1
|
Sznajder ŁJ, Khan M, Ciesiołka A, Tadross M, Nutter CA, Taylor K, Pearson CE, Lewis MH, Hines RM, Swanson MS, Sobczak K, Yuen RKC. Autism-related traits in myotonic dystrophy type 1 model mice are due to MBNL sequestration and RNA mis-splicing of autism-risk genes. Nat Neurosci 2025:10.1038/s41593-025-01943-0. [PMID: 40259070 DOI: 10.1038/s41593-025-01943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/14/2025] [Indexed: 04/23/2025]
Abstract
Genome-wide enrichment of gene-specific tandem repeat expansions has been linked to autism spectrum disorder. One such mutation is the CTG tandem repeat expansion in the 3' untranslated region of the DMPK gene, which is known to cause myotonic muscular dystrophy type 1. Although there is a clear clinical association between autism and myotonic dystrophy, the molecular basis for this connection remains unknown. Here, we report that sequestration of MBNL splicing factors by mutant DMPK RNAs with expanded CUG repeats alters the RNA splicing patterns of autism-risk genes during brain development, particularly a class of autism-relevant microexons. We demonstrate that both DMPK-CTG expansion and Mbnl null mouse models recapitulate autism-relevant mis-splicing profiles, along with social behavioral deficits and altered responses to novelty. These findings support our model that myotonic dystrophy-associated autism arises from developmental mis-splicing of autism-risk genes.
Collapse
Affiliation(s)
- Łukasz J Sznajder
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA.
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA.
| | - Mahreen Khan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Ciesiołka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Mariam Tadross
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
- Department of Psychiatry, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Christopher E Pearson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark H Lewis
- Department of Psychiatry, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada, Las Vegas, NV, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan K C Yuen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Carrascosa-Sàez M, Colom-Rodrigo A, González-Martínez I, Pérez-Gómez R, García-Rey A, Piqueras-Losilla D, Ballestar A, Llamusí B, Cerro-Herreros E, Artero R. Use of HSA LR female mice as a model for the study of myotonic dystrophy type I. Lab Anim (NY) 2025; 54:92-102. [PMID: 40016516 PMCID: PMC11957995 DOI: 10.1038/s41684-025-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2025] [Indexed: 03/01/2025]
Abstract
HSALR mice are the most broadly used animal model for studying myotonic dystrophy type I (DM1). However, so far, HSALR preclinical studies have often excluded female mice or failed to document the biological sex of the animals. This leaves an unwanted knowledge gap concerning the differential development of DM1 in males and females, particularly considering that the disease has a different clinical presentation in men and women. Here we compared typical functional measurements, histological features, molecular phenotypes and biochemical plasma profiles in the muscles of male and female HSALR mice in search of any significant between-sex differences that could justify this exclusion of female mice in HSALR studies and, critically, in candidate therapy assays performed with this model. We found no fundamental differences between HSALR males and females during disease development. Both sexes presented comparable functional and tissue phenotypes, with similar molecular muscle profiles. The only sex differences and significant interactions observed were in plasma biochemical parameters, which are also intrinsically variable in patients with DM1. In addition, we tested the influence of age on these measurements. We therefore suggest including female HSALR mice in regular DM1 studies, and recommend documenting the sex of animals, especially in studies focusing on metabolic alterations. This will allow researchers to detect and report any potential differences between male and female HSALR mice, especially regarding the efficacy of experimental treatments that could be relevant to patients with DM1.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- ARTHEx Biotech, Paterna, Spain
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Spain
| | - Anna Colom-Rodrigo
- ARTHEx Biotech, Paterna, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Irene González-Martínez
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Raquel Pérez-Gómez
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Andrea García-Rey
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
- ARTHEx Biotech, Paterna, Spain
| | | | - Ana Ballestar
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | | | - Estefanía Cerro-Herreros
- ARTHEx Biotech, Paterna, Spain.
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain.
- Incliva Biomedical Research Institute, Valencia, Spain.
| | - Ruben Artero
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
3
|
Morales F, Vargas D, Palma-Jiménez M, Rodríguez EJ, Azofeifa G, Hernández-Hernández O. Natural Antioxidants Reduce Oxidative Stress and the Toxic Effects of RNA-CUG (exp) in an Inducible Glial Myotonic Dystrophy Type 1 Cell Model. Antioxidants (Basel) 2025; 14:260. [PMID: 40227219 PMCID: PMC11939792 DOI: 10.3390/antiox14030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
The toxic gain-of-function of RNA-CUG(exp) in DM1 has been largely studied in skeletal muscle, with little focus on its effects on the central nervous system (CNS). This study aimed to study if oxidative stress is present in DM1, its relationship with the toxic RNA gain-of-function and if natural antioxidants can revert some of the RNA-CUG(exp) toxic effects. Using an inducible glial DM1 model (MIO-M1 cells), we compared OS in expanded vs. unexpanded cells and investigated whether antioxidants can mitigate OS and RNA-CUG(exp) toxicity. OS was measured via superoxide anion and lipid peroxidation assays. RNA foci were identified using FISH, and the mis-splicing of selected exons was analyzed using semi-quantitative RT-PCR. Cells were treated with natural antioxidants, and the effects on OS, foci formation, and mis-splicing were compared between treated and untreated cells. The results showed significantly higher superoxide anion and lipid peroxidation levels in untreated DM1 cells, which decreased after antioxidant treatment (ANOVA, p < 0.001). Foci were present in 51% of the untreated cells but were reduced in a dose-dependent manner following treatment (ANOVA, p < 0.001). Antioxidants also improved the splicing of selected exons (ANOVA, p < 0.001), suggesting OS plays a role in DM1, and antioxidants may offer therapeutic potential.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Dayana Vargas
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Melissa Palma-Jiménez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Esteban J. Rodríguez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Gabriela Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica;
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, INR-LGII, Mexico City 14389, Mexico;
| |
Collapse
|
4
|
Zhou H, Xu J, Pan L. Functions of the Muscleblind-like protein family and their role in disease. Cell Commun Signal 2025; 23:97. [PMID: 39966885 PMCID: PMC11837677 DOI: 10.1186/s12964-025-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Conserved proteins are characterized by their functions remaining nearly constant throughout evolutionary history, both vertically through time and horizontally across species. In this review, we focus on a class of conserved proteins known as the Muscleblind-like (MBNL) family. As RNA-binding proteins, MBNL family members interact with pre-mRNAs through evolutionarily conserved tandem zinc finger domains and play critical roles in various RNA metabolic processes, including alternative splicing, mRNA stability, trafficking, regulation of subcellular localization, and alternative polyadenylation. Dysregulation of MBNL proteins can lead to severe consequences. Initially, research primarily associated MBNL proteins with myotonic dystrophy. However, recent studies have revealed their involvement in a broad spectrum of physiological and pathological processes, such as embryonic tissue differentiation and circulatory disorders. Furthermore, the emerging role of MBNL proteins in cancer sheds light on a novel aspect of these evolutionarily ancient proteins. This review provides a comprehensive overview of the MBNL family, emphasizing its structure, the mechanisms underlying its biological functions, and its roles in various diseases.Subject terms: Muscleblind-like-like protein, RNA-binding proteins, Alternative splicing, Tumor, Myotonic dystrophy.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiachi Xu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Liusheng Pan
- Department of anesthesiology, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University, Xinyi, China.
| |
Collapse
|
5
|
Provenzano M, Ikegami K, Bates K, Gaynor A, Hartman JM, Jones A, Butler A, Berggren KN, Dekdebrun J, Hung M, Lapato DM, Kiefer M, Thornton CA, Johnson NE, Hale MA, on behalf of the Myotonic Dystrophy Clinical Research Network (DMCRN). The Splice Index as a prognostic biomarker of strength and function in myotonic dystrophy type 1. J Clin Invest 2025; 135:e185426. [PMID: 39836447 PMCID: PMC11827844 DOI: 10.1172/jci185426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUNDMyotonic dystrophy type 1 (DM1) is a multisystemic, CTG repeat expansion disorder characterized by a slow, progressive decline in skeletal muscle function. A biomarker correlating RNA mis-splicing, the core pathogenic disease mechanism, and muscle performance is crucial for assessing response to disease-modifying interventions. We evaluated the Myotonic Dystrophy Splice Index (SI), a composite RNA splicing biomarker incorporating 22 disease-specific events, as a potential biomarker of DM1 muscle weakness.METHODSTotal RNA sequencing of tibialis anterior biopsies from 58 DM1 participants and 33 unaffected/disease controls was used to evaluate RNA splicing events across the disease spectrum. Targeted RNA sequencing was used to derive the SI from biopsies collected at baseline (n = 52) or a 3-month (n = 37) follow-up visit along with clinical measures of muscle performance.RESULTSThe SI demonstrated significant associations with measures of muscle strength and ambulation, including ankle dorsiflexion (ADF) strength and 10-meter run/fast walk (Pearson's r = -0.719 and -0.680, respectively). The SI was relatively stable over 3 months (intraclass correlation coefficient [ICC] = 0.863). Latent-class analysis identified 3 DM1 subgroups stratified by baseline SI (SIMild, SIModerate, and SISevere); SIModerate individuals had a significant increase in the SI over 3 months. Multiple linear regression modeling revealed that baseline ADF and SI were predictive of strength at 3 months (adjusted R² = 0.830).CONCLUSIONThe SI is a reliable biomarker that captures associations of RNA mis-splicing with physical strength and mobility and has prognostic utility to predict future function, establishing it as a potential biomarker for assessment of therapeutic target engagement.TRIAL REGISTRATIONClinicalTrials.gov NCT03981575.FUNDINGFDA (7R01FD006071), Myotonic Dystrophy Foundation, Wyck Foundation, Muscular Dystrophy Association, Novartis, Dyne, Avidity, PepGen, Takeda, Sanofi Genzyme, Pfizer, Arthex, and Vertex Pharmaceuticals.
