1
|
Abdolmaleky HM, Nohesara S, Zhou JR, Thiagalingam S. Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment. Epigenomics 2025; 17:317-333. [PMID: 39948759 PMCID: PMC11970782 DOI: 10.1080/17501911.2025.2464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Adaptation to challenging environmental conditions is crucial for the survival/fitness of all organisms. Alongside genetic mutations that provide adaptive potential during environmental challenges, epigenetic modifications offer dynamic, reversible, and rapid mechanisms for regulating gene expression in response to environmental changes in both evolution and daily life, without altering DNA sequences or relying on accidental favorable mutations. The widespread conservation of diverse epigenetic mechanisms - like DNA methylation, histone modifications, and RNA interference across diverse species, including plants - underscores their significance in evolutionary biology. Remarkably, environmentally induced epigenetic alterations are passed to daughter cells and inherited transgenerationally through germline cells, shaping offspring phenotypes while preserving adaptive epigenetic memory. Throughout anthropoid evolution, epigenetic modifications have played crucial roles in: i) suppressing transposable elements and viral genomes intruding into the host genome; ii) inactivating one of the X chromosomes in female cells to balance gene dosage; iii) genetic imprinting to ensure expression from one parental allele; iv) regulating functional alleles to compensate for dysfunctional ones; and v) modulating the epigenome and transcriptome in response to influence from the gut microbiome among other functions. Understanding the interplay between environmental factors and epigenetic processes may provide valuable insights into developmental plasticity, evolutionary dynamics, and disease susceptibility.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Tan M, Park L, Chou E, Hoesel M, Toh L, Suzuki Y. Polycomb group proteins confer robustness to aposematic coloration in the milkweed bug, Oncopeltus fasciatus. Proc Biol Sci 2024; 291:20240713. [PMID: 39106954 PMCID: PMC11303025 DOI: 10.1098/rspb.2024.0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024] Open
Abstract
Aposematic coloration offers an opportunity to explore the molecular mechanisms underlying canalization. In this study, the role of epigenetic regulation underlying robustness was explored in the aposematic coloration of the milkweed bug, Oncopeltus fasciatus. Polycomb (Pc) and Enhancer of zeste (E(z)), which encode components of the Polycomb repressive complex 1 (PRC1) and PRC2, respectively, and jing, which encodes a component of the PRC2.2 subcomplex, were knocked down in the fourth instar of O. fasciatus. Knockdown of these genes led to alterations in scutellar morphology and melanization. In particular, when Pc was knocked down, the adults developed a highly melanized abdomen, head and forewings at all temperatures examined. In contrast, the E(z) and jing knockdown led to increased plasticity of the dorsal forewing melanization across different temperatures. Moreover, jing knockdown adults exhibited increased plasticity in the dorsal melanization of the head and the thorax. These observations demonstrate that histone modifiers may play a key role during the process of canalization to confer robustness in the aposematic coloration.
Collapse
Affiliation(s)
- Marie Tan
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Laura Park
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Elizabeth Chou
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Madeline Hoesel
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Lyanna Toh
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| |
Collapse
|
3
|
Narbey R, Mouchel-Vielh E, Gibert JM. The H3K79me3 methyl-transferase Grappa is involved in the establishment and thermal plasticity of abdominal pigmentation in Drosophila melanogaster females. Sci Rep 2024; 14:9547. [PMID: 38664546 PMCID: PMC11045721 DOI: 10.1038/s41598-024-60184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females allows to investigate the mechanisms underlying phenotypic plasticity. Thermal plasticity of pigmentation is due to modulation of tan and yellow expression, encoding pigmentation enzymes. Furthermore, modulation of tan expression by temperature is correlated to the variation of the active histone mark H3K4me3 on its promoter. Here, we test the role of the DotCom complex, which methylates H3K79, another active mark, in establishment and plasticity of pigmentation. We show that several components of the DotCom complex are involved in the establishment of abdominal pigmentation. In particular, Grappa, the catalytic unit of this complex, plays opposite roles on pigmentation at distinct developmental stages. Indeed, its down-regulation from larval L2 to L3 stages increases female adult pigmentation, whereas its down-regulation during the second half of the pupal stage decreases adult pigmentation. These opposite effects are correlated to the regulation of distinct pigmentation genes by Grappa: yellow repression for the early role and tan activation for the late one. Lastly, reaction norms measuring pigmentation along temperature in mutants for subunits of the DotCom complex reveal that this complex is not only involved in the establishment of female abdominal pigmentation but also in its plasticity.
Collapse
Affiliation(s)
- Raphaël Narbey
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France
| | - Emmanuèle Mouchel-Vielh
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| | - Jean-Michel Gibert
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| |
Collapse
|
4
|
Gong LL, Ma YF, Zhang MQ, Feng HY, Zhou YY, Zhao YQ, Hull JJ, Dewer Y, He M, He P. The melanin pigment gene black mediates body pigmentation and courtship behaviour in the German cockroach Blattella germanica. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:271-280. [PMID: 38623047 DOI: 10.1017/s0007485324000166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.
Collapse
Affiliation(s)
- Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Hong-Yan Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yang-Yuntao Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Ya-Qin Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - J Joe Hull
- USDA-ARS Arid Land Agricultural Research Center, Maricopa AZ, 85138, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| |
Collapse
|
5
|
Lafuente E, Duneau D, Beldade P. Genetic basis of variation in thermal developmental plasticity for Drosophila melanogaster body pigmentation. Mol Ecol 2024; 33:e17294. [PMID: 38366327 DOI: 10.1111/mec.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Seasonal differences in insect pigmentation are attributed to the influence of ambient temperature on pigmentation development. This thermal plasticity is adaptive and heritable, and thereby capable of evolving. However, the specific genes contributing to the variation in plasticity that can drive its evolution remain largely unknown. To address this, we analysed pigmentation and pigmentation plasticity in Drosophila melanogaster. We measured two components of pigmentation in the thorax and abdomen: overall darkness and the proportion of length covered by darker pattern elements (a trident in the thorax and bands in the abdomen) in females from two developmental temperatures (17 or 28°C) and 191 genotypes. Using a GWAS approach to identify the genetic basis of variation in pigmentation and its response to temperature, we identified numerous dispersed QTLs, including some mapping to melanogenesis genes (yellow, ebony, and tan). Remarkably, we observed limited overlap between QTLs for variation within specific temperatures and those influencing thermal plasticity, as well as minimal overlap between plasticity QTLs across pigmentation components and across body parts. For most traits, consistent with selection favouring the retention of plasticity, we found that lower plasticity alleles were often at lower frequencies. The functional analysis of selected candidate QTLs and pigmentation genes largely confirmed their contributions to variation in pigmentation and/or pigmentation plasticity. Overall, our study reveals the existence and underlying basis of extensive and trait-specific genetic variation for pigmentation and pigmentation plasticity, offering a rich reservoir of raw material for natural selection to shape the evolution of these traits independently.
