1
|
Chen L, Zhao J, Meng Q. From genetic variants to therapeutic targets: insights into understanding rheumatoid arthritis. Front Immunol 2025; 16:1556971. [PMID: 40236704 PMCID: PMC11996834 DOI: 10.3389/fimmu.2025.1556971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects multiple systems and is driven by various factors, including interactions between genetic and environmental elements. Over the past few decades, genome-wide association studies (GWAS) have been instrumental in regard to identifying genetic and environmental risk factors associated with RA susceptibility and pathogenesis. The recent discoveries of novel genetic susceptibility loci and pathways offer promising therapeutic targets for RA and precision medicine. More than 100 genetic loci have been identified in RA patients. In this review, we have focused on more than 40 genes that have been supported by evidence to be closely associated with the development of RA. These include genes involved in various mechanisms, such as loss of self-tolerance, autoimmune antibody production (e.g., HLA-DRB1, HLA-DPB1), inflammatory signaling and bone destruction (e.g., PTPN22, CCR6), complication (e.g., HLA-DQB1, IRF5), and differential drug responses (e.g., HLA-E, NKG2D). These novel players and mechanisms enhance our understanding of the RA pathogenesis and also provide a reference for personalized and precise medicine, including diagnosis and treatment.
Collapse
Affiliation(s)
- Lu Chen
- Department of Traditional Chinese Medicine, Aviation General Hospital, Beijing, China
| | - Jianan Zhao
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Srivastava S, Rasool M. Genetics, epigenetics and autoimmunity constitute a Bermuda triangle for the pathogenesis of rheumatoid arthritis. Life Sci 2024; 357:123075. [PMID: 39341491 DOI: 10.1016/j.lfs.2024.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Rheumatoid arthritis (RA), a multigene disorder with a heritability rate of 60 %, is characterized by persistent pain, synovial hyperplasia, and cartilage and bone destruction, ultimately causing irreversible joint deformity. The etiology and pathogenesis of rheumatoid arthritis (RA) are primarily influenced by specific genetic variants, particularly HLA alleles such as HLA-DRB1*01 and DRB1*04. However, other HLA alleles such as HLA-DRB1*10 and DPB*1 have also been found to contribute to increased susceptibility to RA. However, non-HLA genes also confer a comparatively high risk of RA disease manifestation. The most relevant single nucleotide polymorphisms (SNPs) associated with non-HLA genes are PTPN22, TRAF1, CXCL-12, TBX-5, STAT4, FCGR, PADI4, and MTHFR. In conjunction with genetic susceptibility, epigenetic alterations orchestrate paramount involvement in regulating RA pathogenesis. Increasing evidence implicates DNA methylation and histone protein modifications, including acetylation and methylation, as the primary epigenetic mechanisms that drive the pathogenesis and clinical progression of the disease. In addition to genetic and epigenetic changes, autoimmune inflammation also determines the pathological progression of the synovial membrane in joints with RA. Glycosylation changes, such as sialylation and fucosylation, in immune cells have been shown to be relevant to disease progression. Genetic heterogeneity, epigenetic factors, and changes in glycosylation do not fully explain the features of RA. Therefore, investigating the interplay between genetics, epigenetics, and autoimmunity is crucial. This review highlights the significance and interaction of these elements in RA pathophysiology, suggesting their diagnostic potential and opening new avenues for novel therapeutic approaches.
Collapse
Affiliation(s)
- Susmita Srivastava
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhang M, Qin Z, Huang Y, Tian W, Li Y, Wang C, Zhao W, Dai Y, Shi X, Gershwin ME, Ma X, Wang M, Liu X, Chen W, Qiu F. Association of CCR6 functional polymorphisms with Primary Biliary Cholangitis. J Transl Autoimmun 2024; 8:100234. [PMID: 38405661 PMCID: PMC10891324 DOI: 10.1016/j.jtauto.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
The biliary epithelial cells release CC chemokine receptor 6 (CCR6) ligand 20 (CCL20), leading to recruitment of CCR6+ T cells and subsequent infiltration into the biliary epithelium in primary biliary cholangitis patients. Previous genome-wide multi-national meta-analysis, including our Han Chinese cohort, showed significant association of CCR6 and CCL20 single nucleotide polymorphisms (SNP) with PBC. We report here that significantly associated SNPs, identified in the CCR6 locus based on our Han Chinese genome-wide association study, can be separated into "protective" and "risk" groups, but only "risk" SNPs were confirmed using a separate Han Chinese PBC cohort. Only weak association of CCL20 SNPs was observed in Han Chinese PBC cohorts. Fine-mapping and logistical analysis identified a previously defined functional variant that, leads to increased CCR6 expression, which contributed to increased genetic susceptibility to PBC in Han Chinese cohort.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhuye Qin
- Department of Laboratory Medicine, Southeast University Hospital, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yexi Huang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Wenyan Tian
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - You Li
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200001, China
| | - Chan Wang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225009, China
| | - Weifeng Zhao
- Department of Hepatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu, 214000, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200001, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University School of Public Health, Nanjing, Jiangsu, 210029, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Fang Qiu
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210031, China
| |
Collapse
|
4
|
Kim T, Martínez-Bonet M, Wang Q, Hackert N, Sparks JA, Baglaenko Y, Koh B, Darbousset R, Laza-Briviesca R, Chen X, Aguiar VRC, Chiu DJ, Westra HJ, Gutierrez-Arcelus M, Weirauch MT, Raychaudhuri S, Rao DA, Nigrovic PA. Non-coding autoimmune risk variant defines role for ICOS in T peripheral helper cell development. Nat Commun 2024; 15:2150. [PMID: 38459032 PMCID: PMC10923805 DOI: 10.1038/s41467-024-46457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Fine-mapping and functional studies implicate rs117701653, a non-coding single nucleotide polymorphism in the CD28/CTLA4/ICOS locus, as a risk variant for rheumatoid arthritis and type 1 diabetes. Here, using DNA pulldown, mass spectrometry, genome editing and eQTL analysis, we establish that the disease-associated risk allele is functional, reducing affinity for the inhibitory chromosomal regulator SMCHD1 to enhance expression of inducible T-cell costimulator (ICOS) in memory CD4+ T cells from healthy donors. Higher ICOS expression is paralleled by an increase in circulating T peripheral helper (Tph) cells and, in rheumatoid arthritis patients, of blood and joint fluid Tph cells as well as circulating plasmablasts. Correspondingly, ICOS ligation and carriage of the rs117701653 risk allele accelerate T cell differentiation into CXCR5-PD-1high Tph cells producing IL-21 and CXCL13. Thus, mechanistic dissection of a functional non-coding variant in human autoimmunity discloses a previously undefined pathway through which ICOS regulates Tph development and abundance.
