1
|
Zhang X, Celic I, Mitchell H, Stuckert S, Vedula L, Han J. Comprehensive profiling of L1 retrotransposons in mouse. Nucleic Acids Res 2024; 52:5166-5178. [PMID: 38647072 PMCID: PMC11109951 DOI: 10.1093/nar/gkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
L1 elements are retrotransposons currently active in mammals. Although L1s are typically silenced in most normal tissues, elevated L1 expression is associated with a variety of conditions, including cancer, aging, infertility and neurological disease. These associations have raised interest in the mapping of human endogenous de novo L1 insertions, and a variety of methods have been developed for this purpose. Adapting these methods to mouse genomes would allow us to monitor endogenous in vivo L1 activity in controlled, experimental conditions using mouse disease models. Here, we use a modified version of transposon insertion profiling, called nanoTIPseq, to selectively enrich young mouse L1s. By linking this amplification step with nanopore sequencing, we identified >95% annotated L1s from C57BL/6 genomic DNA using only 200 000 sequencing reads. In the process, we discovered 82 unannotated L1 insertions from a single C57BL/6 genome. Most of these unannotated L1s were near repetitive sequence and were not found with short-read TIPseq. We used nanoTIPseq on individual mouse breast cancer cells and were able to identify the annotated and unannotated L1s, as well as new insertions specific to individual cells, providing proof of principle for using nanoTIPseq to interrogate retrotransposition activity at the single-cell level in vivo.
Collapse
Affiliation(s)
- Xuanming Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ivana Celic
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hannah Mitchell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sam Stuckert
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lalitha Vedula
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jeffrey S Han
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Zhang X, Celic I, Mitchell H, Stuckert S, Vedula L, Han JS. Comprehensive profiling of L1 retrotransposons in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566638. [PMID: 38014156 PMCID: PMC10680791 DOI: 10.1101/2023.11.13.566638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
L1 elements are retrotransposons currently active in mammals. Although L1s are typically silenced in most normal tissues, elevated L1 expression is associated with a variety of conditions, including cancer, aging, infertility, and neurological disease. These associations have raised interest in the mapping of human endogenous de novo L1 insertions, and a variety of methods have been developed for this purpose. Adapting these methods to mouse genomes would allow us to monitor endogenous in vivo L1 activity in controlled, experimental conditions using mouse disease models. Here we use a modified version of transposon insertion profiling, called nanoTIPseq, to selectively enrich young mouse L1s. By linking this amplification step with nanopore sequencing, we identified >95% annotated L1s from C57BL/6 genomic DNA using only 200,000 sequencing reads. In the process, we discovered 82 unannotated L1 insertions from a single C57BL/6 genome. Most of these unannotated L1s were near repetitive sequence and were not found with short-read TIPseq. We used nanoTIPseq on individual mouse breast cancer cells and were able to identify the annotated and unannotated L1s, as well as new insertions specific to individual cells, providing proof of principle for using nanoTIPseq to interrogate retrotransposition activity at the single cell level in vivo .
Collapse
|
3
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
4
|
Fu J, Qin T, Li C, Zhu J, Ding Y, Zhou M, Yang Q, Liu X, Zhou J, Chen F. Research progress of LINE-1 in the diagnosis, prognosis, and treatment of gynecologic tumors. Front Oncol 2023; 13:1201568. [PMID: 37546391 PMCID: PMC10399582 DOI: 10.3389/fonc.2023.1201568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The retrotransposon known as long interspersed nuclear element-1 (LINE-1), which is currently the sole autonomously mobile transposon in the human genome, can result in insertional mutations, chromosomal rearrangements, and genomic instability. In recent years, numerous studies have shown that LINE-1 is involved in the development of various diseases and also plays an important role in the immune regulation of the organism. The expression of LINE-1 in gynecologic tumors suggests that it is expected to be an independent indicator for early diagnosis and prognosis, and also, as a therapeutic target, LINE-1 is closely associated with gynecologic tumor prognosis. This article discusses the function of LINE-1 in the diagnosis, treatment, and prognosis of ovarian, cervical, and endometrial malignancies, as well as other gynecologic malignancies. It offers fresh perspectives on the early detection of tumors and the creation of novel anti-tumor medications.
