1
|
Ölçücü G, Jaeger K, Krauss U. Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization. Eng Life Sci 2025; 25:e70000. [PMID: 40083857 PMCID: PMC11904115 DOI: 10.1002/elsc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 03/16/2025] Open
Abstract
Industrial biocatalysis, a multibillion dollar industry, relies on the selectivity and efficacy of enzymes for efficient chemical transformations. However, enzymes, evolutionary adapted to mild biological conditions, often struggle in industrial processes that require harsh reaction conditions, resulting in reduced stability and activity. Enzyme immobilization, which addresses challenges such as enzyme reuse and stability, has therefore become a vital strategy for improving enzyme use in industrial applications. Traditional immobilization techniques rely on the confinement or display of enzymes within/on organic or inorganic supports, while recent advances in synthetic biology have led to the development of solely biological in vivo immobilization methods that streamline enzyme production and immobilization. These methods offer added benefits in terms of sustainability and cost efficiency. In addition, the development and use of multifunctional materials, such as magnetic (nano)materials for enzyme immobilization, has enabled improved separation and purification processes. The combination of both "worlds," opens up new avenues in both (industrial) biocatalysis, fundamental science, and biomedicine. Therefore, in this review, we provide an overview of established and recently emerging methods for the generation of magnetic protein immobilizates, placing a special focus on in vivo immobilization solutions.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Ulrich Krauss
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
2
|
Wan J, Ji R, Liu J, Ma K, Pan Y, Lin W. Biomineralization in magnetotactic bacteria: From diversity to molecular discovery-based applications. Cell Rep 2024; 43:114995. [PMID: 39602309 DOI: 10.1016/j.celrep.2024.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The synthesis of magnetic nanoparticles (Fe3O4 or Fe3S4) within the membrane-bound organelles known as magnetosomes in magnetotactic bacteria (MTB) is a remarkable example of microbial-controlled biomineralization. Studying MTB biomineralization is crucial not only for understanding the origin and evolution of magnetoreception and bacterial organelles but also for advancing biotechnological and biomedical applications of MTB cells and magnetosomes. After decades of research, MTB have revealed unexpected diversity and complexity. The mechanisms underlying magnetosome biomineralization in MTB have been continuously documented using a few model MTB strains. In this review, we provide an overview of recent findings related to MTB diversity and focus primarily on the current understanding of magnetosome biosynthesis. Additionally, we summarize the growing biotechnological and biomedical applications derived from molecular studies of MTB and their magnetosomes.
Collapse
Affiliation(s)
- Juan Wan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runjia Ji
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Liu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kun Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Paulus A, Ahrens F, Schraut A, Hofmann H, Schiller T, Sura T, Becher D, Uebe R. MamF-like proteins are distant Tic20 homologs involved in organelle assembly in bacteria. Nat Commun 2024; 15:10657. [PMID: 39653729 PMCID: PMC11628618 DOI: 10.1038/s41467-024-55121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Organelle-specific protein translocation systems are essential for organelle biogenesis and maintenance in eukaryotes but thought to be absent from prokaryotic organelles. Here, we demonstrate that MamF-like proteins are crucial for the formation and functionality of bacterial magnetosome organelles. Deletion of mamF-like genes in the Alphaproteobacterium Magnetospirillum gryphiswaldense results in severe defects in organelle positioning, biomineralization, and magnetic navigation. These phenotypic defects result from the disrupted targeting of a subset of magnetosomal proteins that contain C-terminal glycine-rich integral membrane domains. Phylogenetic analyses reveal an ancient evolutionary link between MamF-like proteins and plastidial Tic20. Our findings redefine the molecular roles of MamF-like proteins and suggest that organelle-specific protein targeting systems also play a role in bacterial organelle formation.
Collapse
Affiliation(s)
- Anja Paulus
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Frederik Ahrens
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Annika Schraut
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Hannah Hofmann
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Tim Schiller
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Thomas Sura
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - René Uebe
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
4
|
Ferrara KM, Gupta KR, Pi H. Bacterial Organelles in Iron Physiology. Mol Microbiol 2024; 122:914-928. [PMID: 39545931 DOI: 10.1111/mmi.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Bacteria were once thought to be simple organisms, lacking the membrane-bound organelles found in eukaryotic cells. However, recent advancements in microscopy have changed this view, revealing a diverse array of organelles within bacterial cells. These organelles, surrounded by lipid bilayers, protein-lipid monolayers, or proteinaceous shells, play crucial roles in facilitating biochemical reactions and protecting cells from harmful byproducts. Unlike eukaryotic organelles, which are universally present, bacterial organelles are species-specific and induced only under certain conditions. This review focuses on the bacterial organelles that contain iron, an essential micronutrient for all life forms but potentially toxic when present in excess. To date, three types of iron-related bacterial organelles have been identified: two membrane-bound organelles, magnetosomes and ferrosomes, and one protein-enclosed organelle, the encapsulated ferritin-like proteins. This article provides an updated overview of the genetics, biogenesis, and physiological functions of these organelles. Furthermore, we discuss how bacteria utilize these specialized structures to adapt, grow, and survive under various environmental conditions.
Collapse
Affiliation(s)
- Kristina M Ferrara
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kuldeepkumar R Gupta
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hualiang Pi
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Masó-Martínez M, Bond J, Okolo CA, Jadhav AC, Harkiolaki M, Topham PD, Fernández-Castané A. An Integrated Approach to Elucidate the Interplay between Iron Uptake Dynamics and Magnetosome Formation at the Single-Cell Level in Magnetospirillum gryphiswaldense. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62557-62570. [PMID: 39480433 PMCID: PMC11565563 DOI: 10.1021/acsami.4c15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Iron is a crucial element integral to various fundamental biological molecular mechanisms, including magnetosome biogenesis in magnetotactic bacteria (MTB). Magnetosomes are formed through the internalization and biomineralization of iron into magnetite crystals. However, the interconnected mechanisms by which MTB uptake and regulate intracellular iron for magnetosome biomineralization remain poorly understood, particularly at the single-cell level. To gain insights we employed a holistic multiscale approach, i.e., from elemental iron species to bacterial populations, to elucidate the interplay between iron uptake dynamics and magnetosome formation in Magnetospirillum gryphiswaldense MSR-1 under near-native conditions. We combined a correlative microscopy approach integrating light and X-ray tomography with analytical techniques, such as flow cytometry and inductively coupled plasma spectroscopy, to evaluate the effects of iron and oxygen availability on cellular growth, magnetosome biogenesis, and intracellular iron pool in MSR-1. Our results revealed that increased iron availability under microaerobic conditions significantly promoted the formation of longer magnetosome chains and increased intracellular iron uptake, with a saturation point at 300 μM iron citrate. Beyond this threshold, additional iron did not further extend the magnetosome chain length or increase total intracellular iron levels. Moreover, our work reveals (i) a direct correlation between the labile Fe2+ pool size and magnetosome content, with higher intracellular iron concentrations correlating with increased magnetosome production, and (ii) the existence of an intracellular iron pool, distinct from magnetite, persisting during all stages of biomineralization. This study offers insights into iron dynamics in magnetosome biomineralization at a single-cell level, potentially enhancing the industrial biomanufacturing of magnetosomes.
Collapse
Affiliation(s)
- Marta Masó-Martínez
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Josh Bond
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Chidinma A Okolo
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - Archana C Jadhav
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - Maria Harkiolaki
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
- Chemistry
Department, University of Warwick, Coventry CV4 7SH, United Kingdom
| | - Paul D Topham
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Alfred Fernández-Castané
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
6
|
Sun Q, Yu L, Donnelly SC, Fradin C, Thompson RT, Prato FS, Goldhawk DE. Essential magnetosome proteins MamI and MamL from magnetotactic bacteria interact in mammalian cells. Sci Rep 2024; 14:26292. [PMID: 39487238 PMCID: PMC11530650 DOI: 10.1038/s41598-024-77591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
To detect cellular activities deep within the body using magnetic resonance platforms, magnetosomes are the ideal model of genetically-encoded nanoparticles. These membrane-bound iron biominerals produced by magnetotactic bacteria are highly regulated by approximately 30 genes; however, the number of magnetosome genes that are essential and/or constitute the root structure upon which biominerals form is largely undefined. To examine the possibility that key magnetosome genes may interact in a foreign environment, we expressed mamI and mamL as fluorescent fusion proteins in mammalian cells. Localization and potential protein-protein interaction(s) were investigated using confocal microscopy and fluorescence correlation spectroscopy (FCS). Enhanced green fluorescent protein (EGFP)-MamI and the red fluorescent Tomato-MamL displayed distinct intracellular localization, with net-like and punctate fluorescence, respectively. Remarkably, co-expression revealed co-localization of both fluorescent fusion proteins in the same punctate pattern. An interaction between MamI and MamL was confirmed by co-immunoprecipitation. In addition, changes in EGFP-MamI distribution were accompanied by acquisition of intracellular mobility which all Tomato-MamL structures displayed. Analysis of extracts from these cells by FCS was consistent with an interaction between fluorescent fusion proteins, including an increase in particle radius. Co-localization and interaction of MamI and MamL demonstrate that select magnetosome proteins may associate in mammalian cells.
