1
|
Gold AL, Hurlock ME, Guevara AM, Isenberg LYZ, Kim Y. Identification of the Polo-like kinase substrate required for homologous synapsis. J Cell Biol 2025; 224:e202408092. [PMID: 39680026 DOI: 10.1083/jcb.202408092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The synaptonemal complex (SC) is a zipper-like protein structure that aligns homologous chromosome pairs and regulates recombination during meiosis. Despite its conserved appearance and function, how synapsis occurs between chromosome axes remains elusive. Here, we demonstrate that Polo-like kinases (PLKs) phosphorylate a single conserved residue in the disordered C-terminal tails of two paralogous SC subunits, SYP-5 and SYP-6, to establish an electrostatic interface between the SC central region and chromosome axes in C. elegans. While SYP-5/6 phosphorylation is dispensable for the ability of SC proteins to self-assemble, local phosphorylation by PLKs at the pairing center is crucial for SC elongation between homologous chromosome axes. Additionally, SYP-5/6 phosphorylation is essential for asymmetric SC disassembly and proper PLK-2 localization after crossover designation, which drives chromosome remodeling required for homolog separation during meiosis I. This work identifies a key regulatory mechanism by which localized PLK activity mediates the SC-axis interaction through phosphorylation of SYP-5/6, coupling synapsis initiation to homolog pairing.
Collapse
Affiliation(s)
- Ariel L Gold
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Alicia M Guevara
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Gordon SG, Rodriguez AA, Gu Y, Corbett KD, Lee CF, Rog O. The synaptonemal complex aligns meiotic chromosomes by wetting. SCIENCE ADVANCES 2025; 11:eadt5675. [PMID: 40009663 PMCID: PMC11864179 DOI: 10.1126/sciadv.adt5675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
During meiosis, the parental chromosomes are drawn together to enable exchange of genetic information. Chromosomes are aligned through the assembly of a conserved interface, the synaptonemal complex, composed of a central region that forms between two parallel chromosomal backbones called axes. Here, we identify the axis-central region interface in C. elegans, containing a conserved positive patch on the axis component HIM-3 and the negative C terminus of the central region protein SYP-5. Crucially, the canonical ultrastructure of the synaptonemal complex is altered upon weakening this interface using charge-reversal mutations. We developed a thermodynamic model that recapitulates our experimental observations, indicating that the liquid-like central region can assemble by wetting the axes without active energy consumption. More broadly, our data show that condensation drives tightly regulated nuclear reorganization during sexual reproduction.
Collapse
Affiliation(s)
- Spencer G. Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Alyssa A. Rodriguez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, London, UK
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Patel B, Grobler M, Herrera A, Logari E, Ortiz V, Bhalla N. The conserved ATPase PCH-2 controls the number and distribution of crossovers by antagonizing their formation in Caenorhabditis elegans. eLife 2025; 13:RP102409. [PMID: 39964851 PMCID: PMC11835387 DOI: 10.7554/elife.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2's conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.
Collapse
Affiliation(s)
- Bhumil Patel
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Maryke Grobler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Alberto Herrera
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Elias Logari
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
4
|
Köhler S, Wojcik M, Xu K, Dernburg AF. Dynamic molecular architecture of the synaptonemal complex. SCIENCE ADVANCES 2025; 11:eadq9374. [PMID: 39841849 PMCID: PMC11753403 DOI: 10.1126/sciadv.adq9374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive. We isolated an unusual mutation in Caenorhabditis elegans that disrupts crossover interference but not SC assembly. This mutation alters the unique C terminal domain of an essential SC protein, SYP-4, a likely ortholog of the vertebrate SC protein SIX6OS1. We use three-dimensional stochastic optical reconstruction microscopy (3D-STORM) to interrogate the molecular architecture of the SC from wild-type and mutant C. elegans animals. Using a probabilistic mapping approach to analyze super-resolution image data, we detect changes in the organization of the synaptonemal complex in wild-type animals that coincide with crossover designation. We also found that our syp-4 mutant perturbs SC architecture. Our findings add to growing evidence that the SC is an active material whose molecular organization contributes to chromosome-wide crossover regulation.
Collapse
Affiliation(s)
- Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Michal Wojcik
- Department of Chemistry, University of California, Berkeley, Berkeley CA 94720-3220, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley CA 94720-3220, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- California Institute for Quantitative Biosciences, Berkeley CA 94720, USA
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
- California Institute for Quantitative Biosciences, Berkeley CA 94720, USA
| |
Collapse
|
5
|
Payero L, Alani E. Crossover recombination between homologous chromosomes in meiosis: recent progress and remaining mysteries. Trends Genet 2025; 41:47-59. [PMID: 39490337 DOI: 10.1016/j.tig.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
Crossing over between homologous chromosomes in meiosis is essential in most eukaryotes to produce gametes with the correct ploidy. Meiotic crossovers are typically evenly spaced, with each homolog pair receiving at least one crossover. The association of crossovers with distal sister chromatid cohesion is critical for the proper segregation of homologs in the first meiotic division. Studies in baker's yeast (Saccharomyces cerevisiae) have shown that meiotic crossovers result primarily from the biased resolution of double Holliday junction (dHJ) recombination intermediates through the actions of factors that belong to the DNA mismatch repair family. These findings and studies involving fine-scale mapping of meiotic crossover events have led to a new generation of mechanistic models for crossing over that are currently being tested.
Collapse
Affiliation(s)
- Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Patel B, Grobler M, Herrera A, Logari E, Ortiz V, Bhalla N. The conserved ATPase PCH-2 controls the number and distribution of crossovers by antagonizing their formation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607819. [PMID: 39185160 PMCID: PMC11343117 DOI: 10.1101/2024.08.13.607819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2's conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors, coordinate meiotic recombination with synapsis, and contribute to the progressive implementation of meiotic recombination, guaranteeing crossover control.
Collapse
Affiliation(s)
- Bhumil Patel
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Maryke Grobler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Alberto Herrera
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Elias Logari
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
7
|
von Diezmann L, Bristow C, Rog O. Diffusion within the synaptonemal complex can account for signal transduction along meiotic chromosomes. Mol Biol Cell 2024; 35:ar148. [PMID: 39475711 PMCID: PMC11656479 DOI: 10.1091/mbc.e24-05-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024] Open
Abstract
Meiotic chromosomes efficiently transduce information along their length to regulate the distribution of genetic exchanges (crossovers). However, the mode of signal transduction remains unknown. A conserved protein interface called the synaptonemal complex forms between the parental chromosomes. The synaptonemal complex exhibits liquid-like behaviors, suggesting that the diffusion of signaling molecules along its length could coordinate crossover formation. Here, we directly test the feasibility of such a mechanism by tracking a component of the synaptonemal complex (SYP-3) and a conserved regulator of exchanges (ZHP-3) in live Caenorhabditis elegans gonads. While we find that both proteins diffuse within the synaptonemal complex, ZHP-3 diffuses 4- and 9-fold faster than SYP-3 before and after crossover designation, respectively. We use these measurements to parameterize a physical model for signal transduction. We find that ZHP-3, but not SYP-3, can explore the lengths of chromosomes on the time scale of crossover designation, consistent with a role in the spatial regulation of exchanges. Given the conservation of ZHP-3 paralogues across eukaryotes, we propose that diffusion along the synaptonemal complex may be a conserved mechanism of meiotic regulation. More broadly, our work explores how diffusion compartmentalized by condensates could regulate crucial chromosomal functions.
