1
|
Chattopadhyay D, Das S, Mondal PS, Mondal T, Samanta S, Mondal A, Goswami AM, Saha T. PPI network identifies interacting pathogenic signaling pathways in Candida albicans. Mol Omics 2025. [PMID: 40391893 DOI: 10.1039/d5mo00042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Candida albicans, an opportunistic and systemic infection causing fungus, causes skin, nail, and mucosal layer lesions in healthy individuals and hospital borne catheter-related and nosocomial infections. This particular fungus exists in two distinct stages in its life cycle: yeast and hyphae. In this study, 20 signaling pathways associated with 177 proteins from C. albicans were identified to construct a PPI network. The core part of the network consisted of 165 proteins. Network topology analyses revealed that the formed PPI network is biologically robust and scale-free, with significant interactions between proteins through 19 252 shortest pathways. In this network, the top 10 hub proteins (RAS1, CDC42, HOG1, CPH1, STE11, EFG1, CEK1, HSP90, TEC1 and CST20) were identified using network analysis, which seem to be the most important proteins involved in different pathways for the development of pathogenesis and virulence. Modular analysis of the network resulted in top six sub-networks, three of which shared eight hub proteins. Ontology and functional enrichment analyses revealed that the majority of the proteins were associated with regulation of transcription by RNA polymerase II, plasma membrane and nucleic acid binding in biological processes, and cellular components and molecular functions, respectively. Enrichment analysis indicated that the proteins were mostly involved in oxidative phosphorylation and purine metabolism signaling pathways. We determined the complex web of signaling pathway involving proteins via PPI network analysis to unravel and decipher protein interactions within C. albicans to understand the complex pathogenesis processes for targeted therapeutic interferences using novel bioinformatics strategies.
Collapse
Affiliation(s)
- Deepanjan Chattopadhyay
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Sanjib Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Paromita Saha Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Tanushree Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Subhasree Samanta
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Amalesh Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
- Department of Physiology, Katwa College, Katwa, Purba Bardhaman, West Bengal 713130, India
| | - Achintya Mohan Goswami
- Department of Physiology, Krishnagar Govt. College, Krishnagar, Nadia, West Bengal 741101, India.
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| |
Collapse
|
2
|
Ghogare SS, Pathan EK. Intratumor fungi specific mechanisms to influence cell death pathways and trigger tumor cell apoptosis. Cell Death Discov 2025; 11:188. [PMID: 40258837 PMCID: PMC12012188 DOI: 10.1038/s41420-025-02483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer, uncontrolled cell growth due to the loss of cell cycle regulation, is often found to be associated with viral infections and, as recent studies show, with bacterial infections as well. Emerging reports also suggest a strong link between fungi and cancer. The crucial virulence trait of fungi, the switch from yeast (Y) to hyphal (H) form, is found to be associated with carcinogenesis. The physicochemical properties and signal transduction pathways involved in the switch to the hyphal form overlap with those of tumor cell formation. Inhibiting differentiation causes apoptosis in fungi, whereas preventing apoptosis leads to cancer in multicellular organisms. Literature on the fungi-cancer linkage, though limited, is increasing rapidly. This review examines cancer-specific fungal communities, the impact of fungal microbiome on cancer cell progression, similarities between fungal differentiation and cells turning cancerous at biochemical and molecular levels, including the overlaps in signal transduction pathways between fungi and cancer. Based on the available evidence, we suggest that molecules inhibiting the yeast-hyphal transition in fungi can be combined with those targeting tumor cell apoptosis for effective cancer treatment. The review points out fertile research areas where mycologists and cancer researchers can collaborate to unravel common molecular mechanisms. Moreover, antibodies targeting fungal-specific chitin and glucan can be used for the selective neutralization of tumor cells. These new combinations of potential therapies are expected to facilitate the development of target-specific, less harmful and commercially feasible anticancer therapies. We bring together available evidence to argue that fungal infections could either trigger cancer or have a significant role in the development and progression of cancer. Hence, cancer-associated fungal populations could be utilized as a target for a combination therapy involving the integration of anticancer and antifungal drugs as well as inhibitors of fungal morphogenesis to develop more effective anticancer therapies.
Collapse
Affiliation(s)
- Simran S Ghogare
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, 412115, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
3
|
Li Y, Wang H, Wang H, Wang T, Wu D, Wei W. Molecular Mechanisms of Pathogenic Fungal Virulence Regulation by Cell Membrane Phospholipids. J Fungi (Basel) 2025; 11:256. [PMID: 40278077 PMCID: PMC12028057 DOI: 10.3390/jof11040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Pathogenic fungi represent a growing concern for human health, necessitating a deeper understanding of their molecular mechanisms of virulence to formulate effective antifungal strategies. Recent research has increasingly highlighted the role of phospholipid components in fungal cell membranes, which are not only vital for maintaining cellular integrity but also significantly influence fungal pathogenicity. This review focuses on the impact of membrane phospholipid composition on fungal growth, morphogenesis, stress responses, and interactions with host cells. To be specific, membrane phospholipid composition critically influences fungal virulence by modulating growth dynamics and morphogenesis, such as the transition from yeast to hyphal forms, which enhances tissue invasion. Additionally, phospholipids mediate stress adaptation, enabling fungi to withstand host-derived oxidative and osmotic stresses, crucial for survival within hostile host environments. Phospholipid asymmetry also impacts interactions with host cells, including adhesion, phagocytosis evasion, and the secretion of virulence factors like hydrolytic enzymes. These adaptations collectively enhance fungal pathogenicity by promoting colonization, immune evasion, and damage to host tissues, directly linking membrane architecture to infection outcomes. By elucidating the molecular mechanisms involved, we aim to underscore the potential of targeting phospholipid metabolic pathways as a promising avenue for antifungal therapy. A comprehensive understanding of how membrane phospholipid composition regulates the virulence of pathogenic fungi can provide valuable insights for developing novel antifungal strategies.
Collapse
Affiliation(s)
- Yitong Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei 230038, China; (Y.L.); (H.W.); (H.W.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hongchen Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei 230038, China; (Y.L.); (H.W.); (H.W.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hengxiu Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei 230038, China; (Y.L.); (H.W.); (H.W.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei 230038, China; (Y.L.); (H.W.); (H.W.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei 230038, China; (Y.L.); (H.W.); (H.W.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Wenfan Wei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei 230038, China; (Y.L.); (H.W.); (H.W.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| |
Collapse
|
4
|
Connell J, Bates HJ, Geoghegan I, Wilson F, Harrison RJ, Price RJ. Mutation of the LRG1 Rho-GAP gene is responsible for the hyper branching C-variant phenotype in the quorn mycoprotein fungus Fusarium venenatum A3/5. Fungal Biol Biotechnol 2025; 12:3. [PMID: 40128830 PMCID: PMC11934581 DOI: 10.1186/s40694-025-00195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Quorn mycoprotein, a protein-rich meat alternative, is produced through large-scale fermentation of the fungus Fusarium venenatum. However, a major challenge during F. venenatum fermentation is the consistent appearance of mutants called colonial variants (C-variants). These C-variants have a highly branched morphology, which ultimately lead to a less desirable final product and early termination of the fermentation process. This study aimed to identify the genetic mutations responsible for C-variant morphology. RESULTS We first isolated both C-variant and wild-type strains from commercial fermentation samples and characterised radial growth rates on solid media. Whole genome sequencing facilitated the identification of mutations in a gene called jg4843 in 11 out of 12 C-variant isolates, which were not observed in the wild-type isolates. The jg4843 gene was identified as the ortholog of LRG1, a Rho-GTPase activating protein that regulates the Rho1 signalling pathway affecting fungal growth. Notably, the mutations in jg4843 were primarily located in the RhoGAP domain responsible for LRG1 activity. To confirm the role of these mutations, we used CRISPR/Cas9-mediated homology-directed recombination to introduce the C-variant mutations into the wild-type isolate, which successfully recapitulated the characteristic C-variant morphology. CONCLUSIONS This study identified mutations in the LRG1 ortholog jg4843 as the genetic cause of C-variant morphology in commercial fermentation F. venenatum isolates. Understanding this genetic basis paves the way for developing strategies to prevent C-variants arising, potentially leading to more efficient and sustainable production of Quorn mycoprotein.