Collapse
Affiliation(s)
- Qin Sun
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada
| | - Liu Yu
- Physics & Astronomy, McMaster University, Hamilton, ON, Canada
| | | | - Cécile Fradin
- Physics & Astronomy, McMaster University, Hamilton, ON, Canada
- Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - R Terry Thompson
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Medical Imaging, Western University, London, ON, Canada
- Physics & Astronomy, Western University, London, ON, Canada
| | - Frank S Prato
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada
- Medical Imaging, Western University, London, ON, Canada
| | - Donna E Goldhawk
- Imaging, Lawson Research Institute, London, ON, Canada.
- Medical Biophysics, Western University, London, ON, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada.
- Imaging Program, Lawson Research Institute, 268 Grosvenor St. , PO Box 5777 Station B, London, ON, N6A 4V2, Canada.
| |
Collapse
|
7
|
Ji R, Wan J, Liu J, Zheng J, Xiao T, Pan Y, Lin W. Linking morphology, genome, and metabolic activity of uncultured magnetotactic Nitrospirota at the single-cell level. MICROBIOME 2024; 12:158. [PMID: 39182147 PMCID: PMC11344931 DOI: 10.1186/s40168-024-01837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Magnetotactic bacteria (MTB) are a unique group of microorganisms that sense and navigate through the geomagnetic field by biomineralizing magnetic nanoparticles. MTB from the phylum Nitrospirota (previously known as Nitrospirae) thrive in diverse aquatic ecosystems. They are of great interest due to their production of hundreds of magnetite (Fe3O4) magnetosome nanoparticles per cell, which far exceeds that of other MTB. The morphological, phylogenetic, and genomic diversity of Nitrospirota MTB have been extensively studied. However, the metabolism and ecophysiology of Nitrospirota MTB are largely unknown due to the lack of cultivation techniques. METHODS Here, we established a method to link the morphological, genomic, and metabolic investigations of an uncultured Nitrospirota MTB population (named LHC-1) at the single-cell level using nanoscale secondary-ion mass spectrometry (NanoSIMS) in combination with rRNA-based in situ hybridization and target-specific mini-metagenomics. RESULTS We magnetically separated LHC-1 from a freshwater lake and reconstructed the draft genome of LHC-1 using genome-resolved mini-metagenomics. We found that 10 LHC-1 cells were sufficient as a template to obtain a high-quality draft genome. Genomic analysis revealed that LHC-1 has the potential for CO2 fixation and NO3- reduction, which was further characterized at the single-cell level by combining stable-isotope incubations and NanoSIMS analyses over time. Additionally, the NanoSIMS results revealed specific element distributions in LHC-1, and that the heterogeneity of CO2 and NO3- metabolisms among different LHC-1 cells increased with incubation time. CONCLUSIONS To our knowledge, this study provides the first metabolic measurements of individual Nitrospirota MTB cells to decipher their ecophysiological traits. The procedure constructed in this study provides a promising strategy to simultaneously investigate the morphology, genome, and ecophysiology of uncultured microbes in natural environments. Video Abstract.
Collapse
Affiliation(s)
- Runjia Ji
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Wan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jia Liu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinbo Zheng
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Deep Resources Equipment and Technology, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Tian Xiao
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Chen H, Shi H, Chen C, Jiao Y, Wang P, Chen C, Li J, Wu LF, Song T. Effects of static magnetic field on the sulfate metabolic pathway involved in Magnetospirillum magneticum AMB-1 cell growth and magnetosome formation. J Appl Microbiol 2023; 134:lxad302. [PMID: 38066686 DOI: 10.1093/jambio/lxad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
AIMS Magnetotactic bacteria (MTB) can use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field. They play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have shown that the applied magnetic fields could affect the magnetosome formation and antioxidant defense systems in MTB. However, the molecular mechanisms by which magnetic fields affect MTB cells remain unclear. We aim to better understand the dark at 28°C-29°C for 20 h, as shownthe interactions between magnetic fields and cells, and the mechanism of MTB adaptation to magnetic field at molecular levels. METHODS AND RESULTS We performed microbiological, transcriptomic, and genetic experiments to analyze the effects of a weak static magnetic field (SMF) exposure on the cell growth and magnetosome formation in the MTB strain Magnetospirillum magneticum AMB-1. The results showed that a 1.5 mT SMF significantly promoted the cell growth but reduced magnetosome formation in AMB-1, compared to the geomagnetic field. Transcriptomic analysis revealed decreased expression of genes primarily involved in the sulfate reduction pathway. Consistently, knockout mutant lacking adenylyl-sulfate kinase CysC did no more react to the SMF and the differences in growth and Cmag disappeared. Together with experimental findings of increased reactive oxidative species in the SMF-treated wild-type strain, we proposed that cysC, as a key gene, can participate in the cell growth and mineralization in AMB-1 by SMF regulation. CONCLUSIONS This study suggests that the magnetic field exposure can trigger a bacterial oxidative stress response involved in AMB-1 growth and magnetosome mineralization by regulating the sulfur metabolism pathway. CysC may serve as a pivotal enzyme in mediating sulfur metabolism to synchronize the impact of SMF on both growth and magnetization of AMB-1.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongkai Shi
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Wang
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinhua Li
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS, F-13402 Marseille, France
- Aix Marseille University, CNRS, LCB, F-13402 Marseille, France
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Ren G, Zhou X, Long R, Xie M, Kankala RK, Wang S, Zhang YS, Liu Y. Biomedical applications of magnetosomes: State of the art and perspectives. Bioact Mater 2023; 28:27-49. [PMID: 37223277 PMCID: PMC10200801 DOI: 10.1016/j.bioactmat.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023] Open
Abstract
Magnetosomes, synthesized by magnetotactic bacteria (MTB), have been used in nano- and biotechnological applications, owing to their unique properties such as superparamagnetism, uniform size distribution, excellent bioavailability, and easily modifiable functional groups. In this review, we first discuss the mechanisms of magnetosome formation and describe various modification methods. Subsequently, we focus on presenting the biomedical advancements of bacterial magnetosomes in biomedical imaging, drug delivery, anticancer therapy, biosensor. Finally, we discuss future applications and challenges. This review summarizes the application of magnetosomes in the biomedical field, highlighting the latest advancements and exploring the future development of magnetosomes.
Collapse
Affiliation(s)
- Gang Ren
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xia Zhou
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| | - Shibin Wang
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| |
Collapse
|
10
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
11
|
Awal RP, Lefevre CT, Schüler D. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense. mBio 2023; 14:e0328222. [PMID: 37318230 PMCID: PMC10470508 DOI: 10.1128/mbio.03282-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Magnetosomes of magnetotactic bacteria (MTB) consist of structurally perfect, nano-sized magnetic crystals enclosed within vesicles of a proteo-lipid membrane. In species of Magnetospirillum, biosynthesis of their cubo-octahedral-shaped magnetosomes was recently demonstrated to be a complex process, governed by about 30 specific genes that are comprised within compact magnetosome gene clusters (MGCs). Similar, yet distinct gene clusters were also identified in diverse MTB that biomineralize magnetosome crystals with different, genetically encoded morphologies. However, since most representatives of these groups are inaccessible by genetic and biochemical approaches, their analysis will require the functional expression of magnetosome genes in foreign hosts. Here, we studied whether conserved essential magnetosome genes from closely and remotely related MTB can be functionally expressed by rescue of their respective mutants in the tractable model Magnetospirillum gryphiswaldense of the Alphaproteobacteria. Upon chromosomal integration, single orthologues from other magnetotactic Alphaproteobacteria restored magnetosome biosynthesis to different degrees, while orthologues from distantly related Magnetococcia and Deltaproteobacteria were found to be expressed but failed to re-induce magnetosome biosynthesis, possibly due to poor interaction with their cognate partners within multiprotein magnetosome organelle of the host. Indeed, co-expression of the known interactors MamB and MamM from the alphaproteobacterium Magnetovibrio blakemorei increased functional complementation. Furthermore, a compact and portable version of the entire MGCs of M. magneticum was assembled by transformation-associated recombination cloning, and it restored the ability to biomineralize magnetite both in deletion mutants of the native donor and M. gryphiswaldense, while co-expression of gene clusters from both M. gryphiswaldense and M. magneticum resulted in overproduction of magnetosomes. IMPORTANCE We provide proof of principle that Magnetospirillum gryphiswaldense is a suitable surrogate host for the functional expression of foreign magnetosome genes and extended the transformation-associated recombination cloning platform for the assembly of entire large magnetosome gene cluster, which could then be transplanted to different magnetotactic bacteria. The reconstruction, transfer, and analysis of gene sets or entire magnetosome clusters will be also promising for engineering the biomineralization of magnetite crystals with different morphologies that would be valuable for biotechnical applications.