Collapse
Affiliation(s)
- Marina Provenzano
- Center for Inherited Myology Research and
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kobe Ikegami
- Center for Inherited Myology Research and
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kameron Bates
- Center for Inherited Myology Research and
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Alison Gaynor
- Center for Inherited Myology Research and
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Julia M. Hartman
- Center for Inherited Myology Research and
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Aileen Jones
- Center for Inherited Myology Research and
- Children’s Hospital of Richmond at Virginia Commonwealth University, Pediatric Therapy Services, Richmond, Virginia, USA
| | - Amanda Butler
- Center for Inherited Myology Research and
- Children’s Hospital of Richmond at Virginia Commonwealth University, Pediatric Therapy Services, Richmond, Virginia, USA
| | - Kiera N. Berggren
- Center for Inherited Myology Research and
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jeanne Dekdebrun
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Man Hung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Dana M. Lapato
- Department of Human and Molecular Genetics, School of Medicine and
| | - Michael Kiefer
- Center for Inherited Myology Research and
- Department of Physical Therapy, College of Health Professions, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Charles A. Thornton
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nicholas E. Johnson
- Center for Inherited Myology Research and
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Melissa A. Hale
- Center for Inherited Myology Research and
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
6
|
Dansereau SJ, Cui H, Dartawan RP, Sheng J. The Plethora of RNA-Protein Interactions Model a Basis for RNA Therapies. Genes (Basel) 2025; 16:48. [PMID: 39858595 PMCID: PMC11765398 DOI: 10.3390/genes16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The notion of RNA-based therapeutics has gained wide attractions in both academic and commercial institutions. RNA is a polymer of nucleic acids that has been proven to be impressively versatile, dating to its hypothesized RNA World origins, evidenced by its enzymatic roles in facilitating DNA replication, mRNA decay, and protein synthesis. This is underscored through the activities of riboswitches, spliceosomes, ribosomes, and telomerases. Given its broad range of interactions within the cell, RNA can be targeted by a therapeutic or modified as a pharmacologic scaffold for diseases such as nucleotide repeat disorders, infectious diseases, and cancer. RNA therapeutic techniques that have been researched include, but are not limited to, CRISPR/Cas gene editing, anti-sense oligonucleotides (ASOs), siRNA, small molecule treatments, and RNA aptamers. The knowledge gleaned from studying RNA-centric mechanisms will inevitably improve the design of RNA-based therapeutics. Building on this understanding, we explore the physiological diversity of RNA functions, examine specific dysfunctions, such as splicing errors and viral interactions, and discuss their therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, SUNY, 1400 Washington Ave Extension, Albany, NY 12222, USA; (S.J.D.); (H.C.)
| |
Collapse
|
7
|
Hartman JM, Ikegami K, Provenzano M, Bates K, Butler A, Jones AS, Berggren KN, Dekdebrun J, McKay MJ, Baldwin JN, Cornett KMD, Burns J, Kiefer M, Johnson NE, Hale MA. RNA mis-splicing in children with congenital myotonic dystrophy is associated with physical function. Ann Clin Transl Neurol 2024; 11:3175-3191. [PMID: 39450929 DOI: 10.1002/acn3.52224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Dysregulated RNA alternative splicing is the hallmark of myotonic dystrophy type 1 (DM1). However, the association between RNA mis-splicing and physical function in children with the most severe form of disease, congenital myotonic dystrophy (CDM), is unknown. METHODS Eighty-two participants (42 adults with DM1 and 40 children with CDM) with muscle biopsies and measures of myotonia, motor function, and strength were combined from five observational studies. Data were normalized and correlated with an aggregate measure of alternative splicing dysregulation, [MBNL]inferred, in skeletal muscle biopsies. Multiple linear regression analysis was performed to predict [MBNL]inferred using clinical outcome measures alone. Similar analyses were performed to predict 12-month physical function using baseline metrics. RESULTS Myotonia (measured via vHOT) was significantly correlated with RNA mis-splicing in our cross-sectional population of all DM1 individuals; CDM participants alone displayed no myotonia despite a similar range of RNA mis-splicing. Measures of motor performance and muscle strength were significantly associated with [MBNL]inferred in our cohort of all DM1 individuals and when assessing children with CDM independently. Multiple linear regression analyses yielded two models capable of predicting [MBNL]inferred from select clinical outcome assessments alone in all subjects (adjusted R2 = 0.6723) or exclusively in children with CDM (adjusted R2 = 0.5875). INTERPRETATION Our findings establish significant correlations between skeletal muscle performance and a composite measure of alternative splicing dysregulation, [MBNL]inferred, in DM1. The strength of these correlations and the development of predictive models will assist in designing efficacious clinical trials for individuals with DM1, particularly CDM.
Collapse
Affiliation(s)
- Julia M Hartman
- Medical Scientist Training Program, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Kobe Ikegami
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Marina Provenzano
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Kameron Bates
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Amanda Butler
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Children's Hospital of Richmond at Virginia Commonwealth University, Pediatric Therapy Services, Richmond, Virginia, 23220, USA
| | - Aileen S Jones
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Children's Hospital of Richmond at Virginia Commonwealth University, Pediatric Therapy Services, Richmond, Virginia, 23220, USA
| | - Kiera N Berggren
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Jeanne Dekdebrun
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Marnee J McKay
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jennifer N Baldwin
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Kayla M D Cornett
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Children's Hospitals Network (Randwick and Westmead), Sydney, New South Wales, Australia
| | - Joshua Burns
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Children's Hospitals Network (Randwick and Westmead), Sydney, New South Wales, Australia
| | - Michael Kiefer
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Nicholas E Johnson
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Melissa A Hale
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| |
Collapse
|
8
|
Aoki Y, Yanaizu M, Ohki A, Nishimiya K, Kino Y. CUG repeat RNA-dependent proteasomal degradation of MBNL1 in a cellular model of myotonic dystrophy type 1. Biochem Biophys Res Commun 2024; 733:150729. [PMID: 39326259 DOI: 10.1016/j.bbrc.2024.150729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expansion of a non-coding CTG repeat in DMPK. CUG-repeat-containing transcripts sequester the splicing regulator MBNL1 into nuclear RNA foci, causing aberrant splicing of many genes. Although the mislocalization of MBNL1 represents a causal event in DM1 pathogenesis, the effect of CUG repeat RNA on the protein level of MBNL1 remains unclear. Using a DM1 model cell line, we found that CUG repeat RNA caused a significant decrease in the protein, but not mRNA levels, of MBNL1. As CUG repeats did not decrease MBNL1 translation, we investigated protein degradation pathways. Although autophagy-related reagents induced little change, proteasome inhibitors partially recovered MBNL1 protein expression levels under conditions of CUG repeat expression and induced a slight, but significant, reversal of splicing dysregulation. MBNL1 was detected in the polyubiquitinated protein fraction, but MBNL1 polyubiquitination was not detected. Moreover, inhibition of the ubiquitin-activating enzyme E1 did not increase MBNL1 levels, suggesting that MBNL1 is a substrate of polyubiquitin-independent proteasomal degradation. These results suggest that CUG-repeat-induced proteasomal degradation partially contributes to the functional decline of MBNL1.
Collapse
Affiliation(s)
- Yoshitaka Aoki
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Motoaki Yanaizu
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Ai Ohki
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Kai Nishimiya
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Yoshihiro Kino
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
9
|
Louis JM, Frias JA, Schroader JH, Jones LA, Davey EE, Lennon CD, Chacko J, Cleary JD, Berglund JA, Reddy K. Expression levels of core spliceosomal proteins modulate the MBNL-mediated spliceopathy in DM1. Hum Mol Genet 2024; 33:1873-1886. [PMID: 39180495 PMCID: PMC11540926 DOI: 10.1093/hmg/ddae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/26/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a heterogeneous multisystemic disease caused by a CTG repeat expansion in DMPK. Transcription of the expanded allele produces toxic CUG repeat RNA that sequesters the MBNL family of alternative splicing (AS) regulators into ribonuclear foci, leading to pathogenic mis-splicing. To identify genetic modifiers of toxic CUG RNA levels and the spliceopathy, we performed a genome-scale siRNA screen using an established HeLa DM1 repeat-selective screening platform. We unexpectedly identified core spliceosomal proteins as a new class of modifiers that rescue the spliceopathy in DM1. Modest knockdown of one of our top hits, SNRPD2, in DM1 fibroblasts and myoblasts, significantly reduces DMPK expression and partially rescues MBNL-regulated AS dysfunction. While the focus on the DM1 spliceopathy has centered around the MBNL proteins, our work reveals an unappreciated role for MBNL:spliceosomal protein stoichiometry in modulating the spliceopathy, revealing new biological and therapeutic avenues for DM1.
Collapse
Affiliation(s)
- Jiss M Louis
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jesus A Frias
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Lindsey A Jones
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Emily E Davey
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Claudia D Lennon
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jacob Chacko
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - John D Cleary
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - J Andrew Berglund
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| |
Collapse
|
10
|
Itoh H, Hisamatsu T, Segawa K, Takahashi T, Sato T, Takada H, Kuru S, Wada C, Suzuki M, Tamura T, Suwazono S, Kimura K, Matsumura T, Takahashi MP. CTG repeat length underlying cardiac events and sudden death in myotonic dystrophy type 1. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae078. [PMID: 39391712 PMCID: PMC11465163 DOI: 10.1093/ehjopen/oeae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Aims Myotonic dystrophy Type 1 (DM1) is caused by the expansion of CTG repeats (CTGn) in the DM1 protein kinase (DMPK) gene, while it remains unclear whether CTGn may be associated with the incidence of cardiac events or sudden death in Japan as well as Europe. The aim of this study was to investigate the association between CTGn and cardiac involvements. Methods and results This cohort study included patients with DM1 who were retrospectively recruited from nine Japanese hospitals specializing in neuromuscular diseases. A total of 496 patients with DM1 who underwent a genetic test in the DMPK gene were analysed. Patients with congenital form or under 15 years old were excluded and patients were assigned into the quartiles. When we compared the incidence of cardiac events including advanced/complete atrioventricular block, pacemaker implantation, and ventricular tachycardias or mortality among four groups, patients with 1300 or longer CTGn experienced composite cardiac events [hazard ratio (HR): 3.19, 95% confidence interval (CI): 1.02-9.99, P = 0.014] more frequently and had significantly higher mortality rate (HR: 6.79, 95% CI: 2.05-22.49, P < 0.001) than those under 400 CTGn while the rate of sudden death was not significantly different. Conclusion Regarding the cardiac events and mortality in patients with DM1, patients with 1300 or longer CTGn are at especially high risk.