Collapse
Affiliation(s)
| | | | | | | | - Richard J Harrison
- Wageningen University and Research, Wageningen, 6708 PB, Netherlands
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | |
Collapse
|
5
|
Cosio T, Romeo A, Pistoia ES, Pica F, Freni C, Iacovelli F, Orlandi A, Falconi M, Campione E, Gaziano R. Retinoids as Alternative Antifungal Agents Against Candida albicans: In Vitro and In Silico Evidence. Microorganisms 2025; 13:237. [PMID: 40005604 PMCID: PMC11857849 DOI: 10.3390/microorganisms13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Candida albicans (C. albicans) is the most common pathogen responsible for a wide spectrum of human infections ranging from superficial mucocutaneous mycoses to systemic life-threatening diseases. Its main virulence factors are the morphological transition between yeast and hyphal forms and the ability to produce biofilm. Novel antifungal strategies are required given the severity of systemic candidiasis, especially in immunocompromised patients, and the lack of effective anti-biofilm treatments. We previously demonstrated that all-trans retinoic acid (ATRA), an active metabolite of vitamin A, exerted an inhibitory effect on Candida growth, yeast-hyphal transition and biofilm formation. Here, we further investigated the possible anti-Candida potential of trifarotene and tazarotene, which are the other two molecules belonging to the retinoid family, compared to ATRA. The results indicate that both drugs were able to suppress Candida growth, germination and biofilm production, although trifarotene was proven to be more effective than tazarotene, showing effectiveness comparable to ATRA. In silico studies suggest that all three retinoids may exert antifungal activity through their molecular interactions with the heat shock protein (Hsp) 90 and 14α-demethylase of C. albicans. Moreover, interactions between retinoids and ergosterol have been observed, suggesting that those compounds have great potential against C. albicans infections.
Collapse
Affiliation(s)
- Terenzio Cosio
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (E.S.P.); (F.P.)
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (C.F.); (F.I.); (M.F.)
| | - Enrico Salvatore Pistoia
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (E.S.P.); (F.P.)
| | - Francesca Pica
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (E.S.P.); (F.P.)
| | - Claudia Freni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (C.F.); (F.I.); (M.F.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (C.F.); (F.I.); (M.F.)
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (C.F.); (F.I.); (M.F.)
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (E.S.P.); (F.P.)
| |
Collapse
|
6
|
Martinez Barrera S, Hatchell E, Byrum SD, Mackintosh SG, Kozubowski L. Quantitative analysis of septin Cdc10 & Cdc3-associated proteome during stress response in the fungal pathogen Cryptococcus neoformans. PLoS One 2024; 19:e0313444. [PMID: 39689097 DOI: 10.1371/journal.pone.0313444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 12/19/2024] Open
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous yeast that primarily infects immunocompromised individuals. Fatal outcome of cryptococcosis depends on the ability of C. neoformans to sense and adapt to 37°C. A complex of conserved filament forming GTPases, called septins, composed of Cdc3, Cdc10, Cdc11, and Cdc12, assembles at the mother-bud neck in C. neoformans. Septins Cdc3 and Cdc12 are essential for proliferation of C. neoformans at 37°C and for virulence in the Galleria mellonella model of infection, presumably due to their requirement for septin complex formation, and the involvement in cytokinesis. However, how exactly Cdc3, and Cdc12 contribute to C. neoformans growth at 37°C remains unknown. Based on studies investigating roles of septins in Saccharomyces cerevisiae, septin complex at the mother-bud neck of C. neoformans is predicted to interact with proteins involved in cell cycle control, morphogenesis, and cytokinesis, but the septin-associated proteome in C. neoformans has not been investigated. Here, we utilized tandem mass spectrometry to define C. neoformans proteins that associate with either Cdc3 or Cdc10 at ∼25°C or after the shift to 37°C. Our findings unveil a diverse array of septin-associated proteins, highlighting potential roles of septins in cell division, and stress response. Two proteins, identified as associated with both Cdc3 and Cdc10, the actin-binding protein profilin, which was detected at both temperatures, and ATP-binding multi-drug transporter Afr1, which was detected exclusively at 37°C, were further confirmed by co-immunoprecipitation. We also confirmed that association of Cdc3 with Afr1 was enhanced at 37°C. Upon shift to 37°C, septins Cdc3 and Cdc10 exhibited altered localization and Cdc3 partially co-localized with Afr1. In addition, we also investigated changes to levels of individual C. neoformans proteins upon shift from ∼25 to 37°C in exponentially grown culture and when cells entered stationary phase at ∼25°C. Our study reveals changes to C. neoformans proteome associated with heat and nutrient deprivation stresses and provides a landscape of septin-associated C. neoformans proteome, which will facilitate elucidating the biology of septins and mechanisms of stress response in this fungal pathogen.
Collapse
Affiliation(s)
- Stephani Martinez Barrera
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Emma Hatchell
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
7
|
Kramara J, Kim MJ, Ollinger TL, Ristow LC, Wakade RS, Zarnowski R, Wellington M, Andes DR, Mitchell AG, Krysan DJ. Systematic analysis of the Candida albicans kinome reveals environmentally contingent protein kinase-mediated regulation of filamentation and biofilm formation in vitro and in vivo. mBio 2024; 15:e0124924. [PMID: 38949302 PMCID: PMC11323567 DOI: 10.1128/mbio.01249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Protein kinases are critical regulatory proteins in both prokaryotes and eukaryotes. Accordingly, protein kinases represent a common drug target for a wide range of human diseases. Therefore, understanding protein kinase function in human pathogens such as the fungus Candida albicans is likely to extend our knowledge of its pathobiology and identify new potential therapies. To facilitate the study of C. albicans protein kinases, we constructed a library of 99 non-essential protein kinase homozygous deletion mutants marked with barcodes in the widely used SN genetic background. Here, we describe the construction of this library and the characterization of the competitive fitness of the protein kinase mutants under 11 different growth and stress conditions. We also screened the library for protein kinase mutants with altered filamentation and biofilm formation, two critical virulence traits of C. albicans. An extensive network of protein kinases governs these virulence traits in a manner highly dependent on the specific environmental conditions. Studies on specific protein kinases revealed that (i) the cell wall integrity MAPK pathway plays a condition-dependent role in filament initiation and elongation; (ii) the hyper-osmolar glycerol MAPK pathway is required for both filamentation and biofilm formation, particularly in the setting of in vivo catheter infection; and (iii) Sok1 is dispensable for filamentation in hypoxic environments at the basal level of a biofilm but is required for filamentation in normoxia. In addition to providing a new genetic resource for the community, these observations emphasize the environmentally contingent function of C. albicans protein kinases.IMPORTANCECandida albicans is one of the most common causes of fungal disease in humans for which new therapies are needed. Protein kinases are key regulatory proteins and are increasingly targeted by drugs for the treatment of a wide range of diseases. Understanding protein kinase function in C. albicans pathogenesis may facilitate the development of new antifungal drugs. Here, we describe a new library of 99 protein kinase deletion mutants to facilitate the study of protein kinases. Furthermore, we show that the function of protein kinases in two virulence-related processes, filamentation and biofilm formation, is dependent on the specific environmental conditions.