Collapse
Affiliation(s)
- E Lafuente
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - D Duneau
- UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - P Beldade
- cE3c (Center for Ecology, Evolution and Environmental Changes) & CHANGE (Global Change and Sustainability Institute), FCUL, Lisboa, Portugal
| |
Collapse
|
6
|
Russell M, Aqi A, Saitou M, Gokcumen O, Masuda N. Gene communities in co-expression networks across different tissues. ARXIV 2023:arXiv:2305.12963v2. [PMID: 37292479 PMCID: PMC10246089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest that KRTAP3-1, KRTAP3-3, and KRTAP3-5 share regulatory elements in skin and pancreas. Furthermore, we find that CELA3A and CELA3B share associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes.
Collapse
Affiliation(s)
| | - Alber Aqi
- Department of Biological Sciences, University at Buffalo
| | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo
- Institute for Artificial Intelligence and Data Science, University at Buffalo
| |
Collapse
|
7
|
Russell M, Aqil A, Saitou M, Gokcumen O, Masuda N. Gene communities in co-expression networks across different tissues. PLoS Comput Biol 2023; 19:e1011616. [PMID: 37976327 PMCID: PMC10691702 DOI: 10.1371/journal.pcbi.1011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest that KRTAP3-1, KRTAP3-3, and KRTAP3-5 share regulatory elements in skin and pancreas. Furthermore, we find that CELA3A and CELA3B share associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes.
Collapse
Affiliation(s)
- Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
8
|
Ling L, Mühling B, Jaenichen R, Gompel N. Increased chromatin accessibility promotes the evolution of a transcriptional silencer in Drosophila. SCIENCE ADVANCES 2023; 9:eade6529. [PMID: 36800429 PMCID: PMC9937571 DOI: 10.1126/sciadv.ade6529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The loss of discrete morphological traits, the most common evolutionary transition, is typically driven by changes in developmental gene expression. Mutations accumulating in regulatory elements of these genes can disrupt DNA binding sites for transcription factors patterning their spatial expression, or delete entire enhancers. Regulatory elements, however, may be silenced through changes in chromatin accessibility or the emergence of repressive elements. Here, we show that increased chromatin accessibility at the gene yellow, combined with the gain of a repressor site, underlies the loss of a wing spot pigmentation pattern in a Drosophila species. The gain of accessibility of this repressive element is regulated by E93, a transcription factor governing the progress of metamorphosis. This convoluted evolutionary scenario contrasts with the parsimonious mutational paths generally envisioned and often documented for morphological losses. It illustrates how evolutionary changes in chromatin accessibility may directly contribute to morphological diversification.
Collapse
|
9
|
Weinstein ML, Jaenke CM, Asma H, Spangler M, Kohnen KA, Konys CC, Williams ME, Williams AV, Rebeiz M, Halfon MS, Williams TM. A novel role for trithorax in the gene regulatory network for a rapidly evolving fruit fly pigmentation trait. PLoS Genet 2023; 19:e1010653. [PMID: 36795790 PMCID: PMC9977049 DOI: 10.1371/journal.pgen.1010653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Animal traits develop through the expression and action of numerous regulatory and realizator genes that comprise a gene regulatory network (GRN). For each GRN, its underlying patterns of gene expression are controlled by cis-regulatory elements (CREs) that bind activating and repressing transcription factors. These interactions drive cell-type and developmental stage-specific transcriptional activation or repression. Most GRNs remain incompletely mapped, and a major barrier to this daunting task is CRE identification. Here, we used an in silico method to identify predicted CREs (pCREs) that comprise the GRN which governs sex-specific pigmentation of Drosophila melanogaster. Through in vivo assays, we demonstrate that many pCREs activate expression in the correct cell-type and developmental stage. We employed genome editing to demonstrate that two CREs control the pupal abdomen expression of trithorax, whose function is required for the dimorphic phenotype. Surprisingly, trithorax had no detectable effect on this GRN's key trans-regulators, but shapes the sex-specific expression of two realizator genes. Comparison of sequences orthologous to these CREs supports an evolutionary scenario where these trithorax CREs predated the origin of the dimorphic trait. Collectively, this study demonstrates how in silico approaches can shed novel insights on the GRN basis for a trait's development and evolution.
Collapse
Affiliation(s)
- Michael L. Weinstein
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Chad M. Jaenke
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Hasiba Asma
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Matthew Spangler
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Katherine A. Kohnen
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Claire C. Konys
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Melissa E. Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Ashley V. Williams
- West Carrollton High School, 5833 Student St., Dayton, Ohio, United States of America
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marc S. Halfon
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Thomas M. Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Developmental phenomics suggests that H3K4 monomethylation confers multi-level phenotypic robustness. Cell Rep 2022; 41:111832. [PMID: 36516782 PMCID: PMC9764455 DOI: 10.1016/j.celrep.2022.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
How histone modifications affect animal development remains difficult to ascertain. Despite the prevalence of histone 3 lysine 4 monomethylation (H3K4me1) on enhancers, hypomethylation appears to have minor effects on phenotype and viability. Here, we genetically reduce H3K4me1 deposition in Drosophila melanogaster and find that hypomethylation reduces transcription factor enrichment in nuclear microenvironments, disrupts gene expression, and reduces phenotypic robustness. Using a developmental phenomics approach, we find changes in morphology, metabolism, behavior, and offspring production. However, many phenotypic changes are only detected when hypomethylated flies develop outside of standard laboratory environments or with specific genetic backgrounds. Therefore, quantitative phenomics measurements can unravel how pleiotropic modulators of gene expression affect developmental robustness under conditions resembling the natural environments of a species.