Collapse
Affiliation(s)
- Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Seta Tsuknowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takashi Hisamatsu
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiko Segawa
- Department of Cardiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Toshiaki Takahashi
- Department of Neurology, NHO Sendai Nishitaga Hospital, 2-11-11 Kagitorihoncho, Taihaku-ku, Sendai 982-8555, Japan
| | - Takumi Sato
- Department of Pediatrics, NHO Hirosaki General Medical Center, 1 Tominochou, Hirosaki, Aomori 036-8545, Japan
| | - Hiroto Takada
- Department of Neurology, NHO Aomori National Hospital, 155-1 Namioka-Megasawa-Hirano, Aomori 038-1331, Japan
| | - Satoshi Kuru
- Department of Neurology, NHO Suzuka National Hospital, 3-2-1 Kasado, Suzuka, Mie 513-8501, Japan
| | - Chizu Wada
- Department of Neurology, NHO Akita National Hospital, 84-40 Idonosawa, Uchimichikawa, Iwaki, Yurihonjo, Akita 018-1393, Japan
| | - Mikiya Suzuki
- Department of Neurology, NHO Higashisaitama Hospital, 4147 Kurohama, Hasuda, Saitama 349-0196, Japan
| | - Takuhisa Tamura
- Department of Neurology, NHO Higashisaitama Hospital, 4147 Kurohama, Hasuda, Saitama 349-0196, Japan
| | - Shugo Suwazono
- Department of Neurology and Center for Clinical Neuroscience, NHO Okinawa National Hospital, 3-20-14 Ganeko, Ginowan, Okinawa 901-2214, Japan
| | - Koichi Kimura
- Department of Laboratory Medicine/Cardiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, NHO Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552, Japan
| | - Masanori P Takahashi
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Hartman JM, Ikegami K, Provenzano M, Bates K, Butler A, Jones AS, Berggren KN, Dekdebrun J, McKay MJ, Baldwin JN, Cornett KMD, Burns J, Kiefer M, Johnson NE, Hale MA. RNA mis-splicing in children with myotonic dystrophy is associated with physical function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.600889. [PMID: 39109179 PMCID: PMC11302619 DOI: 10.1101/2024.07.03.600889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Objectives Dysregulated RNA alternative splicing is the hallmark of myotonic dystrophy type 1 (DM1). However, the association between RNA mis-splicing and physical function in children with the most severe form of disease, congenital myotonic dystrophy (CDM), is unknown. Methods 82 participants (42 DM1 adults & 40 CDM children) with muscle biopsies and measures of myotonia, motor function, and strength were combined from five observational studies. Data were normalized and correlated with an aggregate measure of alternative splicing dysregulation, [MBNL] inferred in skeletal muscle biopsies. Multiple linear regression analysis was performed to predict [MBNL] inferred using clinical outcome measures alone. Similar analyses were performed to predict 12-month physical function using baseline metrics. Results Myotonia (measured via vHOT) was significantly correlated with RNA mis-splicing in our cross-sectional population of all DM1 individuals; CDM participants alone displayed no myotonia despite a similar range of RNA mis-splicing. Measures of motor performance and muscle strength were significantly associated with [MBNL] inferred in our cohort of all DM1 individuals and when assessing CDM children independently. Multiple linear regression analyses yielded two models capable of predicting [MBNL] inferred from select clinical outcome assessments alone in all subjects (adjusted R 2 = 0.6723) or exclusively in CDM children (adjusted R 2 = 0.5875). Interpretation Our findings establish significant correlations between skeletal muscle performance and a composite measure of alternative splicing dysregulation, [MBNL] inferred, in DM1. The strength of these correlations and the development of the predictive models will assist in designing efficacious clinical trials for individuals with DM1, particularly CDM.
Collapse
|
12
|
Shorrock HK, Lennon CD, Aliyeva A, Davey EE, DeMeo CC, Pritchard CE, Planco L, Velez JM, Mascorro-Huamancaja A, Shin DS, Cleary JD, Berglund JA. Widespread alternative splicing dysregulation occurs presymptomatically in CAG expansion spinocerebellar ataxias. Brain 2024; 147:486-504. [PMID: 37776516 PMCID: PMC10834251 DOI: 10.1093/brain/awad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 10/02/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Claudia D Lennon
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Asmer Aliyeva
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | - Emily E Davey
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Cristina C DeMeo
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Lori Planco
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Jose M Velez
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - John D Cleary
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| |
Collapse
|
13
|
Nowzari ZR, Hale M, Ellis J, Biaesch S, Vangaveti S, Reddy K, Chen AA, Berglund JA. Mutation of two intronic nucleotides alters RNA structure and dynamics inhibiting MBNL1 and RBFOX1 regulated splicing of the Insulin Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574689. [PMID: 38260517 PMCID: PMC10802415 DOI: 10.1101/2024.01.08.574689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alternative splicing (AS) of Exon 11 of the Insulin Receptor ( INSR ) is highly regulated and disrupted in several human disorders. To better understand INSR exon 11 AS regulation, splicing activity of an INSR exon 11 minigene reporter was measured across a gradient of the AS regulator muscleblind-like 1 protein (MBNL1). The RNA-binding protein Fox-1 (RBFOX1) was added to determine its impact on MBNL1-regulated splicing. The role of the RBFOX1 UGCAUG binding site within intron 11 was assessed across the MBNL1 gradient. Mutating the UGCAUG motif inhibited RBFOX1 regulation of exon 11 and had the unexpected effect of reducing MBNL1 regulation of this exon. Molecular dynamics simulations showed that exon 11 and the adjacent RNA adopts a dynamically stable conformation. Mutation of the RBFOX1 binding site altered RNA structure and dynamics, while a mutation that created an optimal MBNL1 binding site at the RBFOX1 site shifted the RNA back to wild type. An antisense oligonucleotide (ASO) was used to confirm the structure in this region of the pre-mRNA. This example of intronic mutations shifting pre-mRNA structure and dynamics to modulate splicing suggests RNA structure and dynamics should be taken into consideration for AS regulation and therapeutic interventions targeting pre-mRNA.
Collapse
|
14
|
Nakamori M, Nakatani D, Sato T, Hasuike Y, Kon S, Saito T, Nakamura H, Takahashi MP, Hida E, Komaki H, Matsumura T, Takada H, Mochizuki H. Erythromycin for myotonic dystrophy type 1: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. EClinicalMedicine 2024; 67:102390. [PMID: 38314057 PMCID: PMC10837534 DOI: 10.1016/j.eclinm.2023.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is a devastating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene, which subsequently triggers toxic RNA expression and dysregulated splicing. In a preclinical study, we demonstrated that erythromycin reduces the toxicity of abnormal RNA and ameliorates the aberrant splicing and motor phenotype in DM1 model mice. Methods This multicentre, randomised, double-blind, placebo-controlled, phase 2 trial was conducted at three centres in Japan to translate preclinical findings into practical applications in patients with DM1 by evaluating the safety and efficacy of erythromycin. Between Nov 29, 2019, and Jan 20, 2022, a total of 30 adult patients with DM1 were enrolled and randomly assigned in a 1:2:2 ratio to receive either placebo or erythromycin at two daily doses (500 mg or 800 mg) for 24 weeks. The primary outcome included the safety and tolerability of erythromycin. The secondary efficacy measures included splicing biomarkers, 6-min walk test results, muscle strength, and serum creatinine kinase (CK) values. This trial is registered with the Japan Registry of Clinical Trials, jRCT2051190069. Findings Treatment-related gastrointestinal symptoms occurred more frequently in the erythromycin group, but all adverse events were mild to moderate and resolved spontaneously. No serious safety concerns were identified. The CK levels from baseline to week 24 decreased in the overall erythromycin group compared with the placebo group (mean change of -6.4 U/L [SD 149] vs +182.8 [SD 228]), although this difference was not statistically significant (p = 0.070). Statistically significant improvements in the overall erythromycin treated groups compared to placebo were seen for two of the eleven splicing biomarkers that were each evaluated in half of the trial sample. These were MBNL1 (p = 0.048) and CACNA1S (p = 0.042). Interpretation Erythromycin demonstrated favourable safety and tolerability profiles in patients with DM1. A well-powered phase 3 trial is needed to evaluate efficacy, building on the preliminary findings from this study. Funding Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Neurology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Daisaku Nakatani
- Medical Centre for Translational Research, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoharu Sato
- Department of Biostatistics & Data Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuhei Hasuike
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiko Kon
- Department of Neurology, NHO Aomori National Hospital, 155-1 Hirano, Namioka, Aomori, 038-1331, Japan
| | - Toshio Saito
- Department of Neurology, NHO Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Harumasa Nakamura
- Translational Medical Centre, National Centre of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8502, Japan
| | - Masanori P. Takahashi
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eisuke Hida
- Department of Biostatistics & Data Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Komaki
- Translational Medical Centre, National Centre of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8502, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, NHO Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Hiroto Takada
- Department of Neurology, NHO Aomori National Hospital, 155-1 Hirano, Namioka, Aomori, 038-1331, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Taylor K, Piasecka A, Kajdasz A, Brzęk A, Polay Espinoza M, Bourgeois CF, Jankowski A, Borowiak M, Raczyńska KD, Sznajder ŁJ, Sobczak K. Modulatory role of RNA helicases in MBNL-dependent alternative splicing regulation. Cell Mol Life Sci 2023; 80:335. [PMID: 37882878 PMCID: PMC10602967 DOI: 10.1007/s00018-023-04927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 10/27/2023]
Abstract
Muscleblind-like splicing regulators (MBNLs) activate or repress the inclusion of alternative splicing (AS) events, enabling the developmental transition of fetal mRNA splicing isoforms to their adult forms. Herein, we sought to elaborate the mechanism by which MBNLs mediate AS related to biological processes. We evaluated the functional role of DEAD-box (DDX) RNA helicases, DDX5 and DDX17 in MBNL-dependent AS regulation. Whole-transcriptome analysis and validation approaches revealed a handful of MBNLs-dependent AS events to be affected by DDX5 and DDX17 in mostly an opposite manner. The opposite expression patterns of these two groups of factors during muscle development and coordination of fetal-to-adult splicing transition indicate the importance of these proteins at early stages of development. The identified pathways of how the helicases modulate MBNL splicing activity include DDX5 and DDX17-dependent changes in the ratio of MBNL splicing isoforms and most likely changes in accessibility of MBNL-binding sites. Another pathway involves the mode of action of the helicases independent of MBNL activity. These findings lead to a deeper understanding of the network of interdependencies between RNA-binding proteins and constitute a valuable element in the discussion on developmental homeostasis and pathological states in which the studied protein factors play a significant role.