Collapse
Affiliation(s)
- Lexy von Diezmann
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| | - Chloe Bristow
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| | - Ofer Rog
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| |
Collapse
|
8
|
Liu C, Dernburg AF. Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope. Science 2024; 386:eadm7969. [PMID: 39571011 DOI: 10.1126/science.adm7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/20/2024] [Indexed: 11/24/2024]
Abstract
Sexual reproduction relies on robust quality control during meiosis. Assembly of the synaptonemal complex between homologous chromosomes (synapsis) regulates meiotic recombination and is crucial for accurate chromosome segregation in most eukaryotes. Synapsis defects can trigger cell cycle delays and, in some cases, apoptosis. We developed and deployed a chemically induced proximity system to identify key elements of this quality control pathway in Caenorhabditis elegans. Persistence of the polo-like kinase PLK-2 at pairing centers-specialized chromosome regions that interact with the nuclear envelope-induced apoptosis of oocytes in response to phosphorylation and destabilization of the nuclear lamina. Unexpectedly, the Piezo1/PEZO-1 channel localized to the nuclear envelope and was required to transduce this signal to promote apoptosis in maturing oocytes.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abby F Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
9
|
Rodriguez-Reza CM, Sato-Carlton A, Carlton PM. Length-sensitive partitioning of Caenorhabditis elegans meiotic chromosomes responds to proximity and number of crossover sites. Curr Biol 2024; 34:4998-5016.e6. [PMID: 39395418 DOI: 10.1016/j.cub.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Sensing and control of size are critical for cellular function and survival. A striking example of size sensing occurs during meiosis in the nematode Caenorhabditis elegans. C. elegans chromosomes compare the lengths of the two chromosome "arms" demarcated by the position of their single off-center crossover, and they differentially modify these arms to ensure that sister chromatid cohesion is lost specifically on the shorter arm in the first meiotic division, while the longer arm maintains cohesion until the second division. While many of the downstream steps leading to cohesion loss have been characterized, the length-sensing process itself remains poorly understood. Here, we have used cytological visualization of short and long chromosome arms, combined with quantitative microscopy, live imaging, and simulations, to investigate the principles underlying length-sensitive chromosome partitioning. By quantitatively analyzing short-arm designation patterns on fusion chromosomes carrying multiple crossovers, we develop a model in which a short-arm-determining factor originates at crossover designation sites, diffuses within the synaptonemal complex, and accumulates within crossover-bounded chromosome segments. We demonstrate experimental support for a critical assumption of this model: that crossovers act as boundaries to diffusion within the synaptonemal complex. Further, we develop a discrete simulation based on our results that recapitulates a wide variety of observed partitioning outcomes in both wild-type and previously reported mutants. Our results suggest that the concentration of a diffusible factor is used as a proxy for chromosome length, enabling the correct designation of short and long arms and proper segregation of chromosomes.
Collapse
Affiliation(s)
| | - Aya Sato-Carlton
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto 606-8501, Japan.
| | - Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto 606-8501, Japan; Radiation Biology Center, Kyoto University, Yoshida-Konoecho, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Gordon SG, Rodriguez AA, Gu Y, Corbett KD, Lee CF, Rog O. The synaptonemal complex aligns meiotic chromosomes by wetting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607092. [PMID: 39149313 PMCID: PMC11326210 DOI: 10.1101/2024.08.07.607092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
During meiosis, the parental chromosomes are drawn together to enable exchange of genetic information. Chromosomes are aligned through the assembly of a conserved interface, the synaptonemal complex, composed of a central region that forms between two parallel chromosomal backbones called axes. Here we identify the axis-central region interface in C. elegans, containing a conserved positive patch on the axis component HIM-3 and the C-terminus of the central region protein SYP-5. Crucially, the canonical ultrastructure of the synaptonemal complex is altered upon weakening this interface. We developed a thermodynamic model that recapitulates our experimental observations, indicating that the liquid-like central region can assemble by wetting the axes without active energy consumption. More broadly, our data show that condensation drives tightly regulated nuclear reorganization during sexual reproduction.
Collapse
Affiliation(s)
- Spencer G. Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| | - Alyssa A. Rodriguez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| |
Collapse
|
11
|
Tang S, Koo J, Pourhosseinzadeh M, Nguyen E, Liu N, Ma C, Lu H, Lee M, Hunter N. Synaptonemal complex protects double-Holliday junctions during meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613089. [PMID: 39314413 PMCID: PMC11419148 DOI: 10.1101/2024.09.14.613089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chromosomal linkages formed through crossover recombination are essential for accurate segregation of homologous chromosomes during meiosis1. DNA events of recombination are spatially and functionally linked to structural components of meiotic chromosomes2. Imperatively, biased resolution of double-Holliday junction (dHJ) intermediates into crossovers3,4 occurs within the synaptonemal complex (SC), the meiosis-specific structure that mediates homolog synapsis during the pachytene stage5,6. However, the SC's role in crossing over remains unclear. Here we show that SC promotes crossover-specific resolution by protecting dHJs from unscheduled and aberrant resolution. When key SC components are conditionally inactivated during pachytene, dHJs are resolved into noncrossover products by Sgs1-Top3-Rmi1 (STR), the yeast ortholog of the human BLM complex7. Cohesin, the core component of SC lateral elements, plays a primary role in chromatin organization and is required to maintain both SCs and crossover recombination complexes (CRCs) during pachytene. SC central region component Zip1 is required to maintain CRCs even when dHJs are stabilized by inactivating STR. Reciprocally, SC stability requires continuous presence of CRCs, an unanticipated interdependence with important implications for SC dynamics. In conclusion, through hierarchical and interdependent functions of its key components, the SC enables crossover-specific dHJ resolution and thereby ensures the linkage and segregation of homologous chromosomes.
Collapse
Affiliation(s)
- Shangming Tang
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jennifer Koo
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Mohammad Pourhosseinzadeh
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Emerald Nguyen
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Natalie Liu
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Christopher Ma
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Hanyu Lu
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Monica Lee
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
- Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
12
|
Gold AL, Hurlock ME, Guevara AM, Isenberg LYZ, Kim Y. Identification of the Polo-like kinase substrate required for homologous synapsis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607834. [PMID: 39211260 PMCID: PMC11361119 DOI: 10.1101/2024.08.13.607834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The synaptonemal complex (SC) is a zipper-like protein structure that aligns homologous chromosome pairs and regulates recombination during meiosis. Despite its conserved appearance and function, how synapsis occurs between chromosome axes remains elusive. Here, we demonstrate that Polo-like kinases (PLKs) phosphorylate a single conserved residue in the disordered C-terminal tails of two paralogous SC subunits, SYP-5 and SYP-6, to establish an electrostatic interface between the SC central region and chromosome axes in C. elegans . While SYP-5/6 phosphorylation is dispensable for the ability of SC proteins to self-assemble, local phosphorylation by PLKs at the pairing center is crucial for SC elongation between homologous chromosome axes. Additionally, SYP-5/6 phosphorylation is essential for asymmetric SC disassembly and proper PLK-2 localization after crossover designation, which drives chromosome remodeling required for homolog separation during meiosis I. This work identifies a key regulatory mechanism by which localized PLK activity mediates the SC-axis interaction through phosphorylation of SYP-5/6, coupling synapsis initiation to homolog pairing.
Collapse
|
13
|
Olaya I, Burgess SM, Rog O. Formation and resolution of meiotic chromosome entanglements and interlocks. J Cell Sci 2024; 137:jcs262004. [PMID: 38985540 PMCID: PMC11267460 DOI: 10.1242/jcs.262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.
Collapse
Affiliation(s)
- Iván Olaya
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Yang Y, Wang N, Liu G, Nan W, Wang B, Gartner A, Zhang H, Hong Y. COSA-1 mediated pro-crossover complex formation promotes meiotic crossing over in C. elegans. Nucleic Acids Res 2024; 52:4375-4392. [PMID: 38412290 PMCID: PMC11077092 DOI: 10.1093/nar/gkae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
Accurate chromosome segregation during meiosis requires the establishment of at least one crossover (CO) between each pair of homologous chromosomes. CO formation depends on a group of conserved pro-CO proteins, which colocalize at CO-designated sites during late meiotic prophase I. However, it remains unclear whether these pro-CO proteins form a functional complex and how they promote meiotic CO formation in vivo. Here, we show that COSA-1, a key component required for CO formation, interacts with other pro-CO factors, MSH-5 and ZHP-3, via its N-terminal disordered region. Point mutations that impair these interactions do not affect CO designation, but they strongly hinder the accumulation of COSA-1 at CO-designated sites and result in defective CO formation. These defects can be partially bypassed by artificially tethering an interaction-compromised COSA-1 derivate to ZHP-3. Furthermore, we revealed that the accumulation of COSA-1 into distinct foci is required to assemble functional 'recombination nodules'. These prevent early CO-designated recombination intermediates from being dismantled by the RTEL-1 helicase and protect late recombination intermediates, such as Holliday junctions, until they are resolved by CO-specific resolvases. Altogether, our findings provide insight into COSA-1 mediated pro-CO complex assembly and its contribution to CO formation.