Collapse
Affiliation(s)
- Juraj Kramara
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Tomye L. Ollinger
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Laura C. Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Aaron G. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Wu Y, Sun A, Chen F, Zhao Y, Zhu X, Zhang T, Ni G, Wang R. Synthesis, structure-activity relationship and biological evaluation of indole derivatives as anti-Candida albicans agents. Bioorg Chem 2024; 146:107293. [PMID: 38507998 DOI: 10.1016/j.bioorg.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In this work, we synthesized a series of indole derivatives to cope with the current increasing fungal infections caused by drug-resistant Candida albicans. All compounds were evaluated for antifungal activities against Candida albicans in vitro, and the structure-activity relationships (SARs) were analyzed. The results indicated that indole derivatives used either alone or in combination with fluconazole showed good activities against fluconazole-resistant Candida albicans. Further mechanisms studies demonstrated that compound 1 could inhibit yeast-to-hypha transition and biofilm formation of Candida albicans, increase the activity of the efflux pump, the damage of mitochondrial function, and the decrease of intracellular ATP content. In vivo studies, further proved the anti-Candida albicans activity of compound 1 by histological observation. Therefore, compound 1 could be considered as a novel antifungal agent.
Collapse
Affiliation(s)
- Yandan Wu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Aimei Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Fei Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yin Zhao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Xianhu Zhu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Tianbao Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Guanghui Ni
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China.
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
9
|
Bing J, Guan Z, Zheng T, Ennis CL, Nobile CJ, Chen C, Chu H, Huang G. Rapid evolution of an adaptive multicellular morphology of Candida auris during systemic infection. Nat Commun 2024; 15:2381. [PMID: 38493178 PMCID: PMC10944540 DOI: 10.1038/s41467-024-46786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Candida auris has become a serious threat to public health. The mechanisms of how this fungal pathogen adapts to the mammalian host are poorly understood. Here we report the rapid evolution of an adaptive C. auris multicellular aggregative morphology in the murine host during systemic infection. C. auris aggregative cells accumulate in the brain and exhibit obvious advantages over the single-celled yeast-form cells during systemic infection. Genetic mutations, specifically de novo point mutations in genes associated with cell division or budding processes, underlie the rapid evolution of this aggregative phenotype. Most mutated C. auris genes are associated with the regulation of cell wall integrity, cytokinesis, cytoskeletal properties, and cellular polarization. Moreover, the multicellular aggregates are notably more recalcitrant to the host antimicrobial peptides LL-37 and PACAP relative to the single-celled yeast-form cells. Overall, to survive in the host, C. auris can rapidly evolve a multicellular aggregative morphology via genetic mutations.
Collapse
Affiliation(s)
- Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Zhangyue Guan
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Tianhong Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, 95343, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA, 95343, USA
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
10
|
MacAlpine J, Liu Z, Hossain S, Whitesell L, Robbins N, Cowen LE. DYRK-family kinases regulate Candida albicans morphogenesis and virulence through the Ras1/PKA pathway. mBio 2023; 14:e0218323. [PMID: 38015416 PMCID: PMC10746247 DOI: 10.1128/mbio.02183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Candida albicans is an opportunistic human fungal pathogen that frequently causes life-threatening infections in immunocompromised individuals. To cause disease, the fungus employs several virulence traits, including its ability to transition between yeast and filamentous states. Previous work identified a role for the kinase Yak1 in regulating C. albicans filamentation. Here, we demonstrate that Yak1 regulates morphogenesis through the canonical cAMP/PKA pathway and that this regulation is environmentally contingent, as host-relevant concentrations of CO2 bypass the requirement of Yak1 for C. albicans morphogenesis. We show a related kinase, Pom1, is important for filamentation in the absence of Yak1 under these host-relevant conditions, as deletion of both genes blocked filamentous growth under all conditions tested. Finally, we demonstrate that Yak1 is required for filamentation in a mouse model of C. albicans dermatitis using genetic and pharmacological approaches. Overall, our results expand our understanding of how Yak1 regulates an important virulence trait in C. albicans.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Robbins N, Cowen LE. Roles of Hsp90 in Candida albicans morphogenesis and virulence. Curr Opin Microbiol 2023; 75:102351. [PMID: 37399670 PMCID: PMC11016340 DOI: 10.1016/j.mib.2023.102351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
Hsp90 is a conserved molecular chaperone that facilitates the folding and function of hundreds of client proteins, many of which serve as core hubs of signal transduction networks. Hsp90 has a critical role in virulence of the opportunistic fungal pathogen Candida albicans, which exists as a natural commensal of the human microbiota and is a leading cause of invasive fungal infections, particularly in immunocompromised individuals. The ability of C. albicans to cause disease is tightly coupled to its capacity to undergo a morphogenetic transition between yeast and filamentous forms. Here, we describe the complex mechanisms by which Hsp90 regulates C. albicans morphogenesis and virulence, and explore the potential of targeting fungal Hsp90 as a therapeutic strategy to combat fungal infections.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Wagner AS, Lumsdaine SW, Mangrum MM, Reynolds TB. Caspofungin-induced β(1,3)-glucan exposure in Candida albicans is driven by increased chitin levels. mBio 2023; 14:e0007423. [PMID: 37377417 PMCID: PMC10470516 DOI: 10.1128/mbio.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
To successfully induce disease, Candida albicans must effectively evade the host immune system. One mechanism used by C. albicans to achieve this is to mask immunogenic β(1,3)-glucan epitopes within its cell wall under an outer layer of mannosylated glycoproteins. Consequently, induction of β(1,3)-glucan exposure (unmasking) via genetic or chemical manipulation increases fungal recognition by host immune cells in vitro and attenuates disease during systemic infection in mice. Treatment with the echinocandin caspofungin is one of the most potent drivers of β(1,3)-glucan exposure. Several reports using murine infection models suggest a role for the immune system, and specifically host β(1,3)-glucan receptors, in mediating the efficacy of echinocandin treatment in vivo. However, the mechanism by which caspofungin-induced unmasking occurs is not well understood. In this report, we show that foci of unmasking co-localize with areas of increased chitin within the yeast cell wall in response to caspofungin, and that inhibition of chitin synthesis via nikkomycin Z attenuates caspofungin-induced β(1,3)-glucan exposure. Furthermore, we find that both the calcineurin and Mkc1 mitogen-activated protein kinase pathways work synergistically to regulate β(1,3)-glucan exposure and chitin synthesis in response to drug treatment. When either of these pathways are interrupted, it results in a bimodal population of cells containing either high or low chitin content. Importantly, increased unmasking correlates with increased chitin content within these cells. Microscopy further indicates that caspofungin-induced unmasking correlates with actively growing cells. Collectively, our work presents a model in which chitin synthesis induces unmasking within the cell wall in response to caspofungin in growing cells. IMPORTANCE Systemic candidiasis has reported mortality rates ranging from 20% to 40%. The echinocandins, including caspofungin, are first-line antifungals used to treat systemic candidiasis. However, studies in mice have shown that echinocandin efficacy relies on both its cidal impacts on Candida albicans, as well as a functional immune system to successfully clear invading fungi. In addition to direct C. albicans killing, caspofungin increases exposure (unmasking) of immunogenic β(1,3)-glucan moieties. To evade immune detection, β(1,3)-glucan is normally masked within the C. albicans cell wall. Consequently, unmasked β(1,3)-glucan renders these cells more visible to the host immune system and attenuates disease progression. Therefore, discovery of how caspofungin-induced unmasking occurs is needed to elucidate how the drug facilitates host immune system-mediated clearance in vivo. We report a strong and consistent correlation between chitin deposition and unmasking in response to caspofungin and propose a model in which altered chitin synthesis drives increased unmasking during drug exposure.