulate the transcription of the genes controlling the G1/S transition. It also ensures proper oxidative and cell wall stress responses. Previously, we found that Swi6 was crucial for the survival of genotoxic stress. Here, we show that a lack of Swi6 causes replication stress leading to double-strand break (DSB) formation, inefficient DNA repair and DNA content alterations, resulting in high cell mortality. Comparative genome hybridization experiments revealed that there was a random genome rearrangement in swi6Δ cells, whereas in diploid swi6Δ/swi6Δ cells, chromosome V is duplicated. SWI4 and PAB1, which are located on chromosome V and are known multicopy suppressors of swi6Δ phenotypes, partially reverse swi6Δ genome instability when overexpressed. Another gene on chromosome V, RAD51, also supports swi6Δ survival, but at a high cost; Rad51-dependent illegitimate recombination in swi6Δ cells appears to connect DSBs, leading to genome rearrangement and preventing cell death.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kamil Krol
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marzena Sienko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Justyna Jendrysek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Izabela Rumienczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast. Cell Syst 2018; 6:539-554.e11. [DOI: 10.1016/j.cels.2018.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/17/2018] [Accepted: 04/25/2018] [Indexed: 11/20/2022]
|
14
|
Ewald JC. How yeast coordinates metabolism, growth and division. Curr Opin Microbiol 2018; 45:1-7. [PMID: 29334655 DOI: 10.1016/j.mib.2017.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022]
Abstract
All cells, especially single cell organisms, need to adapt their metabolism, growth and division coordinately to the available nutrients. This coordination is mediated by extensive cross-talk between nutrient signaling, metabolism, growth, and the cell division cycle, which is only gradually being uncovered: Nutrient signaling not only controls entry into the cell cycle at the G1/S transition, but all phases of the cell cycle. Metabolites are even sensed directly by cell cycle regulators to prevent cell cycle progression in absence of sufficient metabolic fluxes. In turn, cell cycle regulators such as the cyclin-dependent kinase directly control metabolic fluxes during cell cycle progression. In this review, I highlight some recent advances in our understanding of how metabolism and the cell division cycle are coordinated in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jennifer C Ewald
- Eberhard Karls Universität Tübingen, Interfaculty Institute of Cell Biology, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Laporte D, Jimenez L, Gouleme L, Sagot I. Yeast quiescence exit swiftness is influenced by cell volume and chronological age. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 5:104-111. [PMID: 29417058 PMCID: PMC5798409 DOI: 10.15698/mic2018.02.615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
Quiescence exit swiftness is crucial not only for micro-organisms in competition for an environmental niche, such as yeast, but also for the maintenance of tissue homeostasis in multicellular species. Here we explore the effect of replicative and chronological age on Saccharomyces cerevisiae quiescence exit efficiency. Our study reveals that this step strongly relies on the cell volume in quiescence but is not influenced by cell replicative age, at least for cells that have undergone less than 10 divisions. Furthermore, we establish that chronological age strongly impinges on cell's capacities to exit quiescence. This effect is not related to cell volume or due to cell's inability to metabolize external glucose but rather seems to depend on intracellular trehalose concentration. Overall, our data illustrate that the quiescent state is a continuum evolving with time, early and deep quiescence being distinguishable by the cell's proficiency to re-enter the proliferation cycle.
Collapse
Affiliation(s)
- Damien Laporte
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Laure Jimenez
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Laëtitia Gouleme
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Isabelle Sagot
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| |
Collapse
|
16
|
Gomar-Alba M, Méndez E, Quilis I, Bañó MC, Igual JC. Whi7 is an unstable cell-cycle repressor of the Start transcriptional program. Nat Commun 2017; 8:329. [PMID: 28839131 PMCID: PMC5571219 DOI: 10.1038/s41467-017-00374-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/24/2017] [Indexed: 12/23/2022] Open
Abstract
Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program by G1 CDK-cyclin complexes through the inactivation of Start transcriptional repressors, Whi5 in yeast or Rb in mammals. Here we provide novel keys of how Whi7, a protein related at sequence level to Whi5, represses Start. Whi7 is an unstable protein, degraded by the SCFGrr1 ubiquitin-ligase, whose stability is cell cycle regulated by CDK1 phosphorylation. Importantly, Whi7 associates to G1/S gene promoters in late G1 acting as a repressor of SBF-dependent transcription. Our results demonstrate that Whi7 is a genuine paralog of Whi5. In fact, both proteins collaborate in Start repression bringing to light that yeast cells, as occurs in mammalian cells, rely on the combined action of multiple transcriptional repressors to block Start transition. The commitment of cells to a new cycle of division involves inactivation of the Start transcriptional repressor Whi5. Here the authors show that the sequence related protein Whi7 associates to G1/S gene promoters in late G1 and collaborates with Whi5 in Start repression.
