1
|
Kentro JA, Singh G, Pham TM, Currie J, Khullar S, Medeiros AT, Tsiarli M, Larschan E, O’Connor-Giles KM. Conserved transcription factors coordinate synaptic gene expression through repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621128. [PMID: 39553973 PMCID: PMC11565943 DOI: 10.1101/2024.10.30.621128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chemical synapses are the primary sites of communication in the nervous system. Synapse formation is a complex process involving hundreds of proteins that must be expressed in two cells at the same time. We find that synaptic genes are broadly and specifically coordinated at the level of transcription across developing nervous systems. How this spatiotemporal coordination is achieved remains an open question. Through genomic and functional studies in Drosophila, we demonstrate corresponding coordination of chromatin accessibility and identify chromatin regulators DEAF1 and CLAMP as broad repressors of synaptic gene expression outside windows of peak synaptogenesis. Disruption of either factor temporally dysregulates synaptic gene expression across neuronal subtypes, leading to excess synapse formation. We further find that DEAF1, which is linked to syndromic intellectual disability, is both necessary and sufficient to constrain synapse formation. Our findings reveal the critical importance of broad temporally coordinated repression of synaptic gene expression in regulating neuronal connectivity and identify two key repressors.
Collapse
Affiliation(s)
- James A. Kentro
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Gunjan Singh
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Tuan M. Pham
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Justin Currie
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Maria Tsiarli
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Li J, Xu S, Liu Z, Yang L, Ming Z, Zhang R, Zhao W, Peng H, Quinn JJ, Wu M, Geng Y, Zhang Y, He J, Chen M, Li N, Shao NY, Ma Q. A noncanonical role of roX RNAs in autosomal epigenetic repression. Nat Commun 2025; 16:155. [PMID: 39747148 PMCID: PMC11696496 DOI: 10.1038/s41467-024-55711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs known as roX (RNA on the X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Here, using an integrative multi-omics approach, we show that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs). We observed that roX RNAs colocalize with MSL proteins on the X chromosome and PRC components on autosomes. Intriguingly, loss of roX function reduces X-chromosomal H4K16ac levels and autosomal H3K27me3 levels. Correspondingly, X-linked genes display reduced expression, whereas many autosomal genes exhibit elevated expression upon roX loss. Our findings propose a dual role for roX RNAs: activators of X-linked genes and repressors of autosomal genes, achieved through interactions with MSL and PRC complexes, respectively. This study uncovers the unconventional epigenetic repressive function of roX RNAs with PRC interaction.
Collapse
Affiliation(s)
- Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Shuyang Xu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zicong Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhe Ming
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Rui Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjuan Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huipai Peng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jeffrey J Quinn
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yushan Geng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuying Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiazhi He
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minghai Chen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
4
|
Babosha V, Klimenko N, Revel-Muroz A, Tikhonova E, Georgiev P, Maksimenko O. N-terminus of Drosophila melanogaster MSL1 is critical for dosage compensation. eLife 2024; 13:RP93241. [PMID: 39699942 DOI: 10.7554/elife.93241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3-7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.
Collapse
Affiliation(s)
- Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Salzler HR, Vandadi V, Sallean JR, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. Genetics 2024; 228:iyae168. [PMID: 39417694 PMCID: PMC11631440 DOI: 10.1093/genetics/iyae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions betwen MSL3 (male-specific lethal 3) and Set2-dependent histone marks like trimethylated H3 lysine-36 (H3K36me3). However, Set2 could affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Furthermore, it is important to parse male-specific effects from those that are X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 'residue' and Set2 'writer' mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global, male-specific reduction of X-genes in Set2 or H3K36 mutants, we observe heterogeneous effects. Interestingly, we identified groups of differentially expressed genes (DEGs) whose changes were in opposite directions following loss of H3K36 or Set2, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, differential expression analysis of combined H3.2K36R/H3.3K36R mutants showed neither consistent reduction in X-gene expression, nor correlation with MSL3 binding. Motif analysis of the DEGs implicated BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 is essential for spreading the MSL complex to genes along the male X. Rather, we propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Julia R Sallean
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Hodkinson LJ, Gross J, Schmidt CA, Diaz-Saldana PP, Aoki T, Rieder LE. Sequence reliance of the Drosophila context-dependent transcription factor CLAMP. Genetics 2024; 227:iyae060. [PMID: 38775472 PMCID: PMC11492491 DOI: 10.1093/genetics/iyae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 06/04/2024] Open
Abstract
Despite binding similar cis elements in multiple locations, a single transcription factor (TF) often performs context-dependent functions at different loci. How factors integrate cis sequence and genomic context is still poorly understood and has implications for off-target effects in genetic engineering. The Drosophila context-dependent TF chromatin-linked adaptor for male-specific lethal proteins (CLAMP) targets similar GA-rich cis elements on the X-chromosome and at the histone gene locus but recruits very different, locus-specific factors. We discover that CLAMP leverages information from both cis element and local sequence to perform context-specific functions. Our observations imply the importance of other cues, including protein-protein interactions and the presence of additional cofactors.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Julia Gross
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Casey A Schmidt
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Tsutomo Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Salzler HR, Vandadi V, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592390. [PMID: 38766267 PMCID: PMC11100620 DOI: 10.1101/2024.05.03.592390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions of MSL3 (male-specific lethal 3) with histone marks; in particular, Set2-dependent H3 lysine-36 trimethylation (H3K36me3). However, Set2 might affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Further, it is difficult to parse male-specific effects from those that are simply X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 (residue) and Set2 (writer) mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global male-specific reduction of X-genes in Set2/H3K36 mutants, the effects were heterogeneous. We identified cohorts of genes whose expression was significantly altered following loss of H3K36 or Set2, but the changes were in opposite directions, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, analysis of combined H3.2K36R/H3.3K36R mutants neither showed consistent reduction in X-gene expression, nor any correlation with MSL3 binding. Examination of other developmental stages/tissues revealed additional layers of context-dependence. Our studies implicate BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 directly recruits the MSL complex. We propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Ray M, Zaborowsky J, Mahableshwarkar P, Vaidyanathan S, Shum J, Viswanathan R, Huang A, Wang SH, Johnson V, Wake N, Conard AM, Conicella AE, Puterbaugh R, Fawzi NL, Larschan E. Dual DNA/RNA-binding factor regulates dynamics of hnRNP splicing condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575216. [PMID: 38260450 PMCID: PMC10802580 DOI: 10.1101/2024.01.11.575216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Despite decades of research, mechanisms by which co-transcriptional alternative splicing events are targeted to the correct genomic locations to drive cell fate decisions remain unknown. By combining structural and molecular approaches, we define a new mechanism by which an essential transcription factor (TF) targets co-transcriptional splicing through physical and functional interaction with RNA and RNA binding proteins (RBPs). We show that an essential TF co-transcriptionally regulates sex-specific alternative splicing by directly interacting with a subset of target RNAs on chromatin and modulating the dynamics of hnRNPA2 homolog nuclear splicing condensates.