Collapse
Affiliation(s)
- Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Qiang Wang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolaj Hackert
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuriy Baglaenko
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Byunghee Koh
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roxane Darbousset
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquel Laza-Briviesca
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Darren J Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Comertpay B, Gov E. Immune cell-specific and common molecular signatures in rheumatoid arthritis through molecular network approaches. Biosystems 2023; 234:105063. [PMID: 37852410 DOI: 10.1016/j.biosystems.2023.105063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder and common symptom of RA is chronic synovial inflammation. The pathogenesis of RA is not fully understood. Therefore, we aimed to identify underlying common and distinct molecular signatures and pathways among ten types of tissue and cells obtained from patients with RA. In this study, transcriptomic data including synovial tissues, macrophages, blood, T cells, CD4+T cells, CD8+T cells, natural killer T (NKT), cells natural killer (NK) cells, neutrophils, and monocyte cells were analyzed with an integrative and comparative network biology perspective. Each dataset yielded a list of differentially expressed genes as well as a reconstruction of the tissue-specific protein-protein interaction (PPI) network. Molecular signatures were identified by a statistical test using the hypergeometric probability density function by employing the interactions of transcriptional regulators and PPI. Reporter metabolites of each dataset were determined by using genome-scale metabolic networks. It was defined as the common hub proteins, novel molecular signatures, and metabolites in two or more tissue types while immune cell-specific molecular signatures were identified, too. Importantly, miR-155-5p is found as a common miRNA in all tissues. Moreover, NCOA3, PRKDC and miR-3160 might be novel molecular signatures for RA. Our results establish a novel approach for identifying immune cell-specific molecular signatures of RA and provide insights into the role of common tissue-specific genes, miRNAs, TFs, receptors, and reporter metabolites. Experimental research should be used to validate the corresponding genes, miRNAs, and metabolites.
Collapse
Affiliation(s)
- Betul Comertpay
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| |
Collapse
|
6
|
Shi FY, Wang Y, Huang D, Liang Y, Liang N, Chen XW, Gao G. Computational Assessment of the Expression-modulating Potential for Non-coding Variants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:662-673. [PMID: 34890839 PMCID: PMC10787178 DOI: 10.1016/j.gpb.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Large-scale genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) studies have identified multiple non-coding variants associated with genetic diseases by affecting gene expression. However, pinpointing causal variants effectively and efficiently remains a serious challenge. Here, we developed CARMEN, a novel algorithm to identify functional non-coding expression-modulating variants. Multiple evaluations demonstrated CARMEN's superior performance over state-of-the-art tools. Applying CARMEN to GWAS and eQTL datasets further pinpointed several causal variants other than the reported lead single-nucleotide polymorphisms (SNPs). CARMEN scales well with the massive datasets, and is available online as a web server at http://carmen.gao-lab.org.