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Lee Y, Hossain S, MacAlpine J, Robbins N, Cowen LE. Functional genomic analysis of Candida albicans protein kinases reveals modulators of morphogenesis in diverse environments. iScience 2023; 26:106145. [PMID: 36879823 PMCID: PMC9984565 DOI: 10.1016/j.isci.2023.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is a leading cause of mycotic infection. The ability to transition between yeast and filamentous forms is critical to C. albicans virulence and complex signaling pathways regulate this process. Here, we screened a C. albicans protein kinase mutant library in six environmental conditions to identify regulators of morphogenesis. We identified the uncharacterized gene orf19.3751 as a negative regulator of filamentation and follow-up investigations implicated a role for orf19.3751 in cell cycle regulation. We also uncovered a dual role for the kinases Ire1 and protein kinase A (Tpk1 and Tpk2) in C. albicans morphogenesis, specifically as negative regulators of wrinkly colony formation on solid medium but positive regulators of filamentation in liquid medium. Further analyses suggested Ire1 modulates morphogenesis in both media states in part through the transcription factor Hac1 and in part through independent mechanisms. Overall, this work provides insights into the signaling governing morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
14
|
Iyer KR, Robbins N, Cowen LE. The role of Candida albicans stress response pathways in antifungal tolerance and resistance. iScience 2022; 25:103953. [PMID: 35281744 PMCID: PMC8905312 DOI: 10.1016/j.isci.2022.103953] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human fungal pathogens are the causative agents of devastating diseases across the globe, and the increasing prevalence of drug resistance threatens to undermine the already limited treatment options. One prominent pathogen is the opportunistic fungus Candida albicans, which can cause both superficial and serious systemic infections in immunocompromised individuals. C. albicans antifungal drug resistance and antifungal tolerance are supported by diverse and expansive cellular stress response pathways. Some of the major players are the Ca2+-calmodulin-activated phosphatase calcineurin, the protein kinase C cell wall integrity pathway, and the molecular chaperone heat shock protein 90. Beyond these core signal transducers, several other enzymes and transcription factors have been implicated in both tolerance and resistance. Here, we highlight some of the major stress response pathways, key advances in identifying chemical matter to inhibit these pathways, and implications for C. albicans persistence in the host. Candida albicans can cause superficial and serious systemic infections in humans Stress response pathways regulate C. albicans antifungal resistance and tolerance Stress response regulators include calcineurin, Pkc1, Hsp90, and many others Stress response inhibitors could reduce the likelihood of fungi persisting in humans
Collapse
Affiliation(s)
- Kali R. Iyer
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
- Corresponding author
| |
Collapse
|
15
|
MacAlpine J, Daniel-Ivad M, Liu Z, Yano J, Revie NM, Todd RT, Stogios PJ, Sanchez H, O'Meara TR, Tompkins TA, Savchenko A, Selmecki A, Veri AO, Andes DR, Fidel PL, Robbins N, Nodwell J, Whitesell L, Cowen LE. A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat Commun 2021; 12:6151. [PMID: 34686660 PMCID: PMC8536679 DOI: 10.1038/s41467-021-26390-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
The fungus Candida albicans is an opportunistic pathogen that can exploit imbalances in microbiome composition to invade its human host, causing pathologies ranging from vaginal candidiasis to fungal sepsis. Bacteria of the genus Lactobacillus are colonizers of human mucosa and can produce compounds with bioactivity against C. albicans. Here, we show that some Lactobacillus species produce a small molecule under laboratory conditions that blocks the C. albicans yeast-to-filament transition, an important virulence trait. It remains unexplored whether the compound is produced in the context of the human host. Bioassay-guided fractionation of Lactobacillus-conditioned medium linked this activity to 1-acetyl-β-carboline (1-ABC). We use genetic approaches to show that filamentation inhibition by 1-ABC requires Yak1, a DYRK1-family kinase. Additional biochemical characterization of structurally related 1-ethoxycarbonyl-β-carboline confirms that it inhibits Yak1 and blocks C. albicans biofilm formation. Thus, our findings reveal Lactobacillus-produced 1-ABC can prevent the yeast-to-filament transition in C. albicans through inhibition of Yak1.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Junko Yano
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montreal, QC, Canada
| | - Alexei Savchenko
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Paul L Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Justin Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Hossain S, Veri AO, Liu Z, Iyer KR, O’Meara TR, Robbins N, Cowen LE. Mitochondrial perturbation reduces susceptibility to xenobiotics through altered efflux in Candida albicans. Genetics 2021; 219:iyab095. [PMID: 34143207 PMCID: PMC8860387 DOI: 10.1093/genetics/iyab095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a leading human fungal pathogen, which can cause superficial infections or life-threatening systemic disease in immunocompromised individuals. The ability to transition between yeast and filamentous forms is a major virulence trait of C. albicans, and a key regulator of this morphogenetic transition is the molecular chaperone Hsp90. To explore the mechanisms governing C. albicans morphogenesis in response to Hsp90 inhibition, we performed a functional genomic screen using the gene replacement and conditional expression collection to identify mutants that are defective in filamentation in response to the Hsp90 inhibitor, geldanamycin. We found that transcriptional repression of genes involved in mitochondrial function blocked filamentous growth in response to the concentration of the Hsp90 inhibitor used in the screen, and this was attributable to increased resistance to the compound. Further exploration revealed that perturbation of mitochondrial function reduced susceptibility to two structurally distinct Hsp90 inhibitors, geldanamycin and radicicol, such that filamentous growth was restored in the mitochondrial mutants by increasing the compound concentration. Deletion of two representative mitochondrial genes, MSU1 and SHY1, enhanced cellular efflux and reduced susceptibility to diverse intracellularly acting compounds. Additionally, screening a C. albicans efflux pump gene deletion library implicated Yor1 in the efflux of geldanamycin and Cdr1, in the efflux of radicicol. Deletion of these transporter genes restored sensitivity to Hsp90 inhibitors in MSU1 and SHY1 homozygous deletion mutants, thereby enabling filamentation. Taken together, our findings suggest that mitochondrial dysregulation elevates cellular efflux and consequently reduces susceptibility to xenobiotics in C. albicans.