Collapse
|
11
|
Mateus ARA, Beldade P. Developmental Plasticity in Butterfly Eyespot Mutants: Variation in Thermal Reaction Norms Across Genotypes and Pigmentation Traits. INSECTS 2022; 13:1000. [PMID: 36354827 PMCID: PMC9699518 DOI: 10.3390/insects13111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Developmental plasticity refers to the property by which a genotype corresponds to distinct phenotypes depending on the environmental conditions experienced during development. This dependence of phenotype expression on environment is graphically represented by reaction norms, which can differ between traits and between genotypes. Even though genetic variation for reaction norms provides the basis for the evolution of plasticity, we know little about the genes that contribute to that variation. This includes understanding to what extent those are the same genes that contribute to inter-individual variation in a fixed environment. Here, we quantified thermal plasticity in butterfly lines that differ in pigmentation phenotype to test the hypothesis that alleles affecting pigmentation also affect plasticity therein. We characterized thermal reaction norms for eyespot color rings of distinct Bicyclus anynana genetic backgrounds, corresponding to allelic variants affecting eyespot size and color composition. Our results reveal genetic variation for the slope and curvature of reaction norms, with differences between eyespots and between eyespot color rings, as well as between sexes. Our report of prevalent temperature-dependent and compartment-specific allelic effects underscores the complexity of genotype-by-environment interactions and their consequence for the evolution of developmental plasticity.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
- CNRS—UMR 5174, Evolution et Diversité Biologique (EDB), Université Paul Sabatier (UPS), 31077 Toulouse, France
- Center for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisbon, Portugal
| |
Collapse
|
12
|
Jaric I, Voelkl B, Clerc M, Schmid MW, Novak J, Rosso M, Rufener R, von Kortzfleisch VT, Richter SH, Buettner M, Bleich A, Amrein I, Wolfer DP, Touma C, Sunagawa S, Würbel H. The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level. PLoS Biol 2022; 20:e3001837. [PMID: 36269766 PMCID: PMC9629646 DOI: 10.1371/journal.pbio.3001837] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/02/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings. The phenotype of an organism results not only from its genotype but also the influence of its environment throughout development. This study shows that common environmental differences between animal facilities can induce substantial variation in the phenotype of mice, thereby highlighting an important limitation of inferences from single-laboratory studies in animal research.
Collapse
Affiliation(s)
- Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Clerc
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | | | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianna Rosso
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | | | - S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Irmgard Amrein
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - David P. Wolfer
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Chadi Touma
- Department of Behavioural Biology, Osnabrück University, Osnabrück, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| |
Collapse
|
13
|
Sangsuwan T, Mannervik M, Haghdoost S. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503523. [PMID: 36031335 DOI: 10.1016/j.mrgentox.2022.503523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ionizing radiation (IR) kills cells mainly through induction of DNA damages and the surviving cells may suffer from mutations. Transgenerational effects of IR are well documented, but the exact mechanisms underlying them are less well understood; they include induction of mutations in germ cells and epigenetic inheritance. Previously, effects in the offspring of mice and zebrafish exposed to IR have been reported. A few studies also showed indications of transgenerational effects of radiation in humans, particularly in nuclear power workers. In the present project, short- and long-term effects of low-dose-rate (LDR; 50 and 97 mGy/h) and high-dose-rate (HDR; 23.4, 47.1 and 495 Gy/h) IR in Drosophila embryos were investigated. The embryos were irradiated at different doses and dose rates and radiosensitivity at different developmental stages was investigated. Also, the survival of larvae, pupae and adults developed from embryos irradiated at an early stage (30 min after egg laying) were studied. The larval crawling and pupation height assays were applied to investigate radiation effects on larval locomotion and pupation behavior, respectively. In parallel, the offspring from 3 Gy irradiated early-stage embryos were followed up to 12 generations and abnormal phenotypes were studied. Acute exposure of embryos at different stages of development showed that the early stage embryo is the most sensitive. The effects on larval locomotion showed no significant differences between the dose rates but a significant decrease of locomotion activity above 7 Gy was observed. The results indicate that embryos exposed to the low dose rates have shorter eclosion times. At the same cumulative dose (1 up to 7 Gy), HDR is more embryotoxic than LDR. We also found a radiation-induced depigmentation on males (A5 segment of the dorsal abdomen, A5pig-) that can be transmitted up to 12 generations. The phenomenon does not follow the classical Mendelian laws of segregation.
Collapse
Affiliation(s)
- Traimate Sangsuwan
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mattias Mannervik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Cimap-Aria, Ganil, and Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Caen, France.
| |
Collapse
|
14
|
Leung C, Grulois D, Chevin LM. Plasticity across levels: relating epigenomic, transcriptomic, and phenotypic responses to osmotic stress in a halotolerant microalga. Mol Ecol 2022; 31:4672-4687. [PMID: 35593517 PMCID: PMC9543585 DOI: 10.1111/mec.16542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/12/2022] [Indexed: 12/01/2022]
Abstract
Phenotypic plasticity, the ability of a given genotype to produce alternative phenotypes in response to its environment of development, is an important mechanism for coping with variable environments. While the mechanisms underlying phenotypic plasticity are diverse, their relative contributions need to be investigated quantitatively to better understand the evolvability of plasticity across biological levels. This requires relating plastic responses of the epigenome, transcriptome, and organismal phenotype, and investigating how they vary with the genotype. Here we carried out this approach for responses to osmotic stress in Dunaliella salina, a green microalga that is a model organism for salinity tolerance. We compared two strains that show markedly different demographic responses to osmotic stress, and showed that these phenotypic responses involve strain‐ and environment‐specific variation in gene expression levels, but a relative low—albeit significant—effect of strain × environment interaction. We also found an important genotype effect on the genome‐wide methylation pattern, but little contribution from environmental conditions to the latter. However, we did detect a significant marginal effect of epigenetic variation on gene expression, beyond the influence of genetic differences on epigenetic state, and we showed that hypomethylated regions are correlated with higher gene expression. Our results indicate that epigenetic mechanisms are either not involved in the rapid plastic response to environmental change in this species, or involve only few changes in trans that are sufficient to trigger concerted changes in the expression of many genes, and phenotypic responses by multiple traits.