Collapse
|
9
|
Hodkinson LJ, Gross J, Schmidt CA, Diaz-Saldana PP, Aoki T, Rieder LE. Sequence reliance of a Drosophila context-dependent transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570650. [PMID: 38106168 PMCID: PMC10723421 DOI: 10.1101/2023.12.07.570650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Despite binding similar cis elements in multiple locations, a single transcription factor often performs context-dependent functions at different loci. How factors integrate cis sequence and genomic context is still poorly understood and has implications for off-target effects in genetic engineering. The Drosophila context-dependent transcription factor CLAMP targets similar GA-rich cis elements on the X-chromosome and at the histone gene locus but recruits very different, loci-specific factors. We discover that CLAMP leverages information from both cis element and local sequence to perform context-specific functions. Our observations imply the importance of other cues, including protein-protein interactions and the presence of additional cofactors.
Collapse
Affiliation(s)
- Lauren J. Hodkinson
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322 USA
| | - Julia Gross
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA 30322 USA
| | | | | | - Tsutomo Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540 USA
| | - Leila E. Rieder
- Department of Biology Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
10
|
Geisler MS, Kemp JP, Duronio RJ. Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression. Nucleus 2023; 14:2293604. [PMID: 38095604 PMCID: PMC10730174 DOI: 10.1080/19491034.2023.2293604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Histone locus bodies (HLBs) are biomolecular condensates that assemble at replication-dependent (RD) histone genes in animal cells. These genes produce unique mRNAs that are not polyadenylated and instead end in a conserved 3' stem loop critical for coordinated production of histone proteins during S phase of the cell cycle. Several evolutionarily conserved factors necessary for synthesis of RD histone mRNAs concentrate only in the HLB. Moreover, because HLBs are present throughout the cell cycle even though RD histone genes are only expressed during S phase, changes in HLB composition during cell cycle progression drive much of the cell cycle regulation of RD histone gene expression. Thus, HLBs provide a powerful opportunity to determine the cause-and-effect relationships between nuclear body formation and cell cycle regulated gene expression. In this review, we focus on progress during the last five years that has advanced our understanding of HLB biology.
Collapse
Affiliation(s)
- Mark S. Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - James P. Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Yang Q, Lo TW, Brejc K, Schartner C, Ralston EJ, Lapidus DM, Meyer BJ. X-chromosome target specificity diverged between dosage compensation mechanisms of two closely related Caenorhabditis species. eLife 2023; 12:e85413. [PMID: 36951246 PMCID: PMC10076027 DOI: 10.7554/elife.85413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species Caenorhabditis briggsae (Cbr) and Caenorhabditis elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13 bp MEX and 30 bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with the conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.
Collapse
Affiliation(s)
- Qiming Yang
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Te-Wen Lo
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katjuša Brejc
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Caitlin Schartner
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Edward J Ralston
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Denise M Lapidus
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Barbara J Meyer
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
12
|
Dosage Compensation in Drosophila: Its Canonical and Non-Canonical Mechanisms. Int J Mol Sci 2022; 23:ijms231810976. [PMID: 36142884 PMCID: PMC9506574 DOI: 10.3390/ijms231810976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Collapse
|
13
|
Colonnetta MM, Abrahante JE, Schedl P, Gohl DM, Deshpande G. CLAMP regulates zygotic genome activation in Drosophila embryos. Genetics 2021; 219:iyab107. [PMID: 34849887 PMCID: PMC8633140 DOI: 10.1093/genetics/iyab107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here, we have explored the novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA. CLAMP binds thousands of sites genome-wide throughout early embryogenesis. Interestingly, CLAMP relocates to target promoter sequences across the genome when ZGA is initiated. Although there is a considerable overlap between CLAMP and Zelda binding sites, the proteins display distinct temporal dynamics. To assess whether CLAMP occupancy affects gene expression, we analyzed transcriptomes of embryos zygotically compromised for either clamp or zelda and found that transcript levels of many zygotically activated genes are similarly affected. Importantly, compromising either clamp or zelda disrupted the expression of critical segmentation and sex determination genes bound by CLAMP (and Zelda). Furthermore, clamp knockdown embryos recapitulate other phenotypes observed in Zelda-depleted embryos, including nuclear division defects, centrosome aberrations, and a disorganized actomyosin network. Based on these data, we propose that CLAMP acts in concert with Zelda to regulate early zygotic transcription.
Collapse
Affiliation(s)
- Megan M Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
14
|
Eggers N, Becker PB. Cell-free genomics reveal intrinsic, cooperative and competitive determinants of chromatin interactions. Nucleic Acids Res 2021; 49:7602-7617. [PMID: 34181732 PMCID: PMC8287947 DOI: 10.1093/nar/gkab558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoan transcription factors distinguish their response elements from a large excess of similar sequences. We explored underlying principles of DNA shape read-out and factor cooperativity in chromatin using a unique experimental system. We reconstituted chromatin on Drosophila genomes in extracts of preblastoderm embryos, mimicking the naïve state of the zygotic genome prior to developmental transcription activation. We then compared the intrinsic binding specificities of three recombinant transcription factors, alone and in combination, with GA-rich recognition sequences genome-wide. For MSL2, all functional elements reside on the X chromosome, allowing to distinguish physiological elements from non-functional 'decoy' sites. The physiological binding profile of MSL2 is approximated through interaction with other factors: cooperativity with CLAMP and competition with GAF, which sculpts the profile by occluding non-functional sites. An extended DNA shape signature is differentially read out in chromatin. Our results reveal novel aspects of target selection in a complex chromatin environment.
