1
|
Scully R, Walter JC, Nussenzweig A. One-ended and two-ended breaks at nickase-broken replication forks. DNA Repair (Amst) 2024; 144:103783. [PMID: 39504607 DOI: 10.1016/j.dnarep.2024.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Replisome collision with a nicked parental DNA template can lead to the formation of a replication-associated double strand break (DSB). How this break is repaired has implications for cancer initiation, cancer therapy and therapeutic gene editing. Recent work shows that collision of a replisome with a nicked DNA template can give rise to either a single-ended (se) or a double-ended (de)DSB, with potentially divergent effects on repair pathway choice and genomic instability. Emerging evidence suggests that the biochemical environment of the broken mammalian replication fork may be specialized in such a way as to skew repair in favor of homologous recombination at the expense of non-homologous end joining.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Johannes C Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
3
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
4
|
Smirnov A, Battulin N. Concatenation of Transgenic DNA: Random or Orchestrated? Genes (Basel) 2021; 12:genes12121969. [PMID: 34946918 PMCID: PMC8701086 DOI: 10.3390/genes12121969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Generation of transgenic organisms by pronuclear microinjection has become a routine procedure. However, while the process of DNA integration in the genome is well understood, we still do not know much about the recombination between transgene molecules that happens in the first moments after DNA injection. Most of the time, injected molecules are joined together in head-to-tail tandem repeats-the so-called concatemers. In this review, we focused on the possible concatenation mechanisms and how they could be studied with genetic reporters tracking individual copies in concatemers. We also discuss various features of concatemers, including palindromic junctions and repeat-induced gene silencing (RIGS). Finally, we speculate how cooperation of DNA repair pathways creates a multicopy concatenated insert.
Collapse
Affiliation(s)
- Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Institute of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
5
|
Stewart JA, Hillegass MB, Oberlitner JH, Younkin EM, Wasserman BF, Casper AM. Noncanonical outcomes of break-induced replication produce complex, extremely long-tract gene conversion events in yeast. G3 (BETHESDA, MD.) 2021; 11:jkab245. [PMID: 34568913 PMCID: PMC8473981 DOI: 10.1093/g3journal/jkab245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Long-tract gene conversions (LTGC) can result from the repair of collapsed replication forks, and several mechanisms have been proposed to explain how the repair process produces this outcome. We studied LTGC events produced from repair collapsed forks at yeast fragile site FS2. Our analysis included chromosome sizing by contour-clamped homogeneous electric field electrophoresis, next-generation whole-genome sequencing, and Sanger sequencing across repair event junctions. We compared the sequence and structure of LTGC events in our cells to the expected qualities of LTGC events generated by proposed mechanisms. Our evidence indicates that some LTGC events arise from half-crossover during BIR, some LTGC events arise from gap repair, and some LTGC events can be explained by either gap repair or "late" template switch during BIR. Also based on our data, we propose that models of collapsed replication forks be revised to show not a one-end double-strand break (DSB), but rather a two-end DSB in which the ends are separated in time and subject to gap repair.
Collapse
Affiliation(s)
- Joseph A Stewart
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Joseph H Oberlitner
- Department of Biology, Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Ellen M Younkin
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Beth F Wasserman
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Anne M Casper
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
6
|
Mako: A Graph-based Pattern Growth Approach to Detect Complex Structural Variants. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:205-218. [PMID: 34224879 PMCID: PMC9510932 DOI: 10.1016/j.gpb.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022]
Abstract
Complex structural variants (CSVs) are genomic alterations that have more than two breakpoints and are considered as the simultaneous occurrence of simple structural variants. However, detecting the compounded mutational signals of CSVs is challenging through a commonly used model-match strategy. As a result, there has been limited progress for CSV discovery compared with simple structural variants. Here, we systematically analyzed the multi-breakpoint connection feature of CSVs, and proposed Mako, utilizing a bottom-up guided model-free strategy, to detect CSVs from paired-end short-read sequencing. Specifically, we implemented a graph-based pattern growth approach, where the graph depicts potential breakpoint connections, and pattern growth enables CSV detection without pre-defined models. Comprehensive evaluations on both simulated and real datasets revealed that Mako outperformed other algorithms. Notably, validation rates of CSVs on real data based on experimental and computational validations as well as manual inspections are around 70%, where the medians of experimental and computational breakpoint shift are 13 bp and 26 bp, respectively. Moreover, the Mako CSV subgraph effectively characterized the breakpoint connections of a CSV event and uncovered a total of 15 CSV types, including two novel types of adjacent segment swap and tandem dispersed duplication. Further analysis of these CSVs also revealed the impact of sequence homology on the formation of CSVs. Mako is publicly available at https://github.com/xjtu-omics/Mako.