Collapse
Affiliation(s)
- Mercè Gomar-Alba
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain
| | - Ester Méndez
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain
| | - Inma Quilis
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain
| | - M Carmen Bañó
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain
| | - J Carlos Igual
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
17
|
Takeuchi-Andoh T, Hayano-Oshiro Y, Nishiyoshi E, Mutazono M, Hayashi S, Tani T. Saccharomyces cerevisiae MSA1 mRNA has a sequence for localization at the bud tip. Biosci Biotechnol Biochem 2017; 81:1778-1785. [PMID: 28693383 DOI: 10.1080/09168451.2017.1347488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MSA1 mRNA encodes Msa1p, a protein associated with the SCB-binding factor (SBF) and MCB-binding factor (MBF) complex. Msa1p promotes the transcription of G1 phase-specific genes, and is subjected to cell cycle-dependent regulation for its abundance and subcellular localization. MSA1 mRNA and Msa1p levels oscillate in the cell cycle with peaks at the late M/early G1 phase and early G1 phase, respectively. Phosphorylation by CDK1 negatively regulates the nuclear localization of Msa1p. In the present study, we identified MSA1 mRNA as a bud tip-localized mRNA in screening using a Tag-GFP system. A fragmentation analysis revealed a sequence of ~145 bases for the bud tip localization. Endogenous MSA1 mRNA localized at the bud tip in a manner that depended on SHE2. Msa1p levels were also affected by SHE2 in cells constitutively expressing MSA1 mRNA. These results suggest the existence of a regulatory mechanism for Msa1p through the localized control of MSA1 mRNA.
Collapse
Affiliation(s)
| | - Yukiko Hayano-Oshiro
- b Department of Biological Sciences, Graduate School of Science and Technology , Kumamoto University , Kumamoto , Japan
| | - Emi Nishiyoshi
- a Junior College Division , Otsuma Women's University , Tokyo , Japan
| | - Masatoshi Mutazono
- b Department of Biological Sciences, Graduate School of Science and Technology , Kumamoto University , Kumamoto , Japan
| | - Sachiko Hayashi
- a Junior College Division , Otsuma Women's University , Tokyo , Japan
| | - Tokio Tani
- b Department of Biological Sciences, Graduate School of Science and Technology , Kumamoto University , Kumamoto , Japan
| |
Collapse
|
18
|
Miles S, Breeden L. A common strategy for initiating the transition from proliferation to quiescence. Curr Genet 2016; 63:179-186. [PMID: 27544284 DOI: 10.1007/s00294-016-0640-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
Development, tissue renewal and long term survival of multi-cellular organisms is dependent upon the persistence of stem cells that are quiescent, but retain the capacity to re-enter the cell cycle to self-renew, or to produce progeny that can differentiate and re-populate the tissue. Deregulated release of these cells from the quiescent state, or preventing them from entering quiescence, results in uncontrolled proliferation and cancer. Conversely, loss of quiescent cells, or their failure to re-enter cell division, disrupts organ development and prevents tissue regeneration and repair. Understanding the quiescent state and how cells control the transitions in and out of this state is of fundamental importance. Investigations into the mechanics of G1 arrest during the transition to quiescence continue to identify striking parallels between the strategies used by yeast and mammals to regulate this transition. When cells commit to a stable but reversible arrest, the G1/S genes responsible for promoting S phase must be inhibited. This process, from yeast to humans, involves the formation of quiescence-specific complexes on their promoters. In higher cells, these so-called DREAM complexes of E2F4/DP/RBL/MuvB recruit the highly conserved histone deacetylase HDAC1, which leads to local histone deacetylation and repression of S phase-promoting transcripts. Quiescent yeast cells also show pervasive histone deacetylation by the HDAC1 counterpart Rpd3. In addition, these cells contain quiescence-specific regulators of G1/S genes: Msa1 and Msa2, which can be considered components of the yeast equivalent of the DREAM complex. Despite a lack of physical similarities, the goals and the strategies used to achieve a reversible transition to quiescence are highly conserved. This motivates a detailed study of this process in the simple model organism: budding yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Linda Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|