Collapse
Affiliation(s)
- Nikolas Eggers
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| |
Collapse
|
15
|
Jordan W, Larschan E. The zinc finger protein CLAMP promotes long-range chromatin interactions that mediate dosage compensation of the Drosophila male X-chromosome. Epigenetics Chromatin 2021; 14:29. [PMID: 34187599 PMCID: PMC8240218 DOI: 10.1186/s13072-021-00399-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Drosophila dosage compensation is an important model system for defining how active chromatin domains are formed. The male-specific lethal dosage compensation complex (MSLc) increases transcript levels of genes along the length of the single male X-chromosome to equalize with that expressed from the two female X-chromosomes. The strongest binding sites for MSLc cluster together in three-dimensional space largely independent of MSLc because clustering occurs in both sexes. CLAMP, a non-sex specific, ubiquitous zinc finger protein, binds synergistically with MSLc to enrich the occupancy of both factors on the male X-chromosome. Results Here, we demonstrate that CLAMP promotes the observed three-dimensional clustering of MSLc binding sites. Moreover, the X-enriched CLAMP protein more strongly promotes longer-range three-dimensional interactions on the X-chromosome than autosomes. Genome-wide, CLAMP promotes three-dimensional interactions between active chromatin regions together with other insulator proteins. Conclusion Overall, we define how long-range interactions which are modulated by a locally enriched ubiquitous transcription factor promote hyper-activation of the X-chromosome to mediate dosage compensation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00399-3.
Collapse
Affiliation(s)
- William Jordan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Villa R, Jagtap PKA, Thomae AW, Campos Sparr A, Forné I, Hennig J, Straub T, Becker PB. Divergent evolution toward sex chromosome-specific gene regulation in Drosophila. Genes Dev 2021; 35:1055-1070. [PMID: 34140353 PMCID: PMC8247607 DOI: 10.1101/gad.348411.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The dosage compensation complex (DCC) of Drosophila identifies its X-chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and noncoding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active but contribute differently to X specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX motifs are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a nonproductive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a stable chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of protein, DNA, and RNA components.
Collapse
Affiliation(s)
- Raffaella Villa
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Core Facility Bioimaging, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Aline Campos Sparr
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Gaskill MM, Gibson TJ, Larson ED, Harrison MM. GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo. eLife 2021; 10:e66668. [PMID: 33720012 PMCID: PMC8079149 DOI: 10.7554/elife.66668] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Following fertilization, the genomes of the germ cells are reprogrammed to form the totipotent embryo. Pioneer transcription factors are essential for remodeling the chromatin and driving the initial wave of zygotic gene expression. In Drosophila melanogaster, the pioneer factor Zelda is essential for development through this dramatic period of reprogramming, known as the maternal-to-zygotic transition (MZT). However, it was unknown whether additional pioneer factors were required for this transition. We identified an additional maternally encoded factor required for development through the MZT, GAGA Factor (GAF). GAF is necessary to activate widespread zygotic transcription and to remodel the chromatin accessibility landscape. We demonstrated that Zelda preferentially controls expression of the earliest transcribed genes, while genes expressed during widespread activation are predominantly dependent on GAF. Thus, progression through the MZT requires coordination of multiple pioneer-like factors, and we propose that as development proceeds control is gradually transferred from Zelda to GAF.
Collapse
Affiliation(s)
- Marissa M Gaskill
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| |
Collapse
|
18
|
Evolving evidence on a link between the ZMYM3 exceptionally long GA-STR and human cognition. Sci Rep 2020; 10:19454. [PMID: 33173136 PMCID: PMC7655811 DOI: 10.1038/s41598-020-76461-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
The human X-linked zinc finger MYM-type protein 3 (ZMYM3) contains the longest GA-STR identified across protein-coding gene 5′ UTR sequences, at 32-repeats. This exceptionally long GA-STR is located at a complex string of GA-STRs with a human-specific formula across the complex as follows: (GA)8-(GA)4-(GA)6-(GA)32 (ZMYM3-207 ENST00000373998.5). ZMYM3 was previously reported among the top three genes involved in the progression of late-onset Alzheimer’s disease. Here we sequenced the ZMYM3 GA-STR complex in 750 human male subjects, consisting of late-onset neurocognitive disorder (NCD) as a clinical entity (n = 268) and matched controls (n = 482). We detected strict monomorphism of the GA-STR complex, except of the exceptionally long STR, which was architecturally skewed in respect of allele distribution between the NCD cases and controls [F (1, 50) = 12.283; p = 0.001]. Moreover, extreme alleles of this STR at 17, 20, 42, and 43 repeats were detected in seven NCD patients and not in the control group (Mid-P exact = 0.0003). A number of these alleles overlapped with alleles previously found in schizophrenia and bipolar disorder patients. In conclusion, we propose selective advantage for the exceptional length of the ZMYM3 GA-STR in human, and its link to a spectrum of diseases in which major cognition impairment is a predominant phenotype.
Collapse
|
19
|
Rieder LE, Jordan WT, Larschan EN. Targeting of the Dosage-Compensated Male X-Chromosome during Early Drosophila Development. Cell Rep 2020; 29:4268-4275.e2. [PMID: 31875538 PMCID: PMC6952266 DOI: 10.1016/j.celrep.2019.11.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation, which corrects for the imbalance in X-linked gene expression between XX females and XY males, represents a model for how genes are targeted for coordinated regulation. However, the mechanism by which dosage compensation complexes identify the X chromosome during early development remains unknown because of the difficulty of sexing embryos before zygotic transcription using X- or Y-linked reporter transgenes. We used meiotic drive to sex Drosophila embryos before zygotic transcription and ChIP-seq to measure the dynamics of dosage compensation factor targeting. The Drosophila male-specific lethal dosage compensation complex (MSLc) requires the ubiquitous zinc-finger protein chromatin-linked adaptor for MSL proteins (CLAMP) to identify the X chromosome. We observe a multi-stage process in which MSLc first identifies CLAMP binding sites throughout the genome, followed by concentration at the strongest X-linked MSLc sites. We provide insight into the dynamics of binding site recognition by a large transcription complex during early development. Rieder et al. establish a meiotic drive system to study Drosophila X chromosome dosage compensation before the maternal-zygotic transition. This study uncovers another step in the process during which the dosage compensation complex identifies binding sites genome-wide before becoming enriched on the X chromosome.