Collapse
Affiliation(s)
- Ram Prasad Awal
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Christopher T. Lefevre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
12
|
Dziuba MV, Paulus A, Schramm L, Awal RP, Pósfai M, Monteil CL, Fouteau S, Uebe R, Schüler D. Silent gene clusters encode magnetic organelle biosynthesis in a non-magnetotactic phototrophic bacterium. THE ISME JOURNAL 2023; 17:326-339. [PMID: 36517527 PMCID: PMC9938234 DOI: 10.1038/s41396-022-01348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Horizontal gene transfer is a powerful source of innovations in prokaryotes that can affect almost any cellular system, including microbial organelles. The formation of magnetosomes, one of the most sophisticated microbial mineral-containing organelles synthesized by magnetotactic bacteria for magnetic navigation in the environment, was also shown to be a horizontally transferrable trait. However, the mechanisms determining the fate of such genes in new hosts are not well understood, since non-adaptive gene acquisitions are typically rapidly lost and become unavailable for observation. This likely explains why gene clusters encoding magnetosome biosynthesis have never been observed in non-magnetotactic bacteria. Here, we report the first discovery of a horizontally inherited dormant gene clusters encoding biosynthesis of magnetosomes in a non-magnetotactic phototrophic bacterium Rhodovastum atsumiense. We show that these clusters were inactivated through transcriptional silencing and antisense RNA regulation, but retain functionality, as several genes were able to complement the orthologous deletions in a remotely related magnetotactic bacterium. The laboratory transfer of foreign magnetosome genes to R. atsumiense was found to endow the strain with magnetosome biosynthesis, but strong negative selection led to rapid loss of this trait upon subcultivation, highlighting the trait instability in this organism. Our results provide insight into the horizontal dissemination of gene clusters encoding complex prokaryotic organelles and illuminate the potential mechanisms of their genomic preservation in a dormant state.
Collapse
Affiliation(s)
- M. V. Dziuba
- grid.7384.80000 0004 0467 6972Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany
| | - A. Paulus
- grid.7384.80000 0004 0467 6972Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany ,grid.7384.80000 0004 0467 6972Department of Microbial Biochemistry, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Bayreuth, Germany
| | - L. Schramm
- grid.7384.80000 0004 0467 6972Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany
| | - R. P. Awal
- grid.7384.80000 0004 0467 6972Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany
| | - M. Pósfai
- ELKH-PE Environmental Mineralogy Research Group, Veszprém, Hungary ,grid.7336.10000 0001 0203 5854Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - C. L. Monteil
- grid.5399.60000 0001 2176 4817Aix-Marseille University, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille, Saint Paul lez Durance, France
| | - S. Fouteau
- grid.8390.20000 0001 2180 5818LABGeM, Genomique Metabolique, CEA, Genoscope, Institut Francois Jacob, CNRS, Universite d’Evry, Universite Paris- Saclay, Evry, France
| | - R. Uebe
- grid.7384.80000 0004 0467 6972Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany ,grid.7384.80000 0004 0467 6972Department of Microbial Biochemistry, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Bayreuth, Germany
| | - D. Schüler
- grid.7384.80000 0004 0467 6972Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
13
|
Yang Y, Cao C, Gu N. Identifying magnetosome-associated genes in the extended CtrA regulon in Magnetospirillum magneticum AMB-1 using a combinational approach. Brief Funct Genomics 2023; 22:61-74. [PMID: 36424838 DOI: 10.1093/bfgp/elac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Magnetotactic bacteria (MTB) are worth studying because of magnetosome biomineralization. Magnetosome biogenesis in MTB is controlled by multiple genes known as magnetosome-associated genes. Recent advances in bioinformatics provide a unique opportunity for studying functions of magnetosome-associated genes and networks that they are involved in. Furthermore, various types of bioinformatics analyses can also help identify genes associated with magnetosome biogenesis. To predict novel magnetosome-associated genes in the extended CtrA regulon, we analyzed expression data of Magnetospirillum magneticum AMB-1 in the GSE35625 dataset in NCBI GEO. We identified 10 potential magnetosome-associated genes using a combinational approach of differential expression analysis, Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis, protein-protein interaction network analysis and weighted gene co-expression network analysis. Meanwhile, we also discovered and compared two co-expression modules that most known magnetosome-associated genes belong to. Our comparison indicated the importance of energy on regulating co-expression module structures for magnetosome biogenesis. At the last stage of our research, we predicted at least four real magnetosome-associated genes out of 10 potential genes, based on a comparison of evolutionary trees between known and potential magnetosome-associated genes. Because of the discovery of common subtrees that the stressed species are enriched in, we proposed a hypothesis that multiple types of environmental stress can trigger magnetosome evolution in different waters, and therefore its evolution can recur at different times in various locations on earth. Overall, our research provides useful information for identifying new MTB species and understanding magnetosome biogenesis.
Collapse
Affiliation(s)
- Yizi Yang
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Chen Cao
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Ning Gu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Liu P, Zheng Y, Zhang R, Bai J, Zhu K, Benzerara K, Menguy N, Zhao X, Roberts AP, Pan Y, Li J. Key gene networks that control magnetosome biomineralization in magnetotactic bacteria. Natl Sci Rev 2022; 10:nwac238. [PMID: 36654913 PMCID: PMC9840458 DOI: 10.1093/nsr/nwac238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 01/21/2023] Open
Abstract
Magnetotactic bacteria (MTB) are a group of phylogenetically and morphologically diverse prokaryotes that have the capability of sensing Earth's magnetic field via nanocrystals of magnetic iron minerals. These crystals are enclosed within intracellular membranes or organelles known as magnetosomes and enable a sensing function known as magnetotaxis. Although MTB were discovered over half a century ago, the study of the magnetosome biogenesis and organization remains limited to a few cultured MTB strains. Here, we present an integrative genomic and phenomic analysis to investigate the genetic basis of magnetosome biomineralization in both cultured and uncultured strains from phylogenetically diverse MTB groups. The magnetosome gene contents/networks of strains are correlated with magnetic particle morphology and chain configuration. We propose a general model for gene networks that control/regulate magnetosome biogenesis and chain assembly in MTB systems.