Collapse
|
7
|
Lakshmanan LN, Yee Z, Halliwell B, Gruber J, Gunawan R. Thermodynamic analysis of DNA hybridization signatures near mitochondrial DNA deletion breakpoints. iScience 2021; 24:102138. [PMID: 33665557 PMCID: PMC7900216 DOI: 10.1016/j.isci.2021.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Broad evidence in the literature supports double-strand breaks (DSBs) as initiators of mitochondrial DNA (mtDNA) deletion mutations. While DNA misalignment during DSB repair is commonly proposed as the mechanism by which DSBs cause deletion mutations, details such as the specific DNA repair errors are still lacking. Here, we used DNA hybridization thermodynamics to infer the sequence lengths of mtDNA misalignments that are associated with mtDNA deletions. We gathered and analyzed 9,921 previously reported mtDNA deletion breakpoints in human, rhesus monkey, mouse, rat, and Caenorhabditis elegans. Our analysis shows that a large fraction of mtDNA breakpoint positions can be explained by the thermodynamics of short ≤ 5-nt misalignments. The significance of short DNA misalignments supports an important role for erroneous non-homologous and micro-homology-dependent DSB repair in mtDNA deletion formation. The consistency of the results of our analysis across species further suggests a shared mode of mtDNA deletion mutagenesis.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Zhuangli Yee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
- Corresponding author
| |
Collapse
|
8
|
How Chaotic Is Genome Chaos? Cancers (Basel) 2021; 13:cancers13061358. [PMID: 33802828 PMCID: PMC8002653 DOI: 10.3390/cancers13061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer genomes can undergo major restructurings involving many chromosomal locations at key stages in tumor development. This restructuring process has been designated “genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of these processes in various cancers reveals a degree of specificity that indicates genome restructuring may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to more lethal forms. Abstract Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called “genome chaos.” To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Collapse
|
9
|
Eckelmann BJ, Bacolla A, Wang H, Ye Z, Guerrero EN, Jiang W, El-Zein R, Hegde ML, Tomkinson AE, Tainer J, Mitra S. XRCC1 promotes replication restart, nascent fork degradation and mutagenic DNA repair in BRCA2-deficient cells. NAR Cancer 2020; 2:zcaa013. [PMID: 32776008 PMCID: PMC7397735 DOI: 10.1093/narcan/zcaa013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination/end joining (HR/HEJ)-deficient cancers with BRCA mutations utilize alternative DNA double-strand break repair pathways, particularly alternative non-homologous end joining or microhomology-mediated end joining (alt-EJ/MMEJ) during S and G2 cell cycle phases. Depletion of alt-EJ factors, including XRCC1, PARP1 and POLQ, is synthetically lethal with BRCA2 deficiency; yet, XRCC1 roles in HR-deficient cancers and replication stress are enigmatic. Here, we show that after replication stress, XRCC1 forms an active repair complex with POLQ and MRE11 that supports alt-EJ activity in vitro. BRCA2 limits XRCC1 recruitment and repair complex formation to suppress alt-EJ at stalled forks. Without BRCA2 fork protection, XRCC1 enables cells to complete DNA replication at the expense of increased genome instability by promoting MRE11-dependent fork resection and restart. High XRCC1 and MRE11 gene expression negatively impacts Kaplan-Meier survival curves and hazard ratios for HR-deficient breast cancer patients in The Cancer Genome Atlas. The additive effects of depleting both BRCA2 and XRCC1 indicate distinct pathways for replication restart. Our collective data show that XRCC1-mediated processing contributes to replication fork degradation, replication restart and chromosome aberrations in BRCA2-deficient cells, uncovering new roles of XRCC1 and microhomology-mediated repair mechanisms in HR-deficient cancers, with implications for chemotherapeutic strategies targeting POLQ and PARP activities.