Collapse
Affiliation(s)
- Jiaojiao Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Tiansheng Qin
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Chaoming Li
- The First People’s Hospital of Longnan, Longnan City Hospital, Longnan, Gansu, China
| | - Jiaojiao Zhu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yaoyao Ding
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Meiying Zhou
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qing Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaofeng Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Juanhong Zhou
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Fan Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Warkocki Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett 2023; 597:380-406. [PMID: 36460901 DOI: 10.1002/1873-3468.14551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
6
|
Nachmias D, Melnikov N, Zorea A, Sharon M, Yemini R, De-Picchoto Y, Tsirkas I, Aharoni A, Frohn B, Schwille P, Zarivach R, Mizrahi I, Elia N. Asgard ESCRT-III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. THE ISME JOURNAL 2023; 17:117-129. [PMID: 36221007 PMCID: PMC9751279 DOI: 10.1038/s41396-022-01328-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
The archaeal Asgard superphylum currently stands as the most promising prokaryotic candidate, from which eukaryotic cells emerged. This unique superphylum encodes for eukaryotic signature proteins (ESP) that could shed light on the origin of eukaryotes, but the properties and function of these proteins is largely unresolved. Here, we set to understand the function of an Asgard archaeal protein family, namely the ESCRT machinery, that is conserved across all domains of life and executes basic cellular eukaryotic functions, including membrane constriction during cell division. We find that ESCRT proteins encoded in Loki archaea, express in mammalian and yeast cells, and that the Loki ESCRT-III protein, CHMP4-7, resides in the eukaryotic nucleus in both organisms. Moreover, Loki ESCRT-III proteins associated with chromatin, recruited their AAA-ATPase VPS4 counterpart to organize in discrete foci in the mammalian nucleus, and directly bind DNA. The human ESCRT-III protein, CHMP1B, exhibited similar nuclear properties and recruited both human and Asgard VPS4s to nuclear foci, indicating interspecies interactions. Mutation analysis revealed a role for the N terminal region of ESCRT-III in mediating these phenotypes in both human and Asgard ESCRTs. These findings suggest that ESCRT proteins hold chromatin binding properties that were highly preserved through the billion years of evolution separating Asgard archaea and humans. The conserved chromatin binding properties of the ESCRT membrane remodeling machinery, reported here, may have important implications for the origin of eukaryogenesis.
Collapse
Affiliation(s)
- Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Nataly Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alvah Zorea
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Maya Sharon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Reut Yemini
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yasmin De-Picchoto
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ioannis Tsirkas
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Bela Frohn
- Department of Cellular and Molecular Biophysics, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
7
|
Rheinemann L, Downhour DM, Davenport KA, McKeown AN, Sundquist WI, Elde NC. Recurrent evolution of an inhibitor of ESCRT-dependent virus budding and LINE-1 retrotransposition in primates. Curr Biol 2022; 32:1511-1522.e6. [PMID: 35245459 PMCID: PMC9007875 DOI: 10.1016/j.cub.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Most antiviral proteins recognize specific features of viruses. In contrast, the recently described antiviral factor retroCHMP3 interferes with the "host endosomal complexes required for transport" (ESCRT) pathway to inhibit the budding of enveloped viruses. RetroCHMP3 arose independently on multiple occasions via duplication and truncation of the gene encoding the ESCRT-III factor CHMP3. However, since the ESCRT pathway is essential for cellular membrane fission reactions, ESCRT inhibition is potentially cytotoxic. This raises fundamental questions about how hosts can repurpose core cellular functions into antiviral functions without incurring a fitness cost due to excess cellular toxicity. We reveal the evolutionary process of detoxification for retroCHMP3 in New World monkeys using a combination of ancestral reconstructions, cytotoxicity, and virus release assays. A duplicated, full-length copy of retroCHMP3 in the ancestors of New World monkeys provides modest inhibition of virus budding while exhibiting subtle cytotoxicity. Ancient retroCHMP3 then accumulated mutations that reduced cytotoxicity but preserved virus inhibition before a truncating stop codon arose in the more recent ancestors of squirrel monkeys, resulting in potent inhibition. In species where full-length copies of retroCHMP3 still exist, their artificial truncation generated potent virus-budding inhibitors with little cytotoxicity, revealing the potential for future antiviral defenses in modern species. In addition, we discovered that retroCHMP3 restricts LINE-1 retrotransposition, revealing how different challenges to genome integrity might explain multiple independent origins of retroCHMP3 in different species to converge on new immune functions.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Diane Miller Downhour
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Kristen A Davenport
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Alesia N McKeown
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
9
|