Collapse
Affiliation(s)
- Fang-Yuan Shi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Dong Huang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yu Liang
- Human Aging Research Institute, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Nan Liang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) & Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Chen J, Chen H, Mai H, Lou S, Luo M, Xie H, Zhou B, Hou J, Jiang DK. A functional variant of CD40 modulates clearance of hepatitis B virus in hepatocytes via regulation of the ANXA2/CD40/BST2 axis. Hum Mol Genet 2023; 32:1334-1347. [PMID: 36383401 PMCID: PMC10077505 DOI: 10.1093/hmg/ddac284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
More than 250 million people in the world are chronically infected with hepatitis B virus (HBV), which causes serious complications. Host genetic susceptibility is essential for chronic hepatitis B (CHB), and our previous genome-wide association study identified a single-nucleotide polymorphism (SNP), rs1883832, in the 5' untranslated region of CD40 predisposing to chronic HBV infection, but the underlying mechanism remains undefined. This study aimed to investigate whether rs1883832 was the real functional SNP (fSNP) of CD40 and how it modulated HBV clearance in hepatocytes. We determined the fSNP of CD40 and its regulatory protein(s) using luciferase reporter assays, electrophoretic mobility shift assay, flanking restriction enhanced pulldown and chromatin immunoprecipitation. The potential anti-HBV activity of CD40 and its downstream molecule BST2 was assessed in HBV-transfected and HBV-infected hepatoma cells and HBV-infected primary human hepatocytes. Moreover, the mechanism of CD40 was investigated by mRNA sequencing, quantitative real-time polymerase chain reaction, immunofluorescence and western blot. We revealed rs1883832 as the true fSNP of CD40 and identified ANXA2 as a negative regulatory protein that preferentially bound to the risk allele T of rs1883832 and hence reduced CD40 expression. Furthermore, CD40 suppressed HBV replication and transcription in hepatocytes via activating the JAK-STAT pathway. BST2 was identified to be the key IFN-stimulated gene regulated by CD40 after activating JAK-STAT pathway. Inhibition of JAK/STAT/BST2 axis attenuated CD40-induced antiviral effect. In conclusion, a functional variant of CD40 modulates HBV clearance via regulation of the ANXA2/CD40/BST2 axis, which may shed new light on HBV personalized therapy.
Collapse
Affiliation(s)
- Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuang Lou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengqi Luo
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
8
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
9
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Wu T, Jiang D, Zou M, Sun W, Wu D, Cui J, Huntress I, Peng X, Li G. Coupling high-throughput mapping with proteomics analysis delineates cis-regulatory elements at high resolution. Nucleic Acids Res 2022; 50:e5. [PMID: 34634809 PMCID: PMC8754656 DOI: 10.1093/nar/gkab890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
Growing evidence suggests that functional cis-regulatory elements (cis-REs) not only exist in epigenetically marked but also in unmarked sites of the human genome. While it is already difficult to identify cis-REs in the epigenetically marked sites, interrogating cis-REs residing within the unmarked sites is even more challenging. Here, we report adapting Reel-seq, an in vitro high-throughput (HTP) technique, to fine-map cis-REs at high resolution over a large region of the human genome in a systematic and continuous manner. Using Reel-seq, as a proof-of-principle, we identified 408 candidate cis-REs by mapping a 58 kb core region on the aging-related CDKN2A/B locus that harbors p16INK4a. By coupling Reel-seq with FREP-MS, a proteomics analysis technique, we characterized two cis-REs, one in an epigenetically marked site and the other in an epigenetically unmarked site. These elements are shown to regulate the p16INK4a expression over an ∼100 kb distance by recruiting the poly(A) binding protein PABPC1 and the transcription factor FOXC2. Downregulation of either PABPC1 or FOXC2 in human endothelial cells (ECs) can induce the p16INK4a-dependent cellular senescence. Thus, we confirmed the utility of Reel-seq and FREP-MS analyses for the systematic identification of cis-REs at high resolution over a large region of the human genome.
Collapse
Affiliation(s)
- Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Di Wu
- Division of Oral Craniofacial Health Science, Adams School of Dentistry, Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, NC 27599, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Xinxia Peng
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15223, USA
| |
Collapse
|
11
|
Zou M, Jiang D, Wu T, Zhang X, Zhao Y, Wu D, Sun W, Cui J, Moreland L, Li G. Post-GWAS functional studies reveal an RA-associated CD40-induced NF-kB signal transduction and transcriptional regulation network targeted by class II HDAC inhibitors. Hum Mol Genet 2021; 30:823-835. [PMID: 33517445 PMCID: PMC8161515 DOI: 10.1093/hmg/ddab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Currently, it remains difficult to identify which single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) are functional and how various functional SNPs (fSNPs) interact and contribute to disease susceptibility. GWAS have identified a CD40 locus that is associated with rheumatoid arthritis (RA). We previously used two techniques developed in our laboratory, single nucleotide polymorphism-next-generation sequencing (SNP-seq) and flanking restriction enhanced DNA pulldown-mass spectrometry (FREP-MS), to determine that the RA risk gene RBPJ regulates CD40 expression via a fSNP at the RA-associated CD40 locus. In the present work, by applying the same approach, we report the identification of six proteins that regulate RBPJ expression via binding to two fSNPs on the RA-associated RBPJ locus. Using these findings, together with the published data, we constructed an RA-associated signal transduction and transcriptional regulation network (STTRN) that functionally connects multiple RA-associated risk genes via transcriptional regulation networks (TRNs) linked by CD40-induced nuclear factor kappa B (NF-kB) signaling. Remarkably, this STTRN provides insight into the potential mechanism of action for the histone deacetylase inhibitor givinostat, an approved therapy for systemic juvenile idiopathic arthritis. Thus, the generation of disease-associated STTRNs based on post-GWAS functional studies is demonstrated as a novel and effective approach to apply GWAS for mechanistic studies and target identification.