Collapse
Affiliation(s)
- Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Agnieszka Piasecka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Arkadiusz Kajdasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aleksandra Brzęk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Micaela Polay Espinoza
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 Allee d'Italie, 69364, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 Allee d'Italie, 69364, Lyon, France
| | - Artur Jankowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Małgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Katarzyna D Raczyńska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
16
|
Davey EE, Légaré C, Planco L, Shaughnessy S, Lennon CD, Roussel MP, Shorrock HK, Hung M, Cleary JD, Duchesne E, Berglund JA. Individual transcriptomic response to strength training for patients with myotonic dystrophy type 1. JCI Insight 2023; 8:e163856. [PMID: 37318869 PMCID: PMC10443797 DOI: 10.1172/jci.insight.163856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of adult-onset muscular dystrophy, is caused by a CTG expansion resulting in significant transcriptomic dysregulation that leads to muscle weakness and wasting. While strength training is clinically beneficial in DM1, molecular effects had not been studied. To determine whether training rescued transcriptomic defects, RNA-Seq was performed on vastus lateralis samples from 9 male patients with DM1 before and after a 12-week strength-training program and 6 male controls who did not undergo training. Differential gene expression and alternative splicing analysis were correlated with the one-repetition maximum strength evaluation method (leg extension, leg press, hip abduction, and squat). While training program-induced improvements in splicing were similar among most individuals, rescued splicing events varied considerably between individuals. Gene expression improvements were highly varied between individuals, and the percentage of differentially expressed genes rescued after training were strongly correlated with strength improvements. Evaluating transcriptome changes individually revealed responses to the training not evident from grouped analysis, likely due to disease heterogeneity and individual exercise response differences. Our analyses indicate that transcriptomic changes are associated with clinical outcomes in patients with DM1 undergoing training and that these changes are often specific to the individual and should be analyzed accordingly.
Collapse
Affiliation(s)
- Emily E. Davey
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Cécilia Légaré
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de recherche Charles-Le Moyne Saguenay–Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Faculté de médecine et des sciences de la santé de l’Université de Sherbrooke, Site Saguenay, Saguenay, Quebec, Canada
| | - Lori Planco
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Sharon Shaughnessy
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Claudia D. Lennon
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Marie-Pier Roussel
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de recherche Charles-Le Moyne Saguenay–Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Faculté de médecine et des sciences de la santé de l’Université de Sherbrooke, Site Saguenay, Saguenay, Quebec, Canada
- Department of Basic Sciences, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Hannah K. Shorrock
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Man Hung
- Department of Orthopaedic Surgery Operations, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
| | - John Douglas Cleary
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Elise Duchesne
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de recherche Charles-Le Moyne Saguenay–Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Faculté de médecine et des sciences de la santé de l’Université de Sherbrooke, Site Saguenay, Saguenay, Quebec, Canada
| | - J. Andrew Berglund
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| |
Collapse
|
17
|
Boyle EA, Her HL, Mueller JR, Naritomi JT, Nguyen GG, Yeo GW. Skipper analysis of eCLIP datasets enables sensitive detection of constrained translation factor binding sites. CELL GENOMICS 2023; 3:100317. [PMID: 37388912 PMCID: PMC10300551 DOI: 10.1016/j.xgen.2023.100317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 07/01/2023]
Abstract
Technology for crosslinking and immunoprecipitation (CLIP) followed by sequencing (CLIP-seq) has identified the transcriptomic targets of hundreds of RNA-binding proteins in cells. To increase the power of existing and future CLIP-seq datasets, we introduce Skipper, an end-to-end workflow that converts unprocessed reads into annotated binding sites using an improved statistical framework. Compared with existing methods, Skipper on average calls 210%-320% more transcriptomic binding sites and sometimes >1,000% more sites, providing deeper insight into post-transcriptional gene regulation. Skipper also calls binding to annotated repetitive elements and identifies bound elements for 99% of enhanced CLIP experiments. We perform nine translation factor enhanced CLIPs and apply Skipper to learn determinants of translation factor occupancy, including transcript region, sequence, and subcellular localization. Furthermore, we observe depletion of genetic variation in occupied sites and nominate transcripts subject to selective constraint because of translation factor occupancy. Skipper offers fast, easy, customizable, and state-of-the-art analysis of CLIP-seq data.
Collapse
Affiliation(s)
- Evan A. Boyle
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jasmine R. Mueller
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jack T. Naritomi
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Grady G. Nguyen
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Hildebrandt RP, Moss KR, Janusz-Kaminska A, Knudson LA, Denes LT, Saxena T, Boggupalli DP, Li Z, Lin K, Bassell GJ, Wang ET. Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes. Nat Commun 2023; 14:3427. [PMID: 37296096 PMCID: PMC10256740 DOI: 10.1038/s41467-023-38923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.
Collapse
Affiliation(s)
- Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Luke A Knudson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lance T Denes
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Tanvi Saxena
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Devi Prasad Boggupalli
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Zhuangyue Li
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kun Lin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Ellis JA, Hale MA, Cleary JD, Wang E, Andrew Berglund J. Alternative splicing outcomes across an RNA-binding protein concentration gradient. J Mol Biol 2023:168156. [PMID: 37230319 DOI: 10.1016/j.jmb.2023.168156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Alternative splicing (AS) is a dynamic RNA processing step that produces multiple RNA isoforms from a single pre-mRNA transcript and contributes to the complexity of the cellular transcriptome and proteome. This process is regulated through a network of cis-regulatory sequence elements and trans-acting factors, most-notably RNA binding proteins (RBPs). The muscleblind-like (MBNL) and RNA binding fox-1 homolog (RBFOX) are two well characterized families of RBPs that regulate fetal to adult AS transitions critical for proper muscle, heart, and central nervous system development. To better understand how the concentration of these RBPs influences AS transcriptome wide, we engineered a MBNL1 and RBFOX1 inducible HEK-293 cell line. Modest induction of exogenous RBFOX1 in this cell line modulated MBNL1-dependent AS outcomes in 3 skipped exon events, despite significant levels of endogenous RBFOX1 and RBFOX2. Due to background RBFOX levels, we conducted a focused analysis of dose-dependent MBNL1 skipped exon AS outcomes and generated transcriptome wide dose-response curves. Analysis of this data demonstrates that MBNL1-regulated exclusion events may require higher concentrations of MBNL1 protein to properly regulate AS outcomes compared to inclusion events and that multiple arrangements of YGCY motifs can produce similar splicing outcomes. These results suggest that rather than a simple relationship between the organization of RBP binding sites and a specific splicing outcome, that complex interaction networks govern both AS inclusion and exclusion events across a RBP gradient.
Collapse
Affiliation(s)
- Joseph A Ellis
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States
| | - Melissa A Hale
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - John D Cleary
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States
| | - Eric Wang
- Department of Microbiology and Molecular Genetics & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - J Andrew Berglund
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States; Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States; RNA Institute, State University of New York at Albany, LSRB-2033, 1400 Washington Avenue, Albany, New York, 12222.
| |
Collapse
|
20
|
Hu N, Kim E, Antoury L, Wheeler TM. Correction of Clcn1 alternative splicing reverses muscle fiber type transition in mice with myotonic dystrophy. Nat Commun 2023; 14:1956. [PMID: 37029100 PMCID: PMC10082032 DOI: 10.1038/s41467-023-37619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
In myotonic dystrophy type 1 (DM1), deregulated alternative splicing of the muscle chloride channel Clcn1 causes myotonia, a delayed relaxation of muscles due to repetitive action potentials. The degree of weakness in adult DM1 is associated with increased frequency of oxidative muscle fibers. However, the mechanism for glycolytic-to-oxidative fiber type transition in DM1 and its relationship to myotonia are uncertain. Here we cross two mouse models of DM1 to create a double homozygous model that features progressive functional impairment, severe myotonia, and near absence of type 2B glycolytic fibers. Intramuscular injection of an antisense oligonucleotide for targeted skipping of Clcn1 exon 7a corrects Clcn1 alternative splicing, increases glycolytic 2B levels to ≥ 40% frequency, reduces muscle injury, and improves fiber hypertrophy relative to treatment with a control oligo. Our results demonstrate that fiber type transitions in DM1 result from myotonia and are reversible, and support the development of Clcn1-targeting therapies for DM1.