Collapse
Affiliation(s)
- Bradley J Eckelmann
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Albino Bacolla
- Departments of Cancer Biology and Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zu Ye
- Departments of Cancer Biology and Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erika N Guerrero
- Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Wei Jiang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518036, China
| | - Randa El-Zein
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics & Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - John A Tainer
- Departments of Cancer Biology and Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
10
|
Andor N, Lau BT, Catalanotti C, Sathe A, Kubit M, Chen J, Blaj C, Cherry A, Bangs CD, Grimes SM, Suarez CJ, Ji HP. Joint single cell DNA-seq and RNA-seq of gastric cancer cell lines reveals rules of in vitro evolution. NAR Genom Bioinform 2020; 2:lqaa016. [PMID: 32215369 PMCID: PMC7079336 DOI: 10.1093/nargab/lqaa016] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Cancer cell lines are not homogeneous nor are they static in their genetic state and biological properties. Genetic, transcriptional and phenotypic diversity within cell lines contributes to the lack of experimental reproducibility frequently observed in tissue-culture-based studies. While cancer cell line heterogeneity has been generally recognized, there are no studies which quantify the number of clones that coexist within cell lines and their distinguishing characteristics. We used a single-cell DNA sequencing approach to characterize the cellular diversity within nine gastric cancer cell lines and integrated this information with single-cell RNA sequencing. Overall, we sequenced the genomes of 8824 cells, identifying between 2 and 12 clones per cell line. Using the transcriptomes of more than 28 000 single cells from the same cell lines, we independently corroborated 88% of the clonal structure determined from single cell DNA analysis. For one of these cell lines, we identified cell surface markers that distinguished two subpopulations and used flow cytometry to sort these two clones. We identified substantial proportions of replicating cells in each cell line, assigned these cells to subclones detected among the G0/G1 population and used the proportion of replicating cells per subclone as a surrogate of each subclone's growth rate.
Collapse
Affiliation(s)
- Noemi Andor
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, 33612 FL, USA
| | - Billy T Lau
- Stanford Genome Technology Center, Stanford University, Palo Alto, 94304 CA, USA
| | | | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, 94305 CA, USA
| | - Matthew Kubit
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, 94305 CA, USA
| | - Jiamin Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, 94305 CA, USA
| | - Cristina Blaj
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720 CA, USA
| | - Athena Cherry
- Department of Pathology, Stanford University School of Medicine, Stanford, 94305 CA, USA
| | - Charles D Bangs
- Department of Pathology, Stanford University School of Medicine, Stanford, 94305 CA, USA
| | - Susan M Grimes
- Stanford Genome Technology Center, Stanford University, Palo Alto, 94304 CA, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, 94305 CA, USA
| | - Hanlee P Ji
- Stanford Genome Technology Center, Stanford University, Palo Alto, 94304 CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, 94305 CA, USA
| |
Collapse
|
11
|
Smirnov A, Fishman V, Yunusova A, Korablev A, Serova I, Skryabin BV, Rozhdestvensky TS, Battulin N. DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote. Nucleic Acids Res 2020; 48:719-735. [PMID: 31740957 PMCID: PMC7145541 DOI: 10.1093/nar/gkz1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mechanisms that ensure repair of double-strand DNA breaks (DSBs) are instrumental in the integration of foreign DNA into the genome of transgenic organisms. After pronuclear microinjection, exogenous DNA is usually found as a concatemer comprising multiple co-integrated transgene copies. Here, we investigated the contribution of various DSB repair pathways to the concatemer formation. We injected mouse zygotes with a pool of linear DNA molecules carrying unique barcodes at both ends and obtained 10 transgenic embryos with 1–300 transgene copies. Sequencing the barcodes allowed us to assign relative positions to the copies in concatemers and detect recombination events that occurred during integration. Cumulative analysis of approximately 1,000 integrated copies reveals that over 80% of them underwent recombination when their linear ends were processed by synthesis-dependent strand annealing (SDSA) or double-strand break repair (DSBR). We also observed evidence of double Holliday junction (dHJ) formation and crossing over during the concatemer formations. Sequencing indels at the junctions between copies shows that at least 10% of DNA molecules introduced into the zygotes are ligated by non-homologous end joining (NHEJ). Our barcoding approach, verified with Pacific Biosciences Single Molecule Real-Time (SMRT) long-range sequencing, documents high activity of homologous recombination after DNA microinjection.