Collapse
Affiliation(s)
- Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Di Wu
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Sun
- Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Larry Moreland
- Department of Medicine, Division of Rheumatology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Ge Y, Tian T, Huang S, Wan F, Li J, Li S, Wang X, Yang H, Hong L, Wu N, Yuan E, Luo Y, Cheng L, Hu C, Lei Y, Shu H, Feng X, Jiang Z, Wu Y, Chi Y, Guo X, Cui L, Xiao L, Li Z, Yang C, Miao Z, Chen L, Li H, Zeng H, Zhao D, Zhu F, Shen X, Zeng J. An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. Signal Transduct Target Ther 2021; 6:165. [PMID: 33895786 PMCID: PMC8065335 DOI: 10.1038/s41392-021-00568-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires an urgent need to find effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). In this study, we developed an integrative drug repositioning framework, which fully takes advantage of machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 can interact with the nucleocapsid (N) protein of SARS-CoV-2 and is able to suppress the LPS-induced production of several inflammatory cytokines that are highly relevant to the prevention of immunopathology induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yiyue Ge
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China ,grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Tingzhong Tian
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China ,grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Suling Huang
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fangping Wan
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Jingxin Li
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Shuya Li
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Wang
- grid.508210.eSilexon AI Technology Co., Ltd., Nanjing, Jiangsu Province China
| | - Hui Yang
- grid.508210.eSilexon AI Technology Co., Ltd., Nanjing, Jiangsu Province China
| | - Lixiang Hong
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Nian Wu
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Enming Yuan
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yunan Luo
- grid.35403.310000 0004 1936 9991Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, IL USA
| | - Lili Cheng
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Chengliang Hu
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yipin Lei
- grid.508210.eSilexon AI Technology Co., Ltd., Nanjing, Jiangsu Province China
| | - Hantao Shu
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Xiaolong Feng
- grid.33199.310000 0004 0368 7223School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei Province China ,grid.33199.310000 0004 0368 7223Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province China
| | - Ziyuan Jiang
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, China
| | - Yunfu Wu
- Inner Mongolia Alashan League Organization Establishment Committee Office Electronic Support Center, Alashan, Inner Mongolia China
| | - Ying Chi
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Xiling Guo
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Lunbiao Cui
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Liang Xiao
- grid.507918.2Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Zeng Li
- grid.507918.2Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Chunhao Yang
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zehong Miao
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligong Chen
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Tsinghua University, Beijing, China ,grid.24696.3f0000 0004 0369 153XAdvanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haitao Li
- grid.12527.330000 0001 0662 3178Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hainian Zeng
- grid.508210.eSilexon AI Technology Co., Ltd., Nanjing, Jiangsu Province China
| | - Dan Zhao
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Fengcai Zhu
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Xiaokun Shen
- grid.507918.2Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Jianyang Zeng
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Ge Y, Tian T, Huang S, Wan F, Li J, Li S, Wang X, Yang H, Hong L, Wu N, Yuan E, Luo Y, Cheng L, Hu C, Lei Y, Shu H, Feng X, Jiang Z, Wu Y, Chi Y, Guo X, Cui L, Xiao L, Li Z, Yang C, Miao Z, Chen L, Li H, Zeng H, Zhao D, Zhu F, Shen X, Zeng J. An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. Signal Transduct Target Ther 2021; 6:165. [PMID: 33895786 DOI: 10.1101/2020.03.11.986836] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 03/17/2021] [Indexed: 05/21/2023] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires an urgent need to find effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). In this study, we developed an integrative drug repositioning framework, which fully takes advantage of machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 can interact with the nucleocapsid (N) protein of SARS-CoV-2 and is able to suppress the LPS-induced production of several inflammatory cytokines that are highly relevant to the prevention of immunopathology induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yiyue Ge
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Tingzhong Tian
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Suling Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fangping Wan
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Jingxin Li
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Shuya Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Wang
- Silexon AI Technology Co., Ltd., Nanjing, Jiangsu Province, China
| | - Hui Yang
- Silexon AI Technology Co., Ltd., Nanjing, Jiangsu Province, China
| | - Lixiang Hong
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Nian Wu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Enming Yuan
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yunan Luo
- Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, IL, USA
| | - Lili Cheng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Chengliang Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yipin Lei
- Silexon AI Technology Co., Ltd., Nanjing, Jiangsu Province, China
| | - Hantao Shu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Xiaolong Feng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ziyuan Jiang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yunfu Wu
- Inner Mongolia Alashan League Organization Establishment Committee Office Electronic Support Center, Alashan, Inner Mongolia, China
| | - Ying Chi
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xiling Guo
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Lunbiao Cui
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Liang Xiao
- Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Zeng Li
- Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Chunhao Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zehong Miao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hainian Zeng
- Silexon AI Technology Co., Ltd., Nanjing, Jiangsu Province, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.
| | - Fengcai Zhu
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China.
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Xiaokun Shen
- Convalife (Shanghai) Co., Ltd., Shanghai, China.
