1
|
Ma H, Ge Y, Li Y, Wang T, Chen W. Construction of a prognostic model based on cuproptosis-related genes and exploration of the value of DLAT and DLST in the metastasis for non-small cell lung cancer. Medicine (Baltimore) 2024; 103:e40727. [PMID: 39654205 PMCID: PMC11631004 DOI: 10.1097/md.0000000000040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/20/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND To reveal the clinical value of cuproptosis-related genes on prognosis and metastasis in non-small cell lung cancer. METHODS Gene expression profiles and clinical information of non-small cell lung cancer were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. The data were grouped into training set, internal testing set, and external testing set. A risk prognostic model was constructed by Lasso-Cox regression analysis. Hub genes were identified and evaluated using immunohistochemistry and the transwell migration assay in 50 clinical patients. RESULTS A total of 17/19 cuproptosis-related genes were differentially expressed in tumors, 8 were significantly associated with prognosis, and 4 were markedly associated with metastasis. A risk model based on 2 cuproptosis-related genes was constructed and validated for predicting overall survival. The risk score was proven to be an independent risk factor for the prognosis of non-small cell lung cancer. Dihydrolipoamide S-acetyltransferase and dihydrolipoamide S-succinyltransferase, key genes in cuproptosis, were proven to be associated with non-small cell lung cancer prognosis and metastasis. Immunohistochemistry showed that their expression significantly predicted metastasis but failed to predict prognosis in non-small cell lung cancer patients. The transwell migration assay further increased the cellular reliability of our findings. CONCLUSION The cuproptosis-related genes prognostic model effectively predicted the prognosis of non-small cell lung cancer. Dihydrolipoamide S-acetyltransferase and dihydrolipoamide S-succinyltransferase may serve as predictive markers for metastasis in non-small cell lung cancer.
Collapse
Affiliation(s)
- Huiying Ma
- Department of Radiation Oncology, The First People’s Hospital of Jiande, Hangzhou, China
| | - Yizhi Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yuhong Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Tingting Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wei Chen
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Romero G, Martin B, Gabris B, Salama G. Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts. Biochem Pharmacol 2024; 227:116407. [PMID: 38969298 DOI: 10.1016/j.bcp.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Healthy aging results in cardiac structural and electrical remodeling that increase susceptibility to cardiovascular diseases. Relaxin has shown broad cardioprotective effects including anti-fibrotic, anti-arrhythmic and anti-inflammatory outcomes in multiple models. This paper focuses on the cardioprotective effects of Relaxin in a rat model of aging. Sustained atrial or ventricular fibrillation are readily induced in the hearts of aged but not young control animals. Treatment with Relaxin suppressed this arrhythmogenic response by increasing conduction velocity, decreasing fibrosis and promoting substantial cardiac remodeling. Relaxin treatment resulted in a significant increase in the levels of: Nav1.5, Cx43, βcatenin and Wnt1 in rat hearts. In isolated cardiomyocytes, Relaxin increased Nav1.5 expression. These effects were mimicked by CHIR 99021, a pharmacological activator of canonical Wnt signaling, but blocked by the canonical Wnt inhibitor Dickkopf1. Relaxin prevented TGF-β-dependent differentiation of cardiac fibroblasts into myofibroblasts while increasing the expression of Wnt1; the effects of Relaxin on cardiac fibroblast differentiation were blocked by Dickkopf1. RNASeq studies demonstrated reduced expression of pro-inflammatory cytokines and an increase in the expression of α- and β-globin in Relaxin-treated aged males. Relaxin reduces arrhythmogenicity in the hearts of aged rats by reduction of fibrosis and increased conduction velocity. These changes are accompanied by substantial remodeling of the cardiac tissue and appear to be mediated by increased canonical Wnt signaling. Relaxin also exerts significant anti-inflammatory and anti-oxidant effects in the hearts of aged rodents. The mechanisms by which Relaxin increases the expression of Wnt ligands, promotes Wnt signaling and reprograms gene expression remain to be determined.