Collapse
Affiliation(s)
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Boris V Skryabin
- Medical Faculty, Core Facility Transgenic animal and genetic engineering Models (TRAM), University of Muenster, Muenster, Germany
| | - Timofey S Rozhdestvensky
- Medical Faculty, Core Facility Transgenic animal and genetic engineering Models (TRAM), University of Muenster, Muenster, Germany
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
12
|
Willis NA, Panday A, Duffey EE, Scully R. Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier. PLoS Genet 2018; 14:e1007486. [PMID: 30024881 PMCID: PMC6067765 DOI: 10.1371/journal.pgen.1007486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/31/2018] [Accepted: 06/13/2018] [Indexed: 11/19/2022] Open
Abstract
Classical non-homologous end joining (C-NHEJ) and homologous recombination (HR) compete to repair mammalian chromosomal double strand breaks (DSBs). However, C-NHEJ has no impact on HR induced by DNA nicking enzymes. In this case, the replication fork is thought to convert the DNA nick into a one-ended DSB, which lacks a readily available partner for C-NHEJ. Whether C-NHEJ competes with HR at a non-enzymatic mammalian replication fork barrier (RFB) remains unknown. We previously showed that conservative "short tract" gene conversion (STGC) induced by a chromosomal Tus/Ter RFB is a product of bidirectional replication fork stalling. This finding raises the possibility that Tus/Ter-induced STGC proceeds via a two-ended DSB intermediate. If so, Tus/Ter-induced STGC might be subject to competition by C-NHEJ. However, in contrast to the DSB response, where genetic ablation of C-NHEJ stimulates HR, we report here that Tus/Ter-induced HR is unaffected by deletion of either of two C-NHEJ genes, Xrcc4 or Ku70. These results show that Tus/Ter-induced HR does not entail the formation of a two-ended DSB to which C-NHEJ has competitive access. We found no evidence that the alternative end-joining factor, DNA polymerase θ, competes with Tus/Ter-induced HR. We used chromatin-immunoprecipitation to compare Rad51 recruitment to a Tus/Ter RFB and to a neighboring site-specific DSB. Rad51 accumulation at Tus/Ter was more intense and more sustained than at a DSB. In contrast to the DSB response, Rad51 accumulation at Tus/Ter was restricted to within a few hundred base pairs of the RFB. Taken together, these findings suggest that the major DNA structures that bind Rad51 at a Tus/Ter RFB are not conventional DSBs. We propose that Rad51 acts as an "early responder" at stalled forks, binding single stranded daughter strand gaps on the arrested lagging strand, and that Rad51-mediated fork remodeling generates HR intermediates that are incapable of Ku binding and therefore invisible to the C-NHEJ machinery.