Collapse
Affiliation(s)
- Christelle Leung
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Daphné Grulois
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
15
|
Nhim S, Gimenez S, Nait-Saidi R, Severac D, Nam K, d'Alençon E, Nègre N. H3K9me2 genome-wide distribution in the holocentric insect Spodoptera frugiperda (Lepidoptera: Noctuidae). Genomics 2021; 114:384-397. [PMID: 34971718 DOI: 10.1016/j.ygeno.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Eukaryotic genomes are packaged by Histone proteins in a structure called chromatin. There are different chromatin types. Euchromatin is typically associated with decondensed, transcriptionally active regions and heterochromatin to more condensed regions of the chromosomes. Methylation of Lysine 9 of Histone H3 (H3K9me) is a conserved biochemical marker of heterochromatin. In many organisms, heterochromatin is usually localized at telomeric as well as pericentromeric regions but can also be found at interstitial chromosomal loci. This distribution may vary in different species depending on their general chromosomal organization. Holocentric species such as Spodoptera frugiperda (Lepidoptera: Noctuidae) possess dispersed centromeres instead of a monocentric one and thus no observable pericentromeric compartment. To identify the localization of heterochromatin in such species we performed ChIP-Seq experiments and analyzed the distribution of the heterochromatin marker H3K9me2 in the Sf9 cell line and whole 4th instar larvae (L4) in relation to RNA-Seq data. RESULTS In both samples we measured an enrichment of H3K9me2 at the (sub) telomeres, rDNA loci, and satellite DNA sequences, which could represent dispersed centromeric regions. We also observed that density of H3K9me2 is positively correlated with transposable elements and protein-coding genes. But contrary to most model organisms, H3K9me2 density is not correlated with transcriptional repression. CONCLUSION This is the first genome-wide ChIP-Seq analysis conducted in S. frugiperda for H3K9me2. Compared to model organisms, this mark is found in expected chromosomal compartments such as rDNA and telomeres. However, it is also localized at numerous dispersed regions, instead of the well described large pericentromeric domains, indicating that H3K9me2 might not represent a classical heterochromatin marker in Lepidoptera. (242 words).
Collapse
Affiliation(s)
- Sandra Nhim
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
16
|
Zhang Y, Wang XX, Feng ZJ, Tian HG, Feng Y, Liu TX. Aspartate-β-alanine-NBAD pathway regulates pupal melanin pigmentation plasticity of ladybird Harmonia axyridis. INSECT SCIENCE 2021; 28:1651-1663. [PMID: 33063466 DOI: 10.1111/1744-7917.12877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Phenotypic plasticity is observed in many animal species and it is effective for them to cope with many types of environmental threats. The multicolored Asian ladybird Harmonia axyridis shows a cuticular pigmentation plasticity that can be rapidly induced by temperature changes, and in the form of changeable melanin spot patterns to adjust heat-absorbing. Here, H. axyridis with thermal stimulation were selected for determining the molecular regulations behind it. First, we confirmed the melanin level changes of H. axyridis pupa could be induced by temperature, and then screened the efficient time window for thermal sensing of H. axyridis pre-pupa; it is suggested that the late stage of pre-pupa (late stage of 4th instar larva) is the critical period to sense thermal signals and adjust its pupal melanin spot area size to adapt to upcoming thermal conditions. The Ha-ADC (aspartate decarboxylase) and Ha-ebony (NBAD synthase) of aspartate-β-alanine-NBAD pathway were then proved in regulation of cuticular melanization for pupa through RNA interference experiments; knockdown of these two genes enlarged the melanin spot size. Finally, we designed a random injection of Ha-ADC at different pre-pupal stages, to further study the regulation window during this process. Combined with all evidence observed, we suggested the spot size determination can be regulated very close to the time point of pupation, and genes of the aspartate-β-alanine-NBAD pathway play an important role at the molecular level. In brief, H. axyridis exhibits a flexible active physiological regulation through transcriptional modification to thermal changes.
Collapse
Affiliation(s)
- Yi Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xing-Xing Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhu-Jun Feng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong-Gang Tian
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi Feng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong-Xian Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
17
|
Chevin LM, Leung C, Le Rouzic A, Uller T. Using phenotypic plasticity to understand the structure and evolution of the genotype-phenotype map. Genetica 2021; 150:209-221. [PMID: 34617196 DOI: 10.1007/s10709-021-00135-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Deciphering the genotype-phenotype map necessitates relating variation at the genetic level to variation at the phenotypic level. This endeavour is inherently limited by the availability of standing genetic variation, the rate of spontaneous mutation to novo genetic variants, and possible biases associated with induced mutagenesis. An interesting alternative is to instead rely on the environment as a source of variation. Many phenotypic traits change plastically in response to the environment, and these changes are generally underlain by changes in gene expression. Relating gene expression plasticity to the phenotypic plasticity of more integrated organismal traits thus provides useful information about which genes influence the development and expression of which traits, even in the absence of genetic variation. We here appraise the prospects and limits of such an environment-for-gene substitution for investigating the genotype-phenotype map. We review models of gene regulatory networks, and discuss the different ways in which they can incorporate the environment to mechanistically model phenotypic plasticity and its evolution. We suggest that substantial progress can be made in deciphering this genotype-environment-phenotype map, by connecting theory on gene regulatory network to empirical patterns of gene co-expression, and by more explicitly relating gene expression to the expression and development of phenotypes, both theoretically and empirically.
Collapse
Affiliation(s)
- Luis-Miguel Chevin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Christelle Leung
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Gibert JM, Peronnet F. The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. INSECTS 2021; 12:884. [PMID: 34680653 PMCID: PMC8537509 DOI: 10.3390/insects12100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023]
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Frédérique Peronnet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| |
Collapse
|
19
|
Lafuente E, Alves F, King JG, Peralta CM, Beldade P. Many ways to make darker flies: Intra- and interspecific variation in Drosophila body pigmentation components. Ecol Evol 2021; 11:8136-8155. [PMID: 34188876 PMCID: PMC8216949 DOI: 10.1002/ece3.7646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo-devo model, into distinct measurable traits related to color and color pattern. We investigate intra- and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Swiss Federal Institute of Aquatic Science and TechnologyDepartment of Aquatic EcologyDübendorfSwitzerland
| | | | - Jessica G. King
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Carolina M. Peralta
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Patrícia Beldade
- Instituto Gulbenkian de CiênciaOeirasPortugal
- CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
20
|
Peluffo AE, Hamdani M, Vargas‐Valderrama A, David JR, Mallard F, Graner F, Courtier‐Orgogozo V. A morphological trait involved in reproductive isolation between Drosophila sister species is sensitive to temperature. Ecol Evol 2021; 11:7492-7506. [PMID: 34188829 PMCID: PMC8216934 DOI: 10.1002/ece3.7580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi-automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba-like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species' genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.