Collapse
Affiliation(s)
- Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian Martin
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth Gabris
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guy Salama
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022; 82:2344-2353. [PMID: 35303060 PMCID: PMC9256764 DOI: 10.1158/0008-5472.can-21-4087] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
Collapse
Affiliation(s)
- Amr R. Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama.,Corresponding Author: Rajeev S. Samant, The University of Alabama at Birmingham, WTI 320E, 1824 6th Avenue South, Birmingham, AL 35233. Phone: 205-975-6262; E-mail:
| |
Collapse
|
4
|
Sharma M, Castro-Piedras I, Rasha F, Ramachandran S, Sennoune SR, Furr K, Almodovar S, Ganapathy V, Grisham MB, Rahman RL, Pruitt K. Dishevelled-1 DIX and PDZ domain lysine residues regulate oncogenic Wnt signaling. Oncotarget 2021; 12:2234-2251. [PMID: 34733415 PMCID: PMC8555683 DOI: 10.18632/oncotarget.28089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
DVL proteins are central mediators of the Wnt pathway and relay complex input signals into different branches of the Wnt signaling network. However, molecular mechanism(s) that regulate DVL-mediated relay of Wnt signals still remains unclear. Here, for the first time, we elucidate the functional significance of three DVL-1 lysines (K/Lys) which are subject to post-translational acetylation. We demonstrate that K34 Lys residue in the DIX domain regulates subcellular localization of β-catenin, thereby influencing downstream Wnt target gene expression. Additionally, we show that K69 (DIX domain) and K285 (PDZ domain) regulate binding of DVL-1 to Wnt target gene promoters and modulate expression of Wnt target genes including CMYC, OCT4, NANOG, and CCND1, in cell line models and xenograft tumors. Finally, we report that conserved DVL-1 lysines modulate various oncogenic functions such as cell migration, proliferation, cell-cycle progression, 3D-spheroid formation and in-vivo tumor growth in breast cancer models. Collectively, these findings highlight the importance of DVL-1 domain-specific lysines which were recently shown to be acetylated and characterize their influence on Wnt signaling. These site-specific modifications may be subject to regulation by therapeutics already in clinical use (lysine deacetylase inhibitors such as Panobinostat and Vorinostat) or may possibly have prognostic utility in translational efforts that seek to modulate dysfunctional Wnt signaling.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sabarish Ramachandran
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Souad R. Sennoune
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kathryn Furr
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Matthew B. Grisham
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
5
|
Castro-Piedras I, Sharma M, Brelsfoard J, Vartak D, Martinez EG, Rivera C, Molehin D, Bright RK, Fokar M, Guindon J, Pruitt K. Nuclear Dishevelled targets gene regulatory regions and promotes tumor growth. EMBO Rep 2021; 22:e50600. [PMID: 33860601 DOI: 10.15252/embr.202050600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Dishevelled (DVL) critically regulates Wnt signaling and contributes to a wide spectrum of diseases and is important in normal and pathophysiological settings. However, how it mediates diverse cellular functions remains poorly understood. Recent discoveries have revealed that constitutive Wnt pathway activation contributes to breast cancer malignancy, but the mechanisms by which this occurs are unknown and very few studies have examined the nuclear role of DVL. Here, we have performed DVL3 ChIP-seq analyses and identify novel target genes bound by DVL3. We show that DVL3 depletion alters KMT2D binding to novel targets and changes their epigenetic marks and mRNA levels. We further demonstrate that DVL3 inhibition leads to decreased tumor growth in two different breast cancer models in vivo. Our data uncover new DVL3 functions through its regulation of multiple genes involved in developmental biology, antigen presentation, metabolism, chromatin remodeling, and tumorigenesis. Overall, our study provides unique insight into the function of nuclear DVL, which helps to define its role in mediating aberrant Wnt signaling.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jennifer Brelsfoard
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - David Vartak
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cristian Rivera
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert K Bright
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Josee Guindon
- Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
6
|
Ribosomal RNA Transcription Regulation in Breast Cancer. Genes (Basel) 2021; 12:genes12040502. [PMID: 33805424 PMCID: PMC8066022 DOI: 10.3390/genes12040502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.
Collapse
|
7
|
Sharma M, Pruitt K. Wnt Pathway: An Integral Hub for Developmental and Oncogenic Signaling Networks. Int J Mol Sci 2020; 21:E8018. [PMID: 33126517 PMCID: PMC7663720 DOI: 10.3390/ijms21218018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Wnt pathway is an integral cell-to-cell signaling hub which regulates crucial development processes and maintenance of tissue homeostasis by coordinating cell proliferation, differentiation, cell polarity, cell movement, and stem cell renewal. When dysregulated, it is associated with various developmental diseases, fibrosis, and tumorigenesis. We now better appreciate the complexity and crosstalk of the Wnt pathway with other signaling cascades. Emerging roles of the Wnt signaling in the cancer stem cell niche and drug resistance have led to development of therapeutics specifically targeting various Wnt components, with some agents currently in clinical trials. This review highlights historical and recent findings on key mediators of Wnt signaling and how they impact antitumor immunity and maintenance of cancer stem cells. This review also examines current therapeutics being developed that modulate Wnt signaling in cancer and discusses potential shortcomings associated with available therapeutics.