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Rosado MM, Pioli C. ADP-ribosylation in evasion, promotion and exacerbation of immune responses. Immunology 2021; 164:15-30. [PMID: 33783820 DOI: 10.1111/imm.13332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
ADP-ribosylation is the addition of one or more (up to some hundreds) ADP-ribose moieties to acceptor proteins. This evolutionary ancient post-translational modification (PTM) is involved in fundamental processes including DNA repair, inflammation, cell death, differentiation and proliferation, among others. ADP-ribosylation is catalysed by two major families of enzymes: the cholera toxin-like ADP-ribosyltransferases (ARTCs) and the diphtheria toxin-like ADP-ribosyltransferases (ARTDs, also known as PARPs). ARTCs sense and use extracellular NAD, which may represent a danger signal, whereas ARTDs are present in the cell nucleus and/or cytoplasm. ARTCs mono-ADP-ribosylate their substrates, whereas ARTDs, according to the specific family member, are able to mono- or poly-ADP-ribosylate target proteins or are devoid of enzymatic activity. Both mono- and poly-ADP-ribosylation are dynamic processes, as specific hydrolases are able to remove single or polymeric ADP moieties. This dynamic equilibrium between addition and degradation provides plasticity for fast adaptation, a feature being particularly relevant to immune cell functions. ADP-ribosylation regulates differentiation and functions of myeloid, T and B cells. It also regulates the expression of cytokines and chemokines, production of antibodies, isotype switch and the expression of several immune mediators. Alterations in these processes involve ADP-ribosylation in virtually any acute and chronic inflammatory/immune-mediated disease. Besides, pathogens developed mechanisms to contrast the action of ADP-ribosylating enzymes by using their own hydrolases and/or to exploit this PTM to sustain their virulence. In the present review, we summarize and discuss recent findings on the role of ADP-ribosylation in immunobiology, immune evasion/subversion by pathogens and immune-mediated diseases.
Collapse
Affiliation(s)
| | - Claudio Pioli
- Division of Health Protection Technologies, ENEA, Rome, Italy
| |
Collapse
|
15
|
Caliskan M, Brown CD, Maranville JC. A catalog of GWAS fine-mapping efforts in autoimmune disease. Am J Hum Genet 2021; 108:549-563. [PMID: 33798443 PMCID: PMC8059376 DOI: 10.1016/j.ajhg.2021.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWASs) have enabled unbiased identification of genetic loci contributing to common complex diseases. Because GWAS loci often harbor many variants and genes, it remains a major challenge to move from GWASs' statistical associations to the identification of causal variants and genes that underlie these association signals. Researchers have applied many statistical and functional fine-mapping strategies to prioritize genetic variants and genes as potential candidates. There is no gold standard in fine-mapping approaches, but consistent results across different approaches can improve confidence in the fine-mapping findings. Here, we combined text mining with a systematic review and formed a catalog of 85 studies with evidence of fine mapping for at least one autoimmune GWAS locus. Across all fine-mapping studies, we compiled 230 GWAS loci with allelic heterogeneity estimates and predictions of causal variants and trait-relevant genes. These 230 loci included 455 combinations of locus-by-disease association signals with 15 autoimmune diseases. Using these estimates, we assessed the probability of mediating disease risk associations across genes in GWAS loci and identified robust signals of causal disease biology. We predict that this comprehensive catalog of GWAS fine-mapping efforts in autoimmune disease will greatly help distill the plethora of information in the field and inform therapeutic strategies.
Collapse
Affiliation(s)
- Minal Caliskan
- Department of Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, NJ 08540, USA.
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph C Maranville
- Department of Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, NJ 08540, USA
| |
Collapse
|
16
|
Rao S, Yao Y, Bauer DE. Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Med 2021; 13:41. [PMID: 33691767 PMCID: PMC7948363 DOI: 10.1186/s13073-021-00857-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.
Collapse
Affiliation(s)
- Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Stem Cell Institute; Broad Institute; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Stem Cell Institute; Broad Institute; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Stem Cell Institute; Broad Institute; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Cardinale CJ, March ME, Lin X, Liu Y, Spruce LA, Bradfield JP, Wei Z, Seeholzer SH, Grant SFA, Hakonarson H. Regulation of Janus Kinase 2 by an Inflammatory Bowel Disease Causal Non-coding Single Nucleotide Polymorphism. J Crohns Colitis 2020; 14:646-653. [PMID: 32271392 DOI: 10.1093/ecco-jcc/jjz213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Among the >240 genetic loci described to date which confer susceptibility to inflammatory bowel disease, a small subset have been fine-mapped to an individual, non-coding single nucleotide polymorphism [SNP]. To illustrate a model mechanism by which a presumed-causal non-coding SNP can function, we analysed rs1887428, located in the promoter region of the Janus kinase 2 [JAK2] gene. METHODS We utilized comparative affinity purification-mass spectrometry, DNA-protein binding assays, CRISPR/Cas9 genome editing, transcriptome sequencing and methylome quantitative trait locus methods to characterize the role of this SNP. RESULTS We determined that the risk allele of rs1887428 is bound by the transcription factor [TF] RBPJ, while the protective allele is bound by the homeobox TF CUX1. While rs188748 only has a very modest influence on JAK2 expression, this effect was amplified downstream through the expression of pathway member STAT5B and epigenetic modification of the JAK2 locus. CONCLUSION Despite the absence of a consensus TF-binding motif or expression quantitative trait locus, we have used improved methods to characterize a putatively causal SNP to yield insight into inflammatory bowel disease mechanisms. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiang Lin
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Proteomics Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Steven H Seeholzer
- Proteomics Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Implications of juvenile idiopathic arthritis genetic risk variants for disease pathogenesis and classification. Curr Opin Rheumatol 2020; 31:401-410. [PMID: 31169548 DOI: 10.1097/bor.0000000000000637] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW We assess the implications of recent advances in the genetics of juvenile idiopathic arthritis (JIA) for the evolving understanding of inflammatory arthritis in children. RECENT FINDINGS JIA exhibits prominent genetic associations with the human leukocyte antigen (HLA) region, extending perhaps surprisingly even to the hyperinflammatory systemic JIA category. Some HLA associations resemble those for adult-onset inflammatory arthritides, providing evidence for pathogenic continuity across the age spectrum. Genome-wide association studies have defined an increasing number of JIA-linked non-HLA loci, many again shared with adult-onset arthritis. As most risk loci contain only noncoding variants, new experimental methods such as SNP-seq and innovative big-data strategies help identify responsible causative mutations, termed functional SNPs (fSNPs). Alternately, gene hunting in multiplex families implicates new genes in monogenic childhood arthritis, including MYD88 and the intriguing innate immune gene LACC1. SUMMARY Genetic data indicate a continuity between JIA and adult arthritis poorly reflected in current nomenclature. Advancing methodologies will help to identify new pathogenic mechanisms that inform the understanding of biologic subdivisions within JIA. Resulting insights will facilitate the application of lessons learned across the age spectrum to the treatment of arthritis in children and adults.