Collapse
Affiliation(s)
- Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S, Canada
| | - Teresa R O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S, Canada
| |
Collapse
|
17
|
Synthesis of 4,7,9-Trihydroxy[1]benzofuro[3,2-d]pyrimidine-6-carboxamide: Evaluation of Cytotoxicity and Inhibition of Protein Kinase C (CaPkc1). J CHEM-NY 2021. [DOI: 10.1155/2021/7526347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The protein kinase Pkc1 of Candida albicans (CaPkc1), one of the key proteins involved in MAPK pathway, is described as a regulator of cell wall integrity during growth, morphogenesis, and response to cell wall stress. The (–)-cercosporamide is an antifungal natural product isolated from the phytopathogen fungus Cercosporidium henningsii. This phytoxin was found to inhibit selectively CaPkc1 and constitutes an interesting model for the design of novel antifungal molecules. In this research, 4,7,9-trihydroxy[1]benzofuro[3,2-d]pyrimidine-6-carboxamide (13) derived from (–)-cercosporamide was synthesized via a seven-step procedure by well-known reactions and evaluation of cytotoxicity and inhibition of CaPkc1. The bioassay showed CaPkc1 inhibitory activity 87% higher and cytotoxicity 100 times less than the reference, (–)-cercosporamide.
Collapse
|
18
|
Santana DJ, Anderson FM, O'Meara TR. Monitoring Inflammasome Priming and Activation in Response to Candida albicans. ACTA ACUST UNITED AC 2021; 59:e124. [PMID: 33108055 DOI: 10.1002/cpmc.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Candida albicans is a common mucosal colonizer, as well as a cause of lethal invasive fungal infections. The major predisposing factor for invasive fungal disease is a compromised immune system. One component of the host immune response to fungal infection is the activation of the inflammasome, a multimeric protein complex that is critical for regulating host pro-inflammatory responses. Here, we describe methods for investigating the interactions between C. albicans and host macrophages, with a focus on the inflammasome. C. albicans isolates differ in the degree to which they activate the inflammasome due to differences in internalization, morphogenic switching, and inflammasome priming. Therefore, we include protocols for identifying these factors. This simple in vitro model can be used to elucidate the contributions of specific C. albicans strains or mutants to different aspects of interactions with macrophages. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Measuring inflammasome priming in response to Candida albicans Basic Protocol 2: Measuring inflammasome activation in response to Candida albicans Support Protocol: Controlling for phagocytosis.
Collapse
Affiliation(s)
- Darian J Santana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Faith M Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
19
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
20
|
Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem Rev 2021; 121:3390-3411. [PMID: 32441527 PMCID: PMC8519031 DOI: 10.1021/acs.chemrev.0c00199] [Citation(s) in RCA: 426] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal infections are a major contributor to infectious disease-related deaths across the globe. Candida species are among the most common causes of invasive mycotic disease, with Candida albicans reigning as the leading cause of invasive candidiasis. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for antifungal development remains limited. Currently, there are only three major classes of drugs approved for the treatment of invasive mycoses, and the efficacy of these agents is compromised by the development of drug resistance in pathogen populations. Notably, the emergence of additional drug-resistant species, such as Candida auris and Candida glabrata, further threatens the limited armamentarium of antifungals available to treat these serious infections. Here, we describe our current arsenal of antifungals and elaborate on the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention. Finally, we highlight some of the most promising therapeutic strategies that may help combat antifungal resistance, including combination therapy, targeting fungal-virulence traits, and modulating host immunity. Overall, a thorough understanding of the mechanistic principles governing antifungal drug resistance is fundamental for the development of novel therapeutics to combat current and emerging fungal threats.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
21
|
Staniszewska M. Virulence Factors in Candida species. Curr Protein Pept Sci 2021; 21:313-323. [PMID: 31544690 DOI: 10.2174/1389203720666190722152415] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 07/14/2019] [Indexed: 02/08/2023]
Abstract
Fungal diseases are severe and have very high morbidity as well as up to 60% mortality for patients diagnosed with invasive fungal infection. In this review, in vitro and in vivo studies provided us with the insight into the role of Candida virulence factors that mediate their success as pathogens, such as: membrane and cell wall (CW) barriers, dimorphism, biofilm formation, signal transduction pathway, proteins related to stress tolerance, hydrolytic enzymes (e.g. proteases, lipases, haemolysins), and toxin production. The review characterized the virulence of clinically important C. albicans, C. parapsilosis, C. tropicalis, C. glabrata and C. krusei. Due to the white-opaque transition in the mating-type locus MTL-homozygous cells, C. albicans demonstrates an advantage over other less related species of Candida as a human commensal and pathogen. It was reviewed that Candida ergosterol biosynthesis genes play a role in cellular stress and are essential for Candida pathogenesis both in invasive and superficial infections. Hydrolases associated with CW are involved in the host-pathogen interactions. Adhesins are crucial in colonization and biofilm formation, an important virulence factor for candidiasis. Calcineurin is involved in membrane and CW stress as well as virulence. The hyphae-specific toxin, named candidalysin, invades mucosal cells facilitating fungal invasion into deeper tissues. Expression of this protein promotes resistance to neutrophil killing in candidiasis. The virulence factors provide immunostimulatory factors, activating dendric cells and promoting T cell infiltration and activation. Targeting virulence factors, can reduce the risk of resistance development in Candida infections.
Collapse
Affiliation(s)
- Monika Staniszewska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
22
|
Malavia D, Gow NAR, Usher J. Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms 2020; 8:E803. [PMID: 32466582 PMCID: PMC7356103 DOI: 10.3390/microorganisms8060803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic fungi represent an increasing infectious disease threat to humans, especially with an increasing challenge of antifungal drug resistance. Over the decades, numerous tools have been developed to expedite the study of pathogenicity, initiation of disease, drug resistance and host-pathogen interactions. In this review, we highlight advances that have been made in the use of molecular tools using CRISPR technologies, RNA interference and transposon targeted mutagenesis. We also discuss the use of animal models in modelling disease of human fungal pathogens, focusing on zebrafish, the silkworm, Galleria mellonella and the murine model.
Collapse
Affiliation(s)
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (N.A.R.G.)
| |
Collapse
|
23
|
Caplan T, Lorente-Macías Á, Stogios PJ, Evdokimova E, Hyde S, Wellington MA, Liston S, Iyer KR, Puumala E, Shekhar-Guturja T, Robbins N, Savchenko A, Krysan DJ, Whitesell L, Zuercher WJ, Cowen LE. Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2. Cell Chem Biol 2020; 27:269-282.e5. [PMID: 31924499 DOI: 10.1016/j.chembiol.2019.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
New strategies are urgently needed to counter the threat to human health posed by drug-resistant fungi. To explore an as-yet unexploited target space for antifungals, we screened a library of protein kinase inhibitors for the ability to reverse resistance of the most common human fungal pathogen, Candida albicans, to caspofungin, a widely used antifungal. This screen identified multiple 2,3-aryl-pyrazolopyridine scaffold compounds capable of restoring caspofungin sensitivity. Using chemical genomic, biochemical, and structural approaches, we established the target for our most potent compound as Yck2, a casein kinase 1 family member. Combination of this compound with caspofungin eradicated drug-resistant C. albicans infection while sparing co-cultured human cells. In mice, genetic depletion of YCK2 caused an ∼3-log10 decline in fungal burden in a model of systemic caspofungin-resistant C. albicans infection. Structural insights and our tool compound's profile in culture support targeting the Yck2 kinase function as a broadly active antifungal strategy.