Collapse
Affiliation(s)
| | | | | | - Jean R. David
- Institut Systématique Evolution Biodiversité (ISYEB)CNRSMNHNSorbonne UniversitéEPHEParisFrance
- Laboratoire Evolution, Génomes, Comportement, Biodiversité (EGCE)CNRSIRDUniv. Paris‐sudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - François Mallard
- Institut de Biologie de l’École Normale SupérieureCNRS UMR 8197PSL Research UniversityParisFrance
| | - François Graner
- Matière et Systèmes ComplexesCNRS UMR 7057Univ. de ParisParisFrance
| | | |
Collapse
|
21
|
Candidate Genes for the High-Altitude Adaptations of Two Mountain Pine Taxa. Int J Mol Sci 2021; 22:ijms22073477. [PMID: 33801727 PMCID: PMC8036860 DOI: 10.3390/ijms22073477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/26/2023] Open
Abstract
Mountain plants, challenged by vegetation time contractions and dynamic changes in environmental conditions, developed adaptations that help them to balance their growth, reproduction, survival, and regeneration. However, knowledge regarding the genetic basis of species adaptation to higher altitudes remain scarce for most plant species. Here, we attempted to identify such corresponding genomic regions of high evolutionary importance in two closely related European pines, Pinus mugo and P. uncinata, contrasting them with a reference lowland relative—P. sylvestris. We genotyped 438 samples at thousands of single nucleotide polymorphism (SNP) markers, tested their genetic differentiation and population structure followed by outlier detection and gene ontology annotations. Markers clearly differentiated the species and uncovered patterns of population structure in two of them. In P. uncinata three Pyrenean sites were grouped together, while two outlying populations constituted a separate cluster. In P. sylvestris, Spanish population appeared distinct from the remaining four European sites. Between mountain pines and the reference species, 35 candidate genes for altitude-dependent selection were identified, including such encoding proteins responsible for photosynthesis, photorespiration and cell redox homeostasis, regulation of transcription, and mRNA processing. In comparison between two mountain pines, 75 outlier SNPs were found in proteins involved mainly in the gene expression and metabolism.
Collapse
|
22
|
Rodrigues YK, Beldade P. Thermal Plasticity in Insects’ Response to Climate Change and to Multifactorial Environments. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Abstract
Insects represent 85% of the animals. They have adapted to many environments and play a major role in ecosystems. Many insect species exhibit phenotypic plasticity. We here report on the mechanisms involved in phenotypic plasticity of different insects (aphids, migratory locust, map butterfly, honeybee) and also on the nutritional size plasticity in Drosophila and the plasticity of the wing eye-spots of the butterfly Bicyclus anynana. We also describe in more detail our work concerning the thermal plasticity of pigmentation in Drosophila. We have shown that the expression of the tan, yellow and Ddc genes, encoding enzymes of the melanin synthesis pathway, is modulated by temperature and that it is a consequence, at least in part, of the temperature-sensitive expression of the bab locus genes that repress them.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement (IBPS-LBD), 75005 Paris, France
| |
Collapse
|
24
|
Abstract
Phenotypic plasticity describes the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. It has major implications in agronomy, animal husbandry and medicine and is also thought to facilitate evolution. Phenotypic plasticity is widely observed in the wild. It is only relatively recently that the mechanisms involved in phenotypic plasticity have been analysed. Thanks to laboratory experiments we understand better how environmental conditions are involved in phenotypic variations. This article introduces major concepts from the phenotypic plasticity field, presents briefly mechanisms involved in phenotypic plasticity and discusses the links between phenotypic plasticity and evolution.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement (IBPS-LBD), 75005 Paris, France
| |
Collapse
|
25
|
Dalziel AC, Tirbhowan S, Drapeau HF, Power C, Jonah LS, Gbotsyo YA, Dion‐Côté A. Using asexual vertebrates to study genome evolution and animal physiology: Banded ( Fundulus diaphanus) x Common Killifish ( F. heteroclitus) hybrid lineages as a model system. Evol Appl 2020; 13:1214-1239. [PMID: 32684956 PMCID: PMC7359844 DOI: 10.1111/eva.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of Fundulus diaphanus x F. heteroclitus to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of F. diaphanus and F. heteroclitus karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of F. diaphanus x F. heteroclitus has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from F. diaphanus ♀ x F. heteroclitus ♂ crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
Collapse
Affiliation(s)
| | - Svetlana Tirbhowan
- Department of BiologySaint Mary's UniversityHalifaxNSCanada
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | - Claude Power
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | | | | |
Collapse
|
26
|
Zhang Y, Wang XX, Feng ZJ, Cong HS, Chen ZS, Li YD, Yang WM, Zhang SQ, Shen LF, Tian HG, Feng Y, Liu TX. Superficially Similar Adaptation Within One Species Exhibits Similar Morphological Specialization but Different Physiological Regulations and Origins. Front Cell Dev Biol 2020; 8:300. [PMID: 32457902 PMCID: PMC7225305 DOI: 10.3389/fcell.2020.00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Animals have developed numerous strategies to contend with environmental pressures. We observed that the same adaptation strategy may be used repeatedly by one species in response to a certain environmental challenge. The ladybird Harmonia axyridis displays thermal phenotypic plasticity at different developmental stages. It is unknown whether these superficially similar temperature-induced specializations share similar physiological mechanisms. We performed various experiments to clarify the differences and similarities between these processes. We examined changes in the numbers and sizes of melanic spots in pupae and adults, and confirmed similar patterns for both. The dopamine pathway controls pigmentation levels at both developmental stages of H. axyridis. However, the aspartate-β-alanine pathway controls spot size and number only in the pupae. An upstream regulation analysis revealed the roles of Hox genes and elytral veins in pupal and adult spot formation. Both the pupae and the adults exhibited similar morphological responses to temperatures. However, they occurred in different body parts and were regulated by different pathways. These phenotypic adaptations are indicative of an effective thermoregulatory system in H. axyridis and explains how insects contend with certain environmental pressure based on various control mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Tong-Xian Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Orteu A, Jiggins CD. The genomics of coloration provides insights into adaptive evolution. Nat Rev Genet 2020; 21:461-475. [PMID: 32382123 DOI: 10.1038/s41576-020-0234-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 01/31/2023]
Abstract
Coloration is an easily quantifiable visual trait that has proven to be a highly tractable system for genetic analysis and for studying adaptive evolution. The application of genomic approaches to evolutionary studies of coloration is providing new insight into the genetic architectures underlying colour traits, including the importance of large-effect mutations and supergenes, the role of development in shaping genetic variation and the origins of adaptive variation, which often involves adaptive introgression. Improved knowledge of the genetic basis of traits can facilitate field studies of natural selection and sexual selection, making it possible for strong selection and its influence on the genome to be demonstrated in wild populations.