Collapse
Affiliation(s)
| | | | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
15
|
Riese CN, Wittchen M, Jérôme V, Freitag R, Busche T, Kalinowski J, Schüler D. The transcriptomic landscape of Magnetospirillum gryphiswaldense during magnetosome biomineralization. BMC Genomics 2022; 23:699. [PMID: 36217140 PMCID: PMC9549626 DOI: 10.1186/s12864-022-08913-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most complex prokaryotic organelles are magnetosomes, which are formed by magnetotactic bacteria as sensors for navigation in the Earth's magnetic field. In the alphaproteobacterium Magnetospirillum gryphiswaldense magnetosomes consist of chains of magnetite crystals (Fe3O4) that under microoxic to anoxic conditions are biomineralized within membrane vesicles. To form such an intricate structure, the transcription of > 30 specific structural genes clustered within the genomic magnetosome island (MAI) has to be coordinated with the expression of an as-yet unknown number of auxiliary genes encoding several generic metabolic functions. However, their global regulation and transcriptional organization in response to anoxic conditions most favorable for magnetite biomineralization are still unclear. RESULTS Here, we compared transcriptional profiles of anaerobically grown magnetosome forming cells with those in which magnetosome biosynthesis has been suppressed by aerobic condition. Using whole transcriptome shotgun sequencing, we found that transcription of about 300 of the > 4300 genes was significantly enhanced during magnetosome formation. About 40 of the top upregulated genes are directly or indirectly linked to aerobic and anaerobic respiration (denitrification) or unknown functions. The mam and mms gene clusters, specifically controlling magnetosome biosynthesis, were highly transcribed, but constitutively expressed irrespective of the growth condition. By Cappable-sequencing, we show that the transcriptional complexity of both the MAI and the entire genome decreased under anaerobic conditions optimal for magnetosome formation. In addition, predominant promoter structures were highly similar to sigma factor σ70 dependent promoters in other Alphaproteobacteria. CONCLUSIONS Our transcriptome-wide analysis revealed that magnetite biomineralization relies on a complex interplay between generic metabolic processes such as aerobic and anaerobic respiration, cellular redox control, and the biosynthesis of specific magnetosome structures. In addition, we provide insights into global regulatory features that have remained uncharacterized in the widely studied model organism M. gryphiswaldense, including a comprehensive dataset of newly annotated transcription start sites and genome-wide operon detection as a community resource (GEO Series accession number GSE197098).
Collapse
Affiliation(s)
- Cornelius N Riese
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Manuel Wittchen
- Center for Biotechnology (CeBiTec), University of Bielefeld, Bielefeld, Germany
| | - Valérie Jérôme
- Chair for Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - Ruth Freitag
- Chair for Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), University of Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), University of Bielefeld, Bielefeld, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
16
|
Biomineralization and biotechnological applications of bacterial magnetosomes. Colloids Surf B Biointerfaces 2022; 216:112556. [PMID: 35605573 DOI: 10.1016/j.colsurfb.2022.112556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 01/13/2023]
Abstract
Magnetosomes intracellularly biomineralized by Magnetotactic bacteria (MTB) are membrane-enveloped nanoparticles of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4). MTB thrive in oxic-anoxic interface and exhibit magnetotaxis due to the presence of magnetosomes. Because of the unique characteristic and bionavigation inspiration of magnetosomes, MTB has been a subject of study focused on by biologists, medical pharmacologists, geologists, and physicists since the discovery. We herein first briefly review the features of MTB and magnetosomes. The recent insights into the process and mechanism for magnetosome biomineralization including iron uptake, magnetosome membrane invagination, iron mineralization and magnetosome chain assembly are summarized in detail. Additionally, the current research progress in biotechnological applications of magnetosomes is also elucidated, such as drug delivery, MRI image contrast, magnetic hyperthermia, wastewater treatment, and cell separation. This review would expand our understanding of biomineralization and biotechnological applications of bacterial magnetosomes.
Collapse
|
17
|
Chevrier DM, Cerdá-Doñate E, Park Y, Cacho-Nerin F, Gomez‐Gonzalez M, Uebe R, Faivre D. Synchrotron‐Based Nano‐X‐Ray Absorption Near‐Edge Structure Revealing Intracellular Heterogeneity of Iron Species in Magnetotactic Bacteria. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Daniel M. Chevrier
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Elisa Cerdá-Doñate
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Yeseul Park
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
| | | | | | - René Uebe
- Department of Microbiology University of Bayreuth 95440 Bayreuth Germany
| | - Damien Faivre
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
18
|
Baaziz W, Ghica C, Cypriano J, Abreu F, Anselme K, Ersen O, Farina M, Werckmann J. New Phenotype and Mineralization of Biogenic Iron Oxide in Magnetotactic Bacteria. NANOMATERIALS 2021; 11:nano11123189. [PMID: 34947538 PMCID: PMC8706698 DOI: 10.3390/nano11123189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Many magnetotactic bacteria (MTB) biomineralize magnetite crystals that nucleate and grow inside intracellular membranous vesicles originating from invaginations of the cytoplasmic membrane. The crystals together with their surrounding membranes are referred to as magnetosomes. Magnetosome magnetite crystals nucleate and grow using iron transported inside the vesicle by specific proteins. Here, we tackle the question of the organization of magnetosomes, which are always described as constituted by linear chains of nanocrystals. In addition, it is commonly accepted that the iron oxide nanocrystals are in the magnetite-based phase. We show, in the case of a wild species of coccus-type bacterium, that there is a double organization of the magnetosomes, relatively perpendicular to each other, and that the nanocrystals are in fact maghemite. These findings were obtained, respectively, by using electron tomography of whole mounts of cells directly from the environment and high-resolution transmission electron microscopy and diffraction. Structure simulations were performed with the MacTempas software. This study opens new perspectives on the diversity of phenotypes within MTBs and allows to envisage other mechanisms of nucleation and formation of biogenic iron oxide crystals.
Collapse
Affiliation(s)
- Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess BP 43, CEDEX 2, 67034 Strasbourg, France; (W.B.); (O.E.)
| | - Corneliu Ghica
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
- Correspondence: (C.G.); (J.W.)
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro 21941-902, Brazil; (J.C.); (F.A.)
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro 21941-902, Brazil; (J.C.); (F.A.)
| | - Karine Anselme
- Institut de Science des Matériaux de Mulhouse, University of Haute Alsace, 68057 Mulhouse, France;
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess BP 43, CEDEX 2, 67034 Strasbourg, France; (W.B.); (O.E.)
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Jacques Werckmann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Centro Brasiliero de Pesquisas Fisicas, LABNANO, Rio de Janeiro 22290-180, Brazil
- Correspondence: (C.G.); (J.W.)
| |
Collapse
|
19
|
Ben-Shimon S, Stein D, Zarivach R. Current view of iron biomineralization in magnetotactic bacteria. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100052. [PMID: 34723168 PMCID: PMC8536778 DOI: 10.1016/j.yjsbx.2021.100052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022]
Abstract
Iron biomineralization into magnetic nanoparticles by Magnetotactic bacteria (MTB). Magnetosome formation mechanism presented in four main steps. Magnetosome-associated proteins (MAPs) regulate the biomineralization process. Chain arrangement and crystals morphology Variations exist between different MTB.
Biomineralization is the process of mineral formation by living organisms. One notable example of these organisms is magnetotactic bacteria (MTB). MTB are Gram-negative bacteria that can biomineralize iron into magnetic nanoparticles. This ability allows these aquatic microorganisms to orient themselves according to the geomagnetic field. The biomineralization process takes place in a specialized sub-cellular membranous organelle, the magnetosome. The magnetosome contains a defined set of magnetosome-associated proteins (MAPs) that controls the biomineralization environment, including iron concentration, redox, and pH. Magnetite formation is subjected to a tight regulation within the magnetosome that affects the nanoparticle nucleation, size, and shape, leading to well-defined magnetic properties. The formed magnetite nanoparticles have unique characteristics of a stable, single magnetic domain with narrow size distribution and high crystalline structures, which turned MTB into the subject of interest in multidisciplinary research. This graphical review provides a current overview of iron biomineralization in magnetotactic bacteria, focusing on Alphaproteobacteria. To better understand this complex mechanism, we present the four main steps and the main MAPs participating in the process of magnetosome formation.
Collapse
Affiliation(s)
- Shirel Ben-Shimon
- Department of Life Sciences, National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Daniel Stein
- Department of Life Sciences, National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Raz Zarivach
- Department of Life Sciences, National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
20
|
Abstract
Magnetosomes are complex membrane organelles synthesized by magnetotactic bacteria (MTB) for navigation in the Earth’s magnetic field. In the alphaproteobacterium Magnetospirillum gryphiswaldense, all steps of magnetosome formation are tightly controlled by >30 specific genes arranged in several gene clusters. However, the transcriptional organization of the magnetosome gene clusters has remained poorly understood. Here, by applying Cappable-seq and whole-transcriptome shotgun RNA sequencing, we show that mamGFDCop and feoAB1op are transcribed as single transcriptional units, whereas multiple transcription start sites (TSS) are present in mms6op, mamXYop, and the long (>16 kb) mamABop. Using a bioluminescence reporter assay and promoter knockouts, we demonstrate that most of the identified TSS originate from biologically meaningful promoters which mediate production of multiple transcripts and are functionally relevant for proper magnetosome biosynthesis. In addition, we identified a strong promoter in a large intergenic region within mamXYop, which likely drives transcription of a noncoding RNA important for gene expression in this operon. In summary, our data suggest a more complex transcriptional architecture of the magnetosome operons than previously recognized, which is largely conserved in other magnetotactic Magnetospirillum species and, thus, is likely fundamental for magnetosome biosynthesis in these organisms. IMPORTANCE Magnetosomes have emerged as a model system to study prokaryotic organelles and a source of biocompatible magnetic nanoparticles for various biomedical applications. However, the lack of knowledge about the transcriptional organization of magnetosome gene clusters has severely impeded the engineering, manipulation, and transfer of this highly complex biosynthetic pathway into other organisms. Here, we provide a high-resolution image of the previously unappreciated transcriptional landscape of the magnetosome operons. Our findings are important for further unraveling the complex genetic framework of magnetosome biosynthesis. In addition, they will facilitate the rational reengineering of magnetic bacteria for improved bioproduction of tunable magnetic nanoparticles, as well as transplantation of magnetosome biosynthesis into foreign hosts by synthetic biology approaches. Overall, our study exemplifies how a genetically complex pathway is orchestrated at the transcriptional level to ensure the balanced expression of the numerous constituents required for the proper assembly of one of the most intricate prokaryotic organelles.