Collapse
Affiliation(s)
- Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Álvaro Lorente-Macías
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Peter J Stogios
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Elena Evdokimova
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Sabrina Hyde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Melanie A Wellington
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sean Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Damian J Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - William J Zuercher
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
24
|
Chen T, Wagner AS, Tams RN, Eyer JE, Kauffman SJ, Gann ER, Fernandez EJ, Reynolds TB. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. mBio 2019; 10:e01767-19. [PMID: 31530671 PMCID: PMC6751057 DOI: 10.1128/mbio.01767-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11ΔN467 allele was expressed in C. albicans In the absence of doxycycline, this allele overexpressed STE11ΔN467 , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture.IMPORTANCECandida albicans is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer β (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during β (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes β (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection in vivo, promoting more effective clearance.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew S Wagner
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Robert N Tams
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - James E Eyer
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J Kauffman
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
25
|
Das S, Bhuyan R, Bagchi A, Saha T. Network analysis of hyphae forming proteins in Candida albicans identifies important proteins responsible for pathovirulence in the organism. Heliyon 2019; 5:e01916. [PMID: 31338453 PMCID: PMC6580234 DOI: 10.1016/j.heliyon.2019.e01916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Candida albicans causes two types of major infections in humans: superficial infections, such as skin and mucosal infection, and life-threatening systemic infections, like airway and catheter-related blood stream infections. It is a polymorphic fungus with two distinct forms (yeast and hyphal) and the morphological plasticity is strongly associated with many disease causing proteins. In this study, 137 hyphae associated proteins from Candida albicans (C. albicans) were collected from different sources to create a Protein-Protein Interaction (PPI) network. Out of these, we identified 18 hub proteins (Hog1, Hsp90, Cyr1, Cdc28, Pkc1, Cla4, Cdc42, Tpk1, Act1, Pbs2, Bem1, Tpk2, Ras1, Cdc24, Rim101, Cdc11, Cdc10 and Cln3) that were the most important ones in hyphae development. Ontology and functional enrichment analysis of these proteins could categorize these hyphae associated proteins into groups like signal transduction, kinase activity, biofilm formation, filamentous growth, MAPK signaling etc. Functional annotation analysis of these proteins showed that the protein kinase activity to be essential for hyphae formation in Candida. Additionally, most of the proteins from the network were predicted to be localized on cell surface or periphery, suggesting them as the main protagonists in inducing infections within the host. The complex hyphae formation phenomenon of C. albicans is an attractive target for exploitation to develop new antifungals and anti-virulence strategies to combat C. albicans infections. We further tried to characterize few of the most crucial proteins, especially the kinases by their sequence and structural prospects. Therefore, through this article an attempt to understand the hyphae forming protein network analysis has been made to unravel and elucidate the complex pathogenesis processes with the principal aim of systems biological research involving novel Bioinformatics strategies to combat fungal infections.
Collapse
Affiliation(s)
- Sanjib Das
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry & Biophysics, University of Kalyani, West Bengal, 741235, India
| | - Angshuman Bagchi
- Department of Biochemistry & Biophysics, University of Kalyani, West Bengal, 741235, India
| | - Tanima Saha
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal, 741235, India
| |
Collapse
|
26
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
27
|
Chen T, Jackson JW, Tams RN, Davis SE, Sparer TE, Reynolds TB. Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway. PLoS Genet 2019; 15:e1007892. [PMID: 30703081 PMCID: PMC6372213 DOI: 10.1371/journal.pgen.1007892] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/12/2019] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ. Candida albicans causes fungal infections in the oral cavities and bloodstreams of patients with weakened immune function, such as AIDS or cancer patients. The immune system detects fungal infections, in part, by detecting the antigenic cell wall polysaccharide β (1,3)-glucan. The ability to mask β (1,3)-glucan from immune detection is a virulence factor of C. albicans and a range of fungal pathogens. If synthesis of the phospholipid phosphatidylserine is disrupted in C. albicans (cho1Δ/Δ mutation), then cho1Δ/Δ exhibits significantly increased exposure of β (1,3)-glucan to immune detection compared to wild-type. Intracellular signaling cascades that regulate cell wall synthesis are upregulated in the cho1Δ/Δ mutant. It was hypothesized that upregulation of these pathways might be responsible for unmasking in this mutant. Genetic approaches were used to activate these pathways independently of the cho1Δ/Δ mutation. It was discovered that activation of one pathway, Cdc42-Cek1, leads to β (1,3)-glucan exposure. Thus, this pathway can cause β(1,3)-glucan exposure, and its upregulation may be the cause of unmasking in the cho1Δ/Δ mutant.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Joseph W. Jackson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Robert N. Tams
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Sarah E. Davis
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
28
|
Polvi EJ, Veri AO, Liu Z, Hossain S, Hyde S, Kim SH, Tebbji F, Sellam A, Todd RT, Xie JL, Lin ZY, Wong CJ, Shapiro RS, Whiteway M, Robbins N, Gingras AC, Selmecki A, Cowen LE. Functional divergence of a global regulatory complex governing fungal filamentation. PLoS Genet 2019; 15:e1007901. [PMID: 30615616 PMCID: PMC6336345 DOI: 10.1371/journal.pgen.1007901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 12/16/2018] [Indexed: 01/17/2023] Open
Abstract
Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis. Fungal infections pose a severe burden to human health worldwide. Candida albicans is a leading cause of systemic fungal infections, with mortality rates approaching 40%. One of the key virulence traits of this fungus is its ability to transition between yeast and filamentous forms in response to diverse host-relevant cues. The model yeast Saccharomyces cerevisiae is also capable of filamentous growth in certain conditions, and previous work has identified a key transcriptional complex required for filamentation in both species. However, here we discover that the circuitry governed by this complex in C. albicans is largely distinct from that in the non-pathogenic S. cerevisiae. We also employ a novel selection strategy to perform experimental evolution, identifying chromosome triplication as a mechanism to restore filamentation in a non-filamentous mutant. This work reveals unique circuitry governing a key virulence trait in a leading fungal pathogen, identifying potential therapeutic targets to combat these life-threatening infections.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Sabrina Hyde
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Faiza Tebbji
- Infectious Disease Research Centre, Université Laval, Quebec, Canada
| | - Adnane Sellam
- Infectious Disease Research Centre, Université Laval, Quebec, Canada
| | - Robert T. Todd
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Jinglin L. Xie
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Cassandra J. Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Rebecca S. Shapiro
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
29
|
Yadav U, Rai TK, Sethi SC, Chandraker A, Khan MA, Komath SS. Characterising N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12), the enzyme that catalyses the second step of GPI biosynthesis in Candida albicans. FEMS Yeast Res 2018; 18:5045028. [PMID: 29945236 DOI: 10.1093/femsyr/foy067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/23/2018] [Indexed: 01/01/2023] Open
Abstract
Candida albicans N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12) recognises N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) from Saccharomyces cerevisiae and is able to complement ScGPI12 function. Both N- and C-terminal ends of CaGpi12 are important for its function. CaGpi12 was biochemically characterised using rough endoplasmic reticulum microsomes prepared from BWP17 strain of C. albicans. CaGpi12 is optimally active at 30°C and pH 7.5. It is a metal-dependent enzyme that is stimulated by divalent cations but shows no preference for Zn2+ unlike the mammalian homologue. It irreversibly loses activity upon incubation with a metal chelator. Two conserved motifs, HPDDE and HXXH, are both important for its function in the cell. CaGPI12 is essential for growth and viability of C. albicans. Its loss causes reduction of GlcNAc-PI de-N-acetylase activity, cell wall defects and filamentation defects. The filamentation defects could be specifically correlated to an upregulation of the HOG1 pathway.