Collapse
Affiliation(s)
- Nicholas A. Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erin E. Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Willis NA, Frock RL, Menghi F, Duffey EE, Panday A, Camacho V, Hasty EP, Liu ET, Alt FW, Scully R. Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature 2017; 551:590-595. [PMID: 29168504 PMCID: PMC5728692 DOI: 10.1038/nature24477] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Small, approximately 10-kilobase microhomology-mediated tandem duplications are abundant in the genomes of BRCA1-linked but not BRCA2-linked breast cancer. Here we define the mechanism underlying this rearrangement signature. We show that, in primary mammalian cells, BRCA1, but not BRCA2, suppresses the formation of tandem duplications at a site-specific chromosomal replication fork barrier imposed by the binding of Tus proteins to an array of Ter sites. BRCA1 has no equivalent role at chromosomal double-stranded DNA breaks, indicating that tandem duplications form specifically at stalled forks. Tandem duplications in BRCA1 mutant cells arise by a replication restart-bypass mechanism terminated by end joining or by microhomology-mediated template switching, the latter forming complex tandem duplication breakpoints. Solitary DNA ends form directly at Tus-Ter, implicating misrepair of these lesions in tandem duplication formation. Furthermore, BRCA1 inactivation is strongly associated with ~10 kilobase tandem duplications in ovarian cancer. This tandem duplicator phenotype may be a general signature of BRCA1-deficient cancer.
Collapse
Affiliation(s)
- Nicholas A. Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Richard L. Frock
- Boston Children’s Hospital, Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Erin E. Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Virginia Camacho
- Department of Medicine, Flow Cytometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - E. Paul Hasty
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Edison T. Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Frederick W. Alt
- Boston Children’s Hospital, Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Nath S, Somyajit K, Mishra A, Scully R, Nagaraju G. FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids. Nucleic Acids Res 2017; 45:8886-8900. [PMID: 28911102 PMCID: PMC5587752 DOI: 10.1093/nar/gkx586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023] Open
Abstract
The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression.
Collapse
Affiliation(s)
- Sarmi Nath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ralph Scully
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Vu GTH, Cao HX, Fauser F, Reiss B, Puchta H, Schubert I. Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:57-67. [PMID: 28696528 DOI: 10.1111/tpj.13634] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 05/20/2023]
Abstract
The possibility to predict the outcome of targeted DNA double-stranded break (DSB) repair would be desirable for genome editing. Furthermore the consequences of mis-repair of potentially cell-lethal DSBs and the underlying pathways are not yet fully understood. Here we study the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-induced mutation spectra at three selected endogenous loci in Arabidopsis thaliana by deep sequencing of long amplicon libraries. Notably, we found sequence-dependent genomic features that affected the DNA repair outcome. Deletions of 1-bp to <1000-bp size and/or very short insertions, deletions >1 kbp (all due to NHEJ) and deletions combined with insertions between 5-bp to >100 bp [caused by a synthesis-dependent strand annealing (SDSA)-like mechanism] occurred most frequently at all three loci. The appearance of single-stranded annealing events depends on the presence and distance between repeats flanking the DSB. The frequency and size of insertions is increased if a sequence with high similarity to the target site was available in cis. Most deletions were linked to pre-existing microhomology. Deletion and/or insertion mutations were blunt-end ligated or via de novo generated microhomology. While most mutation types and, to some degree, their predictability are comparable with animal systems, the broad range of deletion mutations seems to be a peculiar feature of the plant A. thaliana.