Collapse
Affiliation(s)
- Yuejun Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Nan Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Guoteng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wencong Nan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Bin Wang
- National Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Anton Gartner
- Institute for Basic Sciences Center for Genomic Integrity, Graduate School for Health Sciences and Technology and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hongtao Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
15
|
Ahuja JS, Sandhu R, Huang L, Klein F, Börner GV. Temporal and Functional Relationship between Synaptonemal Complex Morphogenesis and Recombination during Meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575218. [PMID: 38260343 PMCID: PMC10802607 DOI: 10.1101/2024.01.11.575218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During prophase of meiosis I, programmed double strand breaks (DSBs) are processed into crossovers, a critical requirement for segregation of homologous chromosomes (homologs) and genome haploidization in sexually reproducing organisms. Crossovers form via homologous recombination in close temporospatial association with morphogenesis of the synaptonemal complex (SC), a proteinaceous structure that connects paired homologs along their length during the pachytene stage. Synapsis and recombination are a paradigm for the interplay between higher order chromosome structure and DNA metabolism, yet their temporal and functional relationship remains poorly understood. Probing linkage between these processes in budding yeast, we show that SC assembly is associated with a distinct threshold number of unstable D-loops. The transition from bona fide paranemic D-loops to plectonemic DSB single end invasions (SEIs) is completed during midpachynema, when the SC is fully assembled. Double Holliday junctions (dHJs) form at the time of desynapsis and are resolved into crossovers during diplonema. The SC central element component Zip1 shepherds recombination through three transitions, including DSB first end strand exchange and second end capture, as well as dHJ resolution. Zip1 mediates SEI formation independent of its polymerization whereas precocious Zip1 assembly interferes with double Holliday junction resolution. Together, our findings indicate that the synaptonemal complex controls recombination while assembled but also beyond its disassembly, possibly by establishing spatial constraints at recombination sites.
Collapse
|
16
|
Cahoon CK, Richter CM, Dayton AE, Libuda DE. Sexual dimorphic regulation of recombination by the synaptonemal complex in C. elegans. eLife 2023; 12:e84538. [PMID: 37796106 PMCID: PMC10611432 DOI: 10.7554/elife.84538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/02/2023] [Indexed: 10/06/2023] Open
Abstract
In sexually reproducing organisms, germ cells faithfully transmit the genome to the next generation by forming haploid gametes, such as eggs and sperm. Although most meiotic proteins are conserved between eggs and sperm, many aspects of meiosis are sexually dimorphic, including the regulation of recombination. The synaptonemal complex (SC), a large ladder-like structure that forms between homologous chromosomes, is essential for regulating meiotic chromosome organization and promoting recombination. To assess whether sex-specific differences in the SC underpin sexually dimorphic aspects of meiosis, we examined Caenorhabditis elegans SC central region proteins (known as SYP proteins) in oogenesis and spermatogenesis and uncovered sex-specific roles for the SYPs in regulating meiotic recombination. We find that SC composition, specifically SYP-2, SYP-3, SYP-5, and SYP-6, is regulated by sex-specific mechanisms throughout meiotic prophase I. During pachytene, both oocytes and spermatocytes differentially regulate the stability of SYP-2 and SYP-3 within an assembled SC. Further, we uncover that the relative amount of SYP-2 and SYP-3 within the SC is independently regulated in both a sex-specific and a recombination-dependent manner. Specifically, we find that SYP-2 regulates the early steps of recombination in both sexes, while SYP-3 controls the timing and positioning of crossover recombination events across the genomic landscape in only oocytes. Finally, we find that SYP-2 and SYP-3 dosage can influence the composition of the other SYPs in the SC via sex-specific mechanisms during pachytene. Taken together, we demonstrate dosage-dependent regulation of individual SC components with sex-specific functions in recombination. These sexual dimorphic features of the SC provide insights into how spermatogenesis and oogenesis adapted similar chromosome structures to differentially regulate and execute recombination.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Amelia E Dayton
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
17
|
Yamaya K, Wang B, Memar N, Odiba A, Woglar A, Gartner A, Villeneuve A. Disparate roles for C. elegans DNA translocase paralogs RAD-54.L and RAD-54.B in meiotic prophase germ cells. Nucleic Acids Res 2023; 51:9183-9202. [PMID: 37548405 PMCID: PMC10516670 DOI: 10.1093/nar/gkad638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
RAD54 family DNA translocases partner with RAD51 recombinases to ensure stable genome inheritance, exhibiting biochemical activities both in promoting recombinase removal and in stabilizing recombinase association with DNA. Understanding how such disparate activities of RAD54 paralogs align with their biological roles is an ongoing challenge. Here we investigate the in vivo functions of Caenorhabditis elegans RAD54 paralogs RAD-54.L and RAD-54.B during meiotic prophase, revealing distinct contributions to the dynamics of RAD-51 association with DNA and to the progression of meiotic double-strand break repair (DSBR). While RAD-54.L is essential for RAD-51 removal from meiotic DSBR sites to enable recombination progression, RAD-54.B is largely dispensable for meiotic DSBR. However, RAD-54.B is required to prevent hyperaccumulation of RAD-51 on unbroken DNA during the meiotic sub-stage when DSBs and early recombination intermediates form. Moreover, DSB-independent hyperaccumulation of RAD-51 foci in the absence of RAD-54.B is RAD-54.L-dependent, revealing a hidden activity of RAD-54.L in promoting promiscuous RAD-51 association that is antagonized by RAD-54.B. We propose a model wherein a division of labor among RAD-54 paralogs allows germ cells to ramp up their capacity for efficient homologous recombination that is crucial to successful meiosis while counteracting potentially deleterious effects of unproductive RAD-51 association with unbroken DNA.
Collapse
Affiliation(s)
- Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bin Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007 Nanning, China
| | - Nadin Memar
- IBS Center for Genomic Integrity and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Arome Solomon Odiba
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007 Nanning, China
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Swiss Institute for Experimental Cancer Research (ISREC) and School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Anton Gartner
- IBS Center for Genomic Integrity and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Castellano-Pozo M, Sioutas G, Barroso C, Prince JP, Lopez-Jimenez P, Davy J, Jaso-Tamame AL, Crawley O, Shao N, Page J, Martinez-Perez E. The kleisin subunit controls the function of C. elegans meiotic cohesins by determining the mode of DNA binding and differential regulation by SCC-2 and WAPL-1. eLife 2023; 12:e84138. [PMID: 37650378 PMCID: PMC10497282 DOI: 10.7554/elife.84138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.
Collapse
Affiliation(s)
| | | | | | - Josh P Prince
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | | | - Joseph Davy
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | | | - Oliver Crawley
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Nan Shao
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Jesus Page
- Universidad Autónoma de MadridMadridSpain
| | - Enrique Martinez-Perez
- MRC London Institute of Medical SciencesLondonUnited Kingdom
- Imperial College Faculty of MedicineLondonUnited Kingdom
| |
Collapse
|
19
|
Chu X, Bukhari I, Thorne RF, Shi Q. Editorial: Molecular and cytogenetic research advances in human reproduction - volume II. Front Endocrinol (Lausanne) 2023; 14:1232953. [PMID: 37529612 PMCID: PMC10390250 DOI: 10.3389/fendo.2023.1232953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023] Open
Affiliation(s)
- Xiufeng Chu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qinghua Shi
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Gordon SG, Rog O. Building the synaptonemal complex: Molecular interactions between the axis and the central region. PLoS Genet 2023; 19:e1010822. [PMID: 37471284 PMCID: PMC10359014 DOI: 10.1371/journal.pgen.1010822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
The successful delivery of genetic material to gametes requires tightly regulated interactions between the parental chromosomes. Central to this regulation is a conserved chromosomal interface called the synaptonemal complex (SC), which brings the parental chromosomes in close proximity along their length. While many of its components are known, the interfaces that mediate the assembly of the SC remain a mystery. Here, we survey findings from different model systems while focusing on insight gained in the nematode C. elegans. We synthesize our current understanding of the structure, dynamics, and biophysical properties of the SC and propose mechanisms for SC assembly.