Hepatitis C virus infection restricts human LINE-1 retrotransposition in hepatoma cells. PLoS Pathog 2021; 17:e1009496. [PMID: 33872335 PMCID: PMC8084336 DOI: 10.1371/journal.ppat.1009496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/29/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules. Members of the Long Interspersed Nuclear Element 1 (LINE-1, L1) class of retrotransposons account for ~17% of the human genome and include ~100–150 intact L1 loci that are still functional. L1 mobilization is known to affect genomic integrity, thereby leading to disease-causing mutations, but little is known about the impact of exogenous viral infections on L1 and vice versa. While L1 retrotransposition is controlled by various mechanisms including CpG methylation, hypomethylation of L1 has been observed in hepatocellular carcinoma tissues of hepatitis C virus (HCV)-infected patients. Here, we demonstrate molecular interactions between HCV and L1 elements. HCV infection stably increases cellular levels of the L1-encoded ORF1 protein (L1ORF1p). HCV core and L1ORF1p interact in ribonucleoprotein complexes that traffic to lipid droplets. Despite its redistribution to HCV assembly sites, L1ORF1p is dispensable for HCV infection. In contrast, retrotransposition of engineered L1 reporter elements is restricted by HCV, correlating with an increased formation of L1ORF1p-containing cytoplasmic stress granules. Thus, our data provide first insights into the molecular interplay of endogenous transposable elements and exogenous viruses that might contribute to disease progression in vivo.
Collapse
|
10
|
Profiling of LINE-1-Related Genes in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20030645. [PMID: 30717368 PMCID: PMC6387036 DOI: 10.3390/ijms20030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prime public health concern that accounts for most of the primary liver malignancies in humans. The most common etiological factor of HCC is hepatitis B virus (HBV). Despite recent advances in treatment strategies, there has been little success in improving the survival of HCC patients. To develop a novel therapeutic approach, evaluation of a working hypothesis based on different viewpoints might be important. Long interspersed element 1 (L1) retrotransposons have been suggested to play a role in HCC. However, the molecular machineries that can modulate L1 biology in HBV-related HCC have not been well-evaluated. Here, we summarize the profiles of expression and/or activation status of L1-related genes in HBV-related HCC, and HBV- and HCC-related genes that may impact L1-mediated tumorigenesis. L1 restriction factors appear to be suppressed by HBV infection. Since some of the L1 restriction factors also limit HBV, these factors may be exhausted in HBV-infected cells, which causes de-suppression of L1. Several HBV- and HCC-related genes that interact with L1 can affect oncogenic processes. Thus, L1 may be a novel prime therapeutic target for HBV-related HCC. Studies in this area will provide insights into HCC and other types of cancers.
Collapse
|
11
|
Pereira GC, Sanchez L, Schaughency PM, Rubio-Roldán A, Choi JA, Planet E, Batra R, Turelli P, Trono D, Ostrow LW, Ravits J, Kazazian HH, Wheelan SJ, Heras SR, Mayer J, García-Pérez JL, Goodier JL. Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA 2018; 9:35. [PMID: 30564290 PMCID: PMC6295051 DOI: 10.1186/s13100-018-0138-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving loss of motor neurons and having no known cure and uncertain etiology. Several studies have drawn connections between altered retrotransposon expression and ALS. Certain features of the LINE-1 (L1) retrotransposon-encoded ORF1 protein (ORF1p) are analogous to those of neurodegeneration-associated RNA-binding proteins, including formation of cytoplasmic aggregates. In this study we explore these features and consider possible links between L1 expression and ALS. RESULTS We first considered factors that modulate aggregation and subcellular distribution of LINE-1 ORF1p, including nuclear localization. Changes to some ORF1p amino acid residues alter both retrotransposition efficiency and protein aggregation dynamics, and we found that one such polymorphism is present in endogenous L1s abundant in the human genome. We failed, however, to identify CRM1-mediated nuclear export signals in ORF1p nor strict involvement of cell cycle in endogenous ORF1p nuclear localization in human 2102Ep germline teratocarcinoma cells. Some proteins linked with ALS bind and colocalize with L1 ORF1p ribonucleoprotein particles in cytoplasmic RNA granules. Increased expression of several ALS-associated proteins, including TAR DNA Binding Protein (TDP-43), strongly limits cell culture retrotransposition, while some disease-related mutations modify these effects. Using quantitative reverse transcription PCR (RT-qPCR) of ALS tissues and reanalysis of publicly available RNA-Seq datasets, we asked if changes in expression of retrotransposons are associated with ALS. We found minimal altered expression in sporadic ALS tissues but confirmed a previous report of differential expression of many repeat subfamilies in C9orf72 gene-mutated ALS patients. CONCLUSIONS Here we extended understanding of the subcellular localization dynamics of the aggregation-prone LINE-1 ORF1p RNA-binding protein. However, we failed to find compelling evidence for misregulation of LINE-1 retrotransposons in sporadic ALS nor a clear effect of ALS-associated TDP-43 protein on L1 expression. In sum, our study reveals that the interplay of active retrotransposons and the molecular features of ALS are more complex than anticipated. Thus, the potential consequences of altered retrotransposon activity for ALS and other neurodegenerative disorders are worthy of continued investigation.