Collapse
|
21
|
Abstract
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications.
Collapse
|
22
|
Genome-Wide Identification of Essential and Auxiliary Gene Sets for Magnetosome Biosynthesis in Magnetospirillum gryphiswaldense. mSystems 2020; 5:5/6/e00565-20. [PMID: 33203687 PMCID: PMC7676999 DOI: 10.1128/msystems.00565-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Magnetospirillum gryphiswaldense is one of the few tractable model magnetotactic bacteria (MTB) for studying magnetosome biomineralization. So far, knowledge on the genetic determinants of this complex process has been mainly gathered using reverse genetics and candidate approaches. In contrast, nontargeted forward genetics studies are lacking, since application of such techniques in MTB has been complicated for a number of technical reasons. Here, we report on the first comprehensive transposon mutagenesis study in MTB, aiming at systematic identification of auxiliary genes necessary to support magnetosome formation in addition to key genes harbored in the magnetosome island (MAI). Our work considerably extends the candidate set of novel subsidiary determinants and shows that the full gene complement underlying magnetosome biosynthesis is larger than assumed. In particular, we were able to define certain cellular pathways as specifically important for magnetosome formation that have not been implicated in this process so far. Magnetotactic bacteria (MTB) stand out by their ability to manufacture membrane-enclosed magnetic organelles, so-called magnetosomes. Previously, it has been assumed that a genomic region of approximately 100 kbp, the magnetosome island (MAI), harbors all genetic determinants required for this intricate biosynthesis process. Recent evidence, however, argues for the involvement of additional auxiliary genes that have not been identified yet. In the present study, we set out to delineate the full gene complement required for magnetosome production in the alphaproteobacterium Magnetospirillum gryphiswaldense using a systematic genome-wide transposon mutagenesis approach. By an optimized procedure, a Tn5 insertion library of 80,000 clones was generated and screened, yielding close to 200 insertants with mild to severe impairment of magnetosome biosynthesis. Approximately 50% of all Tn5 insertion sites mapped within the MAI, mostly leading to a nonmagnetic phenotype. In contrast, in the majority of weakly magnetic Tn5 insertion mutants, genes outside the MAI were affected, which typically caused lower numbers of magnetite crystals with partly aberrant morphology, occasionally combined with deviant intracellular localization. While some of the Tn5-struck genes outside the MAI belong to pathways that have been linked to magnetosome formation before (e.g., aerobic and anaerobic respiration), the majority of affected genes are involved in so far unsuspected cellular processes, such as sulfate assimilation, oxidative protein folding, and cytochrome c maturation, or are altogether of unknown function. We also found that signal transduction and redox functions are enriched in the set of Tn5 hits outside the MAI, suggesting that such processes are particularly important in support of magnetosome biosynthesis. IMPORTANCEMagnetospirillum gryphiswaldense is one of the few tractable model magnetotactic bacteria (MTB) for studying magnetosome biomineralization. So far, knowledge on the genetic determinants of this complex process has been mainly gathered using reverse genetics and candidate approaches. In contrast, nontargeted forward genetics studies are lacking, since application of such techniques in MTB has been complicated for a number of technical reasons. Here, we report on the first comprehensive transposon mutagenesis study in MTB, aiming at systematic identification of auxiliary genes necessary to support magnetosome formation in addition to key genes harbored in the magnetosome island (MAI). Our work considerably extends the candidate set of novel subsidiary determinants and shows that the full gene complement underlying magnetosome biosynthesis is larger than assumed. In particular, we were able to define certain cellular pathways as specifically important for magnetosome formation that have not been implicated in this process so far.
Collapse
|
23
|
Abstract
Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth's magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.
Collapse
|
24
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
25
|
Abdelrazig S, Safo L, Rance GA, Fay MW, Theodosiou E, Topham PD, Kim DH, Fernández-Castané A. Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling. RSC Adv 2020; 10:32548-32560. [PMID: 35516490 PMCID: PMC9056635 DOI: 10.1039/d0ra05326k] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022] Open
Abstract
Magnetosomes are nano-sized magnetic nanoparticles with exquisite properties that can be used in a wide range of healthcare and biotechnological applications. They are biosynthesised by magnetotactic bacteria (MTB), such as Magnetospirillum gryphiswaldense MSR-1 (Mgryph). However, magnetosome bioprocessing yields low quantities compared to chemical synthesis of magnetic nanoparticles. Therefore, an understanding of the intracellular metabolites and metabolic networks related to Mgryph growth and magnetosome formation are vital to unlock the potential of this organism to develop improved bioprocesses. In this work, we investigated the metabolism of Mgryph using untargeted metabolomics. Liquid chromatography-mass spectrometry (LC-MS) was performed to profile spent medium samples of Mgryph cells grown under O2-limited (n = 6) and O2-rich conditions (n = 6) corresponding to magnetosome- and non-magnetosome producing cells, respectively. Multivariate, univariate and pathway enrichment analyses were conducted to identify significantly altered metabolites and pathways. Rigorous metabolite identification was carried out using authentic standards, the Mgryph-specific metabolite database and MS/MS mzCloud database. PCA and OPLS-DA showed clear separation and clustering of sample groups with cross-validation values of R2X = 0.76, R2Y = 0.99 and Q2 = 0.98 in OPLS-DA. As a result, 50 metabolites linked to 45 metabolic pathways were found to be significantly altered in the tested conditions, including: glycine, serine and threonine; butanoate; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis and; pyruvate and citric acid cycle (TCA) metabolisms. Our findings demonstrate the potential of LC-MS to characterise key metabolites in Mgryph and will contribute to further understanding the metabolic mechanisms that affect Mgryph growth and magnetosome formation. Metabolic pathways in Magnetospirillum gryphiswaldense MSR-1 are significantly altered under microaerobic (O2-limited) growth conditions enabling magnetosome formation.![]()
Collapse
Affiliation(s)
- Salah Abdelrazig
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK +44 (0)115 74 84697
| | - Laudina Safo
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK +44 (0)115 74 84697
| | - Graham A Rance
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 2RD UK
| | - Michael W Fay
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 2RD UK
| | - Eirini Theodosiou
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK +44 (0)121 204 4870
| | - Paul D Topham
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK +44 (0)121 204 4870
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK +44 (0)115 74 84697
| | - Alfred Fernández-Castané
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK +44 (0)121 204 4870.,Energy and Bioproducts Research Institute, Aston University Birmingham B4 7ET UK
| |
Collapse
|
26
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
27
|
Magnetospirillum gryphiswaldense. Trends Microbiol 2020; 28:947-948. [PMID: 32674989 DOI: 10.1016/j.tim.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 11/20/2022]
|
28
|
Keren-Khadmy N, Zeytuni N, Kutnowski N, Perriere G, Monteil C, Zarivach R. From conservation to structure, studies of magnetosome associated cation diffusion facilitators (CDF) proteins in Proteobacteria. PLoS One 2020; 15:e0231839. [PMID: 32310978 PMCID: PMC7170241 DOI: 10.1371/journal.pone.0231839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that sense the geomagnetic field lines to geolocate and navigate in aquatic sediments. They are polyphyletically distributed in several bacterial divisions but are mainly represented in the Proteobacteria. In this phylum, magnetotactic Deltaproteobacteria represent the most ancestral class of MTB. Like all MTB, they synthesize membrane-enclosed magnetic nanoparticles, called magnetosomes, for magnetic sensing. Magnetosome biogenesis is a complex process involving a specific set of genes that are conserved across MTB. Two of the most conserved genes are mamB and mamM, that encode for the magnetosome-associated proteins and are homologous to the cation diffusion facilitator (CDF) protein family. In magnetotactic Alphaproteobacteria MTB species, MamB and MamM proteins have been well characterized and play a central role in iron-transport required for biomineralization. However, their structural conservation and their role in more ancestral groups of MTB like the Deltaproteobacteria have not been established. Here we studied magnetite cluster MamB and MamM cytosolic C-terminal domain (CTD) structures from a phylogenetically distant magnetotactic Deltaproteobacteria species represented by BW-1 strain, which has the unique ability to biomineralize magnetite and greigite. We characterized them in solution, analyzed their crystal structures and compared them to those characterized in Alphaproteobacteria MTB species. We showed that despite the high phylogenetic distance, MamBBW-1 and MamMBW-1 CTDs share high structural similarity with known CDF-CTDs and will probably share a common function with the Alphaproteobacteria MamB and MamM.