Collapse
Affiliation(s)
| | - William Thomas Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Erica Nicole Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
20
|
Koreski KP, Rieder LE, McLain LM, Chaubal A, Marzluff WF, Duronio RJ. Drosophila histone locus body assembly and function involves multiple interactions. Mol Biol Cell 2020; 31:1525-1537. [PMID: 32401666 PMCID: PMC7359574 DOI: 10.1091/mbc.e20-03-0176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent (RD) histone loci and concentrates factors required for RD histone mRNA biosynthesis. The Drosophila melanogaster genome has a single locus comprised of ∼100 copies of a tandemly arrayed 5-kB repeat unit containing one copy of each of the 5 RD histone genes. To determine sequence elements required for D. melanogaster HLB formation and histone gene expression, we used transgenic gene arrays containing 12 copies of the histone repeat unit that functionally complement loss of the ∼200 endogenous RD histone genes. A 12x histone gene array in which all H3-H4 promoters were replaced with H2a-H2b promoters (12xPR) does not form an HLB or express high levels of RD histone mRNA in the presence of the endogenous histone genes. In contrast, this same transgenic array is active in HLB assembly and RD histone gene expression in the absence of the endogenous RD histone genes and rescues the lethality caused by homozygous deletion of the RD histone locus. The HLB formed in the absence of endogenous RD histone genes on the mutant 12x array contains all known factors present in the wild-type HLB including CLAMP, which normally binds to GAGA repeats in the H3-H4 promoter. These data suggest that multiple protein–protein and/or protein–DNA interactions contribute to HLB formation, and that the large number of endogenous RD histone gene copies sequester available factor(s) from attenuated transgenic arrays, thereby preventing HLB formation and gene expression on these arrays.
Collapse
Affiliation(s)
- Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Lyndsey M McLain
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Machyna M, Kiefer L, Simon MD. Enhanced nucleotide chemistry and toehold nanotechnology reveals lncRNA spreading on chromatin. Nat Struct Mol Biol 2020; 27:297-304. [PMID: 32157249 DOI: 10.1038/s41594-020-0390-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Understanding the targeting and spreading patterns of long non-coding RNAs (lncRNAs) on chromatin requires a technique that can detect both high-intensity binding sites and reveal genome-wide changes in spreading patterns with high precision and confidence. Here we determine lncRNA localization using biotinylated locked nucleic acid (LNA)-containing oligonucleotides with toehold architecture capable of hybridizing to target RNA through strand-exchange reaction. During hybridization, a protecting strand competitively displaces contaminating species, leading to highly specific RNA capture of individual RNAs. Analysis of Drosophila roX2 lncRNA using this approach revealed that heat shock, unlike the unfolded protein response, leads to reduced spreading of roX2 on the X chromosome, but surprisingly also to relocalization to sites on autosomes. Our results demonstrate that this improved hybridization capture approach can reveal previously uncharacterized changes in the targeting and spreading of lncRNAs on chromatin.
Collapse
Affiliation(s)
- Martin Machyna
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Lea Kiefer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA. .,Chemical Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
22
|
Ekhteraei-Tousi S, Lewerentz J, Larsson J. Painting of Fourth and the X-Linked 1.688 Satellite in D. melanogaster is Involved in Chromosome-Wide Gene Regulation. Cells 2020; 9:cells9020323. [PMID: 32019091 PMCID: PMC7072490 DOI: 10.3390/cells9020323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023] Open
Abstract
Chromosome-specific regulatory mechanisms provide a model to understand the coordinated regulation of genes on entire chromosomes or on larger genomic regions. In fruit flies, two chromosome-wide systems have been characterized: The male-specific lethal (MSL) complex, which mediates dosage compensation and primarily acts on the male X-chromosome, and Painting of fourth (POF), which governs chromosome-specific regulation of genes located on the 4th chromosome. How targeting of one specific chromosome evolves is still not understood; but repeated sequences, in forms of satellites and transposable elements, are thought to facilitate the evolution of chromosome-specific targeting. The highly repetitive 1.688 satellite has been functionally connected to both these systems. Considering the rapid evolution and the necessarily constant adaptation of regulatory mechanisms, such as dosage compensation, we hypothesised that POF and/or 1.688 may still show traces of dosage-compensation functions. Here, we test this hypothesis by transcriptome analysis. We show that loss of Pof decreases not only chromosome 4 expression but also reduces the X-chromosome expression in males. The 1.688 repeat deletion, Zhr1 (Zygotic hybrid rescue), does not affect male dosage compensation detectably; however, Zhr1 in females causes a stimulatory effect on X-linked genes with a strong binding affinity to the MSL complex (genes close to high-affinity sites). Lack of pericentromeric 1.688 also affected 1.688 expression in trans and was linked to the differential expression of genes involved in eggshell formation. We discuss our results with reference to the connections between POF, the 1.688 satellite and dosage compensation, and the role of the 1.688 satellite in hybrid lethality.
Collapse
|
23
|
Albig C, Tikhonova E, Krause S, Maksimenko O, Regnard C, Becker PB. Factor cooperation for chromosome discrimination in Drosophila. Nucleic Acids Res 2019; 47:1706-1724. [PMID: 30541149 PMCID: PMC6393291 DOI: 10.1093/nar/gky1238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
Transcription regulators select their genomic binding sites from a large pool of similar, non-functional sequences. Although general principles that allow such discrimination are known, the complexity of DNA elements often precludes a prediction of functional sites. The process of dosage compensation in Drosophila allows exploring the rules underlying binding site selectivity. The male-specific-lethal (MSL) Dosage Compensation Complex (DCC) selectively binds to some 300 X chromosomal ‘High Affinity Sites’ (HAS) containing GA-rich ‘MSL recognition elements’ (MREs), but disregards thousands of other MRE sequences in the genome. The DNA-binding subunit MSL2 alone identifies a subset of MREs, but fails to recognize most MREs within HAS. The ‘Chromatin-linked adaptor for MSL proteins’ (CLAMP) also interacts with many MREs genome-wide and promotes DCC binding to HAS. Using genome-wide DNA-immunoprecipitation we describe extensive cooperativity between both factors, depending on the nature of the binding sites. These are explained by physical interaction between MSL2 and CLAMP. In vivo, both factors cooperate to compete with nucleosome formation at HAS. The male-specific MSL2 thus synergises with a ubiquitous GA-repeat binding protein for refined X/autosome discrimination.