Collapse
Affiliation(s)
- Spencer G. Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
21
|
Cahoon CK, Uebel CJ, Villeneuve AM, Libuda DE. Epitope tag-specific differences in the detection of COSA-1 marked crossover sites in C. elegans spermatocytes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000724. [PMID: 36660421 PMCID: PMC9844261 DOI: 10.17912/micropub.biology.000724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Nascent crossover sites in C. elegans meiocytes can be cytologically detected using epitope-tagged versions of the pro-crossover protein COSA-1. In spermatocytes, differences exist between cytologically-detected and genetically-detected double crossover rates. Here, we examine nascent crossovers using both GFP- and OLLAS-tagged COSA-1. Similar to previous work, we find that most late pachytene spermatocytes display 5 COSA-1 foci, indicating one crossover per autosome bivalent. However, we detected more nuclei with >5 COSA-1 foci using OLLAS::COSA-1, reflecting some bivalents having 2 COSA-1 foci. These results demonstrate tag-specific differences in the detection of COSA-1 marked nascent crossovers in spermatocytes.
Collapse
Affiliation(s)
- Cori K. Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, USA
| | - Celja J. Uebel
- Stanford University School of Medicine, Departments of Developmental Biology and Genetics, Stanford, CA, USA
| | - Anne M. Villeneuve
- Stanford University School of Medicine, Departments of Developmental Biology and Genetics, Stanford, CA, USA
| | - Diana E. Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
22
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
23
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
24
|
Trivedi S, Blazícková J, Silva N. PARG and BRCA1-BARD1 cooperative function regulates DNA repair pathway choice during gametogenesis. Nucleic Acids Res 2022; 50:12291-12308. [PMID: 36478097 PMCID: PMC9757042 DOI: 10.1093/nar/gkac1153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Meiotic chromosome segregation relies on programmed DNA double-strand break induction. These are in turn repaired by homologous recombination, generating physical attachments between the parental chromosomes called crossovers. A subset of breaks yields recombinant outcomes, while crossover-independent mechanisms repair the majority of lesions. The balance between different repair pathways is crucial to ensure genome integrity. We show that Caenorhabditis elegans BRC-1/BRCA1-BRD-1/BARD1 and PARG-1/PARG form a complex in vivo, essential for accurate DNA repair in the germline. Simultaneous depletion of BRC-1 and PARG-1 causes synthetic lethality due to reduced crossover formation and impaired break repair, evidenced by hindered RPA-1 removal and presence of aberrant chromatin bodies in diakinesis nuclei, whose formation depends on spo-11 function. These factors undergo a similar yet independent loading in developing oocytes, consistent with operating in different pathways. Abrogation of KU- or Theta-mediated end joining elicits opposite effects in brc-1; parg-1 doubles, suggesting a profound impact in influencing DNA repair pathway choice by BRC-1-PARG-1. Importantly, lack of PARG-1 catalytic activity suppresses untimely accumulation of RAD-51 foci in brc-1 mutants but is only partially required for fertility. Our data show that BRC-1/BRD-1-PARG-1 joint function is essential for genome integrity in meiotic cells by regulating multiple DNA repair pathways.
Collapse
Affiliation(s)
- Shalini Trivedi
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jitka Blazícková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Nicola Silva
- To whom correspondence should be addressed. Tel: +420 549 49 8033;
| |
Collapse
|
25
|
Láscarez-Lagunas LI, Nadarajan S, Martinez-Garcia M, Quinn JN, Todisco E, Thakkar T, Berson E, Eaford D, Crawley O, Montoya A, Faull P, Ferrandiz N, Barroso C, Labella S, Koury E, Smolikove S, Zetka M, Martinez-Perez E, Colaiácovo MP. ATM/ATR kinases link the synaptonemal complex and DNA double-strand break repair pathway choice. Curr Biol 2022; 32:4719-4726.e4. [PMID: 36137547 PMCID: PMC9643613 DOI: 10.1016/j.cub.2022.08.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation.1,2 How DSB repair pathway choice is implemented during meiosis is unknown. In C. elegans, meiotic DSB repair takes place in the context of the fully formed, highly dynamic zipper-like structure present between homologous chromosomes called the synaptonemal complex (SC).3,4,5,6,7,8,9 The SC consists of a pair of lateral elements bridged by a central region composed of the SYP proteins in C. elegans. How the structural components of the SC are regulated to maintain the architectural integrity of the assembled SC around DSB repair sites remained unclear. Here, we show that SYP-4, a central region component of the SC, is phosphorylated at Serine 447 in a manner dependent on DSBs and the ATM/ATR DNA damage response kinases. We show that this SYP-4 phosphorylation is critical for preserving the SC structure following exogenous (γ-IR-induced) DSB formation and for promoting normal DSB repair progression and crossover patterning following SPO-11-dependent and exogenous DSBs. We propose a model in which ATM/ATR-dependent phosphorylation of SYP-4 at the S447 site plays important roles both in maintaining the architectural integrity of the SC following DSB formation and in warding off repair via the NHEJ repair pathway, thereby preventing aneuploidy.
Collapse
Affiliation(s)
- Laura I Láscarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Julianna N Quinn
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Elena Todisco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Don Eaford
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Oliver Crawley
- MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alex Montoya
- MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Peter Faull
- MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Nuria Ferrandiz
- MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sara Labella
- McGill University, Biology Department, Stewart Biology Building, Room W5/24 1205 Dr. Penfield Avenue, Montreal, QC H3A1B1, Canada
| | - Emily Koury
- Department of Biology, The University of Iowa, Biology Building, Room 308, 129 E. Jefferson, Iowa City, IA 52242-1324, USA
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Biology Building, Room 308, 129 E. Jefferson, Iowa City, IA 52242-1324, USA
| | - Monique Zetka
- McGill University, Biology Department, Stewart Biology Building, Room W5/24 1205 Dr. Penfield Avenue, Montreal, QC H3A1B1, Canada
| | - Enrique Martinez-Perez
- MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Guo H, Stamper EL, Sato-Carlton A, Shimazoe MA, Li X, Zhang L, Stevens L, Tam KCJ, Dernburg AF, Carlton PM. Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. eLife 2022; 11:77956. [PMID: 35758641 PMCID: PMC9278955 DOI: 10.7554/elife.77956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.
Collapse
Affiliation(s)
- Heyun Guo
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Ericca L Stamper
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Aya Sato-Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Masa A Shimazoe
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Department of Science, Kyoto University, Kyoto, Japan
| | - Xuan Li
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - K C Jacky Tam
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Radiation Biology Center, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Navarro EJ, Marshall WF, Fung JC. Modeling cell biological features of meiotic chromosome pairing to study interlock resolution. PLoS Comput Biol 2022; 18:e1010252. [PMID: 35696428 PMCID: PMC9232156 DOI: 10.1371/journal.pcbi.1010252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
During meiosis, homologous chromosomes become associated side by side in a process known as homologous chromosome pairing. Pairing requires long range chromosome motion through a nucleus that is full of other chromosomes. It remains unclear how the cell manages to align each pair of chromosomes quickly while mitigating and resolving interlocks. Here, we use a coarse-grained molecular dynamics model to investigate how specific features of meiosis, including motor-driven telomere motion, nuclear envelope interactions, and increased nuclear size, affect the rate of pairing and the mitigation/resolution of interlocks. By creating in silico versions of three yeast strains and comparing the results of our model to experimental data, we find that a more distributed placement of pairing sites along the chromosome is necessary to replicate experimental findings. Active motion of the telomeric ends speeds up pairing only if binding sites are spread along the chromosome length. Adding a meiotic bouquet significantly speeds up pairing but does not significantly change the number of interlocks. An increase in nuclear size slows down pairing while greatly reducing the number of interlocks. Interestingly, active forces increase the number of interlocks, which raises the question: How do these interlocks resolve? Our model gives us detailed movies of interlock resolution events which we then analyze to build a step-by-step recipe for interlock resolution. In our model, interlocks must first translocate to the ends, where they are held in a quasi-stable state by a large number of paired sites on one side. To completely resolve an interlock, the telomeres of the involved chromosomes must come in close proximity so that the cooperativity of pairing coupled with random motion causes the telomeres to unwind. Together our results indicate that computational modeling of homolog pairing provides insight into the specific cell biological changes that occur during meiosis.