Collapse
Affiliation(s)
- Noa Keren-Khadmy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Natalie Zeytuni
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nitzan Kutnowski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Guy Perriere
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Villeurbanne Cedex, France
| | - Caroline Monteil
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Villeurbanne Cedex, France
- CNRS, CEA, Aix-Marseille Université, UMR7265 Biosciences and Biotechnologies Institute of Aix-Marseille, Saint Paul lez Durance, France
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
29
|
Abstract
Many species of bacteria can manufacture materials on a finer scale than those that are synthetically made. These products are often produced within intracellular compartments that bear many hallmarks of eukaryotic organelles. One unique and elegant group of organisms is at the forefront of studies into the mechanisms of organelle formation and biomineralization. Magnetotactic bacteria (MTB) produce organelles called magnetosomes that contain nanocrystals of magnetic material, and understanding the molecular mechanisms behind magnetosome formation and biomineralization is a rich area of study. In this Review, we focus on the genetics behind the formation of magnetosomes and biomineralization. We cover the history of genetic discoveries in MTB and key insights that have been found in recent years and provide a perspective on the future of genetic studies in MTB.
Collapse
Affiliation(s)
- Hayley C. McCausland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Arash Komeili
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
30
|
Probing the Nanostructure and Arrangement of Bacterial Magnetosomes by Small-Angle X-Ray Scattering. Appl Environ Microbiol 2019; 85:AEM.01513-19. [PMID: 31604767 PMCID: PMC6881800 DOI: 10.1128/aem.01513-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/06/2019] [Indexed: 12/02/2022] Open
Abstract
This study explores lab-based small-angle X-ray scattering (SAXS) as a novel quantitative stand-alone technique to monitor the size, shape, and arrangement of magnetosomes during different stages of particle biogenesis in the model organism Magnetospirillum gryphiswaldense. The SAXS data sets contain volume-averaged, statistically accurate information on both the diameter of the inorganic nanocrystal and the enveloping protein-rich magnetosome membrane. As a robust and nondestructive in situ technique, SAXS can provide new insights into the physicochemical steps involved in the biosynthesis of magnetosome nanoparticles as well as their assembly into well-ordered chains. The proposed fit model can easily be adapted to account for different particle shapes and arrangements produced by other strains of magnetotactic bacteria, thus rendering SAXS a highly versatile method. Magnetosomes are membrane-enveloped single-domain ferromagnetic nanoparticles enabling the navigation of magnetotactic bacteria along magnetic field lines. Strict control over each step of biomineralization generates particles of high crystallinity, strong magnetization, and remarkable uniformity in size and shape, which is particularly interesting for many biomedical and biotechnological applications. However, to understand the physicochemical processes involved in magnetite biomineralization, close and precise monitoring of particle production is required. Commonly used techniques, such as transmission electron microscopy (TEM) or Fe measurements, allow only for semiquantitative assessment of the magnetosome formation without routinely revealing quantitative structural information. In this study, lab-based small-angle X-ray scattering (SAXS) is explored as a means to monitor the different stages of magnetosome biogenesis in the model organism Magnetospirillum gryphiswaldense. SAXS is evaluated as a quantitative stand-alone technique to analyze the size, shape, and arrangement of magnetosomes in cells cultivated under different growth conditions. By applying a simple and robust fitting procedure based on spheres aligned in linear chains, it is demonstrated that the SAXS data sets contain information on both the diameter of the inorganic crystal and the protein-rich magnetosome membrane. The analyses corroborate a narrow particle size distribution with an overall magnetosome radius of 19 nm in Magnetospirillum gryphiswaldense. Furthermore, the averaged distance between individual magnetosomes is determined, revealing a chain-like particle arrangement with a center-to-center distance of 53 nm. Overall, these data demonstrate that SAXS can be used as a novel stand-alone technique allowing for the at-line monitoring of magnetosome biosynthesis, thereby providing accurate information on the particle nanostructure. IMPORTANCE This study explores lab-based small-angle X-ray scattering (SAXS) as a novel quantitative stand-alone technique to monitor the size, shape, and arrangement of magnetosomes during different stages of particle biogenesis in the model organism Magnetospirillum gryphiswaldense. The SAXS data sets contain volume-averaged, statistically accurate information on both the diameter of the inorganic nanocrystal and the enveloping protein-rich magnetosome membrane. As a robust and nondestructive in situ technique, SAXS can provide new insights into the physicochemical steps involved in the biosynthesis of magnetosome nanoparticles as well as their assembly into well-ordered chains. The proposed fit model can easily be adapted to account for different particle shapes and arrangements produced by other strains of magnetotactic bacteria, thus rendering SAXS a highly versatile method.
Collapse
|
31
|
Magnetoreception in Microorganisms. Trends Microbiol 2019; 28:266-275. [PMID: 31753537 DOI: 10.1016/j.tim.2019.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022]
Abstract
Magnetoreception is the sense whereby organisms geolocate and navigate in response to the Earth's magnetic field lines. For decades, magnetotactic bacteria have been the only known magnetoreceptive microorganisms. The magnetotactic behaviour of these aquatic prokaryotes is due to the biomineralization of magnetic crystals. While an old report alleged the existence of microbial algae with similar behaviour, recent discoveries have demonstrated the existence of unicellular eukaryotes able to sense the geomagnetic field, and have revealed different mechanisms and strategies involved in such a sensing. Some ciliates can be magnetically guided after predation of magnetotactic bacteria, while some flagellates acquired this sense through symbiosis with magnetic bacteria. A report has even suggested that some magnetotactic protists could biomineralize magnetic crystals.
Collapse
|
32
|
Dieudonné A, Pignol D, Prévéral S. Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria. Appl Microbiol Biotechnol 2019; 103:3637-3649. [PMID: 30903215 DOI: 10.1007/s00253-019-09728-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/10/2023]
Abstract
The scientific community's interest in magnetotactic bacteria has increased substantially in recent decades. These prokaryotes have the particularity of synthesizing nanomagnets, called magnetosomes. The majority of research is based on several scientific questions. Where do magnetotactic bacteria live, what are their characteristics, and why are they magnetic? What are the molecular phenomena of magnetosome biomineralization and what are the physical characteristics of magnetosomes? In addition to scientific curiosity to better understand these stunning organisms, there are biotechnological opportunities to consider. Magnetotactic bacteria, as well as magnetosomes, are used in medical applications, for example cancer treatment, or in environmental ones, for example bioremediation. In this mini-review, we investigated all the aspects mentioned above and summarized the currently available knowledge.
Collapse
Affiliation(s)
- Anissa Dieudonné
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France
| | - David Pignol
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France
| | - Sandra Prévéral
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France.
| |
Collapse
|
33
|
Mickoleit F, Schüler D. Generation of nanomagnetic biocomposites by genetic engineering of bacterial magnetosomes. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Frank Mickoleit
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
34
|
Abstract
Uncovering the mechanisms that underlie the biogenesis and maintenance of eukaryotic organelles is a vibrant and essential area of biological research. In comparison, little attention has been paid to the process of compartmentalization in bacteria and archaea. This lack of attention is in part due to the common misconception that organelles are a unique evolutionary invention of the "complex" eukaryotic cell and are absent from the "primitive" bacterial and archaeal cells. Comparisons across the tree of life are further complicated by the nebulous criteria used to designate subcellular structures as organelles. Here, with the aid of a unified definition of a membrane-bounded organelle, we present some of the recent findings in the study of lipid-bounded organelles in bacteria and archaea.