Collapse
Affiliation(s)
- Christian Albig
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany.,Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany
| | - Evgeniya Tikhonova
- Group of Molecular Organization of Genome, Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Catherine Regnard
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Faculty of Medicine and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Munich, 82151 Martinsried, Germany
| |
Collapse
|
24
|
Tikhonova E, Fedotova A, Bonchuk A, Mogila V, Larschan EN, Georgiev P, Maksimenko O. The simultaneous interaction of MSL2 with CLAMP and DNA provides redundancy in the initiation of dosage compensation in Drosophila males. Development 2019; 146:dev.179663. [PMID: 31320325 DOI: 10.1242/dev.179663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The binding of the Drosophila male-specific lethal dosage compensation complex (DCC) exclusively to the male X chromosome provides an excellent model system to understand mechanisms of selective recruitment of protein complexes to chromatin. Previous studies showed that the male-specific organizer of the complex, MSL2, and the ubiquitous DNA-binding protein CLAMP are key players in the specificity of X chromosome binding. The CXC domain of MSL2 binds to genomic sites of DCC recruitment in vitro Another conserved domain of MSL2, named Clamp-binding domain (CBD) directly interacts with the N-terminal zinc-finger domain of CLAMP. Here, we found that inactivation of CBD or CXC individually only modestly affected recruitment of the DCC to the X chromosome in males. However, combination of these two genetic lesions within the same MSL2 mutant resulted in an increased loss of DCC recruitment to the X chromosome. Thus, proper MSL2 positioning requires an interaction with either CLAMP or DNA to initiate dosage compensation in Drosophila males.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Erica N Larschan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
25
|
Bag I, Dale RK, Palmer C, Lei EP. The zinc-finger protein CLAMP promotes gypsy chromatin insulator function in Drosophila. J Cell Sci 2019; 132:jcs.226092. [PMID: 30718365 DOI: 10.1242/jcs.226092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 01/31/2023] Open
Abstract
Chromatin insulators are DNA-protein complexes that establish independent higher-order DNA domains to influence transcription. Insulators are functionally defined by two properties: they can block communication between an enhancer and a promoter, and also act as a barrier between heterochromatin and euchromatin. In Drosophila, the gypsy insulator complex contains three core components; Su(Hw), CP190 and Mod(mdg4)67.2. Here, we identify a novel role for Chromatin-linked adaptor for MSL proteins (CLAMP) in promoting gypsy chromatin insulator function. When clamp is knocked down, gypsy-dependent enhancer-blocking and barrier activities are strongly reduced. CLAMP associates physically with the core gypsy insulator complex, and ChIP-seq analysis reveals extensive overlap, particularly with promoter-bound CP190 on chromatin. Depletion of CLAMP disrupts CP190 binding at a minority of shared sites, whereas depletion of CP190 results in extensive loss of CLAMP chromatin association. Finally, reduction of CLAMP disrupts CP190 localization within the nucleus. Our results support a positive functional relationship between CLAMP and CP190 to promote gypsy chromatin insulator activity.
Collapse
Affiliation(s)
- Indira Bag
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cameron Palmer
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA .,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Jordan W, Rieder LE, Larschan E. Diverse Genome Topologies Characterize Dosage Compensation across Species. Trends Genet 2019; 35:308-315. [PMID: 30808531 DOI: 10.1016/j.tig.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/19/2023]
Abstract
Dosage compensation is the process by which transcript levels of the X chromosome are equalized with those of autosomes. Although diverse mechanisms of dosage compensation have evolved across species, these mechanisms all involve distinguishing the X chromosome from autosomes. Because one chromosome is singled out from other chromosomes for precise regulation, dosage compensation serves as an important model for understanding how specific cis-elements are identified within the highly compacted 3D genome to co-regulate thousands of genes. Recently, multiple genomic approaches have provided key insights into the mechanisms of dosage compensation, extending what we have learned from classical genetic studies. In the future, newer genomic approaches that require little starting material show great promise to provide an understanding of the heterogeneity of dosage compensation between cells and how it functions in nonmodel organisms.
Collapse
Affiliation(s)
- William Jordan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Leila E Rieder
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA; Department of Biology, Emory University, Atlanta, GA, USA
| | - Erica Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
27
|
Ellison C, Bachtrog D. Contingency in the convergent evolution of a regulatory network: Dosage compensation in Drosophila. PLoS Biol 2019; 17:e3000094. [PMID: 30742611 PMCID: PMC6417741 DOI: 10.1371/journal.pbio.3000094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
The repeatability or predictability of evolution is a central question in evolutionary biology and most often addressed in experimental evolution studies. Here, we infer how genetically heterogeneous natural systems acquire the same molecular changes to address how genomic background affects adaptation in natural populations. In particular, we take advantage of independently formed neo-sex chromosomes in Drosophila species that have evolved dosage compensation by co-opting the dosage-compensation male-specific lethal (MSL) complex to study the mutational paths that have led to the acquisition of hundreds of novel binding sites for the MSL complex in different species. This complex recognizes a conserved 21-bp GA-rich sequence motif that is enriched on the X chromosome, and newly formed X chromosomes recruit the MSL complex by de novo acquisition of this binding motif. We identify recently formed sex chromosomes in the D. melanica and D. robusta species groups by genome sequencing and generate genomic occupancy maps of the MSL complex to infer the location of novel binding sites. We find that diverse mutational paths were utilized in each species to evolve hundreds of de novo binding motifs along the neo-X, including expansions of microsatellites and transposable element (TE) insertions. However, the propensity to utilize a particular mutational path differs between independently formed X chromosomes and appears to be contingent on genomic properties of that species, such as simple repeat or TE density. This establishes the "genomic environment" as an important determinant in predicting the outcome of evolutionary adaptations.