Collapse
Affiliation(s)
- Usha Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Tarun Kumar Rai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | | | - Anupriya Chandraker
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Mohd Ashraf Khan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
30
|
Benzofuro[3,2-d]pyrimidines inspired from cercosporamide CaPkc1 inhibitor: Synthesis and evaluation of fluconazole susceptibility restoration. Bioorg Med Chem Lett 2018; 28:2250-2255. [DOI: 10.1016/j.bmcl.2018.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023]
|
31
|
Kanda P, Alarcon EI, Yeuchyk T, Parent S, de Kemp RA, Variola F, Courtman D, Stewart DJ, Davis DR. Deterministic Encapsulation of Human Cardiac Stem Cells in Variable Composition Nanoporous Gel Cocoons To Enhance Therapeutic Repair of Injured Myocardium. ACS NANO 2018; 12:4338-4350. [PMID: 29660269 DOI: 10.1021/acsnano.7b08881] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although cocooning explant-derived cardiac stem cells (EDCs) in protective nanoporous gels (NPGs) prior to intramyocardial injection boosts long-term cell retention, the number of EDCs that finally engraft is trivial and unlikely to account for salutary effects on myocardial function and scar size. As such, we investigated the effect of varying the NPG content within capsules to alter the physical properties of cocoons without influencing cocoon dimensions. Increasing NPG concentration enhanced cell migration and viability while improving cell-mediated repair of injured myocardium. Given that the latter occurred with NPG content having no detectable effect on the long-term engraftment of transplanted cells, we found that changing the physical properties of cocoons prompted explant-derived cardiac stem cells to produce greater amounts of cytokines, nanovesicles, and microRNAs that boosted the generation of new blood vessels and new cardiomyocytes. Thus, by altering the physical properties of cocoons by varying NPG content, the paracrine signature of encapsulated cells can be enhanced to promote greater endogenous repair of injured myocardium.
Collapse
Affiliation(s)
- Pushpinder Kanda
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine , University of Ottawa , Ottawa , Canada K1Y4W7
| | - Emilio I Alarcon
- Division of Cardiac Surgery, Department of Surgery, University of Ottawa Heart Institute , University of Ottawa , Ottawa , Canada K1Y4W7
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Canada K1H8M5
| | - Tanya Yeuchyk
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine , University of Ottawa , Ottawa , Canada K1Y4W7
| | - Sandrine Parent
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine , University of Ottawa , Ottawa , Canada K1Y4W7
| | - Robert A de Kemp
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine , University of Ottawa , Ottawa , Canada K1Y4W7
| | - Fabio Variola
- Department of Mechanical Engineering , University of Ottawa , Ottawa , Canada K1N6N5
- Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada K1H8M5
| | - David Courtman
- Regenerative Medicine Program , Ottawa Hospital Research Institute , Ottawa , Canada K1H8L6
| | - Duncan J Stewart
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine , University of Ottawa , Ottawa , Canada K1Y4W7
- Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada K1H8M5
- Regenerative Medicine Program , Ottawa Hospital Research Institute , Ottawa , Canada K1H8L6
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine , University of Ottawa , Ottawa , Canada K1Y4W7
- Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada K1H8M5
| |
Collapse
|
32
|
Polimanti R, Kayser MH, Gelernter J. Local adaptation in European populations affected the genetics of psychiatric disorders and behavioral traits. Genome Med 2018; 10:24. [PMID: 29580271 PMCID: PMC5870256 DOI: 10.1186/s13073-018-0532-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 01/30/2023] Open
Abstract
Background Recent studies have used genome-wide data to investigate evolutionary mechanisms related to behavioral phenotypes, identifying widespread signals of positive selection. Here, we conducted a genome-wide investigation to study whether the molecular mechanisms involved in these traits were affected by local adaptation. Methods We performed a polygenic risk score analysis in a sample of 2455 individuals from 23 European populations with respect to variables related to geo-climate diversity, pathogen diversity, and language phonological complexity. The analysis was adjusted for the genetic diversity of European populations to ensure that the differences detected would reflect differences in environmental exposures. Results The top finding was related to the association between winter minimum temperature and schizophrenia. Additional significant geo-climate results were also observed with respect to bipolar disorder (sunny daylight), depressive symptoms (precipitation rate), major depressive disorder (precipitation rate), and subjective well-being (relative humidity). Beyond geo-climate variables, we also observed findings related to pathogen diversity and language phonological complexity: openness to experience was associated with protozoan diversity; conscientiousness and extraversion were associated with language consonants. Conclusions We report that common variation associated with psychiatric disorders and behavioral traits was affected by processes related to local adaptation in European populations. Electronic supplementary material The online version of this article (10.1186/s13073-018-0532-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, 950 Campbell Avenue, West Haven, CT, 06516, USA.
| | - Manfred H Kayser
- Department of Genetic Identification, Erasmus University Medical Center, Rotterdam, Rotterdam, the Netherlands
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, 950 Campbell Avenue, West Haven, CT, 06516, USA.,Departments of Genetics and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Sac7 and Rho1 regulate the white-to-opaque switching in Candida albicans. Sci Rep 2018; 8:875. [PMID: 29343748 PMCID: PMC5772354 DOI: 10.1038/s41598-018-19246-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022] Open
Abstract
Candida albicans cells homozygous at the mating-type locus stochastically undergo the white-to-opaque switching to become mating-competent. This switching is regulated by a core circuit of transcription factors organized through interlocking feedback loops around the master regulator Wor1. Although a range of distinct environmental cues is known to induce the switching, the pathways linking the external stimuli to the central control mechanism remains largely unknown. By screening a C. albicans haploid gene-deletion library, we found that SAC7 encoding a GTPase-activating protein of Rho1 is required for the white-to-opaque switching. We demonstrate that Sac7 physically associates with Rho1-GTP and the constitutively active Rho1G18V mutant impairs the white-to-opaque switching while the inactive Rho1D124A mutant promotes it. Overexpressing WOR1 in both sac7Δ/Δ and rho1G18V cells suppresses the switching defect, indicating that the Sac7/Rho1 module acts upstream of Wor1. Furthermore, we provide evidence that Sac7/Rho1 functions in a pathway independent of the Ras/cAMP pathway which has previously been positioned upstream of Wor1. Taken together, we have discovered new regulators and a signaling pathway that regulate the white-to-opaque switching in the most prevalent human fungal pathogen C. albicans.
Collapse
|
34
|
Heinisch JJ, Rodicio R. Protein kinase C in fungi—more than just cell wall integrity. FEMS Microbiol Rev 2017; 42:4562651. [DOI: 10.1093/femsre/fux051] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
|
35
|
Xie JL, Qin L, Miao Z, Grys BT, Diaz JDLC, Ting K, Krieger JR, Tong J, Tan K, Leach MD, Ketela T, Moran MF, Krysan DJ, Boone C, Andrews BJ, Selmecki A, Ho Wong K, Robbins N, Cowen LE. The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation. Nat Commun 2017; 8:499. [PMID: 28894103 PMCID: PMC5593949 DOI: 10.1038/s41467-017-00547-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
The capacity to coordinate environmental sensing with initiation of cellular responses underpins microbial survival and is crucial for virulence and stress responses in microbial pathogens. Here we define circuitry that enables the fungal pathogen Candida albicans to couple cell cycle dynamics with responses to cell wall stress induced by echinocandins, a front-line class of antifungal drugs. We discover that the C. albicans transcription factor Cas5 is crucial for proper cell cycle dynamics and responses to echinocandins, which inhibit β-1,3-glucan synthesis. Cas5 has distinct transcriptional targets under basal and stress conditions, is activated by the phosphatase Glc7, and can regulate the expression of target genes in concert with the transcriptional regulators Swi4 and Swi6. Thus, we illuminate a mechanism of transcriptional control that couples cell wall integrity with cell cycle regulation, and uncover circuitry governing antifungal drug resistance.Cas5 is a transcriptional regulator of responses to cell wall stress in the fungal pathogen Candida albicans. Here, Xie et al. show that Cas5 also modulates cell cycle dynamics and responses to antifungal drugs.