Collapse
Affiliation(s)
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
8
|
Prakash V, Carson BB, Feenstra JM, Dass RA, Sekyrova P, Hoshino A, Petersen J, Guo Y, Parks MM, Kurylo CM, Batchelder JE, Haller K, Hashimoto A, Rundqivst H, Condeelis JS, Allis CD, Drygin D, Nieto MA, Andäng M, Percipalle P, Bergh J, Adameyko I, Farrants AKÖ, Hartman J, Lyden D, Pietras K, Blanchard SC, Vincent CT. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nat Commun 2019; 10:2110. [PMID: 31068593 PMCID: PMC6506521 DOI: 10.1038/s41467-019-10100-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is a canonical hallmark of cell growth and proliferation. Here we show that execution of Epithelial-to-Mesenchymal Transition (EMT), a migratory cellular program associated with development and tumor metastasis, is fueled by upregulation of ribosome biogenesis during G1/S arrest. This unexpected EMT feature is independent of species and initiating signal, and is accompanied by release of the repressive nucleolar chromatin remodeling complex (NoRC) from rDNA, together with recruitment of the EMT-driving transcription factor Snai1 (Snail1), RNA Polymerase I (Pol I) and the Upstream Binding Factor (UBF). EMT-associated ribosome biogenesis is also coincident with increased nucleolar recruitment of Rictor, an essential component of the EMT-promoting mammalian target of rapamycin complex 2 (mTORC2). Inhibition of rRNA synthesis in vivo differentiates primary tumors to a benign, Estrogen Receptor-alpha (ERα) positive, Rictor-negative phenotype and reduces metastasis. These findings implicate the EMT-associated ribosome biogenesis program with cellular plasticity, de-differentiation, cancer progression and metastatic disease.
Collapse
Affiliation(s)
- Varsha Prakash
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Brittany B Carson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jennifer M Feenstra
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Randall A Dass
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Petra Sekyrova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Ayuko Hoshino
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Pediatrics and Cell and Developmental Biology, Weill Cornell Medicine College, New York, NY, 10065, USA
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Yuan Guo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691, Stockholm, Sweden
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jake E Batchelder
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kristian Haller
- Department of Laboratory Medicine, Center for Molecular Pathology, Lund University, Lund, SE-223 81, Sweden
| | - Ayako Hashimoto
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Pediatrics and Cell and Developmental Biology, Weill Cornell Medicine College, New York, NY, 10065, USA
| | - Helene Rundqivst
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
- Department of Pathology, Montefiore Medical Center, Bronx, 10461, NY, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Denis Drygin
- Pimera, Inc, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - M Angela Nieto
- Instituto de Neurociencias, CSIC-UMH, Alicante, 03550, Spain
| | - Michael Andäng
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, S-171 76, Solna, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, S-171 76, Solna, Sweden
| | - David Lyden
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Pediatrics and Cell and Developmental Biology, Weill Cornell Medicine College, New York, NY, 10065, USA
| | - Kristian Pietras
- Department of Laboratory Medicine, Center for Molecular Pathology, Lund University, Lund, SE-223 81, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
- Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - C Theresa Vincent
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Abstract
Despite the clinical development of novel adjuvant and neoadjuvant chemotherapeutic drugs, metastatic breast cancer is one of the leading causes of cancer-related death among women. The present review focuses on the relevance, mechanisms, and therapeutic potential of targeting WNT5A as a future anti-metastatic treatment strategy for breast cancer patients by restoring WNT5A signaling as an innovative therapeutic option. WNT5A is an auto- and paracrine β-catenin-independent ligand that has been shown to induce tumor suppression as well as oncogenic signaling, depending upon cancer type. In breast cancer patients, WNT5A protein expression has been observed to be significantly reduced in between 45 and 75% of the cases and associated with early relapse and reduced disease-free survival. WNT5A triggers various downstream signaling pathways in breast cancer that primarily affect tumor cell migration and invasion. The accumulated in vitro results reveal that treatment of WNT5A-negative breast cancer cells with recombinant WNT5A caused different tumor-suppressive responses and in particular it impaired migration and invasion. The anti-migratory/invasive and anti-metastatic effects of reconstituting WNT5A signaling by the small WNT5A mimicking peptide Foxy5 form the basis for two successful clinical phase 1-studies aiming at determining safety and pharmacokinetics as well as defining dose-level for a subsequent phase 2-study. We conclude that re-installation of WNT5A signaling is an attractive and promising anti-metastatic therapeutic approach for future treatment of WNT5A-negative breast cancer patients.