Collapse
Affiliation(s)
- Christopher Ellison
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Corney BPA, Widnall CL, Rees DJ, Davies JS, Crunelli V, Carter DA. Regulatory Architecture of the Neuronal Cacng2/Tarpγ2 Gene Promoter: Multiple Repressive Domains, a Polymorphic Regulatory Short Tandem Repeat, and Bidirectional Organization with Co-regulated lncRNAs. J Mol Neurosci 2019; 67:282-294. [PMID: 30478755 PMCID: PMC6373327 DOI: 10.1007/s12031-018-1208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
CACNG2 (TARPγ2, Stargazin) is a multi-functional regulator of excitatory neurotransmission and has been implicated in the pathological processes of several brain diseases. Cacng2 function is dependent upon expression level, but currently, little is known about the molecular mechanisms that control expression of this gene. To address this deficit and investigate disease-related gene variants, we have cloned and characterized the rat Cacng2 promoter and have defined three major features: (i) multiple repressive domains that include an array of RE-1 silencing transcription factor (REST) elements, and a calcium regulatory element-binding factor (CaRF) element, (ii) a (poly-GA) short tandem repeat (STR), and (iii) bidirectional organization with expressed lncRNAs. Functional activity of the promoter was demonstrated in transfected neuronal cell lines (HT22 and PC12), but although selective removal of REST and CaRF domains was shown to enhance promoter-driven transcription, the enhanced Cacng2 promoter constructs were still about fivefold weaker than a comparable rat Synapsin-1 promoter sequence. Direct evidence of REST activity at the Cacng2 promoter was obtained through co-transfection with an established dominant-negative REST (DNR) construct. Investigation of the GA-repeat STR revealed polymorphism across both animal strains and species, and size variation was also observed in absence epilepsy disease model cohorts (Genetic Absence Epilepsy Rats, Strasbourg [GAERS] and non-epileptic control [NEC] rats). These data provide evidence of a genotype (STR)-phenotype correlation that may be unique with respect to proximal gene regulatory sequence in the demonstrated absence of other promoter, or 3' UTR variants in GAERS rats. However, although transcriptional regulatory activity of the STR was demonstrated in further transfection studies, we did not find a GAERS vs. NEC difference, indicating that this specific STR length variation may only be relevant in the context of other (Cacna1h and Kcnk9) gene variants in this disease model. Additional studies revealed further (bidirectional) complexity at the Cacng2 promoter, and we identified novel, co-regulated, antisense rat lncRNAs that are paired with Cacng2 mRNA. These studies have provided novel insights into the organization of a synaptic protein gene promoter, describing multiple repressive and modulatory domains that can mediate diverse regulatory inputs.
Collapse
Affiliation(s)
- B P A Corney
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - C L Widnall
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D J Rees
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - V Crunelli
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D A Carter
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK.
| |
Collapse
|
29
|
Pirogov SA, Maksimenko OG, Georgiev PG. Transposable Elements in the Evolution of Gene Regulatory Networks. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Facultative dosage compensation of developmental genes on autosomes in Drosophila and mouse embryonic stem cells. Nat Commun 2018; 9:3626. [PMID: 30194291 PMCID: PMC6128902 DOI: 10.1038/s41467-018-05642-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
Haploinsufficiency and aneuploidy are two phenomena, where gene dosage alterations cause severe defects ultimately resulting in developmental failures and disease. One remarkable exception is the X chromosome, where copy number differences between sexes are buffered by dosage compensation systems. In Drosophila, the Male-Specific Lethal complex (MSLc) mediates upregulation of the single male X chromosome. The evolutionary origin and conservation of this process orchestrated by MSL2, the only male-specific protein within the fly MSLc, have remained unclear. Here, we report that MSL2, in addition to regulating the X chromosome, targets autosomal genes involved in patterning and morphogenesis. Precise regulation of these genes by MSL2 is required for proper development. This set of dosage-sensitive genes maintains such regulation during evolution, as MSL2 binds and similarly regulates mouse orthologues via Histone H4 lysine 16 acetylation. We propose that this gene-by-gene dosage compensation mechanism was co-opted during evolution for chromosome-wide regulation of the Drosophila male X. In Drosophila the Male-Specific Lethal complex (MSLc) mediates upregulation of the single male X chromosome. Here the authors provide evidence that MSL2 also targets autosomal genes required for proper development and that MSL2 binds and similarly regulates mouse orthologues.
Collapse
|
31
|
Chromatin That Guides Dosage Compensation Is Modulated by the siRNA Pathway in Drosophila melanogaster. Genetics 2018; 209:1085-1097. [PMID: 29921620 PMCID: PMC6063223 DOI: 10.1534/genetics.118.301173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/15/2018] [Indexed: 12/03/2022] Open
Abstract
A family of X-linked repetitive elements enhances dosage compensation of nearby genes in male flies. Here, Deshpande and Meller show that chromatin around these repeats is modified in a siRNA-dependent manner. Proteins that interact with the siRNA effector... Many heterogametic organisms adjust sex chromosome expression to accommodate differences in gene dosage. This requires selective recruitment of regulatory factors to the modulated chromosome. How these factors are localized to a chromosome with requisite accuracy is poorly understood. Drosophila melanogaster males increase expression from their single X chromosome. Identification of this chromosome involves cooperation between different classes of X-identity elements. The chromatin entry sites (CES) recruit a chromatin-modifying complex that spreads into nearby genes and increases expression. In addition, a family of satellite repeats that is enriched on the X chromosome, the 1.688X repeats, promotes recruitment of the complex to nearby genes. The 1.688X repeats and CES are dissimilar, and appear to operate through different mechanisms. Interestingly, the siRNA pathway and siRNA from a 1.688X repeat also promote X recognition. We postulate that siRNA-dependent modification of 1.688X chromatin contributes to recognition of nearby genes. In accord with this, we found enrichment of the siRNA effector Argonaute2 (Ago2) at some 1.688X repeats. Mutations in several proteins that physically interact with Ago2, including the histone methyltransferase Su(var)3-9, enhance the lethality of males with defective X recognition. Su(var)3-9 deposits H3K9me2 on some 1.688X repeats, and this mark is disrupted upon ectopic expression of 1.688X siRNA. Furthermore, integration of 1.688X DNA on an autosome induces local H3K9me2 deposition, but enhances expression of nearby genes in a siRNA-dependent manner. Our findings are consistent with a model in which siRNA-directed modification of 1.688X chromatin contributes to recognition of the male X chromosome for dosage compensation.
Collapse
|
32
|
Kaye EG, Booker M, Kurland JV, Conicella AE, Fawzi NL, Bulyk ML, Tolstorukov MY, Larschan E. Differential Occupancy of Two GA-Binding Proteins Promotes Targeting of the Drosophila Dosage Compensation Complex to the Male X Chromosome. Cell Rep 2018; 22:3227-3239. [PMID: 29562179 PMCID: PMC6402580 DOI: 10.1016/j.celrep.2018.02.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/09/2018] [Accepted: 02/25/2018] [Indexed: 01/28/2023] Open
Abstract
Little is known about how variation in sequence composition alters transcription factor occupancy to precisely recruit large transcription complexes. A key model for understanding how transcription complexes are targeted is the Drosophila dosage compensation system in which the male-specific lethal (MSL) transcription complex specifically identifies and regulates the male X chromosome. The chromatin-linked adaptor for MSL proteins (CLAMP) zinc-finger protein targets MSL to the X chromosome but also binds to GA-rich sequence elements throughout the genome. Furthermore, the GAGA-associated factor (GAF) transcription factor also recognizes GA-rich sequences but does not associate with the MSL complex. Here, we demonstrate that MSL complex recruitment sites are optimal CLAMP targets. Specificity for CLAMP binding versus GAF binding is driven by variability in sequence composition within similar GA-rich motifs. Therefore, variation within seemingly similar cis elements drives the context-specific targeting of a large transcription complex.