Collapse
Affiliation(s)
- Anna Orteu
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Chevin LM. Selective Sweep at a QTL in a Randomly Fluctuating Environment. Genetics 2019; 213:987-1005. [PMID: 31527049 PMCID: PMC6827380 DOI: 10.1534/genetics.119.302680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
Adaptation is mediated by phenotypic traits that are often near continuous, and undergo selective pressures that may change with the environment. The dynamics of allelic frequencies at underlying quantitative trait loci (QTL) depend on their own phenotypic effects, but also possibly on other polymorphic loci affecting the same trait, and on environmental change driving phenotypic selection. Most environments include a substantial component of random noise, characterized both by its magnitude and its temporal autocorrelation, which sets the timescale of environmental predictability. I investigate the dynamics of a mutation affecting a quantitative trait in an autocorrelated stochastic environment that causes random fluctuations of an optimum phenotype. The trait under selection may also exhibit background polygenic variance caused by many polymorphic loci of small effects elsewhere in the genome. In addition, the mutation at the QTL may affect phenotypic plasticity, the phenotypic response of given genotype to its environment of development or expression. Stochastic environmental fluctuations increase the variance of the evolutionary process, with consequences for the probability of a complete sweep at the QTL. Background polygenic variation critically alters this process, by setting an upper limit to stochastic variance of population genetics at the QTL. For a plasticity QTL, stochastic fluctuations also influences the expected selection coefficient, and alleles with the same expected trajectory can have very different stochastic variances. Finally, a mutation may be favored through its effect on plasticity despite causing a systematic mismatch with optimum, which is compensated by evolution of the mean background phenotype.
Collapse
Affiliation(s)
- Luis-Miguel Chevin
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, University of Montpellier, University of Paul Valéry Montpellier 3, EPHE, IRD, France
| |
Collapse
|
29
|
Lafuente E, Beldade P. Genomics of Developmental Plasticity in Animals. Front Genet 2019; 10:720. [PMID: 31481970 PMCID: PMC6709652 DOI: 10.3389/fgene.2019.00720] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Developmental plasticity refers to the property by which the same genotype produces distinct phenotypes depending on the environmental conditions under which development takes place. By allowing organisms to produce phenotypes adjusted to the conditions that adults will experience, developmental plasticity can provide the means to cope with environmental heterogeneity. Developmental plasticity can be adaptive and its evolution can be shaped by natural selection. It has also been suggested that developmental plasticity can facilitate adaptation and promote diversification. Here, we summarize current knowledge on the evolution of plasticity and on the impact of plasticity on adaptive evolution, and we identify recent advances and important open questions about the genomics of developmental plasticity in animals. We give special attention to studies using transcriptomics to identify genes whose expression changes across developmental environments and studies using genetic mapping to identify loci that contribute to variation in plasticity and can fuel its evolution.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- CNRS-UMR5174, Université Paul Sabatier, Toulouse, France
- Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
30
|
Sanger TJ, Rajakumar R. How a growing organismal perspective is adding new depth to integrative studies of morphological evolution. Biol Rev Camb Philos Soc 2019; 94:184-198. [PMID: 30009397 DOI: 10.1111/brv.12442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023]
Abstract
Over the past half century, the field of Evolutionary Developmental Biology, or Evo-devo, has integrated diverse fields of biology into a more synthetic understanding of morphological diversity. This has resulted in numerous insights into how development can evolve and reciprocally influence morphological evolution, as well as generated several novel theoretical areas. Although comparative by default, there remains a great gap in our understanding of adaptive morphological diversification and how developmental mechanisms influence the shape and pattern of phenotypic variation. Herein we highlight areas of research that are in the process of filling this void, and areas, if investigated more fully, that will add new insights into the diversification of morphology. At the centre of our discussion is an explicit awareness of organismal biology. Here we discuss an organismal framework that is supported by three distinct pillars. First, there is a need for Evo-devo to adopt a high-resolution phylogenetic approach in the study of morphological variation and its developmental underpinnings. Secondly, we propose that to understand the dynamic nature of morphological evolution, investigators need to give more explicit attention to the processes that generate evolutionarily relevant variation at the population level. Finally, we emphasize the need to address more thoroughly the processes that structure variation at micro- and macroevolutionary scales including modularity, morphological integration, constraint, and plasticity. We illustrate the power of these three pillars using numerous examples from both invertebrates and vertebrates to emphasize that many of these approaches are already present within the field, but have yet to be formally integrated into many research programs. We feel that the most exciting new insights will come where the traditional experimental approaches to Evo-devo are integrated more thoroughly with the principles of this organismal framework.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, U.S.A
| | | |
Collapse
|
31
|
De Castro S, Peronnet F, Gilles JF, Mouchel-Vielh E, Gibert JM. bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet 2018; 14:e1007573. [PMID: 30067846 PMCID: PMC6089454 DOI: 10.1371/journal.pgen.1007573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/13/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023] Open
Abstract
Drosophila body pigmentation has emerged as a major Evo-Devo model. Using two Drosophila melanogaster lines, Dark and Pale, selected from a natural population, we analyse here the interaction between genetic variation and environmental factors to produce this complex trait. Indeed, pigmentation varies with genotype in natural populations and is sensitive to temperature during development. We demonstrate that the bric à brac (bab) genes, that are differentially expressed between the two lines and whose expression levels vary with temperature, participate in the pigmentation difference between the Dark and Pale lines. The two lines differ in a bab regulatory sequence, the dimorphic element (called here bDE). Both bDE alleles are temperature-sensitive, but the activity of the bDE allele from the Dark line is lower than that of the bDE allele from the Pale line. Our results suggest that this difference could partly be due to differential regulation by AbdB. bab has been previously reported to be a repressor of abdominal pigmentation. We show here that one of its targets in this process is the pigmentation gene tan (t), regulated via the tan abdominal enhancer (t_MSE). Furthermore, t expression is strongly modulated by temperature in the two lines. Thus, temperature sensitivity of t expression is at least partly a consequence of bab thermal transcriptional plasticity. We therefore propose that a gene regulatory network integrating both genetic variation and temperature sensitivity modulates female abdominal pigmentation. Interestingly, both bDE and t_MSE were previously shown to have been recurrently involved in abdominal pigmentation evolution in drosophilids. We propose that the environmental sensitivity of these enhancers has turned them into evolutionary hotspots. Complex traits such as size or disease susceptibility are typically modulated by both genetic variation and environmental conditions. Model organisms such as fruit flies (Drosophila) are particularly appropriate to analyse the interactions between genetic variation and environmental factors during the development of complex phenotypes. Natural populations carry high genetic variation and can be grown in controlled conditions in the laboratory. Here, we use Drosophila melanogaster female abdominal pigmentation, which is both genetically variable and modulated by the environment (temperature) to dissect this kind of interaction. We show that the pigmentation difference between two inbred fly lines is caused by genetic variation in an enhancer of the bab locus, which encodes two transcription factors controlling abdominal pigmentation. Indeed, this enhancer drives differential expression between the two lines. Interestingly, this enhancer is sensitive to temperature in both lines. We show that the effect of bab on pigmentation is mediated by the pigmentation gene tan (t) that is repressed by bab. Thus, the previously reported temperature-sensitive expression of t is a direct consequence of bab transcriptional plasticity.