Collapse
Affiliation(s)
- Ningyan Hu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eunjoo Kim
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Layal Antoury
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thurman M Wheeler
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
MYTHO is a novel regulator of skeletal muscle autophagy and integrity. Nat Commun 2023; 14:1199. [PMID: 36864049 PMCID: PMC9981687 DOI: 10.1038/s41467-023-36817-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Autophagy is a critical process in the regulation of muscle mass, function and integrity. The molecular mechanisms regulating autophagy are complex and still partly understood. Here, we identify and characterize a novel FoxO-dependent gene, d230025d16rik which we named Mytho (Macroautophagy and YouTH Optimizer), as a regulator of autophagy and skeletal muscle integrity in vivo. Mytho is significantly up-regulated in various mouse models of skeletal muscle atrophy. Short term depletion of MYTHO in mice attenuates muscle atrophy caused by fasting, denervation, cancer cachexia and sepsis. While MYTHO overexpression is sufficient to trigger muscle atrophy, MYTHO knockdown results in a progressive increase in muscle mass associated with a sustained activation of the mTORC1 signaling pathway. Prolonged MYTHO knockdown is associated with severe myopathic features, including impaired autophagy, muscle weakness, myofiber degeneration, and extensive ultrastructural defects, such as accumulation of autophagic vacuoles and tubular aggregates. Inhibition of the mTORC1 signaling pathway in mice using rapamycin treatment attenuates the myopathic phenotype triggered by MYTHO knockdown. Skeletal muscles from human patients diagnosed with myotonic dystrophy type 1 (DM1) display reduced Mytho expression, activation of the mTORC1 signaling pathway and impaired autophagy, raising the possibility that low Mytho expression might contribute to the progression of the disease. We conclude that MYTHO is a key regulator of muscle autophagy and integrity.
Collapse
|
22
|
Thornton CA, Moxley RT, Eichinger K, Heatwole C, Mignon L, Arnold WD, Ashizawa T, Day JW, Dent G, Tanner MK, Duong T, Greene EP, Herbelin L, Johnson NE, King W, Kissel JT, Leung DG, Lott DJ, Norris DA, Pucillo EM, Schell W, Statland JM, Stinson N, Subramony SH, Xia S, Bishop KM, Bennett CF. Antisense oligonucleotide targeting DMPK in patients with myotonic dystrophy type 1: a multicentre, randomised, dose-escalation, placebo-controlled, phase 1/2a trial. Lancet Neurol 2023; 22:218-228. [PMID: 36804094 DOI: 10.1016/s1474-4422(23)00001-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND Myotonic dystrophy type 1 results from an RNA gain-of-function mutation, in which DM1 protein kinase (DMPK) transcripts carrying expanded trinucleotide repeats exert deleterious effects. Antisense oligonucleotides (ASOs) provide a promising approach to treatment of myotonic dystrophy type 1 because they reduce toxic RNA levels. We aimed to investigate the safety of baliforsen (ISIS 598769), an ASO targeting DMPK mRNA. METHODS In this dose-escalation phase 1/2a trial, adults aged 20-55 years with myotonic dystrophy type 1 were enrolled at seven tertiary referral centres in the USA and randomly assigned via an interactive web or phone response system to subcutaneous injections of baliforsen 100 mg, 200 mg, or 300 mg, or placebo (6:2 randomisation at each dose level), or to baliforsen 400 mg or 600 mg, or placebo (10:2 randomisation at each dose level), on days 1, 3, 5, 8, 15, 22, 29, and 36. Sponsor personnel directly involved with the trial, participants, and all study personnel were masked to treatment assignments. The primary outcome measure was safety in all participants who received at least one dose of study drug up to day 134. This trial is registered with ClinicalTrials.gov (NCT02312011), and is complete. FINDINGS Between Dec 12, 2014, and Feb 22, 2016, 49 participants were enrolled and randomly assigned to baliforsen 100 mg (n=7, one patient not dosed), 200 mg (n=6), 300 mg (n=6), 400 mg (n=10), 600 mg (n=10), or placebo (n=10). The safety population comprised 48 participants who received at least one dose of study drug. Treatment-emergent adverse events were reported for 36 (95%) of 38 participants assigned to baliforsen and nine (90%) of ten participants assigned to placebo. Aside from injection-site reactions, common treatment-emergent adverse events were headache (baliforsen: ten [26%] of 38 participants; placebo: four [40%] of ten participants), contusion (baliforsen: seven [18%] of 38; placebo: one [10%] of ten), and nausea (baliforsen: six [16%] of 38; placebo: two [20%] of ten). Most adverse events (baliforsen: 425 [86%] of 494; placebo: 62 [85%] of 73) were mild in severity. One participant (baliforsen 600 mg) developed transient thrombocytopenia considered potentially treatment related. Baliforsen concentrations in skeletal muscle increased with dose. INTERPRETATION Baliforsen was generally well tolerated. However, skeletal muscle drug concentrations were below levels predicted to achieve substantial target reduction. These results support the further investigation of ASOs as a therapeutic approach for myotonic dystrophy type 1, but suggest improved drug delivery to muscle is needed. FUNDING Ionis Pharmaceuticals, Biogen.
Collapse
Affiliation(s)
| | | | | | - Chad Heatwole
- Center for Health and Technology, University of Rochester, Rochester, NY, USA
| | - Laurence Mignon
- Translational Medicine, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - W David Arnold
- Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Houston Methodist Research Institute, Houston, TX, USA
| | - John W Day
- Neuromuscular Medicine, Stanford University, Palo Alto, CA, USA
| | - Gersham Dent
- Neurodegeneration Development Unit, Biogen, Cambridge, MA, USA
| | | | - Tina Duong
- Neuromuscular Medicine, Stanford University, Palo Alto, CA, USA
| | - Ericka P Greene
- Neuromuscular Clinic, Houston Methodist Research Institute, Houston, TX, USA
| | - Laura Herbelin
- Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Wendy King
- Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John T Kissel
- Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Doris G Leung
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Donovan J Lott
- Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Daniel A Norris
- Pharmacokinetics and Clinical Pharmacology, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Wendy Schell
- Neuromuscular Clinic, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Nikia Stinson
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Sub H Subramony
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Shuting Xia
- Biometrics, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Kathie M Bishop
- Clinical Development, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | |
Collapse
|
23
|
Mishra SK, Hicks SM, Frias JA, Vangaveti S, Nakamori M, Cleary JD, Reddy K, Berglund JA. Quercetin selectively reduces expanded repeat RNA levels in models of myotonic dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526846. [PMID: 36778282 PMCID: PMC9915578 DOI: 10.1101/2023.02.02.526846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myotonic dystrophy is a multisystemic neuromuscular disease caused by either a CTG repeat expansion in DMPK (DM1) or a CCTG repeat expansion in CNBP (DM2). Transcription of the expanded alleles produces toxic gain-of-function RNA that sequester the MBNL family of alternative splicing regulators into ribonuclear foci, leading to pathogenic mis-splicing. There are currently no approved treatments that target the root cause of disease which is the production of the toxic expansion RNA molecules. In this study, using our previously established HeLa DM1 repeat selective screening platform, we identified the natural product quercetin as a selective modulator of toxic RNA levels. Quercetin treatment selectively reduced toxic RNA levels and rescued MBNL dependent mis-splicing in DM1 and DM2 patient derived cell lines and in the HSALR transgenic DM1 mouse model where rescue of myotonia was also observed. Based on our data and its safety profile for use in humans, we have identified quercetin as a priority disease-targeting therapeutic lead for clinical evaluation for the treatment of DM1 and DM2.
Collapse
Affiliation(s)
- Subodh K. Mishra
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sawyer M. Hicks
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jesus A. Frias
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine; Osaka, Japan, 565-0871
| | - John D. Cleary
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - J. Andrew Berglund
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
24
|
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem trinucleotide repeat expansion disorder characterized by the misregulated alternative splicing of critical mRNAs. Previous work in a transgenic mouse model indicated that aerobic exercise effectively improves splicing regulation and function in skeletal muscle. In this issue of the JCI, Mikhail et al. describe the safety and benefits of applying this approach in individuals affected by DM1. A 12-week aerobic exercise program improved aerobic capacity and mobility, but not by the mechanism observed in transgenic mice. Here, we consider the possible reasons for this disparity and review other salient findings of the study in the context of evolving DM1 research.
Collapse
|
25
|
Overby SJ, Cerro-Herreros E, González-Martínez I, Varela MA, Seoane-Miraz D, Jad Y, Raz R, Møller T, Pérez-Alonso M, Wood MJ, Llamusí B, Artero R. Proof of concept of peptide-linked blockmiR-induced MBNL functional rescue in myotonic dystrophy type 1 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1146-1155. [PMID: 35282418 PMCID: PMC8888893 DOI: 10.1016/j.omtn.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
Abstract
Myotonic dystrophy type 1 is a debilitating neuromuscular disease causing muscle weakness, myotonia, and cardiac dysfunction. The phenotypes are caused by muscleblind-like (MBNL) protein sequestration by toxic RNA in the DM1 protein kinase (DMPK) gene. DM1 patients exhibit a pathogenic number of repetitions in DMPK, which leads to downstream symptoms. Another disease characteristic is altered microRNA (miRNA) expression. It was previously shown that miR-23b regulates the translation of MBNL1 into protein. Antisense oligonucleotide (AON) treatment targeting this miRNA can improve disease symptoms. Here, we present a refinement of this strategy targeting a miR-23b binding site on the MBNL1 3' UTR in DM1 model cells and mice by using AONs called blockmiRs. BlockmiRs linked to novel cell-penetrating peptide chemistry showed an increase in MBNL1 protein in DM1 model cells and HSALR mice. They also showed an increase in muscle strength and significant rescue of downstream splicing and histological phenotypes in mice without disturbing the endogenous levels of other miR-23b target transcripts.