Collapse
Affiliation(s)
- Erik J. Navarro
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center of Reproductive Sciences, University of California, San Francisco, California, United States of America
| | - Wallace F. Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center of Reproductive Sciences, University of California, San Francisco, California, United States of America
| |
Collapse
|
28
|
Dello Stritto MR, Vojtassakova N, Velkova M, Hamminger P, Ulm P, Jantsch V. The topoisomerase 3 zinc finger domain cooperates with the RMI1 scaffold to promote stable association of the BTR complex to recombination intermediates in the Caenorhabditis elegans germline. Nucleic Acids Res 2022; 50:5652-5671. [PMID: 35639927 PMCID: PMC9178014 DOI: 10.1093/nar/gkac408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Homologous recombination is the predominant DNA repair pathway used in the gonad. Of the excess DNA double-strand breaks formed in meiosis, only a subset matures into crossovers, with the remainder repaired as non-crossovers. The conserved BTR complex (comprising Bloom helicase, topoisomerase 3 and RMI1/2 scaffold proteins) acts at multiple steps during recombination to dismantle joint DNA molecules, thereby mediating the non-crossover outcome and chromosome integrity. Furthermore, the complex displays a role at the crossover site that is less well understood. Besides catalytic and TOPRIM domains, topoisomerase 3 enzymes contain a variable number of carboxy terminal zinc finger (ZnF) domains. Here, we studied the Caenorhabditis elegans mutant, in which the single ZnF domain is deleted. In contrast to the gene disruption allele, the top-3-ZnF mutant is viable, with no replication defects; the allele appears to be a hypomorph. The TOP-3-ZnF protein is recruited into foci but the mutant has increased numbers of crossovers along its chromosomes, with minor defects in repressing heterologous recombination, and a marked delay in the maturation/processing of recombination intermediates after loading of the RAD-51 recombinase. The ZnF domain cooperates with the RMI1 homolog RMH-2 to stabilize association of the BTR complex with recombination intermediates and to prevent recombination between heterologous DNA sequences.
Collapse
Affiliation(s)
| | - Nina Vojtassakova
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| | - Maria Velkova
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| | - Patricia Hamminger
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| | - Patricia Ulm
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| |
Collapse
|
29
|
Haversat J, Woglar A, Klatt K, Akerib CC, Roberts V, Chen SY, Arur S, Villeneuve AM, Kim Y. Robust designation of meiotic crossover sites by CDK-2 through phosphorylation of the MutSγ complex. Proc Natl Acad Sci U S A 2022; 119:e2117865119. [PMID: 35576467 PMCID: PMC9173770 DOI: 10.1073/pnas.2117865119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoting conversion of meiotic double-strand breaks into crossover–specific recombination intermediates. Further, we identify MutSγ component MSH-5 as a CDK-2 phosphorylation target. MSH-5 has a disordered C-terminal tail that contains 13 potential CDK phosphosites and is required to concentrate crossover–promoting proteins at recombination sites. Phosphorylation of the MSH-5 tail appears dispensable in a wild-type background, but when MutSγ activity is partially compromised, crossover formation and retention of COSA-1 at recombination sites are exquisitely sensitive to phosphosite loss. Our data support a model in which robustness of crossover designation reflects a positive feedback mechanism involving CDK-2–mediated phosphorylation and scaffold-like properties of the MSH5 C-terminal tail, features that combine to promote full recruitment and activity of crossover–promoting complexes.
Collapse
Affiliation(s)
- Jocelyn Haversat
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Kayla Klatt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Chantal C. Akerib
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Victoria Roberts
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Shin-Yu Chen
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Swathi Arur
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
30
|
Diffusion and distal linkages govern interchromosomal dynamics during meiotic prophase. Proc Natl Acad Sci U S A 2022; 119:e2115883119. [PMID: 35302885 PMCID: PMC8944930 DOI: 10.1073/pnas.2115883119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEssential for sexual reproduction, meiosis is a specialized cell division required for the production of haploid gametes. Critical to this process are the pairing, recombination, and segregation of homologous chromosomes (homologs). While pairing and recombination are linked, it is not known how many linkages are sufficient to hold homologs in proximity. Here, we reveal that random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs. We also show that colocalization between any two loci is more dynamic than anticipated. Our study provides observations of live interchromosomal dynamics during meiosis and illustrates the power of combining single-cell measurements with theoretical polymer modeling.
Collapse
|
31
|
Voelkel-Meiman K, Oke A, Feil A, Shames A, Fung J, MacQueen AJ. A role for synaptonemal complex in meiotic mismatch repair. Genetics 2022; 220:iyab230. [PMID: 35100397 PMCID: PMC9097268 DOI: 10.1093/genetics/iyab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 11/14/2022] Open
Abstract
A large subset of meiotic recombination intermediates form within the physical context of synaptonemal complex (SC), but the functional relationship between SC structure and homologous recombination remains obscure. Our prior analysis of strains deficient for SC central element proteins demonstrated that tripartite SC is dispensable for interhomolog recombination in Saccharomyces cerevisiae. Here, we report that while dispensable for recombination per se, SC proteins promote efficient mismatch repair at interhomolog recombination sites. Failure to repair mismatches within heteroduplex-containing meiotic recombination intermediates leads to genotypically sectored colonies (postmeiotic segregation events). We discovered increased postmeiotic segregation at THR1 in cells lacking Ecm11 or Gmc2, or in the SC-deficient but recombination-proficient zip1[Δ21-163] mutant. High-throughput sequencing of octad meiotic products furthermore revealed a genome-wide increase in recombination events with unrepaired mismatches in ecm11 mutants relative to wildtype. Meiotic cells missing Ecm11 display longer gene conversion tracts, but tract length alone does not account for the higher frequency of unrepaired mismatches. Interestingly, the per-nucleotide mismatch frequency is elevated in ecm11 when analyzing all gene conversion tracts, but is similar between wildtype and ecm11 if considering only those events with unrepaired mismatches. Thus, in both wildtype and ecm11 strains a subset of recombination events is susceptible to a similar degree of inefficient mismatch repair, but in ecm11 mutants a larger fraction of events fall into this inefficient repair category. Finally, we observe elevated postmeiotic segregation at THR1 in mutants with a dual deficiency in MutSγ crossover recombination and SC assembly, but not in the mlh3 mutant, which lacks MutSγ crossovers but has abundant SC. We propose that SC structure promotes efficient mismatch repair of joint molecule recombination intermediates, and that absence of SC is the molecular basis for elevated postmeiotic segregation in both MutSγ crossover-proficient (ecm11, gmc2) and MutSγ crossover-deficient (msh4, zip3) strains.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arden Feil
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Alexander Shames
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
32
|
Liu Y, Zhao Q, Nie H, Zhang F, Fu T, Zhang Z, Qi F, Wang R, Zhou J, Gao J. SYP-5 regulates meiotic thermotolerance in Caenorhabditis elegans. J Mol Cell Biol 2021; 13:662-675. [PMID: 34081106 PMCID: PMC8648394 DOI: 10.1093/jmcb/mjab035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Meiosis produces the haploid gametes required by all sexually reproducing organisms, occurring in specific temperature ranges in different organisms. However, how meiotic thermotolerance is regulated remains largely unknown. Using the model organism Caenorhabditis elegans, here, we identified the synaptonemal complex (SC) protein SYP-5 as a critical regulator of meiotic thermotolerance. syp-5-null mutants maintained a high percentage of viable progeny at 20°C but produced significantly fewer viable progeny at 25°C, a permissive temperature in wild-type worms. Cytological analysis of meiotic events in the mutants revealed that while SC assembly and disassembly, as well as DNA double-strand break repair kinetics, were not affected by the elevated temperature, crossover designation, and bivalent formation were significantly affected. More severe homolog segregation errors were also observed at elevated temperature. A temperature switching assay revealed that late meiotic prophase events were not temperature-sensitive and that meiotic defects during pachytene stage were responsible for the reduced viability of syp-5 mutants at the elevated temperature. Moreover, SC polycomplex formation and hexanediol sensitivity analysis suggested that SYP-5 was required for the normal properties of the SC, and charge-interacting elements in SC components were involved in regulating meiotic thermotolerance. Together, these findings provide a novel molecular mechanism for meiotic thermotolerance regulation.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Qiuchen Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Fengguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Tingting Fu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Zhenguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