Collapse
Affiliation(s)
- Emily G Kaye
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Matthew Booker
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Department of Molecular Biology, Massachusetts General Hospital, Cambridge, MA 02114, USA
| | - Jesse V Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexander E Conicella
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Cambridge, MA 02114, USA.
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
33
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
34
|
The Drosophila CLAMP protein associates with diverse proteins on chromatin. PLoS One 2017; 12:e0189772. [PMID: 29281702 PMCID: PMC5744976 DOI: 10.1371/journal.pone.0189772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022] Open
Abstract
Gaining new insights into gene regulation involves an in-depth understanding of protein-protein interactions on chromatin. A powerful model for studying mechanisms of gene regulation is dosage compensation, a process that targets the X-chromosome to equalize gene expression between XY males and XX females. We previously identified a zinc finger protein in Drosophila melanogaster that plays a sex-specific role in targeting the Male-specific lethal (MSL) dosage compensation complex to the male X-chromosome, called the Chromatin-Linked Adapter for MSL Proteins (CLAMP). More recently, we established that CLAMP has non-sex-specific roles as an essential protein that regulates chromatin accessibility at promoters genome-wide. To identify associations between CLAMP and other factors in both male and female cells, we used two complementary mass spectrometry approaches. We demonstrate that CLAMP associates with the transcriptional regulator complex Negative Elongation Factor (NELF) in both sexes and determine that CLAMP reduces NELF recruitment to several target genes. In sum, we have identified many new CLAMP-associated factors and provide a resource for further study of this little understood essential protein.
Collapse
|
35
|
The X-linked 1.688 Satellite in Drosophila melanogaster Promotes Specific Targeting by Painting of Fourth. Genetics 2017; 208:623-632. [PMID: 29242291 PMCID: PMC5788526 DOI: 10.1534/genetics.117.300581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/10/2017] [Indexed: 11/18/2022] Open
Abstract
Repetitive DNA, represented by transposons and satellite DNA, constitutes a large portion of eukaryotic genomes, being the major component of constitutive heterochromatin. There is a growing body of evidence that it regulates several nuclear functions including chromatin state and the proper functioning of centromeres and telomeres. The 1.688 satellite is one of the most abundant repetitive sequences in Drosophila melanogaster, with the longest array being located in the pericentromeric region of the X-chromosome. Short arrays of 1.688 repeats are widespread within the euchromatic part of the X-chromosome, and these arrays were recently suggested to assist in recognition of the X-chromosome by the dosage compensation male-specific lethal complex. We discovered that a short array of 1.688 satellite repeats is essential for recruitment of the protein POF to a previously described site on the X-chromosome (PoX2) and to various transgenic constructs. On an isolated target, i.e., an autosomic transgene consisting of a gene upstream of 1.688 satellite repeats, POF is recruited to the transgene in both males and females. The sequence of the satellite, as well as its length and position within the recruitment element, are the major determinants of targeting. Moreover, the 1.688 array promotes POF targeting to the roX1-proximal PoX1 site in trans Finally, binding of POF to the 1.688-related satellite-enriched sequences is conserved in evolution. We hypothesize that the 1.688 satellite functioned in an ancient dosage compensation system involving POF targeting to the X-chromosome.
Collapse
|
36
|
Urban J, Kuzu G, Bowman S, Scruggs B, Henriques T, Kingston R, Adelman K, Tolstorukov M, Larschan E. Enhanced chromatin accessibility of the dosage compensated Drosophila male X-chromosome requires the CLAMP zinc finger protein. PLoS One 2017; 12:e0186855. [PMID: 29077765 PMCID: PMC5659772 DOI: 10.1371/journal.pone.0186855] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/09/2017] [Indexed: 01/21/2023] Open
Abstract
The essential process of dosage compensation is required to equalize gene expression of X-chromosome genes between males (XY) and females (XX). In Drosophila, the conserved Male-specific lethal (MSL) histone acetyltransferase complex mediates dosage compensation by increasing transcript levels from genes on the single male X-chromosome approximately two-fold. Consistent with its increased levels of transcription, the male X-chromosome has enhanced chromatin accessibility, distinguishing it from the autosomes. Here, we demonstrate that the non-sex-specific CLAMP (Chromatin-linked adaptor for MSL proteins) zinc finger protein that recognizes GA-rich sequences genome-wide promotes the specialized chromatin environment on the male X-chromosome and can act over long genomic distances (~14 kb). Although MSL complex is required for increasing transcript levels of X-linked genes, it is not required for enhancing global male X-chromosome chromatin accessibility, and instead works cooperatively with CLAMP to facilitate an accessible chromatin configuration at its sites of highest occupancy. Furthermore, CLAMP regulates chromatin structure at strong MSL complex binding sites through promoting recruitment of the Nucleosome Remodeling Factor (NURF) complex. In contrast to the X-chromosome, CLAMP regulates chromatin and gene expression on autosomes through a distinct mechanism that does not involve NURF recruitment. Overall, our results support a model where synergy between a non-sex-specific transcription factor (CLAMP) and a sex-specific cofactor (MSL) creates a specialized chromatin domain on the male X-chromosome.