Collapse
|
10
|
Cruz-Lozano M, González-González A, Marchal JA, Muñoz-Muela E, Molina MP, Cara FE, Brown AM, García-Rivas G, Hernández-Brenes C, Lorente JA, Sanchez-Rovira P, Chang JC, Granados-Principal S. Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways. Eur J Nutr 2018; 58:3207-3219. [DOI: 10.1007/s00394-018-1864-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
|
11
|
Abstract
The nucleolus as site of ribosome biogenesis holds a pivotal role in cell metabolism. It is composed of ribosomal DNA (rDNA), which is present as tandem arrays located in nucleolus organizer regions (NORs). In interphase cells, rDNA can be found inside and adjacent to nucleoli and the location is indicative for transcriptional activity of ribosomal genes-inactive rDNA (outside) versus active one (inside). Moreover, the nucleolus itself acts as a spatial organizer of non-nucleolar chromatin. Microscopy-based approaches offer the possibility to explore the spatially distinct localization of the different DNA populations in relation to the nucleolar structure. Recent technical developments in microscopy and preparatory methods may further our understanding of the functional architecture of nucleoli. This review will attempt to summarize the current understanding of mammalian nucleolar chromatin organization as seen from a microscopist's perspective.
Collapse
Affiliation(s)
- Christian Schöfer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| | - Klara Weipoltshammer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| |
Collapse
|
12
|
Birgmeier J, Esplin ED, Jagadeesh KA, Guturu H, Wenger AM, Chaib H, Buckingham JA, Bejerano G, Bernstein JA. Biallelic loss‐of‐function
WNT5A
mutations in an infant with severe and atypical manifestations of Robinow syndrome. Am J Med Genet A 2018; 176:1030-1036. [DOI: 10.1002/ajmg.a.38636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | - Edward D. Esplin
- Department of GeneticsStanford University School of Medicine, Stanford California
| | | | - Harendra Guturu
- Department of PediatricsStanford University School of Medicine, Stanford California
| | - Aaron M. Wenger
- Department of PediatricsStanford University School of Medicine, Stanford California
| | - Hassan Chaib
- Department of GeneticsStanford University School of Medicine, Stanford California
- Stanford Center for Genomics and Personalized MedicineStanford University, Stanford California
| | - Julia A. Buckingham
- Department of PediatricsStanford University School of Medicine, Stanford California
| | - Gill Bejerano
- Department of Computer ScienceStanford University, Stanford California
- Department of PediatricsStanford University School of Medicine, Stanford California
- Department of Developmental BiologyStanford University, Stanford California
| | | |
Collapse
|
13
|
Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal 2018; 47:52-64. [PMID: 29559363 DOI: 10.1016/j.cellsig.2018.03.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Biomedical Sciences, University of Minnesota, School of Medicine, Duluth, MN, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
14
|
Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, Guo P, Qi S. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology 2018; 135:11-21. [PMID: 29510185 DOI: 10.1016/j.neuropharm.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
It is well known that Wnt5a activation plays a pivotal role in brain injury and β-arrestin2 induces c-Jun N-terminal kinase (JNK3) activation is involved in neuronal cell death. Nonetheless, the relationship between Wnt5a and JNK3 remains unexplored during cerebral ischemia/reperfusion (I/R). In the present study, we tested the hypothesis that Wnt5a-mediated JNK3 activation via the Wnt5a-Dvl-1-β-arrestin2-JNK3 signaling pathway was correlated with I/R brain injury. We found that cerebral I/R could enhance the assembly of the Dvl-1-β-arrestin2-JNK3 signaling module, Dvl-1 phosphorylation and JNK3 activation. Activated JNK3 could phosphorylate the transcription factor c-Jun, prompt caspase-3 activation and ultimately lead to neuronal cell death. To further explore specifically Wnt5a mediated JNK3 pathway activation in neuronal injury, we used Foxy-5 (a peptide that mimics the effects of Wnt5a) and Box5 (a Wnt5a antagonist) both in vitro and in vivo. AS-β-arrestin2 (an antisense oligonucleotide against β-arrestin2) and RRSLHL (a small peptide that competes with β-arrestin2 for binding to JNK3) were applied to confirm the positive signal transduction effect of the Dvl-1-β-arrestin2-JNK3 signaling module during cerebral I/R. Furthermore, Box5 and the RRSLHL peptide were found to play protective roles in neuronal death both in vivo global and focal cerebral I/R rat models and in vitro oxygen glucose deprivation (OGD) neural cells. In summary, our results indicate that Wnt5a-mediated JNK3 activation participates in I/R brain injury by targeting the Dvl-1-β-arrestin2/JNK3 interaction. Our results also point to the possibility that disrupting Wnt5a-JNK3 signaling pathway may provide a new approach for stroke therapy.