33
|
Liu H, Gordon SG, Rog O. Heterologous synapsis in C. elegans is regulated by meiotic double-strand breaks and crossovers. Chromosoma 2021; 130:237-250. [PMID: 34608541 PMCID: PMC8671313 DOI: 10.1007/s00412-021-00763-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Alignment of the parental chromosomes during meiotic prophase is key to the formation of genetic exchanges, or crossovers, and consequently to the successful production of gametes. In almost all studied organisms, alignment involves synapsis: the assembly of a conserved inter-chromosomal interface called the synaptonemal complex (SC). While the SC usually synapses homologous sequences, it can assemble between heterologous sequences. However, little is known about the regulation of heterologous synapsis. Here, we study the dynamics of heterologous synapsis in the nematode C. elegans. We characterize two experimental scenarios: SC assembly onto a folded-back chromosome that cannot pair with its homologous partner; and synapsis of pseudo-homologs, a fusion chromosome partnering with an unfused chromosome half its size. We observed elevated levels of heterologous synapsis when the number of meiotic double-strand breaks or crossovers were reduced, indicating that the promiscuity of synapsis is regulated by break formation or repair. In addition, our data suggests the existence of both chromosome-specific and nucleus-wide regulation on heterologous synapsis.
Collapse
Affiliation(s)
- Hanwenheng Liu
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112-0840, USA
- The Division of Biology & Biomedical Sciences, Washington University in St. Louis, 660 South Euclid Avenue, Missouri, 63110, USA
| | - Spencer G Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112-0840, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112-0840, USA.
| |
Collapse
|
34
|
Li J, Gao J, Wang R. Control of Chromatin Organization and Chromosome Behavior during the Cell Cycle through Phase Separation. Int J Mol Sci 2021; 22:ijms222212271. [PMID: 34830152 PMCID: PMC8621359 DOI: 10.3390/ijms222212271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Phase-separated condensates participate in various biological activities. Liquid-liquid phase separation (LLPS) can be driven by collective interactions between multivalent and intrinsically disordered proteins. The manner in which chromatin-with various morphologies and activities-is organized in a complex and small nucleus still remains to be fully determined. Recent findings support the claim that phase separation is involved in the regulation of chromatin organization and chromosome behavior. Moreover, phase separation also influences key events during mitosis and meiosis. This review elaborately dissects how phase separation regulates chromatin and chromosome organization and controls mitotic and meiotic chromosome behavior.
Collapse
|
35
|
Zhang FG, Zhang RR, Gao JM. The organization, regulation, and biological functions of the synaptonemal complex. Asian J Androl 2021; 23:580-589. [PMID: 34528517 PMCID: PMC8577265 DOI: 10.4103/aja202153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous macromolecular structure that assembles between paired homologous chromosomes during meiosis in various eukaryotes. The SC has a highly conserved ultrastructure and plays critical roles in controlling multiple steps in meiotic recombination and crossover formation, ensuring accurate meiotic chromosome segregation. Recent studies in different organisms, facilitated by advances in super-resolution microscopy, have provided insights into the macromolecular structure of the SC, including the internal organization of the meiotic chromosome axis and SC central region, the regulatory pathways that control SC assembly and dynamics, and the biological functions exerted by the SC and its substructures. This review summarizes recent discoveries about how the SC is organized and regulated that help to explain the biological functions associated with this meiosis-specific structure.
Collapse
Affiliation(s)
- Feng-Guo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Rui-Rui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jin-Min Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
36
|
Cahoon CK, Libuda DE. Conditional immobilization for live imaging Caenorhabditis elegans using auxin-dependent protein depletion. G3-GENES GENOMES GENETICS 2021; 11:6362942. [PMID: 34534266 PMCID: PMC8527506 DOI: 10.1093/g3journal/jkab310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
The visualization of biological processes using fluorescent proteins and dyes in living organisms has enabled numerous scientific discoveries. The nematode Caenorhabditis elegans is a widely used model organism for live imaging studies since the transparent nature of the worm enables imaging of nearly all tissues within a whole, intact animal. While current techniques are optimized to enable the immobilization of hermaphrodite worms for live imaging, many of these approaches fail to successfully restrain the smaller male worms. To enable live imaging of worms of both sexes, we developed a new genetic, conditional immobilization tool that uses the auxin-inducible degron (AID) system to immobilize both adult and larval hermaphrodite and male worms for live imaging. Based on chromosome location, mutant phenotype, and predicted germline consequence, we identified and AID-tagged three candidate genes (unc-18, unc-104, and unc-52). Strains with these AID-tagged genes were placed on auxin and tested for mobility and germline defects. Among the candidate genes, auxin-mediated depletion of UNC-18 caused significant immobilization of both hermaphrodite and male worms that was also partially reversible upon removal from auxin. Notably, we found that male worms require a higher concentration of auxin for a similar amount of immobilization as hermaphrodites, thereby suggesting a potential sex-specific difference in auxin absorption and/or processing. In both males and hermaphrodites, depletion of UNC-18 did not largely alter fertility, germline progression, nor meiotic recombination. Finally, we demonstrate that this new genetic tool can successfully immobilize both sexes enabling live imaging studies of sexually dimorphic features in C. elegans.
Collapse
Affiliation(s)
- Cori K Cahoon
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Diana E Libuda
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| |
Collapse
|
37
|
Rillo-Bohn R, Adilardi R, Mitros T, Avşaroğlu B, Stevens L, Köhler S, Bayes J, Wang C, Lin S, Baskevitch KA, Rokhsar DS, Dernburg AF. Analysis of meiosis in Pristionchus pacificus reveals plasticity in homolog pairing and synapsis in the nematode lineage. eLife 2021; 10:70990. [PMID: 34427184 PMCID: PMC8455136 DOI: 10.7554/elife.70990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Meiosis is conserved across eukaryotes yet varies in the details of its execution. Here we describe a new comparative model system for molecular analysis of meiosis, the nematode Pristionchus pacificus, a distant relative of the widely studied model organism Caenorhabditis elegans. P. pacificus shares many anatomical and other features that facilitate analysis of meiosis in C. elegans. However, while C. elegans has lost the meiosis-specific recombinase Dmc1 and evolved a recombination-independent mechanism to synapse its chromosomes, P. pacificus expresses both DMC-1 and RAD-51. We find that SPO-11 and DMC-1 are required for stable homolog pairing, synapsis, and crossover formation, while RAD-51 is dispensable for these key meiotic processes. RAD-51 and DMC-1 localize sequentially to chromosomes during meiotic prophase and show nonoverlapping functions. We also present a new genetic map for P. pacificus that reveals a crossover landscape very similar to that of C. elegans, despite marked divergence in the regulation of synapsis and crossing-over between these lineages.