Collapse
Affiliation(s)
- Jennifer Urban
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sarah Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Benjamin Scruggs
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina, United States of America
| | - Telmo Henriques
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina, United States of America
| | - Robert Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina, United States of America
| | - Michael Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MT); (EL)
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (MT); (EL)
| |
Collapse
|
37
|
Drosophila Dosage Compensation Loci Associate with a Boundary-Forming Insulator Complex. Mol Cell Biol 2017; 37:MCB.00253-17. [PMID: 28784719 DOI: 10.1128/mcb.00253-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
Chromatin entry sites (CES) are 100- to 1,500-bp elements that recruit male-specific lethal (MSL) complexes to the X chromosome to upregulate expression of X-linked genes in male flies. CES contain one or more ∼20-bp GA-rich sequences called MSL recognition elements (MREs) that are critical for dosage compensation. Recent studies indicate that CES also correspond to boundaries of X-chromosomal topologically associated domains (TADs). Here, we show that an ∼1,000-kDa complex called the late boundary complex (LBC), which is required for the functioning of the Bithorax complex boundary Fab-7, interacts specifically with a special class of CES that contain multiple MREs. Mutations in the MRE sequences of three of these CES that disrupt function in vivo abrogate interactions with the LBC. Moreover, reducing the levels of two LBC components compromises MSL recruitment. Finally, we show that several of the CES that are physically linked to each other in vivo are LBC interactors.
Collapse
|
38
|
Rieder LE, Koreski KP, Boltz KA, Kuzu G, Urban JA, Bowman SK, Zeidman A, Jordan WT, Tolstorukov MY, Marzluff WF, Duronio RJ, Larschan EN. Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev 2017; 31:1494-1508. [PMID: 28838946 PMCID: PMC5588930 DOI: 10.1101/gad.300855.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Abstract
Rieder et al. report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct histone locus body (HLB) formation in Drosophila. In addition, the CLAMP zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct HLB formation in Drosophila. In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome.
Collapse
Affiliation(s)
- Leila E Rieder
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kara A Boltz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jennifer A Urban
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Anna Zeidman
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - William T Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
39
|
Albritton SE, Kranz AL, Winterkorn LH, Street LA, Ercan S. Cooperation between a hierarchical set of recruitment sites targets the X chromosome for dosage compensation. eLife 2017; 6. [PMID: 28562241 PMCID: PMC5451215 DOI: 10.7554/elife.23645] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruiter, SDC-2, is required to maintain open chromatin at a small number of primary DCC recruitment sites, whose sequence and genomic context are X-specific. Along the X, primary recruitment sites are interspersed with secondary sites, whose function is X-dependent. A secondary site can ectopically recruit the DCC when additional recruitment sites are inserted either in tandem or at a distance (>30 kb). Deletion of a recruitment site on the X results in reduced DCC binding across several megabases surrounded by topologically associating domain (TAD) boundaries. Our work elucidates that hierarchy and long-distance cooperativity between gene-regulatory elements target a single chromosome for regulation. DOI:http://dx.doi.org/10.7554/eLife.23645.001 The DNA inside living cells is organized in structures called chromosomes. In many animals, females have two X chromosomes, whereas males have only one. To ensure that females do not end up with a double dose of the proteins encoded by the genes on the X chromosome, animals use a process called dosage compensation to correct this imbalance. The mechanisms underlying this process vary between species, but they typically involve a regulatory complex that binds to the X chromosomes of one sex to modify gene expression. Caenorhabditis elegans, for example, is a species of nematode worm in which individuals with two X chromosomes are hermaphrodites and those with one X chromosome are males. In C. elegans, a regulatory complex, called the dosage compensation complex, attaches to both X chromosomes of a hermaphrodite, and reduces the expression of the genes on each by half to match the level seen in the males. Previous research has shown that short DNA sequences, known as motifs, recruit the dosage compensation complex to the X chromosomes. However, these sequences are also found on the other chromosomes and, until now, it was not known why the complex was only recruited to the X chromosomes. Albritton et al. now show the X chromosomes have a ‘hierarchical’ recruitment system. A few sites on the X chromosomes contain clusters of a specific DNA motif, which initiate the process and attract the dosage compensation complex more strongly than other sites. These ‘strong’ recruitment sites are placed across the length of the X chromosomes and cooperate with several ‘weaker’ ones located in between. This way, multiple recruitment sites can cooperate over a long distance, while non-sex chromosomes, which have only one or two stronger recruitment sites, do not have thisadvantage. Hierarchy and cooperativity may be general features of gene expression, in which proteins are targeted to chromosomes without the need for having specific motifs at every recruitment site. The way DNA sequences are distributed across the genome may give us clues about their role. Thus, knowing how genomes are structured will help us identify disrupted areas in diseases such as cancer. DOI:http://dx.doi.org/10.7554/eLife.23645.002
Collapse
Affiliation(s)
- Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Anna-Lena Kranz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Lara Heermans Winterkorn
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Lena Annika Street
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Sevinc Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| |
Collapse
|
40
|
Joshi SS, Meller VH. Satellite Repeats Identify X Chromatin for Dosage Compensation in Drosophila melanogaster Males. Curr Biol 2017; 27:1393-1402.e2. [PMID: 28457869 DOI: 10.1016/j.cub.2017.03.078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/28/2017] [Accepted: 03/29/2017] [Indexed: 11/19/2022]
Abstract
A common feature of sex chromosomes is coordinated regulation of X-linked genes in one sex. Drosophila melanogaster males have one X chromosome, whereas females have two. The resulting imbalance in gene dosage is corrected by increased expression from the single X chromosome of males, a process known as dosage compensation. In flies, compensation involves recruitment of the male-specific lethal (MSL) complex to X-linked genes and modification of chromatin to increase expression. The extraordinary selectivity of the MSL complex for the X chromosome has never been explained. We previously demonstrated that the small interfering RNA (siRNA) pathway and siRNA from a family of X-linked satellite repeats (1.688X repeats) promote X recognition. Now, we test the ability of 1.688X DNA to attract compensation to genes nearby and report that autosomal integration of 1.688X repeats increases MSL recruitment and gene expression in surrounding regions. Placement of 1.688X repeats opposite a lethal autosomal deletion achieves partial rescue of males, demonstrating functional compensation of autosomal chromatin. Females block formation of the MSL complex and are not rescued. The 1.688X repeats are therefore cis-acting elements that guide dosage compensation. Furthermore, 1.688X siRNA enhances rescue of males with a lethal deletion but only when repeat DNA is present on the intact homolog. We propose that the siRNA pathway promotes X recognition by enhancing the ability of 1.688X DNA to attract compensation in cis. The dense and near-exclusive distribution of 1.688X sequences along the X chromosome suggests that they play a primary role in determining X identity during dosage compensation.
Collapse
Affiliation(s)
- Sonal S Joshi
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48020, USA
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48020, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Lauren A. Richardson
- Public Library of Science, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|