Collapse
Affiliation(s)
- Sandra De Castro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
| | - Frédérique Peronnet
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
| | - Jean-François Gilles
- Sorbonne Université, CNRS, Core facility, Institut de Biologie Paris Seine (IBPS), Paris, France
| | - Emmanuèle Mouchel-Vielh
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
- * E-mail: (EM-V); (J-MG)
| | - Jean-Michel Gibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
- * E-mail: (EM-V); (J-MG)
| |
Collapse
|
32
|
Endler L, Gibert J, Nolte V, Schlötterer C. Pleiotropic effects of regulatory variation in tan result in correlation of two pigmentation traits in Drosophila melanogaster. Mol Ecol 2018; 27:3207-3218. [PMID: 29957826 PMCID: PMC6120501 DOI: 10.1111/mec.14781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/24/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023]
Abstract
Traits with a common genetic basis frequently display correlated phenotypic responses to selection or environmental conditions. In Drosophila melanogaster, pigmentation of the abdomen and a trident-shaped region on the thorax are genetically correlated. Here, we used a pooled replicated genomewide association approach (Pool-GWAS) to identify the genetic basis of variation in thoracic trident pigmentation in two Drosophila melanogaster populations. We confirmed the previously reported large effect of ebony and the association of the cosmopolitan inversion In(3R)Payne. For the first time, we identified tan as another major locus contributing to variation in trident pigmentation. Intriguingly, the regulatory variants of tan that were most strongly associated with female abdominal pigmentation also showed a strong association with trident pigmentation. We validated this common genetic basis in transgenic assays and found qualitatively similar effects on trident and abdominal pigmentation. Further work is required to determine whether this genetic correlation is favoured by natural selection or reflects a neutral by-product of a shared regulatory architecture.
Collapse
Affiliation(s)
- Lukas Endler
- Institute of PopulationsgenetikVetmeduni WienWienAustria
| | - Jean‐Michel Gibert
- CNRSBiologie du Développement Paris Seine‐Institut de Biologie Paris Seine (LBD‐IBPS)Sorbonne UniversitéParisFrance
| | - Viola Nolte
- Institute of PopulationsgenetikVetmeduni WienWienAustria
| | | |
Collapse
|
33
|
Sommer RJ, Dardiry M, Lenuzzi M, Namdeo S, Renahan T, Sieriebriennikov B, Werner MS. The genetics of phenotypic plasticity in nematode feeding structures. Open Biol 2018; 7:rsob.160332. [PMID: 28298309 PMCID: PMC5376706 DOI: 10.1098/rsob.160332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/10/2017] [Indexed: 12/15/2022] Open
Abstract
Phenotypic plasticity has been proposed as an ecological and evolutionary concept. Ecologically, it can help study how genes and the environment interact to produce robust phenotypes. Evolutionarily, as a facilitator it might contribute to phenotypic novelty and diversification. However, the discussion of phenotypic plasticity remains contentious in parts due to the absence of model systems and rigorous genetic studies. Here, we summarize recent work on the nematode Pristionchus pacificus, which exhibits a feeding plasticity allowing predatory or bacteriovorous feeding. We show feeding plasticity to be controlled by developmental switch genes that are themselves under epigenetic control. Phylogenetic and comparative studies support phenotypic plasticity and its role as a facilitator of morphological novelty and diversity.
Collapse
Affiliation(s)
- Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Masa Lenuzzi
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Suryesh Namdeo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Tess Renahan
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Michael S Werner
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Pigmentation pattern and developmental constraints: flight muscle attachment sites delimit the thoracic trident of Drosophila melanogaster. Sci Rep 2018; 8:5328. [PMID: 29593305 PMCID: PMC5871777 DOI: 10.1038/s41598-018-23741-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
In their seminal paper published in 1979, Gould and Lewontin argued that some traits arise as by-products of the development of other structures and not for direct utility in themselves. We show here that this applies to the trident, a pigmentation pattern observed on the thorax of Drosophila melanogaster. Using reporter constructs, we show that the expression domain of several genes encoding pigmentation enzymes follows the trident shape. This domain is complementary to the expression pattern of stripe (sr), which encodes an essential transcription factor specifying flight muscle attachment sites. We demonstrate that sr limits the expression of these pigmentation enzyme genes to the trident by repressing them in its own expression domain, i.e. at the flight muscle attachment sites. We give evidence that repression of not only yellow but also other pigmentation genes, notably tan, is involved in the trident shape. The flight muscle attachment sites and sr expression patterns are remarkably conserved in dipterans reflecting the essential role of sr. Our data suggest that the trident is a by-product of flight muscle attachment site patterning that arose when sr was co-opted for the regulation of pigmentation enzyme coding genes.