Collapse
Affiliation(s)
- Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Longguang Qin
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Ben T Grys
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Jacinto De La Cruz Diaz
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA
| | - Kenneth Ting
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Jonathan R Krieger
- The Hospital for Sick Children, SPARC Biocentre, Toronto, ON, Canada, M5G 0A4
| | - Jiefei Tong
- The Hospital for Sick Children, Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada, M5G 0A4
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Michelle D Leach
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Abderdeen, AB252ZD, UK
| | - Troy Ketela
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Michael F Moran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- The Hospital for Sick Children, SPARC Biocentre, Toronto, ON, Canada, M5G 0A4
- The Hospital for Sick Children, Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada, M5G 0A4
| | - Damian J Krysan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA
- Department of Pediatrics and Microbiology/Immunology, University of Rochester, Rochester, NY, 14642, USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Brenda J Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1.
| |
Collapse
|
36
|
O'Meara TR, Robbins N, Cowen LE. The Hsp90 Chaperone Network Modulates Candida Virulence Traits. Trends Microbiol 2017; 25:809-819. [PMID: 28549824 DOI: 10.1016/j.tim.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
Abstract
Hsp90 is a conserved molecular chaperone that facilitates the folding and function of client proteins. Hsp90 function is dynamically regulated by interactions with co-chaperones and by post-translational modifications. In the fungal pathogen Candida albicans, Hsp90 enables drug resistance and virulence by stabilizing diverse signal transducers. Here, we review studies that have unveiled regulators of Hsp90 function, as well as downstream effectors that govern the key virulence traits of morphogenesis and drug resistance. We highlight recent work mapping the Hsp90 genetic network in C. albicans under diverse environmental conditions, and how these interactions provide insight into circuitry important for drug resistance, morphogenesis, and virulence. Ultimately, elucidating the Hsp90 chaperone network will aid in the development of therapeutics to treat fungal disease.
Collapse
Affiliation(s)
- Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
37
|
Staurosporine Induces Filamentation in the Human Fungal Pathogen Candida albicans via Signaling through Cyr1 and Protein Kinase A. mSphere 2017; 2:mSphere00056-17. [PMID: 28261668 PMCID: PMC5332603 DOI: 10.1128/msphere.00056-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 01/10/2023] Open
Abstract
The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream infections. Treatment of these infections is extremely difficult, as fungi are closely related to humans, and there are limited drugs that kill the fungus without host toxicity. The capacity of C. albicans to transition between yeast and filamentous forms is a key virulence trait. Thus, understanding the genetic pathways that regulate morphogenesis could provide novel therapeutic targets to treat C. albicans infections. Here, we establish the small molecule staurosporine as an inducer of filamentous growth. We unveil distinct regulatory circuitry required for staurosporine-induced filamentation that appears to be unique to this filament-inducing cue. Thus, this work highlights the fact that small molecules, such as staurosporine, can improve our understanding of the pathways required for key virulence programs, which may lead to the development of novel therapeutics. Protein kinases are key regulators of signal transduction pathways that participate in diverse cellular processes. In fungal pathogens, kinases regulate signaling pathways that govern drug resistance, stress adaptation, and pathogenesis. The impact of kinases on the fungal regulatory circuitry has recently garnered considerable attention in the opportunistic fungal pathogen Candida albicans, which is a leading cause of human morbidity and mortality. Complex regulatory circuitry governs the C. albicans morphogenetic transition between yeast and filamentous growth, which is a key virulence trait. Here, we report that staurosporine, a promiscuous kinase inhibitor that abrogates fungal drug resistance, also influences C. albicans morphogenesis by inducing filamentation in the absence of any other inducing cue. We further establish that staurosporine exerts its effect via the adenylyl cyclase Cyr1 and the cyclic AMP (cAMP)-dependent protein kinase A (PKA). Strikingly, filamentation induced by staurosporine does not require the known upstream regulators of Cyr1, Ras1 or Pkc1, or effectors downstream of PKA, including Efg1. We further demonstrate that Cyr1 is capable of activating PKA to enable filamentation in response to staurosporine through a mechanism that does not require degradation of the transcriptional repressor Nrg1. We establish that staurosporine-induced filamentation is accompanied by a defect in septin ring formation, implicating cell cycle kinases as potential staurosporine targets underpinning this cellular response. Thus, we establish staurosporine as a chemical probe to elucidate the architecture of cellular signaling governing fungal morphogenesis and highlight the existence of novel circuitry through which the Cyr1 and PKA govern a key virulence trait. IMPORTANCE The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream infections. Treatment of these infections is extremely difficult, as fungi are closely related to humans, and there are limited drugs that kill the fungus without host toxicity. The capacity of C. albicans to transition between yeast and filamentous forms is a key virulence trait. Thus, understanding the genetic pathways that regulate morphogenesis could provide novel therapeutic targets to treat C. albicans infections. Here, we establish the small molecule staurosporine as an inducer of filamentous growth. We unveil distinct regulatory circuitry required for staurosporine-induced filamentation that appears to be unique to this filament-inducing cue. Thus, this work highlights the fact that small molecules, such as staurosporine, can improve our understanding of the pathways required for key virulence programs, which may lead to the development of novel therapeutics.
Collapse
|
38
|
Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation. PLoS Genet 2016; 12:e1006452. [PMID: 27870871 PMCID: PMC5147769 DOI: 10.1371/journal.pgen.1006452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022] Open
Abstract
Fungal biofilms are complex, structured communities that can form on surfaces such as catheters and other indwelling medical devices. Biofilms are of particular concern with Candida albicans, one of the leading opportunistic fungal pathogens of humans. C. albicans biofilms include yeast and filamentous cells that are surrounded by an extracellular matrix, and they are intrinsically resistant to antifungal drugs such that resolving biofilm infections often requires surgery to remove the contaminated device. C. albicans biofilms form through a regulated process of adhesion to surfaces, filamentation, maturation, and ultimately dispersion. To uncover new strategies to block the initial stages of biofilm formation, we utilized a functional genomic approach to identify genes that modulate C. albicans adherence. We screened a library of 1,481 double barcoded doxycycline-repressible conditional gene expression strains covering ~25% of the C. albicans genome. We identified five genes for which transcriptional repression impaired adherence, including: ARC18, PMT1, MNN9, SPT7, and orf19.831. The most severe adherence defect was observed upon transcriptional repression of ARC18, which encodes a member of the Arp2/3 complex that is involved in regulation of the actin cytoskeleton and endocytosis. Depletion of components of the Arp2/3 complex not only impaired adherence, but also caused reduced biofilm formation, increased cell surface hydrophobicity, and increased exposure of cell wall chitin and β-glucans. Reduced function of the Arp2/3 complex led to impaired cell wall integrity and activation of Rho1-mediated cell wall stress responses, thereby causing cell wall remodelling and reduced adherence. Thus, we identify important functional relationships between cell wall stress responses and a novel mechanism that controls adherence and biofilm formation, thereby illuminating novel strategies to cripple a leading fungal pathogen of humans.
Collapse
|