Collapse
Affiliation(s)
- Xuewen Wei
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - JuanJuan Gong
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Juyun Ma
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Taiyu Zhang
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Yihang Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China.
| |
Collapse
|
15
|
Pfister AS, Kühl M. Of Wnts and Ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:131-155. [PMID: 29389514 DOI: 10.1016/bs.pmbts.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt proteins are secreted glycoproteins that activate different intracellular signal transduction pathways. They regulate cell proliferation and are required for proper embryonic development. Misregulation of Wnt signaling can result in various diseases including cancer. In most circumstances, cell growth is essential for cell division and thus cell proliferation. Therefore, several reports have highlighted the key role of Wnt proteins for cell growth. Ribosomes represent the cellular protein synthesis machinery and cells need to be equipped with an appropriate number of ribosomes to allow cell growth. Recent findings suggest a role for Wnt proteins in regulating ribosome biogenesis and we here summarize these findings representing a previously unknown function of Wnt proteins. Understanding this role of Wnt signaling might open new avenues to slow down proliferation by drugs for instance in cancer therapy.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
16
|
Abstract
Cellular heterogeneity is a common feature in breast cancer, yet an understanding of the coexistence and regulation of various tumor cell subpopulations remains a significant challenge in cancer biology. In the current study, we approached tumor cell heterogeneity from the perspective of Wnt pathway biology to address how different modes of Wnt signaling shape the behaviors of diverse cell populations within a heterogeneous tumor landscape. Using a syngeneic TP53-null mouse model of breast cancer, we identified distinctions in the topology of canonical Wnt β-catenin-dependent signaling activity and non-canonical β-catenin-independent Ror2-mediated Wnt signaling across subtypes and within tumor cell subpopulations in vivo. We further discovered an antagonistic role for Ror2 in regulating canonical Wnt/β-catenin activity in vivo, where lentiviral shRNA depletion of Ror2 expression augmented canonical Wnt/β-catenin signaling activity across multiple basal-like models. Depletion of Ror2 expression yielded distinct phenotypic outcomes and divergent alterations in gene expression programs among different tumors, despite all sharing basal-like features. Notably, we uncovered cell state plasticity and adhesion dynamics regulated by Ror2, which influenced Ras Homology Family Member A (RhoA) and Rho-Associated Coiled-Coil Kinase 1 (ROCK1) activity downstream of Dishevelled-2 (Dvl2). Collectively, these studies illustrate the integration and collaboration of Wnt pathways in basal-like breast cancer, where Ror2 provides a spatiotemporal function to regulate the balance of Wnt signaling and cellular heterogeneity during tumor progression.
Collapse
|
17
|
Abstract
SIRT7, a member of the sirtuin family of NAD+-dependent protein deacetylases, is a key mediator of many cellular activities. SIRT7 expression is linked to cell proliferation and oncogenic activity, connecting SIRT7-dependent regulation of ribosome biogenesis with checkpoints controlling cell cycle progression, metabolic homeostasis, stress resistance, aging and tumorigenesis. Despite this important functional link, the enzymatic activity, the molecular targets and physiological functions of SIRT7 are poorly defined. Here, we review recent progress in SIRT7 research and elaborate the main pathways in which SIRT7 participates.