Collapse
Affiliation(s)
- Regina Rillo-Bohn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Renzo Adilardi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Barış Avşaroğlu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Lewis Stevens
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Darwin Tree of Life Project, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Joshua Bayes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Clara Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Sabrina Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - K Alienor Baskevitch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Energy Joint Genome Institute, Berkeley, United States.,Okinawa Institute of Science and Technology Graduate University, Onna, Japan.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,California Institute for Quantitative Biosciences, Berkeley, United States
| |
Collapse
|
38
|
Hinman AW, Yeh HY, Roelens B, Yamaya K, Woglar A, Bourbon HMG, Chi P, Villeneuve AM. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc Natl Acad Sci U S A 2021; 118:e2109306118. [PMID: 34389685 PMCID: PMC8379965 DOI: 10.1073/pnas.2109306118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.
Collapse
Affiliation(s)
- Albert W Hinman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Baptiste Roelens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Henri-Marc G Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, 31000 Toulouse, France
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
39
|
Abstract
A central player in meiotic chromosome dynamics is the conserved Polo-like kinase (PLK) family. PLKs are dynamically localized to distinct structures during meiotic prophase and phosphorylate a diverse group of substrates to control homolog pairing, synapsis, and meiotic recombination. In a recent study, we uncovered the mechanisms that control the targeting of a meiosis-specific PLK-2 in C. elegans. In early meiotic prophase, PLK-2 localizes to special chromosome regions known as pairing centers and drives homolog pairing and synapsis. PLK-2 then relocates to the synaptonemal complex (SC) after crossover designation and mediates chromosome remodeling required for homolog separation. What controls this intricate targeting of PLK-2 in space and time? We discuss recent findings and remaining questions for the future.
Collapse
Affiliation(s)
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
40
|
von Diezmann L, Rog O. Single-Molecule Tracking of Chromatin-Associated Proteins in the C. elegans Gonad. J Phys Chem B 2021; 125:6162-6170. [PMID: 34097417 DOI: 10.1021/acs.jpcb.1c03040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biomolecules are distributed within cells by molecular-scale diffusion and binding events that are invisible in standard fluorescence microscopy. These molecular search kinetics are key to understanding nuclear signaling and chromosome organization and can be directly observed by single-molecule tracking microscopy. Here, we report a method to track individual proteins within intact C. elegans gonads and apply it to study the molecular dynamics of the axis, a proteinaceous backbone that organizes meiotic chromosomes. Using either fluorescent proteins or enzymatically ligated dyes, we obtain multisecond trajectories with a localization precision of 15-25 nm in nuclei actively undergoing meiosis. Correlation with a reference channel allows for accurate measurement of protein dynamics, compensating for movements of the nuclei and chromosomes within the gonad. We find that axis proteins exhibit either static binding to chromatin or free diffusion in the nucleoplasm, and we separately quantify the motion parameters of these distinct populations. Freely diffusing axis proteins selectively explore chromatin-rich regions, suggesting they are circumventing the central phase-separated region of the nucleus. This work demonstrates that single-molecule microscopy can infer nanoscale-resolution dynamics within living tissue, expanding the possible applications of this approach.
Collapse
|
41
|
Abstract
The formation of crossovers between homologous chromosomes is key to sexual reproduction. In most species, crossovers are spaced further apart than would be expected if they formed independently, a phenomenon termed crossover interference. Despite more than a century of study, the molecular mechanisms implementing crossover interference remain a subject of active debate. Recent findings of how signaling proteins control the formation of crossovers and about the interchromosomal interface in which crossovers form offer new insights into this process. In this Review, we present a cell biological and biophysical perspective on crossover interference, summarizing the evidence that links interference to the spatial, dynamic, mechanical and molecular properties of meiotic chromosomes. We synthesize this physical understanding in the context of prevailing mechanistic models that aim to explain how crossover interference is implemented.
Collapse
Affiliation(s)
- Lexy von Diezmann
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ofer Rog
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
42
|
Brandt JN, Hussey KA, Kim Y. Spatial and temporal control of targeting Polo-like kinase during meiotic prophase. J Cell Biol 2021; 219:152136. [PMID: 32997737 PMCID: PMC7594494 DOI: 10.1083/jcb.202006094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Polo-like kinases (PLKs) play widely conserved roles in orchestrating meiotic chromosome dynamics. However, how PLKs are targeted to distinct subcellular localizations during meiotic progression remains poorly understood. Here, we demonstrate that the cyclin-dependent kinase CDK-1 primes the recruitment of PLK-2 to the synaptonemal complex (SC) through phosphorylation of SYP-1 in C. elegans. SYP-1 phosphorylation by CDK-1 occurs just before meiotic onset. However, PLK-2 docking to the SC is prevented by the nucleoplasmic HAL-2/3 complex until crossover designation, which constrains PLK-2 to special chromosomal regions known as pairing centers to ensure proper homologue pairing and synapsis. PLK-2 is targeted to crossover sites primed by CDK-1 and spreads along the SC by reinforcing SYP-1 phosphorylation on one side of each crossover only when threshold levels of crossovers are generated. Thus, the integration of chromosome-autonomous signaling and a nucleus-wide crossover-counting mechanism partitions holocentric chromosomes relative to the crossover site, which ultimately defines the pattern of chromosome segregation during meiosis I.
Collapse
Affiliation(s)
- James N Brandt
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | | | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
43
|
Gordon SG, Kursel LE, Xu K, Rog O. Synaptonemal Complex dimerization regulates chromosome alignment and crossover patterning in meiosis. PLoS Genet 2021; 17:e1009205. [PMID: 33730019 PMCID: PMC7968687 DOI: 10.1371/journal.pgen.1009205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 12/30/2022] Open
Abstract
During sexual reproduction the parental homologous chromosomes find each other (pair) and align along their lengths by integrating local sequence homology with large-scale contiguity, thereby allowing for precise exchange of genetic information. The Synaptonemal Complex (SC) is a conserved zipper-like structure that assembles between the homologous chromosomes, bringing them together and regulating exchanges between them. However, the molecular mechanisms by which the SC carries out these functions remain poorly understood. Here we isolated and characterized two mutations in the dimerization interface in the middle of the SC zipper in C. elegans. The mutations perturb both chromosome alignment and the regulation of genetic exchanges. Underlying the chromosome-scale phenotypes are distinct alterations to the way SC subunits interact with one another. We propose a model whereby the SC brings homologous chromosomes together through two activities: obligate zipping that prevents assembly on unpaired chromosomes; and a tendency to extend pairing interactions along the entire length of the chromosomes.