Collapse
Affiliation(s)
- Giang T H Vu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D 06466, Gatersleben, Stadt Seeland, Germany
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D 06466, Gatersleben, Stadt Seeland, Germany
| | - Friedrich Fauser
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, Karlsruhe, 76049, Germany
| | - Bernd Reiss
- Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, Karlsruhe, 76049, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D 06466, Gatersleben, Stadt Seeland, Germany
| |
Collapse
|
16
|
Tassi RA, Todeschini P, Siegel ER, Calza S, Cappella P, Ardighieri L, Cadei M, Bugatti M, Romani C, Bandiera E, Zanotti L, Tassone L, Guarino D, Santonocito C, Capoluongo ED, Beltrame L, Erba E, Marchini S, D'Incalci M, Donzelli C, Santin AD, Pecorelli S, Sartori E, Bignotti E, Odicino F, Ravaggi A. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:63. [PMID: 28482906 PMCID: PMC5422964 DOI: 10.1186/s13046-017-0536-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/19/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a spectrum of different diseases, which makes their treatment a challenge. Forkhead box M1 (FOXM1) is an oncogene aberrantly expressed in many solid cancers including serous EOC, but its role in non-serous EOCs remains undefined. We examined FOXM1 expression and its correlation to prognosis across the three major EOC subtypes, and its role in tumorigenesis and chemo-resistance in vitro. METHODS Gene signatures were generated by microarray for 14 clear-cell and 26 endometrioid EOCs, and 15 normal endometrium snap-frozen biopsies. Validation of FOXM1 expression was performed by RT-qPCR and immunohistochemistry in the same samples and additionally in 50 high-grade serous EOCs and in their most adequate normal controls (10 luminal fallopian tube and 20 ovarian surface epithelial brushings). Correlations of FOXM1 expression to clinic-pathological parameters and patients' prognosis were evaluated by Kaplan-Meier and Cox proportional-hazards analyses. OVCAR-3 and two novel deeply characterized EOC cell lines (EOC-CC1 and OSPC2, with clear-cell and serous subtype, respectively) were employed for in vitro studies. Effects of FOXM1 inhibition by transient siRNA transfection were evaluated on cell-proliferation, cell-cycle, colony formation, invasion, and response to conventional first- and second-line anticancer agents, and to the PARP-inhibitor olaparib. Gene signatures of FOXM1-silenced cell lines were generated by microarray and confirmed by RT-qPCR. RESULTS A significant FOXM1 mRNA up-regulation was found in EOCs compared to normal controls. FOXM1 protein overexpression significantly correlated to serous histology (p = 0.001) and advanced FIGO stage (p = 0.004). Multivariate analyses confirmed FOXM1 protein overexpression as an independent indicator of worse disease specific survival in non-serous EOCs, and of shorter time to progression in platinum-resistant cases. FOXM1 downregulation in EOC cell lines inhibited cell growth and clonogenicity, and promoted the cytotoxic effects of platinum compounds, doxorubicin hydrochloride and olaparib. Upon FOXM1 knock-down in EOC-CC1 and OSPC2 cells, microarray and RT-qPCR analyses revealed the deregulation of several common and other unique subtype-specific FOXM1 putative targets involved in cell cycle, metastasis, DNA repair and drug response. CONCLUSIONS FOXM1 is up-regulated in all three major EOCs subtypes, and is a prognostic biomarker and a potential combinatorial therapeutic target in platinum resistant disease, irrespective of tumor histology.
Collapse
Affiliation(s)
- Renata A Tassi
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy.
| | - Paola Todeschini
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Unit of Biostatistics, University of Brescia, Brescia, Italy
| | | | - Laura Ardighieri
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Moris Cadei
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Chiara Romani
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Bandiera
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Laura Zanotti
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Laura Tassone
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Donatella Guarino
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Concetta Santonocito
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Ettore D Capoluongo
- Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation Gemelli Hospital, Rome, Italy
| | - Luca Beltrame
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Eugenio Erba
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Sergio Marchini
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS - "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Carla Donzelli
- Department of Molecular and Translational Medicine, Section of Pathology, University-ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Sergio Pecorelli
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| | - Enrico Sartori
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Franco Odicino
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Antonella Ravaggi
- Department of Obstetrics and Gynecology, "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
17
|
So A, Le Guen T, Lopez BS, Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J 2017; 284:2324-2344. [PMID: 28244221 DOI: 10.1111/febs.14053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
Collapse
Affiliation(s)
- Ayeong So
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Tangui Le Guen
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| |
Collapse
|
18
|
Hartlerode AJ, Willis NA, Rajendran A, Manis JP, Scully R. Correction: Complex Breakpoints and Template Switching Associated with Non-canonical Termination of Homologous Recombination in Mammalian Cells. PLoS Genet 2016; 12:e1006509. [PMID: 27959912 PMCID: PMC5154494 DOI: 10.1371/journal.pgen.1006509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pgen.1006410.].
Collapse
|