Collapse
|
19
|
Tian YN, Chen HD, Tian CQ, Wang YQ, Miao ZH. Polymerase independent repression of FoxO1 transcription by sequence-specific PARP1 binding to FoxO1 promoter. Cell Death Dis 2020; 11:71. [PMID: 31992690 PMCID: PMC6987093 DOI: 10.1038/s41419-020-2265-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates gene transcription in addition to functioning as a DNA repair factor. Forkhead box O1 (FoxO1) is a transcription factor involved in extensive biological processes. Here, we report that PARP1 binds to two separate motifs on the FoxO1 promoter and represses its transcription in a polymerase-independent manner. Using PARP1-knock out (KO) cells, wild-type-PARP1-complemented cells and catalytic mutant PARP1E988K-reconstituted cells, we investigated transcriptional regulation by PARP1. PARP1 loss led to reduced DNA damage response and ~362-fold resistance to five PARP inhibitors (PARPis) in Ewing sarcoma cells. RNA sequencing showed 492 differentially expressed genes in a PARP1-KO subline, in which the FoxO1 mRNA levels increased up to more than five times. The change in the FoxO1 expression was confirmed at both mRNA and protein levels in different PARP1-KO and complemented cells. Moreover, exogenous PARP1 overexpression reduced the endogenous FoxO1 protein in RD-ES cells. Competitive EMSA and ChIP assays revealed that PARP1 specifically bound to the FoxO1 promoter. DNase I footprinting, mutation analyses, and DNA pulldown FREP assays showed that PARP1 bound to two particular nucleotide sequences separately located at −813 to −826 bp and −1805 to −1828 bp regions on the FoxO1 promoter. Either the PARPi olaparib or the PARP1 catalytic mutation (E988K) did not impair the repression of PARP1 on the FoxO1 expression. Exogenous FoxO1 overexpression did not impair cellular PARPi sensitivity. These findings demonstrate a new PARP1-gene promoter binding mode and a new transcriptional FoxO1 gene repressor.
Collapse
Affiliation(s)
- Yu-Nan Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chang-Qing Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China. .,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
20
|
Pazzaglia S, Pioli C. Multifaceted Role of PARP-1 in DNA Repair and Inflammation: Pathological and Therapeutic Implications in Cancer and Non-Cancer Diseases. Cells 2019; 9:cells9010041. [PMID: 31877876 PMCID: PMC7017201 DOI: 10.3390/cells9010041] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
PARP-1 (poly(ADP-ribose)-polymerase 1), mainly known for its protective role in DNA repair, also regulates inflammatory processes. Notably, defects in DNA repair and chronic inflammation may both predispose to cancer development. On the other hand, inhibition of DNA repair and inflammatory responses can be beneficial in cancer therapy and PARP inhibitors are currently used for their lethal effects on tumor cells. Furthermore, excess of PARP-1 activity has been associated with many tumors and inflammation-related clinical conditions, including asthma, sepsis, arthritis, atherosclerosis, and neurodegenerative diseases, to name a few. Activation and inhibition of PARP represent, therefore, a double-edged sword that can be exploited for therapeutic purposes. In our review, we will discuss recent findings highlighting the composite multifaceted role of PARP-1 in cancer and inflammation-related diseases.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| | - Claudio Pioli
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| |
Collapse
|
21
|
Khan MA, Khurana N, Ahmed RS, Umar S, Md G Sarwar AH, Alam Q, Kamal MA, Ashraf GM. Chemokines: A Potential Therapeutic Target to Suppress Autoimmune Arthritis. Curr Pharm Des 2019; 25:2937-2946. [PMID: 31580792 DOI: 10.2174/1381612825666190709205028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chemokines are a family of low molecular weight proteins that induce chemotaxis of inflammatory cells, which mainly depends on the recognition of a chemo-attractant gradient and interaction with the substratum. In Rheumatoid Arthritis (RA), abundant chemokines are expressed in synovial tissue, cause inflammatory cells migration into the inflamed joint that necessitates the formation of new blood vessels i.e. angiogenesis. Over the decades, studies showed that continuous inflammation may lead to the loss of tissue architecture and function, causing severe disability and cartilage destruction. In spite of the advancement of modern drug therapy, thousands of arthritic patients suffer mortality and morbidity globally. Thus, there is an urgent need for the development of novel therapeutic agents for the treatment of RA. METHODS This review is carried out throughout a non-systematic search of the accessible literature, will provide an overview of the current information of chemokine in RA and also exploring the future perspective of the vital role of targeting chemokine in RA treatment. RESULTS Since, chemokines are associated with inflammatory cells/leucocyte migration at the site of inflammation in chronic inflammatory diseases and hence, blockade or interference with chemokines activity showing a potential approach for the development of new anti-inflammatory agents. Currently, results obtained from both preclinical and clinical studies showed significant improvement in arthritis. CONCLUSION This review summarizes the role of chemokines and their receptors in the pathogenesis of RA and also indicates possible interactions of chemokines/receptors with various synthetic and natural compounds that may be used as a potential therapeutic target in the future for the treatment of RA.