Collapse
Affiliation(s)
- Carly R Grant
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Juan Wan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
35
|
Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Sci Rep 2018; 8:7699. [PMID: 29769616 PMCID: PMC5955880 DOI: 10.1038/s41598-018-25972-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding the biological processes enabling magnetotactic bacteria to maintain oriented chains of magnetic iron-bearing nanoparticles called magnetosomes is a major challenge. The study aimed to constrain the role of an external applied magnetic field on the alignment of magnetosome chains in Magnetospirillum magneticum AMB-1 magnetotactic bacteria immobilized within a hydrated silica matrix. A deviation of the chain orientation was evidenced, without significant impact on cell viability, which was preserved after the field was turned-off. Transmission electron microscopy showed that the crystallographic orientation of the nanoparticles within the chains were preserved. Off-axis electron holography evidenced that the change in magnetosome orientation was accompanied by a shift from parallel to anti-parallel interactions between individual nanocrystals. The field-induced destructuration of the chain occurs according to two possible mechanisms: (i) each magnetosome responds individually and reorients in the magnetic field direction and/or (ii) short magnetosome chains deviate in the magnetic field direction. This work enlightens the strong dynamic character of the magnetosome assembly and widens the potentialities of magnetotactic bacteria in bionanotechnology.
Collapse
|
36
|
Galloway JM, Senior L, Fletcher JM, Beesley JL, Hodgson LR, Harniman RL, Mantell JM, Coombs J, Rhys GG, Xue WF, Mosayebi M, Linden N, Liverpool TB, Curnow P, Verkade P, Woolfson DN. Bioinspired Silicification Reveals Structural Detail in Self-Assembled Peptide Cages. ACS NANO 2018; 12:1420-1432. [PMID: 29275624 PMCID: PMC5967840 DOI: 10.1021/acsnano.7b07785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/24/2017] [Indexed: 05/25/2023]
Abstract
Understanding how molecules in self-assembled soft-matter nanostructures are organized is essential for improving the design of next-generation nanomaterials. Imaging these assemblies can be challenging and usually requires processing, e.g., staining or embedding, which can damage or obscure features. An alternative is to use bioinspired mineralization, mimicking how certain organisms use biomolecules to template mineral formation. Previously, we have reported the design and characterization of Self-Assembled peptide caGEs (SAGEs) formed from de novo peptide building blocks. In SAGEs, two complementary, 3-fold symmetric, peptide hubs combine to form a hexagonal lattice, which curves and closes to form SAGE nanoparticles. As hexagons alone cannot tile onto spheres, the network must also incorporate nonhexagonal shapes. While the hexagonal ultrastructure of the SAGEs has been imaged, these defects have not been observed. Here, we show that positively charged SAGEs biotemplate a thin, protective silica coating. Electron microscopy shows that these SiO2-SAGEs do not collapse, but maintain their 3D shape when dried. Atomic force microscopy reveals a network of hexagonal and irregular features on the SiO2-SAGE surface. The dimensions of these (7.2 nm ± 1.4 nm across, internal angles 119.8° ± 26.1°) are in accord with the designed SAGE network and with coarse-grained modeling of the SAGE assembly. The SiO2-SAGEs are permeable to small molecules (<2 nm), but not to larger biomolecules (>6 nm). Thus, bioinspired silicification offers a mild technique that preserves soft-matter nanoparticles for imaging, revealing structural details <10 nm in size, while also maintaining desirable properties, such as permeability to small molecules.
Collapse
Affiliation(s)
- Johanna M. Galloway
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Laura Senior
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
| | - Jordan M. Fletcher
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Joseph L. Beesley
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
| | - Lorna R. Hodgson
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
| | - Robert L. Harniman
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Judith M. Mantell
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
| | - Jennifer Coombs
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- Bristol
Centre for Functional Nanomaterials, NSQI, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, U.K.
| | - Guto G. Rhys
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Wei-Feng Xue
- School
of Biosciences, Stacy Building, University
of Kent, Canterbury, CT2 7NJ, U.K.
| | - Majid Mosayebi
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
- School of
Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, U.K.
| | - Noah Linden
- School of
Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, U.K.
| | - Tanniemola B. Liverpool
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
- School of
Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, U.K.
| | - Paul Curnow
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| | - Paul Verkade
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| |
Collapse
|
37
|
Usman M, Byrne JM, Chaudhary A, Orsetti S, Hanna K, Ruby C, Kappler A, Haderlein SB. Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chem Rev 2018; 118:3251-3304. [PMID: 29465223 DOI: 10.1021/acs.chemrev.7b00224] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mixed-valent iron [Fe(II)-Fe(III)] minerals such as magnetite and green rust have received a significant amount of attention over recent decades, especially in the environmental sciences. These mineral phases are intrinsic and essential parts of biogeochemical cycling of metals and organic carbon and play an important role regarding the mobility, toxicity, and redox transformation of organic and inorganic pollutants. The formation pathways, mineral properties, and applications of magnetite and green rust are currently active areas of research in geochemistry, environmental mineralogy, geomicrobiology, material sciences, environmental engineering, and environmental remediation. These aspects ultimately dictate the reactivity of magnetite and green rust in the environment, which has important consequences for the application of these mineral phases, for example in remediation strategies. In this review we discuss the properties, occurrence, formation by biotic as well as abiotic pathways, characterization techniques, and environmental applications of magnetite and green rust in the environment. The aim is to present a detailed overview of the key aspects related to these mineral phases which can be used as an important resource for researchers working in a diverse range of fields dealing with mixed-valent iron minerals.
Collapse
Affiliation(s)
- M Usman
- Environmental Mineralogy, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany.,Institute of Soil and Environmental Sciences , University of Agriculture , Faisalabad 38040 , Pakistan
| | - J M Byrne
- Geomicrobiology, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany
| | - A Chaudhary
- Environmental Mineralogy, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany.,Department of Environmental Science and Engineering , Government College University Faisalabad 38000 , Pakistan
| | - S Orsetti
- Environmental Mineralogy, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany
| | - K Hanna
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes , CNRS, ISCR - UMR6226 , F-35000 Rennes , France
| | - C Ruby
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement , UMR 7564 CNRS-Université de Lorraine , 54600 Villers-Lès-Nancy , France
| | - A Kappler
- Geomicrobiology, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany
| | - S B Haderlein
- Environmental Mineralogy, Center for Applied Geosciences , University of Tübingen , 72074 Tübingen , Germany
| |
Collapse
|
38
|
Uebe R, Keren-Khadmy N, Zeytuni N, Katzmann E, Navon Y, Davidov G, Bitton R, Plitzko JM, Schüler D, Zarivach R. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol Microbiol 2018; 107:542-557. [PMID: 29243866 DOI: 10.1111/mmi.13899] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
Abstract
Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe3 O4 ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.
Collapse
Affiliation(s)
- René Uebe
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Noa Keren-Khadmy
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Natalie Zeytuni
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Emanuel Katzmann
- Department of Molecular Structural Biology, Am Klopferspitz 18, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Yotam Navon
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Am Klopferspitz 18, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| |
Collapse
|
39
|
Yan L, Xing W. Methods to Study Magnetotactic Bacteria and Magnetosomes. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Raschdorf O, Bonn F, Zeytuni N, Zarivach R, Becher D, Schüler D. A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle. J Proteomics 2017; 172:89-99. [PMID: 29054541 DOI: 10.1016/j.jprot.2017.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022]
Abstract
Magnetotactic bacteria produce chains of complex membrane-bound organelles that direct the biomineralization of magnetic nanoparticles and serve for magnetic field navigation. These magnetosome compartments have recently emerged as a model for studying the subcellular organization of prokaryotic organelles. Previous studies indicated the presence of specific proteins with various functions in magnetosome biosynthesis. However, the exact composition and stoichiometry of the magnetosome subproteome have remained unknown. In order to quantify and unambiguously identify all proteins specifically targeted to the magnetosome membrane of the Alphaproteobacterium Magnetospirillum gryphiswaldense, we analyzed the protein composition of several cellular fractions by semi-quantitative mass spectrometry. We found that nearly all genuine magnetosome membrane-integral proteins belong to a well-defined set of previously identified proteins encoded by gene clusters within a genomic island, indicating a highly controlled protein composition. Magnetosome proteins were present in different quantities with up to 120 copies per particle as estimated by correlating our results with available quantitative Western blot data. This high abundance suggests an unusually crowded protein composition of the membrane and a tight packing with transmembrane domains of integral proteins. Our findings will help to further define the structure of the organelle and contribute to the elucidation of magnetosome biogenesis. BIOLOGICAL SIGNIFICANCE Magnetosomes are one of the most complex bacterial organelles and consist of membrane-bounded crystals of magnetic minerals. The exact composition and stoichiometry of the associated membrane integral proteins are of major interest for a deeper understanding of prokaryotic organelle assembly; however, previous proteomic studies failed to reveal meaningful estimations due to the lack of precise and quantitative data, and the inherently high degree of accumulated protein contaminants in purified magnetosomes. Using a highly sensitive mass spectrometer, we acquired proteomic data from several cellular fractions of a magnetosome producing magnetotactic bacterium and developed a comparative algorithm to identify all genuine magnetosome membrane-integral proteins and to discriminate them from contaminants. Furthermore, by combining our data with previously published quantitative Western blot data, we were able to model the protein copy number and density within the magnetosome membrane. Our results suggest that the magnetosome membrane is specifically associated with a small subset of integral proteins that are tightly packed within the lipid layer. Our study provides by far the most comprehensive estimation of magnetosomal protein composition and stoichiometry and will help to elucidate the complex process of magnetosome biogenesis.