Collapse
Affiliation(s)
- Spencer G. Gordon
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa E. Kursel
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Kewei Xu
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ofer Rog
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
44
|
Zhang Z, Xie S, Wang R, Guo S, Zhao Q, Nie H, Liu Y, Zhang F, Chen M, Liu L, Meng X, Liu M, Zhao L, Colaiácovo MP, Zhou J, Gao J. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J Cell Biol 2021; 219:151585. [PMID: 32211900 PMCID: PMC7199860 DOI: 10.1083/jcb.201910086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The synaptonemal complex (SC) is an ordered but highly dynamic structure assembled between homologous chromosomes to control interhomologous crossover formation, ensuring accurate meiotic chromosome segregation. However, the mechanisms regulating SC assembly and dynamics remain unclear. Here, we identified two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans that have distinct expression patterns and form distinct SC assembly units with other SYPs through stable interactions. SYP-5 and SYP-6 exhibit diverse in vivo SC regulatory functions and distinct phase separation properties in cells. Charge-interacting elements (CIEs) are enriched in SC intrinsically disordered regions (IDRs), and IDR deletion or CIE removal confirmed a requirement for these elements in SC regulation. Our data support the theory that multivalent weak interactions between the SC units drive SC formation and that CIEs confer multivalency to the assembly units.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Shuqun Guo
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Qiuchen Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Fengguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Miao Chen
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoqian Meng
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Li Zhao
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA.,Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA
| | | | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
45
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
46
|
So C, Cheng S, Schuh M. Phase Separation during Germline Development. Trends Cell Biol 2021; 31:254-268. [PMID: 33455855 DOI: 10.1016/j.tcb.2020.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Phase separation has emerged as a new key principle of intracellular organization. Phase-separated structures play diverse roles in various biological processes and pathogenesis of protein aggregation diseases. Recent work has revealed crucial functions for phase separation during germline development. Phase separation controls the assembly and segregation of germ granules that determine which embryonic cells become germ cells. Phase separation promotes the formation of the Balbiani body, a structure that stores organelles and RNAs during the prolonged prophase arrest of oocytes. Phase separation also facilitates meiotic recombination that prepares homologous chromosomes for segregation, and drives the formation of a liquid-like spindle domain that promotes spindle assembly in mammalian oocytes. We review how phase separation drives these essential steps during germline development.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
47
|
Mu X, Murakami H, Mohibullah N, Keeney S. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev 2020; 34:1605-1618. [PMID: 33184224 PMCID: PMC7706706 DOI: 10.1101/gad.342873.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
The number of DNA double-strand breaks (DSBs) initiating meiotic recombination is elevated in Saccharomyces cerevisiae mutants that are globally defective in forming crossovers and synaptonemal complex (SC), a protein scaffold juxtaposing homologous chromosomes. These mutants thus appear to lack a negative feedback loop that inhibits DSB formation when homologs engage one another. This feedback is predicted to be chromosome autonomous, but this has not been tested. Moreover, what chromosomal process is recognized as "homolog engagement" remains unclear. To address these questions, we evaluated effects of homolog engagement defects restricted to small portions of the genome using karyotypically abnormal yeast strains with a homeologous chromosome V pair, monosomic V, or trisomy XV. We found that homolog engagement-defective chromosomes incurred more DSBs, concomitant with prolonged retention of the DSB-promoting protein Rec114, while the rest of the genome remained unaffected. SC-deficient, crossover-proficient mutants ecm11 and gmc2 experienced increased DSB numbers diagnostic of homolog engagement defects. These findings support the hypothesis that SC formation provokes DSB protein dissociation, leading in turn to loss of a DSB competent state. Our findings show that DSB number is regulated in a chromosome-autonomous fashion and provide insight into how homeostatic DSB controls respond to aneuploidy during meiosis.
Collapse
Affiliation(s)
- Xiaojing Mu
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neeman Mohibullah
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
48
|
Sato-Carlton A, Nakamura-Tabuchi C, Li X, Boog H, Lehmer MK, Rosenberg SC, Barroso C, Martinez-Perez E, Corbett KD, Carlton PM. Phosphoregulation of HORMA domain protein HIM-3 promotes asymmetric synaptonemal complex disassembly in meiotic prophase in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008968. [PMID: 33175901 PMCID: PMC7717579 DOI: 10.1371/journal.pgen.1008968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/04/2020] [Accepted: 10/17/2020] [Indexed: 11/27/2022] Open
Abstract
In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved “closure motif” region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation. To segregate properly in meiosis, cohesion between replicated chromosomes must remain after the first meiotic cell division, so chromosomes can be held together until they finally separate in the second division. While the majority of organisms use centromeres to protect chromosome cohesion in the first division, the nematode worm C. elegans, which lacks single centromeres, instead protects cohesion only on a segment of the chromosome known as the “long arm”. The long arm (and its complement, the short arm) are known to accumulate specific proteins and protein modifications, but it is not known how the short and long arms are first distinguished, nor how their separate functions are carried out. We report here that the chromosome axis protein HIM-3 and its modification by phosphorylation is important for ensuring the robust establishment of short and long arm functions. We show that phosphorylated HIM-3 partitions to the short arms after crossover recombination sites are designated, and HIM-3 mutants that mimic constitutive phosphorylation delay the normal establishment of the two complementary arm domains. Our findings reveal another layer of regulation to an outstanding mystery in chromosome biology.
Collapse
Affiliation(s)
| | | | - Xuan Li
- Kyoto University, Graduate School of Biostudies, Japan
| | - Hendrik Boog
- Kyoto University, Graduate School of Biostudies, Japan
| | - Madison K. Lehmer
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Scott C. Rosenberg
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences, Imperial College, London
| | | | - Kevin D. Corbett
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States of America
- Ludwig Institute for Cancer Research, San Diego Branch, United States of America
| | - Peter Mark Carlton
- Kyoto University, Graduate School of Biostudies, Japan
- Kyoto University, Radiation Biology Center, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Japan
- * E-mail:
| |
Collapse
|
49
|
Li Q, Hariri S, Engebrecht J. Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1-BARD1 in Caenorhabditis elegans. Genetics 2020; 216:359-379. [PMID: 32796008 PMCID: PMC7536853 DOI: 10.1534/genetics.120.303292] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022] Open
Abstract
Meiosis is regulated in a sex-specific manner to produce two distinct gametes, sperm and oocytes, for sexual reproduction. To determine how meiotic recombination is regulated in spermatogenesis, we analyzed the meiotic phenotypes of mutants in the tumor suppressor E3 ubiquitin ligase BRC-1-BRD-1 complex in Caenorhabditis elegans male meiosis. Unlike in mammals, this complex is not required for meiotic sex chromosome inactivation, the process whereby hemizygous sex chromosomes are transcriptionally silenced. Interestingly, brc-1 and brd-1 mutants show meiotic recombination phenotypes that are largely opposing to those previously reported for female meiosis. Fewer meiotic recombination intermediates marked by the recombinase RAD-51 were observed in brc-1 and brd-1 mutants, and the reduction in RAD-51 foci could be suppressed by mutation of nonhomologous-end-joining proteins. Analysis of GFP::RPA-1 revealed fewer foci in the brc-1brd-1 mutant and concentration of BRC-1-BRD-1 to sites of meiotic recombination was dependent on DNA end resection, suggesting that the complex regulates the processing of meiotic double-strand breaks to promote repair by homologous recombination. Further, BRC-1-BRD-1 is important to promote progeny viability when male meiosis is perturbed by mutations that block the pairing and synapsis of different chromosome pairs, although the complex is not required to stabilize the RAD-51 filament as in female meiosis under the same conditions. Analyses of crossover designation and formation revealed that BRC-1-BRD-1 inhibits supernumerary COs when meiosis is perturbed. Together, our findings suggest that BRC-1-BRD-1 regulates different aspects of meiotic recombination in male and female meiosis.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - Sara Hariri
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| |
Collapse
|
50
|
Biggs RJ, Liu N, Peng Y, Marko JF, Qiao H. Micromanipulation of prophase I chromosomes from mouse spermatocytes reveals high stiffness and gel-like chromatin organization. Commun Biol 2020; 3:542. [PMID: 32999386 PMCID: PMC7528058 DOI: 10.1038/s42003-020-01265-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
Meiosis produces four haploid cells after two successive divisions in sexually reproducing organisms. A critical event during meiosis is construction of the synaptonemal complex (SC), a large, protein-based bridge that physically links homologous chromosomes. The SC facilitates meiotic recombination, chromosome compaction, and the eventual separation of homologous chromosomes at metaphase I. We present experiments directly measuring physical properties of captured mammalian meiotic prophase I chromosomes. Mouse meiotic chromosomes are about ten-fold stiffer than somatic mitotic chromosomes, even for genetic mutants lacking SYCP1, the central element of the SC. Meiotic chromosomes dissolve when treated with nucleases, but only weaken when treated with proteases, suggesting that the SC is not rigidly connected, and that meiotic prophase I chromosomes are a gel meshwork of chromatin, similar to mitotic chromosomes. These results are consistent with a liquid- or liquid-crystal SC, but with SC-chromatin stiff enough to mechanically drive crossover interference. Ronald Biggs et al. report biophysical measurements of intact chromosomes isolated from mouse spermatocytes. They compare chromosomes in meiosis prophase I to mitotic chromosomes and find that meiotic chromosomes are much stiffer, and this stiffness does not depend on the central element of the synaptonemal complex (SYCP1).
Collapse
Affiliation(s)
- Ronald J Biggs
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - Yiheng Peng
- Department of Comparative Biosciences, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA. .,Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA.
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|