Collapse
Affiliation(s)
- Mahmood A Khan
- Department of Biochemistry, University College of Medical Sciences & GTB Hospital, Dilshad Garden, Delhi 110095, India
| | - Nikhil Khurana
- Department of Biochemistry, University College of Medical Sciences & GTB Hospital, Dilshad Garden, Delhi 110095, India
| | - Rafat S Ahmed
- Department of Biochemistry, University College of Medical Sciences & GTB Hospital, Dilshad Garden, Delhi 110095, India
| | - Sadiq Umar
- Division of Rheumatology, University of Illinois, Clinical Science Building (CSB), Chicago, IL-60612, United States
| | - Abu H Md G Sarwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Qamre Alam
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Novel Global Community Educational Foundation, NSW, Australia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Chen W, Yi C, Jin L. The Role of Nicotinamide Adenine Dinucleotide in the Pathogenesis of Rheumatoid Arthritis: Potential Implications for Treatment. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10312205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory, autoimmune disease characterised by small joint swelling, deformity, and dysfunction. Its exact aetiology is unclear. Current treatment approaches do not control harmful autoimmune attacks or prevent irreversible damage without considerable side effects. Nicotinamide adenine dinucleotide (NAD+), an important hydrogen carrier in mitochondrial respiration and oxidative phosphorylation, is the major determinant of redox state in the cell. NAD+ metabolites act as degradation substrates for a wide range of enzymes, such as sirtuins, poly-ADP-ribose polymerases, ADP-ribosyltransferases, and CD38. The roles of NAD+ have expanded beyond its role as a coenzyme, linking cellular metabolism to inflammation signalling and immune response. The aim of this review is to illustrate the role of NAD+-related enzymes in the pathogenesis of RA and highlight the potential therapeutic role of NAD+ in RA.
Collapse
Affiliation(s)
- Weiqian Chen
- Department of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Yi
- Department of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Jin
- Department of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Li G, Martínez-Bonet M, Wu D, Yang Y, Cui J, Nguyen HN, Cunin P, Levescot A, Bai M, Westra HJ, Okada Y, Brenner MB, Raychaudhuri S, Hendrickson EA, Maas RL, Nigrovic PA. High-throughput identification of noncoding functional SNPs via type IIS enzyme restriction. Nat Genet 2018; 50:1180-1188. [PMID: 30013183 PMCID: PMC6072570 DOI: 10.1038/s41588-018-0159-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWAS) have identified many disease-associated noncoding variants, but cannot distinguish functional single-nucleotide polymorphisms (fSNPs) from others that reside incidentally within risk loci. To address this challenge, we developed an unbiased high-throughput screen that employs type IIS enzymatic restriction to identify fSNPs that allelically modulate the binding of regulatory proteins. We coupled this approach, termed SNP-seq, with flanking restriction enhanced pulldown (FREP) to identify regulation of CD40 by three disease-associated fSNPs via four regulatory proteins, RBPJ, RSRC2 and FUBP-1/TRAP150. Applying this approach across 27 loci associated with juvenile idiopathic arthritis, we identified 148 candidate fSNPs, including two that regulate STAT4 via the regulatory proteins SATB2 and H1.2. Together, these findings establish the utility of tandem SNP-seq/FREP to bridge the gap between GWAS and disease mechanism.
Collapse
Affiliation(s)
- Gang Li
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Cardiology and The Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Marta Martínez-Bonet
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Di Wu
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yu Yang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiology and The Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Cui
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hung N Nguyen
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pierre Cunin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anaïs Levescot
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ming Bai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Eric A Hendrickson
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Richard L Maas
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Xia Q, Lu S, Ostrovsky J, McCormack SE, Falk MJ, Grant SFA. PARP-1 Inhibition Rescues Short Lifespan in Hyperglycemic C. Elegans And Improves GLP-1 Secretion in Human Cells. Aging Dis 2018; 9:17-30. [PMID: 29392078 PMCID: PMC5772855 DOI: 10.14336/ad.2017.0230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 01/12/2023] Open
Abstract
TCF7L2 is located at one of the most strongly associated type 2 diabetes loci reported to date. We previously reported that the most abundant member of a specific protein complex to bind across the presumed causal variant at this locus, rs7903146, was poly [ADP-ribose] polymerase type 1 (PARP-1). We analyzed the impact of PARP-1 inhibition on C. elegans health in the setting of hyperglycemia and on glucose-stimulated GLP-1 secretion in human intestinal cells. Given that high glucose concentrations progressively shorten the lifespan of C. elegans, in part by impacting key well-conserved insulin-modulated signaling pathways, we investigated the effect of PARP-1 inhibition with Olaparib on the lifespan of C. elegans nematodes under varying hyperglycemic conditions. Subsequently, we investigated whether Olaparib treatment had any effect on glucose-stimulated GLP-1 secretion in the human NCI-H716 intestinal cell line, a model system for the investigation of enteroendocrine function. Treatment with 100uM Olaparib in nematodes exposed to high concentrations of glucose led to significant lifespan rescue. The beneficial lifespan effect of Olaparib appeared to require both PARP-1 and TCF7L2, since treatment had no effect in hyperglycemic conditions in knock-out worm strains for either of these homologs. Further investigation using the NCI-H716 cells revealed that Olaparib significantly enhanced secretion of the incretin, GLP-1, plus the gene expression of TCF7L2, GCG and PC1. These data from studies in both C. elegans and a human cell line suggest that PARP-1 inhibition offers a novel therapeutic avenue to treat type 2 diabetes.