Collapse
Affiliation(s)
- Oliver Raschdorf
- Department of Microbiology, Ludwig Maximilian University of Munich, Germany
| | - Florian Bonn
- Department of Microbiology, Ernst Moritz Arndt University of Greifswald, Germany
| | - Natalie Zeytuni
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Raz Zarivach
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dörte Becher
- Department of Microbiology, Ernst Moritz Arndt University of Greifswald, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Germany.
| |
Collapse
|
41
|
Baker LA, Grange M, Grünewald K. Electron cryo-tomography captures macromolecular complexes in native environments. Curr Opin Struct Biol 2017; 46:149-156. [DOI: 10.1016/j.sbi.2017.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/27/2022]
|
42
|
Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells. mBio 2017; 8:mBio.00679-17. [PMID: 28790202 PMCID: PMC5550748 DOI: 10.1128/mbio.00679-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be in positioning magnetosome organelles; this was proposed based on observations via electron microscopy still images. Here, we conducted live-cell time-lapse fluorescence imaging analyses employing highly inclined and laminated optical sheet microscopy, and these methods enabled us to visualize detailed dynamic movement of magnetosomes in growing cells during the entire cell cycle with high-temporal resolution and a high signal/noise ratio. We found that the MamK cytoskeleton anchors magnetosomes through a mechanism that requires MamK-ATPase activity throughout the cell cycle to prevent simple diffusion of magnetosomes within the cell. We concluded that the static chain-like arrangement of the magnetosomes is required to precisely and consistently segregate the magnetosomes to daughter cells. Thus, the daughter cells inherit a functional magnetic sensor that mediates magneto-reception. Half a century ago, bacterial cells were considered a simple “bag of enzymes”; only recently have they been shown to comprise ordered complexes of macromolecular structures, such as bacterial organelles and cytoskeletons, similar to their eukaryotic counterparts. In eukaryotic cells, the positioning of organelles is regulated by cytoskeletal elements. However, the role of cytoskeletal elements in the positioning of bacterial organelles, such as magnetosomes, remains unclear. Magnetosomes are associated with cytoskeletal filaments that consist of the actin-like protein MamK. In this study, we focused on how the MamK cytoskeleton regulates the dynamic movement of magnetosome organelles in living magnetotactic bacterial cells. Here, we used fluorescence imaging to visualize the dynamics of magnetosomes throughout the cell cycle in living magnetotactic bacterial cells to understand how they use the actin-like cytoskeleton to maintain and to make functional their nano-sized magnetic organelles.
Collapse
|
43
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
44
|
Kraupner A, Eberbeck D, Heinke D, Uebe R, Schüler D, Briel A. Bacterial magnetosomes - nature's powerful contribution to MPI tracer research. NANOSCALE 2017; 9:5788-5793. [PMID: 28447690 DOI: 10.1039/c7nr01530e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The magnetic particle spectrum (MPS) of bacterial magnetosomes, isolated from Magnetospirillum gryphiswaldense, is measured and compared to that of the current "gold standard", Resovist®. It is shown that the amplitudes of the magnetosomes' harmonics by far exceed that of Resovist®; the amplitude of the third harmonic is higher by a factor of 7, and is the highest value obtained for iron oxide nanoparticles to date.
Collapse
Affiliation(s)
- A Kraupner
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Zhang Y, Wen T, Guo F, Geng Y, Liu J, Peng T, Guan G, Tian J, Li Y, Li J, Ju J, Jiang W. The Disruption of an OxyR-Like Protein Impairs Intracellular Magnetite Biomineralization in Magnetospirillum gryphiswaldense MSR-1. Front Microbiol 2017; 8:208. [PMID: 28261169 PMCID: PMC5308003 DOI: 10.3389/fmicb.2017.00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria synthesize intracellular membrane-enveloped magnetite bodies known as magnetosomes which have been applied in biotechnology and medicine. A series of proteins involved in ferric ion transport and redox required for magnetite formation have been identified but the knowledge of magnetosome biomineralization remains very limited. Here, we identify a novel OxyR homolog (named OxyR-Like), the disruption of which resulted in low ferromagnetism and disfigured nano-sized iron oxide crystals. High resolution-transmission electron microscopy showed that these nanoparticles are mainly composed of magnetite accompanied with ferric oxide including α-Fe2O3 and 𝜀-Fe2O3. Electrophoretic mobility shift assay and DNase I footprinting showed that OxyR-Like binds the conserved 5'-GATA-N{9}-TATC-3' region within the promoter of pyruvate dehydrogenase (pdh) complex operon. Quantitative real-time reverse transcriptase PCR indicated that not only the expression of pdh operon but also genes related to magnetosomes biosynthesis and tricarboxylic acid cycle decreased dramatically, suggesting a link between carbon metabolism and magnetosome formation. Taken together, our results show that OxyR-Like plays a key role in magnetosomes formation.
Collapse
Affiliation(s)
- Yunpeng Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Tong Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Fangfang Guo
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yuanyuan Geng
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Junquan Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Tao Peng
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Guohua Guan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jiesheng Tian
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Ying Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jilun Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jing Ju
- College of Chemistry and Molecular Engineering, Peking University Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| |
Collapse
|
46
|
Ji B, Zhang SD, Zhang WJ, Rouy Z, Alberto F, Santini CL, Mangenot S, Gagnot S, Philippe N, Pradel N, Zhang L, Tempel S, Li Y, Médigue C, Henrissat B, Coutinho PM, Barbe V, Talla E, Wu LF. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of P
roteobacteria. Environ Microbiol 2017; 19:1103-1119. [DOI: 10.1111/1462-2920.13637] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Boyang Ji
- Aix Marseille Univ, CNRS, LCB; Marseille France
| | - Sheng-Da Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Wei-Jia Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Zoe Rouy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | - François Alberto
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Claire-Lise Santini
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | | | - Nathalie Pradel
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- Aix Marseille Univ, Univ Toulon, CNRS, IRD; Marseille France
| | | | | | - Ying Li
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Claudine Médigue
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | | | | | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| |
Collapse
|
47
|
Barber-Zucker S, Zarivach R. A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria. ACS Chem Biol 2017; 12:13-22. [PMID: 27930882 DOI: 10.1021/acschembio.6b01000] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Magnetosomes are protein-rich membrane organelles that encapsulate magnetite or greigite and whose chain alignment enables magnetotactic bacteria (MTB) to sense the geomagnetic field. As these bacteria synthesize uniform magnetic particles, their biomineralization mechanism is of great interest among researchers from different fields, from material engineering to medicine. Both magnetosome formation and magnetic particle synthesis are highly controlled processes that can be divided into several crucial steps: membrane invagination from the inner-cell membrane, protein sorting, the magnetosomes' arrangement into chains, iron transport, chemical environment regulation of the magnetosome lumen, magnetic particle nucleation, and finally crystal growth, size, and morphology control. This complex system involves an ensemble of unique proteins that participate in different stages during magnetosome formation, some of which were extensively studied in recent years. Here, we present the current knowledge on magnetosome biosynthesis with a focus on the different proteins and the main biochemical pathways along this process.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|