Collapse
Affiliation(s)
- Maximilian F Blank
- a Molecular Biology of the Cell II , German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance , Heidelberg , Germany
| | - Ingrid Grummt
- a Molecular Biology of the Cell II , German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance , Heidelberg , Germany
| |
Collapse
|
18
|
Zeng R, Huang J, Zhong MZ, Li L, Yang G, Liu L, Wu Y, Yao X, Shi J, Wu Z. Multiple Roles of WNT5A in Breast Cancer. Med Sci Monit 2016; 22:5058-5067. [PMID: 28005837 PMCID: PMC5201118 DOI: 10.12659/msm.902022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors of women. Modern combinatorial therapeutic regimens can reduce patient tumor burdens to undetectable levels, yet in many cases these tumors will relapse. Understanding of breast cancer biology, developing more potent therapeutic approaches, and overcoming resistance are of great importance. WNT5A is a non-canonical signaling member of the WNT family. Its role in breast cancer still remains unclear. Most of the evidence shows that WNT5A is a suppressor in breast cancer and loss of its expression is associated with poor prognosis, while some evidence suggests the tumorigenicity of WNT5A. WNT signaling molecules are potent targets for treatment of cancer. Therefore, understanding the role of WNT5A in breast cancer may provide new ideas and methods for breast cancer treatment. We review the evidence concerning WNT5A and breast cancer involving the signaling pathways and the molecular-targeted therapy of WNT5A. Our results show that the role WNT5A plays depends on the availability of key receptors and intercellular interactions among different cell types.
Collapse
Affiliation(s)
- Ruolan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Junhui Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Mei-Zuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Guorong Yang
- Department of Oncology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China (mainland)
| | - Li Liu
- 32th Department, Hunan Tumor Hospital, The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Yin Wu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiaoyi Yao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jing Shi
- Department of Oncology, Xiangya Hospital, Central South University,, Changsha, Hunan, China (mainland)
| | - Zhifu Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
19
|
Prasad CP, Chaurasiya SK, Guilmain W, Andersson T. WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. J Exp Clin Cancer Res 2016; 35:144. [PMID: 27623766 PMCID: PMC5022188 DOI: 10.1186/s13046-016-0421-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WNT5A (-/-) mammary tissue has been shown to exhibit increased ductal elongation, suggesting elevated mammary cell migration. Increased epithelial cell migration/invasion has often but not always been linked to the epithelial-mesenchymal transition (EMT). In the current study, we investigated the loss of WNT5A in HB2 human mammary epithelial cells and hypothesized that this loss increased their invasion via the EMT. Based on these results, we postulated that suppression of breast cancer cell migration and invasion by WNT5A is due to EMT reversal. METHODS WNT5A was transiently knocked down using specific siRNAs, whereas WNT5A signaling was induced in MDA-MB468 and MDA-MB231 breast cancer cells by stably transfecting cells with WNT5A or treating them with recombinant WNT5A (rWNT5A). Changes in EMT markers, CD44, pAKT and AKT expression were assessed using Western blotting and immunofluorescence. The physiological relevance of altered WNT5A signaling was assessed using migration and invasion assays. RESULTS WNT5A knockdown in HB2 mammary epithelial cells resulted in EMT-like changes and increased invasiveness, and these changes were partially reversed by the addition of rWNT5A. These data suggest that WNT5A might inhibit breast cancer cell migration and invasion by a similar EMT reversal. Contrary to our expectations, we did not observe any changes in the EMT status of breast cancer cells, either after treatment with rWNT5A or stable transfection with a WNT5A plasmid, despite the parallel WNT5A-induced inhibition of migration and invasion. Instead, we found that WNT5A signaling impaired CD44 expression and its downstream signaling via AKT. Moreover, knocking down CD44 in breast cancer cells using siRNA impaired cell migration and invasion. CONCLUSIONS WNT5A bi-directionally regulates EMT in mammary epithelial cells, thereby affecting their migration and invasion. However, the ability of WNT5A to inhibit breast cancer cell migration and invasion is an EMT-independent mechanism that, at least in part, can be explained by decreased CD44 expression.
Collapse
Affiliation(s)
- Chandra Prakash Prasad
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden.
| | - Shivendra Kumar Chaurasiya
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden.,Present Address: Department of Applied Microbiology, School of Biological Sciences, Dr HS Gour Central University, Sagar, Madhya Pradesh, India
| | - William Guilmain
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden
| |
Collapse
|