Collapse
Affiliation(s)
- Qianghua Xia
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sumei Lu
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- 2Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,4Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marni J Falk
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,2Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,4Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Nigrovic PA, Raychaudhuri S, Thompson SD. Review: Genetics and the Classification of Arthritis in Adults and Children. Arthritis Rheumatol 2017; 70:7-17. [PMID: 29024575 DOI: 10.1002/art.40350] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022]
Abstract
Current classification of primary inflammatory arthritis begins from the assumption that adults and children are different. No form of juvenile idiopathic arthritis bears the same name as an adult arthritis, a nomenclature gap with implications for both clinical care and research. Recent genetic data have raised questions regarding this adult/pediatric divide, revealing instead broad patterns that span the age spectrum. Combining these genetic patterns with demographic and clinical data, we propose that inflammatory arthritis can be segregated into 4 main clusters, largely irrespective of pediatric or adult onset: seropositive, seronegative (likely including a distinct group that usually begins in early childhood), spondyloarthritis, and systemic. Each of these broad clusters is internally heterogeneous, highlighting the need for further study to resolve etiologically discrete entities. Eliminating divisions based on arbitrary age cutoffs will enhance opportunities for collaboration between adult and pediatric rheumatologists, thereby helping to promote the understanding and treatment of arthritis.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Soumya Raychaudhuri
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | |
Collapse
|
26
|
Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. Chemokine isoforms and processing in inflammation and immunity. J Autoimmun 2017; 85:45-57. [PMID: 28684129 DOI: 10.1016/j.jaut.2017.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
The first dimension of chemokine heterogeneity is reflected by their discovery and purification as natural proteins. Each of those chemokines attracted a specific inflammatory leukocyte type. With the introduction of genomic technologies, a second wave of chemokine heterogeneity was established by the discovery of putative chemokine-like sequences and by demonstrating chemotactic activity of the gene products in physiological leukocyte homing. In the postgenomic era, the third dimension of chemokine heterogeneity is the description of posttranslational modifications on most chemokines. Proteolysis of chemokines, for instance by dipeptidyl peptidase IV (DPP IV/CD26) and by matrix metalloproteinases (MMPs) is already well established as a biological control mechanism to activate, potentiate, dampen or abrogate chemokine activities. Other posttranslational modifications are less known. Theoretical N-linked and O-linked attachment sites for chemokine glycosylation were searched with bio-informatic tools and it was found that most chemokines are not glycosylated. These findings are corroborated with a low number of experimental studies demonstrating N- or O-glycosylation of natural chemokine ligands. Because attached oligosaccharides protect proteins against proteolytic degradation, their absence may explain the fast turnover of chemokines in the protease-rich environments of infection and inflammation. All chemokines interact with G protein-coupled receptors (GPCRs) and glycosaminoglycans (GAGs). Whether lectin-like GAG-binding induces cellular signaling is not clear, but these interactions are important for leukocyte migration and have already been exploited to reduce inflammation. In addition to selective proteolysis, citrullination and nitration/nitrosylation are being added as biologically relevant modifications contributing to functional chemokine heterogeneity. Resulting chemokine isoforms with reduced affinity for GPCRs reduce leukocyte migration in various models of inflammation. Here, these third dimension modifications are compared, with reflections on the biological and pathological contexts in which these posttranslational modifications take place and contribute to the repertoire of chemokine functions and with an emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
27
|
Frank-Bertoncelj M, Klein K, Gay S. Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis. Epigenomics 2017; 9:493-504. [PMID: 28322583 DOI: 10.2217/epi-2016-0142] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic and environmental factors contribute to the risk for rheumatoid arthritis (RA), with epigenetics serving as a possible interface through which risk factors contribute to RA. High-throughput technologies for interrogating genome and epigenome, and the availability of genetic and epigenetic datasets across a diversity of cell types, enable the identification of candidate causal genetic variants for RA to study their function in core RA processes. To date, RA risk variants were studied in the immune cells but not joint resident cells, for example, synovial fibroblasts. Synovial fibroblasts from different joints are distinct, anatomically specialized cells, defined by joint-specific transcriptomes, epigenomes and phenotypes. Cell type-specific analysis of epigenetic changes, together with genetic fine mapping and interrogation of chromatin 3D interactions may identify new disease relevant pathways, potential therapeutic targets and biomarkers for RA progression or therapy response.
Collapse
Affiliation(s)
| | - Kerstin Klein
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| |
Collapse
|