Collapse
Affiliation(s)
- Sarah J Overby
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Estefanía Cerro-Herreros
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Irene González-Martínez
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Miguel A Varela
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - David Seoane-Miraz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Richard Raz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | | | - Manuel Pérez-Alonso
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Matthew J Wood
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Beatriz Llamusí
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Rubén Artero
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
26
|
Degener MJF, van Cruchten RTP, Otero BA, Wang E, Wansink DG, ‘t Hoen PAC. A comprehensive atlas of fetal splicing patterns in the brain of adult myotonic dystrophy type 1 patients. NAR Genom Bioinform 2022; 4:lqac016. [PMID: 35274098 PMCID: PMC8903011 DOI: 10.1093/nargab/lqac016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/28/2022] [Accepted: 02/13/2022] [Indexed: 11/14/2022] Open
Abstract
In patients with myotonic dystrophy type 1 (DM1), dysregulation of RNA-binding proteins like MBNL and CELF1 leads to alternative splicing of exons and is thought to induce a return to fetal splicing patterns in adult tissues, including the central nervous system (CNS). To comprehensively evaluate this, we created an atlas of developmentally regulated splicing patterns in the frontal cortex of healthy individuals and DM1 patients, by combining RNA-seq data from BrainSpan, GTEx and DM1 patients. Thirty-four splice events displayed an inclusion pattern in DM1 patients that is typical for the fetal situation in healthy individuals. The regulation of DM1-relevant splicing patterns could partly be explained by changes in mRNA expression of the splice regulators MBNL1, MBNL2 and CELF1. On the contrary, interindividual differences in splicing patterns between healthy adults could not be explained by differential expression of these splice regulators. Our findings lend transcriptome-wide evidence to the previously noted shift to fetal splicing patterns in the adult DM1 brain as a consequence of an imbalance in antagonistic MBNL and CELF1 activities. Our atlas serves as a solid foundation for further study and understanding of the cognitive phenotype in patients.
Collapse
Affiliation(s)
- Max J F Degener
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Remco T P van Cruchten
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Brittney A Otero
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, FL 32610-0266 Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, FL 32610-0266 Gainesville, FL, USA
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter A C ‘t Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
27
|
Arandel L, Matloka M, Klein AF, Rau F, Sureau A, Ney M, Cordier A, Kondili M, Polay-Espinoza M, Naouar N, Ferry A, Lemaitre M, Begard S, Colin M, Lamarre C, Tran H, Buée L, Marie J, Sergeant N, Furling D. Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nat Biomed Eng 2022; 6:207-220. [PMID: 35145256 DOI: 10.1038/s41551-021-00838-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/07/2021] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.
Collapse
Affiliation(s)
- Ludovic Arandel
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Magdalena Matloka
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud F Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Frédérique Rau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Alain Sureau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Michel Ney
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Aurélien Cordier
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Maria Kondili
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Micaela Polay-Espinoza
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Naira Naouar
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Université, Inserm, Phénotypage du petit animal, Paris, France
| | - Séverine Begard
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Morvane Colin
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Chloé Lamarre
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Hélène Tran
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Luc Buée
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Joëlle Marie
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Nicolas Sergeant
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France.
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
28
|
Espinosa-Espinosa J, González-Barriga A, López-Castel A, Artero R. Deciphering the Complex Molecular Pathogenesis of Myotonic Dystrophy Type 1 through Omics Studies. Int J Mol Sci 2022; 23:ijms23031441. [PMID: 35163365 PMCID: PMC8836095 DOI: 10.3390/ijms23031441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3′ polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.
Collapse
Affiliation(s)
- Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Anchel González-Barriga
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, 75013 Paris, France;
| | - Arturo López-Castel
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963543028
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
29
|
Franck S, Couvreu De Deckersberg E, Bubenik JL, Markouli C, Barbé L, Allemeersch J, Hilven P, Duqué G, Swanson MS, Gheldof A, Spits C, Sermon KD. Myotonic dystrophy type 1 embryonic stem cells show decreased myogenic potential, increased CpG methylation at the DMPK locus and RNA mis-splicing. Biol Open 2022; 11:273965. [PMID: 35019138 PMCID: PMC8764412 DOI: 10.1242/bio.058978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1. Summary: Early developmental abnormalities in myotonic dystrophy type 1 are reiterated in vitro in myotubes differentiated from human embryonic stem cells that carry the mutation.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Christina Markouli
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, 94107 CA, United States
| | | | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karen D Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
30
|
Ketley A, Wojciechowska M, Ghidelli-Disse S, Bamborough P, Ghosh TK, Morato ML, Sedehizadeh S, Malik NA, Tang Z, Powalowska P, Tanner M, Billeter-Clark R, Trueman RC, Geiszler PC, Agostini A, Othman O, Bösche M, Bantscheff M, Rüdiger M, Mossakowska DE, Drewry DH, Zuercher WJ, Thornton CA, Drewes G, Uings I, Hayes CJ, Brook JD. CDK12 inhibition reduces abnormalities in cells from patients with myotonic dystrophy and in a mouse model. Sci Transl Med 2021; 12:12/541/eaaz2415. [PMID: 32350131 DOI: 10.1126/scitranslmed.aaz2415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. It is caused by a transcribed CTG repeat expansion within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Mutant repeat expansion transcripts remain in the nuclei of patients' cells, forming distinct microscopically detectable foci that contribute substantially to the pathophysiology of the condition. Here, we report small-molecule inhibitors that remove nuclear foci and have beneficial effects in the HSALR mouse model, reducing transgene expression, leading to improvements in myotonia, splicing, and centralized nuclei. Using chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 (CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines and patient muscle biopsies, and our results showed that its inhibition led to reduced expression of repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of clinical trials for other indications and provide valuable starting points for a drug development program in DM1.
Collapse
Affiliation(s)
- Ami Ketley
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Marzena Wojciechowska
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 61997 Heidelberg, Germany
| | - Paul Bamborough
- Computational and Modelling Sciences, GlaxoSmithKline, Medicines Research Centre, Hertfordshire SG1 2NY, UK
| | - Tushar K Ghosh
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Marta Lopez Morato
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saam Sedehizadeh
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Naveed Altaf Malik
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Zhenzhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642-0001, USA
| | - Paulina Powalowska
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew Tanner
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642-0001, USA
| | - Rudolf Billeter-Clark
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Rebecca C Trueman
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Philippine C Geiszler
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alessandra Agostini
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Othman Othman
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Markus Bösche
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 61997 Heidelberg, Germany
| | - Marcus Bantscheff
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 61997 Heidelberg, Germany
| | - Martin Rüdiger
- Screening Profiling and Mechanistic Biology, GlaxoSmithKline, Medicines Research Centre, Hertfordshire SG1 2NY, UK
| | - Danuta E Mossakowska
- Discovery Partnerships with Academia, GlaxoSmithKline, Medicines Research Centre, Hertfordshire SG1 2NY, UK.,Malopolska Centre of Biotechnology, Jagiellonian University, 30-348 Krakow, Poland
| | - David H Drewry
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC 27709-3398, USA
| | - William J Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC 27709-3398, USA.,SGC Center for Chemical Biology, UNC, Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642-0001, USA
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 61997 Heidelberg, Germany
| | - Iain Uings
- Discovery Partnerships with Academia, GlaxoSmithKline, Medicines Research Centre, Hertfordshire SG1 2NY, UK
| | - Christopher J Hayes
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - J David Brook
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
31
|
Hinman MN, Richardson JI, Sockol RA, Aronson ED, Stednitz SJ, Murray KN, Berglund JA, Guillemin K. Zebrafish mbnl mutants model physical and molecular phenotypes of myotonic dystrophy. Dis Model Mech 2021; 14:dmm045773. [PMID: 34125183 PMCID: PMC8246264 DOI: 10.1242/dmm.045773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The muscleblind RNA-binding proteins (MBNL1, MBNL2 and MBNL3) are highly conserved across vertebrates and are important regulators of RNA alternative splicing. Loss of MBNL protein function through sequestration by CUG or CCUG RNA repeats is largely responsible for the phenotypes of the human genetic disorder myotonic dystrophy (DM). We generated the first stable zebrafish (Danio rerio) models of DM-associated MBNL loss of function through mutation of the three zebrafish mbnl genes. In contrast to mouse models, zebrafish double and triple homozygous mbnl mutants were viable to adulthood. Zebrafish mbnl mutants displayed disease-relevant physical phenotypes including decreased body size and impaired movement. They also exhibited widespread alternative splicing changes, including the misregulation of many DM-relevant exons. Physical and molecular phenotypes were more severe in compound mbnl mutants than in single mbnl mutants, suggesting partially redundant functions of Mbnl proteins. The high fecundity and larval optical transparency of this complete series of zebrafish mbnl mutants will make them useful for studying DM-related phenotypes and how individual Mbnl proteins contribute to them, and for testing potential therapeutics. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melissa N. Hinman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jared I. Richardson
- RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Rose A. Sockol
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Eliza D. Aronson
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Sarah J. Stednitz
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Katrina N. Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA
| | - J. Andrew Berglund
- RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Humans and the Microbiome Program, CIFAR, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
32
|
Navvabi N, Kolikova P, Hosek P, Zitricky F, Navvabi A, Vycital O, Bruha J, Palek R, Rosendorf J, Liska V, Pitule P. Altered Expression of MBNL Family of Alternative Splicing Factors in Colorectal Cancer. Cancer Genomics Proteomics 2021; 18:295-306. [PMID: 33893082 DOI: 10.21873/cgp.20260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIM Colorectal cancer is currently the third leading cause of cancer-related deaths and recently, alternative splicing has risen as its important regulator and potential treatment target. In the present study, we analyzed gene expression of the MBNL family of regulators of alternative splicing in various stages of colorectal cancer development, together with the MBNL-target splicing events in FOXP1 and EPB41L3 genes and tumor-related CD44 variants. MATERIALS AND METHODS Samples of tumor tissue and non-malignant mucosa from 108 patients were collected. After RNA isolation and reverse transcription, the relative gene expression of a selected gene panel was tested by quantitative real-time PCR, followed by statistical analysis. RESULTS MBNL expression was decreased in tumor tissue compared to non-tumor mucosa. In addition, lower expression was observed for the variants of FOXP1 and EPB41L3, while higher expression in tumor tissue was detected both for total CD44 and its cancer-related variants 3 and 6. Transcript levels of the MBNL genes were not found to be related to any of the studied clinicopathological characteristics. Multiple significant associations were identified in the target gene panel, including higher transcript levels of FOXP1 and CD44v3 in patients with distant metastases and connections between recurrence-free survival and altered levels of FOXP1 and CD44v3. CONCLUSION Our results identified for the first-time deregulation of MBNL genes in colorectal cancer. Down-regulation of their transcripts in tumor tissue compared to matched non-tumor mucosa can lead to transition of alternative splicing patterns towards a less differentiated phenotype, which highlights the importance of alternative splicing regulation for tumor growth and propagation.