Collapse
|
35
|
Gibert JM. The flexible stem hypothesis: evidence from genetic data. Dev Genes Evol 2017; 227:297-307. [PMID: 28780641 DOI: 10.1007/s00427-017-0589-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
Phenotypic plasticity, the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions, is widely observed in the wild. It is believed to facilitate evolution and, under the "flexible stem hypothesis", it is thought that an ancestral plastic species can be at the origin of sister lineages with divergent phenotypes fixed by genetic assimilation of alternative morphs. We review here the genetic mechanisms underlying such phenomenon. We show several examples in which the same gene shows transcriptional plasticity in response to environmental factors and divergence of expression within or between species. Thus, the same gene is involved both in the plasticity of a trait and in the evolution of that trait. In a few cases, it can be traced down to cis-regulatory variation in this gene and, in one case, in the very same regulatory sequence whose activity is modulated by the environment. These data are compatible with the "flexible stem hypothesis" and also suggest that the evolution of the plasticity of a trait and the evolution of the trait are not completely uncoupled as they often involve the same locus. Furthermore, the "flexible stem hypothesis" implies that it is possible to canalize initially plastic phenotypes. Several studies have shown that it was possible through modification of chromatin regulation or hormonal signalling/response. Further studies of phenotypic plasticity in an evolutionary framework are needed to see how much the findings described in this review can be generalized.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Biologie du Développement Paris Seine, Institut de Biologie Paris Seine (LBD-IBPS), 75005, Paris, France.
| |
Collapse
|
36
|
Gibert JM, Blanco J, Dolezal M, Nolte V, Peronnet F, Schlötterer C. Strong epistatic and additive effects of linked candidate SNPs for Drosophila pigmentation have implications for analysis of genome-wide association studies results. Genome Biol 2017; 18:126. [PMID: 28673357 PMCID: PMC5496195 DOI: 10.1186/s13059-017-1262-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/19/2017] [Indexed: 01/01/2023] Open
Abstract
Background The mapping resolution of genome-wide association studies (GWAS) is limited by historic recombination events and effects are often assigned to haplotype blocks rather than individual SNPs. It is not clear how many of the SNPs in the block, and which ones, are causative. Drosophila pigmentation is a powerful model to dissect the genetic basis of intra-specific and inter-specific phenotypic variation. Three tightly linked SNPs in the t-MSE enhancer have been identified in three D. melanogaster populations as major contributors to female abdominal pigmentation. This enhancer controls the expression of the pigmentation gene tan (t) in the abdominal epidermis. Two of the three SNPs were confirmed in an independent study using the D. melanogaster Genetic Reference Panel established from a North American population. Results We determined the functional impact of SNP1, SNP2, and SNP3 using transgenic lines to test all possible haplotypes in vivo. We show that all three candidate SNPs contribute to female Drosophila abdominal pigmentation. Interestingly, only two SNPs agree with the effect predicted by GWAS; the third one goes in the opposite direction because of linkage disequilibrium between multiple functional SNPs. Our experimental design uncovered strong additive effects for the three SNPs, but we also found significant epistatic effects explaining up to 11% of the total variation. Conclusions Our results suggest that linked causal variants are important for the interpretation of GWAS and functional validation is needed to understand the genetic architecture of traits. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1262-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du Développement Paris Seine-Institut de Biologie Paris Seine (LBD-IBPS), case 24, 9 quai St-Bernard, 75005, Paris, France
| | - Jorge Blanco
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Wien, Austria
| | - Marlies Dolezal
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Wien, Austria
| | - Frédérique Peronnet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du Développement Paris Seine-Institut de Biologie Paris Seine (LBD-IBPS), case 24, 9 quai St-Bernard, 75005, Paris, France
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Wien, Austria.
| |
Collapse
|
37
|
Modulation of yellow expression contributes to thermal plasticity of female abdominal pigmentation in Drosophila melanogaster. Sci Rep 2017; 7:43370. [PMID: 28230190 PMCID: PMC5322495 DOI: 10.1038/srep43370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Phenotypic plasticity describes the ability of a given genotype to produce distinct phenotypes in different environments. We use the temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females as a model to analyse the effect of the environment on development. We reported previously that thermal plasticity of abdominal pigmentation in females involves the pigmentation gene tan (t). However, the expression of the pigmentation gene yellow (y) was also modulated by temperature in the abdominal epidermis of pharate females. We investigate here the contribution of y to female abdominal pigmentation plasticity. First, we show that y is required for the production of black Dopamine-melanin. Then, using in situ hybridization, we show that the expression of y is strongly modulated by temperature in the abdominal epidermis of pharate females but not in bristles. Interestingly, these two expression patterns are known to be controlled by distinct enhancers. However, the activity of the y-wing-body epidermal enhancer only partially mediates the effect of temperature suggesting that additional regulatory sequences are involved. In addition, we show that y and t co-expression is needed to induce strong black pigmentation indicating that y contributes to female abdominal pigmentation plasticity.
Collapse
|
38
|
Rebeiz M, Williams TM. Using Drosophila pigmentation traits to study the mechanisms of cis-regulatory evolution. CURRENT OPINION IN INSECT SCIENCE 2017; 19:1-7. [PMID: 28521937 PMCID: PMC5439306 DOI: 10.1016/j.cois.2016.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 05/20/2023]
Abstract
One primary agenda of the developmental evolution field is to elucidate molecular mechanisms governing differences in animal form. While mounting evidence has established an important role for mutations in transcription controlling cis-regulatory elements (CREs), the underlying mechanisms that translate these alterations into differences in gene expression are poorly understood. Emerging studies focused on pigmentation differences among closely related Drosophila species have provided many examples of phenotypically relevant CRE changes, and have begun to illuminate how this process works at the level of regulatory sequence function and transcription factor binding. We review recent work in this field and highlight the conceptual and technical challenges that currently await experimental attention.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
39
|
A Variable Genetic Architecture of Melanic Evolution in Drosophila melanogaster. Genetics 2016; 204:1307-1319. [PMID: 27638419 PMCID: PMC5105859 DOI: 10.1534/genetics.116.192492] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Unraveling the genetic architecture of adaptive phenotypic divergence is a fundamental quest in evolutionary biology. In Drosophila melanogaster, high-altitude melanism has evolved in separate mountain ranges in sub-Saharan Africa, potentially as an adaptation to UV intensity. We investigated the genetic basis of this melanism in three populations using a new bulk segregant analysis mapping method. We identified 19 distinct QTL regions from nine mapping crosses, with several QTL peaks overlapping between two or all populations, and yet different crosses involving the same melanic population commonly yielded distinct QTL. The strongest QTL often overlapped well-known pigmentation genes, but we typically did not find wide signals of genetic differentiation (FST) between lightly and darkly pigmented populations at these genes. Instead, we found small numbers of highly differentiated SNPs at the probable causative genes. A simulation analysis showed that these patterns of polymorphism were consistent with selection on standing genetic variation. Overall, our results suggest that, even for potentially simpler traits like pigmentation, the complexity of adaptive trait evolution poses important challenges for QTL mapping and population genetic analysis.
Collapse
|