Collapse
Affiliation(s)
- Nazila Navvabi
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavla Kolikova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Hosek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Frantisek Zitricky
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Azita Navvabi
- Biological Center, Faculty of Marine Sciences and Technologies in Bandar Abbas, Hormozgan University, Hormozgan, Iran
| | - Ondrej Vycital
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Bruha
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Richard Palek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jachym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Pitule
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; .,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
33
|
Tanner MK, Tang Z, Thornton CA. Targeted splice sequencing reveals RNA toxicity and therapeutic response in myotonic dystrophy. Nucleic Acids Res 2021; 49:2240-2254. [PMID: 33503262 PMCID: PMC7913682 DOI: 10.1093/nar/gkab022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Biomarker-driven trials hold promise for therapeutic development in chronic diseases, such as muscular dystrophy. Myotonic dystrophy type 1 (DM1) involves RNA toxicity, where transcripts containing expanded CUG-repeats (CUGexp) accumulate in nuclear foci and sequester splicing factors in the Muscleblind-like (Mbnl) family. Oligonucleotide therapies to mitigate RNA toxicity have emerged but reliable measures of target engagement are needed. Here we examined muscle transcriptomes in mouse models of DM1 and found that CUGexp expression or Mbnl gene deletion cause similar dysregulation of alternative splicing. We selected 35 dysregulated exons for further study by targeted RNA sequencing. Across a spectrum of mouse models, the individual splice events and a composite index derived from all events showed a graded response to decrements of Mbnl or increments of CUGexp. Antisense oligonucleotides caused prompt reduction of CUGexp RNA and parallel correction of the splicing index, followed by subsequent elimination of myotonia. These results suggest that targeted splice sequencing may provide a sensitive and reliable way to assess therapeutic impact in DM1.
Collapse
Affiliation(s)
- Matthew K Tanner
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhenzhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
34
|
Otero BA, Poukalov K, Hildebrandt RP, Thornton CA, Jinnai K, Fujimura H, Kimura T, Hagerman KA, Sampson JB, Day JW, Wang ET. Transcriptome alterations in myotonic dystrophy frontal cortex. Cell Rep 2021; 34:108634. [PMID: 33472074 PMCID: PMC9272850 DOI: 10.1016/j.celrep.2020.108634] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.
Collapse
Affiliation(s)
- Brittney A Otero
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kiril Poukalov
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kenji Jinnai
- Department of Neurology, National Hospital Organization Hyogo-Chuo Hospital, Sanda, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Toneyama Hospital, Osaka, Japan
| | - Takashi Kimura
- Department of Neurology, Hyogo College of Medicine, Nichinomiya, Japan
| | | | | | - John W Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Bubenik JL, Hale M, McConnell O, Wang E, Swanson MS, Spitale R, Berglund JA. RNA structure probing to characterize RNA-protein interactions on a low abundance pre-mRNA in living cells. RNA (NEW YORK, N.Y.) 2020; 27:rna.077263.120. [PMID: 33310817 PMCID: PMC7901844 DOI: 10.1261/rna.077263.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
In vivo RNA structure analysis has become a powerful tool in molecular biology, largely due to the coupling of an increasingly diverse set of chemical approaches with high-throughput sequencing. This has resulted in a transition from single target to transcriptome-wide approaches. However, these methods require sequencing depths that preclude studying low abundance targets, which are not sufficiently captured in transcriptome-wide approaches. Here we present a ligation-free method to enrich for low abundance RNA sequences, which improves the diversity of molecules analyzed and results in improved analysis. In addition, this method is compatible with any choice of chemical adduct or read-out approach. We utilized this approach to study an autoregulated event in the pre-mRNA of the splicing factor, muscleblind-like splicing regulator 1 (MBNL1).
Collapse
|
36
|
Antisense oligonucleotide and adjuvant exercise therapy reverse fatigue in old mice with myotonic dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:393-405. [PMID: 33473325 PMCID: PMC7787993 DOI: 10.1016/j.omtn.2020.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Patients with myotonic dystrophy type 1 (DM1) identify chronic fatigue as the most debilitating symptom, which manifests in part as prolonged recovery after exercise. Clinical features of DM1 result from pathogenic gain-of-function activity of transcripts containing an expanded microsatellite CUG repeat (CUGexp). In DM1 mice, therapies targeting the CUGexp transcripts correct the molecular phenotype, reverse myotonia, and improve muscle pathology. However, the effect of targeted molecular therapies on fatigue in DM1 is unknown. Here, we use two mouse models of DM1, age-matched wild-type controls, an exercise-activity assay, electrical impedance myography, and therapeutic antisense oligonucleotides (ASOs) to show that exaggerated exercise-induced fatigue progresses with age, is unrelated to muscle fiber size, and persists despite correction of the molecular phenotype for 3 months. In old DM1 mice, ASO treatment combined with an exercise training regimen consisting of treadmill walking 30 min per day 6 days per week for 3 months reverse all measures of fatigue. Exercise training without ASO therapy improves some measures of fatigue without correction of the molecular pathology. Our results highlight a key limitation of ASO monotherapy for this clinically important feature and support the development of moderate-intensity exercise as an adjuvant for targeted molecular therapies of DM1.
Collapse
|
37
|
The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat Biomed Eng 2020; 5:157-168. [PMID: 32929188 DOI: 10.1038/s41551-020-00607-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.
Collapse
|
38
|
Begg BE, Jens M, Wang PY, Minor CM, Burge CB. Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity. Nat Struct Mol Biol 2020; 27:901-912. [PMID: 32807990 PMCID: PMC7554199 DOI: 10.1038/s41594-020-0475-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
The Rbfox family of splicing factors regulate alternative splicing during animal development and in disease, impacting thousands of exons in the maturing brain, heart, and muscle. Rbfox proteins have long been known to bind to the RNA sequence GCAUG with high affinity, but just half of Rbfox binding sites contain a GCAUG motif in vivo. We incubated recombinant RBFOX2 with over 60,000 mouse and human transcriptomic sequences to reveal substantial binding to several moderate-affinity, non-GCAYG sites at a physiologically relevant range of RBFOX concentrations. We find that many of these “secondary motifs” bind Rbfox robustly in cells and that several together can exert regulation comparable to GCAUG in a trichromatic splicing reporter assay. Furthermore, secondary motifs regulate RNA splicing in neuronal development and in neuronal subtypes where cellular Rbfox concentrations are highest, enabling a second wave of splicing changes as Rbfox levels increase.
Collapse
Affiliation(s)
- Bridget E Begg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marvin Jens
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Y Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christine M Minor
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Yadava RS, Yu Q, Mandal M, Rigo F, Bennett CF, Mahadevan MS. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA. Hum Mol Genet 2020; 29:1440-1453. [PMID: 32242217 PMCID: PMC7268549 DOI: 10.1093/hmg/ddaa060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW This article describes the clinical features, pathogenesis, prevalence, diagnosis, and management of myotonic dystrophy type 1 and myotonic dystrophy type 2. RECENT FINDINGS The prevalence of myotonic dystrophy type 1 is better understood than the prevalence of myotonic dystrophy type 2, and new evidence indicates that the risk of cancer is increased in patients with the myotonic dystrophies. In addition, descriptions of the clinical symptoms and relative risks of comorbidities such as cardiac arrhythmias associated with myotonic dystrophy type 1 have been improved. SUMMARY Myotonic dystrophy type 1 and myotonic dystrophy type 2 are both characterized by progressive muscle weakness, early-onset cataracts, and myotonia. However, both disorders have multisystem manifestations that require a comprehensive management plan. While no disease-modifying therapies have yet been identified, advances in therapeutic development have a promising future.
Collapse
|
41
|
Park S, Brugiolo M, Akerman M, Das S, Urbanski L, Geier A, Kesarwani AK, Fan M, Leclair N, Lin KT, Hu L, Hua I, George J, Muthuswamy SK, Krainer AR, Anczuków O. Differential Functions of Splicing Factors in Mammary Transformation and Breast Cancer Metastasis. Cell Rep 2019; 29:2672-2688.e7. [PMID: 31775037 PMCID: PMC6936330 DOI: 10.1016/j.celrep.2019.10.110] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Misregulation of alternative splicing is a hallmark of human tumors, yet to what extent and how it contributes to malignancy are only beginning to be unraveled. Here, we define which members of the splicing factor SR and SR-like families contribute to breast cancer and uncover differences and redundancies in their targets and biological functions. We identify splicing factors frequently altered in human breast tumors and assay their oncogenic functions using breast organoid models. We demonstrate that not all splicing factors affect mammary tumorigenesis in MCF-10A cells. Specifically, the upregulation of SRSF4, SRSF6, or TRA2β disrupts acinar morphogenesis and promotes cell proliferation and invasion in MCF-10A cells. By characterizing the targets of these oncogenic splicing factors, we identify shared spliced isoforms associated with well-established cancer hallmarks. Finally, we demonstrate that TRA2β is regulated by the MYC oncogene, plays a role in metastasis maintenance in vivo, and its levels correlate with breast cancer patient survival.
Collapse
Affiliation(s)
- SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Envisagenics Inc., New York, NY, USA,These authors contributed equally
| | - Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,These authors contributed equally
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | | | - Martin Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nathan Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Leo Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ian Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Senthil K. Muthuswamy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Correspondence: (O.A.), (A.R.K.)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
42
|
Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models. Proc Natl Acad Sci U S A 2019; 116:25203-25213. [PMID: 31754023 DOI: 10.1073/pnas.1820297116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSALR) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo, chloroquine restored locomotion, rescued average cross-sectional muscle area, and extended median survival in DM1 flies. In HSALR mice, the drug restored muscular strength and histopathology signs and reduced the grade of myotonia. Taken together, these results offer a means to replenish critically low MBNL levels in DM1.
Collapse
|
43
|
Nutter CA, Bubenik JL, Oliveira R, Ivankovic F, Sznajder ŁJ, Kidd BM, Pinto BS, Otero BA, Carter HA, Vitriol EA, Wang ET, Swanson MS. Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy. Genes Dev 2019; 33:1635-1640. [PMID: 31624084 PMCID: PMC6942047 DOI: 10.1101/gad.328963.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022]
Abstract
Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate Dmpk CTG expansion (CTGexp) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to Dmpk CTGexp mutations and RNA missplicing. Our results implicate dysregulation of muscle regeneration and cerebrospinal fluid homeostasis as early pathogenic events in DM1.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Franjo Ivankovic
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Benjamin M Kidd
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Belinda S Pinto
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Brittney A Otero
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Helmut A Carter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Eric A Vitriol
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
44
|
A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proc Natl Acad Sci U S A 2019; 116:20991-21000. [PMID: 31570586 DOI: 10.1073/pnas.1901893116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A CTG repeat expansion in the DMPK gene is the causative mutation of myotonic dystrophy type 1 (DM1). Transcription of the expanded CTG repeat produces toxic gain-of-function CUG RNA, leading to disease symptoms. A screening platform that targets production or stability of the toxic CUG RNA in a selective manner has the potential to provide new biological and therapeutic insights. A DM1 HeLa cell model was generated that stably expresses a toxic r(CUG)480 and an analogous r(CUG)0 control from DMPK and was used to measure the ratio-metric level of r(CUG)480 versus r(CUG)0. This DM1 HeLa model recapitulates pathogenic hallmarks of DM1, including CUG ribonuclear foci and missplicing of pre-mRNA targets of the muscleblind (MBNL) alternative splicing factors. Repeat-selective screening using this cell line led to the unexpected identification of multiple microtubule inhibitors as hits that selectively reduce r(CUG)480 levels and partially rescue MBNL-dependent missplicing. These results were validated by using the Food and Drug Administration-approved clinical microtubule inhibitor colchicine in DM1 mouse and primary patient cell models. The mechanism of action was found to involve selective reduced transcription of the CTG expansion that we hypothesize to involve the LINC (linker of nucleoskeleton and cytoskeleton) complex. The unanticipated identification of microtubule inhibitors as selective modulators of toxic CUG RNA opens research directions for this form of muscular dystrophy and may shed light on the biology of CTG repeat expansion and inform therapeutic avenues. This approach has the potential to identify modulators of expanded repeat-containing gene expression for over 30 microsatellite expansion disorders.
Collapse
|
45
|
Sharp L, Cox DC, Cooper TA. Endurance exercise leads to beneficial molecular and physiological effects in a mouse model of myotonic dystrophy type 1. Muscle Nerve 2019; 60:779-789. [PMID: 31509256 DOI: 10.1002/mus.26709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) is a multisystemic disease caused by expansion of a CTG repeat in the 3' UTR of the Dystrophia Myotonica-Protein Kinase (DMPK) gene. While multiple organs are affected, more than half of mortality is due to muscle wasting. METHODS It is unclear whether endurance exercise provides beneficial effects in DM1. Here, we show that a 10-week treadmill endurance exercise program leads to beneficial effects in the HSALR mouse model of DM1. RESULTS Animals that performed treadmill training displayed reduced CUGexp RNA levels, improved splicing abnormalities, an increase in skeletal muscle weight and improved endurance capacity. DISCUSSION These results indicate that endurance exercise does not have adverse effects in HSALR animals and contributes to beneficial molecular and physiological outcomes.
Collapse
Affiliation(s)
- Lydia Sharp
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Diana C Cox
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
46
|
Reddy K, Jenquin JR, Cleary JD, Berglund JA. Mitigating RNA Toxicity in Myotonic Dystrophy using Small Molecules. Int J Mol Sci 2019; 20:E4017. [PMID: 31426500 PMCID: PMC6720693 DOI: 10.3390/ijms20164017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
This review, one in a series on myotonic dystrophy (DM), is focused on the development and potential use of small molecules as therapeutics for DM. The complex mechanisms and pathogenesis of DM are covered in the associated reviews. Here, we examine the various small molecule approaches taken to target the DNA, RNA, and proteins that contribute to disease onset and progression in myotonic dystrophy type 1 (DM1) and 2 (DM2).
Collapse
Affiliation(s)
- Kaalak Reddy
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
| | - Jana R Jenquin
- Center for NeuroGenetics and Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32608, USA
| | - John D Cleary
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
- Center for NeuroGenetics and Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
47
|
Taylor K, Sznajder LJ, Cywoniuk P, Thomas JD, Swanson MS, Sobczak K. MBNL splicing activity depends on RNA binding site structural context. Nucleic Acids Res 2019; 46:9119-9133. [PMID: 29955876 PMCID: PMC6158504 DOI: 10.1093/nar/gky565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/16/2018] [Indexed: 02/02/2023] Open
Abstract
Muscleblind-like (MBNL) proteins are conserved RNA-binding factors involved in alternative splicing (AS) regulation during development. While AS is controlled by distribution of MBNL paralogs and isoforms, the affinity of these proteins for specific RNA-binding regions and their location within transcripts, it is currently unclear how RNA structure impacts MBNL-mediated AS regulation. Here, we defined the RNA structural determinants affecting MBNL-dependent AS activity using both cellular and biochemical assays. While enhanced inclusion of MBNL-regulated alternative exons is controlled by the arrangement and number of MBNL binding sites within unstructured RNA, when these sites are embedded in a RNA hairpin MBNL binds preferentially to one side of stem region. Surprisingly, binding of MBNL proteins to RNA targets did not entirely correlate with AS efficiency. Moreover, comparison of MBNL proteins revealed structure-dependent competitive behavior between the paralogs. Our results showed that the structure of targeted RNAs is a prevalent component of the mechanism of alternative splicing regulation by MBNLs.
Collapse
Affiliation(s)
- Katarzyna Taylor
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Lukasz J Sznajder
- Center for NeuroGenetics and the Genetics Institute, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Piotr Cywoniuk
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - James D Thomas
- Center for NeuroGenetics and the Genetics Institute, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA.,Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Maurice S Swanson
- Center for NeuroGenetics and the Genetics Institute, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
48
|
Welte T, Tuck AC, Papasaikas P, Carl SH, Flemr M, Knuckles P, Rankova A, Bühler M, Großhans H. The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes Dev 2019; 33:1221-1235. [PMID: 31371437 PMCID: PMC6719626 DOI: 10.1101/gad.328492.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 01/19/2023]
Abstract
In this study, Welte et al. investigated the dual roles of mammalian TRIM71, a phylogenetically conserved regulator of development, in the control of stem cell fate. They demonstrate that TRIM71 shapes the transcriptome of mESCs predominantly through its RNA-binding activity and identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1/Muscleblind. TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3′ untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alex C Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
49
|
Liu H, Lorenzini PA, Zhang F, Xu S, Wong MSM, Zheng J, Roca X. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res 2019; 46:6069-6086. [PMID: 29771377 PMCID: PMC6159523 DOI: 10.1093/nar/gky401] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
We report the detailed transcriptomic profiles of human innate myeloid cells using RNA sequencing. Monocytes migrate from blood into infected or wounded tissue to differentiate into macrophages, and control inflammation via phagocytosis or cytokine secretion. We differentiated culture primary monocytes with either GM- or M-CSF to obtain pro- or anti-inflammatory macrophages, and respectively activated them with either LPS/IFNγ or anti-inflammatory cytokines. We also treated the THP-1 monocytic cell line with PMA and similar cytokines to mimic differentiation and activation. We detected thousands of expression and alternative-splicing changes during monocyte-to-macrophage differentiation and activation, and a net increase in exon inclusion. MBNL1 knockdown phenocopies several alternative-splicing changes and strongly impairs PMA differentiation, suggesting functional defects in monocytes from Myotonic Dystrophy patients. This study provides general insights into alternative splicing in the monocyte–macrophage lineage, whose future characterization will elucidate their contribution to immune functions, which are altered in immunodeficiencies, autoimmunity, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Hongfei Liu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Paolo A Lorenzini
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore.,Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School (IGS), Nanyang Technological University, 637551 Singapore
| | - Fan Zhang
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore
| | - Shaohai Xu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Mei Su M Wong
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jie Zheng
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
50
|
Hale MA, Richardson JI, Day RC, McConnell OL, Arboleda J, Wang ET, Berglund JA. An engineered RNA binding protein with improved splicing regulation. Nucleic Acids Res 2019; 46:3152-3168. [PMID: 29309648 PMCID: PMC5888374 DOI: 10.1093/nar/gkx1304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
The muscleblind-like (MBNL) family of proteins are key developmental regulators of alternative splicing. Sequestration of MBNL proteins by expanded CUG/CCUG repeat RNA transcripts is a major pathogenic mechanism in the neuromuscular disorder myotonic dystrophy (DM). MBNL1 contains four zinc finger (ZF) motifs that form two tandem RNA binding domains (ZF1-2 and ZF3-4) which each bind YGCY RNA motifs. In an effort to determine the differences in function between these domains, we designed and characterized synthetic MBNL proteins with duplicate ZF1-2 or ZF3-4 domains, referred to as MBNL-AA and MBNL-BB, respectively. Analysis of splicing regulation revealed that MBNL-AA had up to 5-fold increased splicing activity while MBNL-BB had 4-fold decreased activity compared to a MBNL protein with the canonical arrangement of zinc finger domains. RNA binding analysis revealed that the variations in splicing activity are due to differences in RNA binding specificities between the two ZF domains rather than binding affinity. Our findings indicate that ZF1-2 drives splicing regulation via recognition of YGCY RNA motifs while ZF3-4 acts as a general RNA binding domain. Our studies suggest that synthetic MBNL proteins with improved or altered splicing activity have the potential to be used as both tools for investigating splicing regulation and protein therapeutics for DM and other microsatellite diseases.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Jared I Richardson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ryan C Day
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ona L McConnell
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Juan Arboleda
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Eric T Wang
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - J Andrew Berglund
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|