Collapse
Affiliation(s)
- Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Paul M. Schaughency
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Alejandro Rubio-Roldán
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Jungbin A. Choi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ranjan Batra
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyle W. Ostrow
- Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Haig H. Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sarah J. Wheelan
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sara R. Heras
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jens Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
12
|
Mita P, Boeke JD. Cycling to Maintain and Improve Fitness: Line-1 Modes of Nuclear Entrance and Retrotransposition. SLAS DISCOVERY 2018; 23:491-494. [PMID: 29724131 DOI: 10.1177/2472555218767842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The LINE-1/L1 retrotransposon is a transposable element still active in the human genome. Most retrotransposons in the genome are inactive or repressed by several host mechanisms. In specific contexts, active L1 retrotransposons may evade repression and copy themselves into new genomic loci. Despite a general knowledge of the L1 life cycle, little was known about the dynamics of L1 proteins and function during the different stages of the host cell cycle. Our work highlighted a well-orchestrated localization of L1 proteins and mRNA that take advantage of mitotic nuclear membrane breakdown. Once in the nucleus, L1 ribonucleoproteins (RNPs) are able to retrotranspose during the S phase when L1 retrotransposition peaks. Our conclusions highlight previously unappreciated features of the L1 life cycle, such as the differences between cytoplasmic and nuclear RNPs and the cycling of L1 ORF1 protein and L1 activity during progression through the cell cycle. These new observations are discussed here in light of the evolutionary arms race between L1 retrotransposons and the host cell.
Collapse
Affiliation(s)
- Paolo Mita
- 1 Institute for Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- 1 Institute for Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
13
|
Khazina E, Weichenrieder O. Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p. eLife 2018; 7:34960. [PMID: 29565245 PMCID: PMC5940361 DOI: 10.7554/elife.34960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition. Almost half of the human genome consists of DNA strings that have been copied and pasted from one part of the genome to another many thousands of times. These strings of DNA are called mobile genetic elements. Mobile elements can disrupt important genes, causing disease and cancer, but they can also drive evolution. Presently, only one type of mobile element, called LINE-1, is active in the human genome and able to multiply without help from other mobile elements. LINE-1 DNA is ‘transcribed’ to form molecules of LINE-1 RNA, which can then be ‘translated’ into two distinct proteins. These bind to LINE-1 RNA, which then gets back-transcribed into DNA and inserted as a new LINE-1 element in a new region of the genome. One of the two proteins, called L1ORF1p, forms complexes where three copies of the protein come together. These ‘trimers’ cover and protect LINE-1 RNA and are required for LINE-1 mobility. Different versions of L1ORF1p are found in different animals. Part of the protein is the same across all mammals, and this ‘conserved’ part controls the ability of L1ORF1p to bind to RNA. The non-conserved part of L1ORF1p differs even between humans and their closest animal relatives and little was known about its structure or role. However, this rapidly evolving part of L1ORF1p is essential for LINE-1 mobility. Using X-ray crystallography, Khazina and Weichenrieder obtained a molecular snapshot of the part of L1ORF1p that interacts with other copies of the protein to form trimers. Combined with earlier snapshots of L1ORF1p’s conserved part, this generated a complete structural model of the L1ORF1p trimer. Additional biophysical characterizations suggest that L1ORF1p trimers form a semi-stable structure that can partially open up, indicating how trimers could form larger assemblies of L1ORF1p on LINE-1 RNA. Indeed, the need to maintain a semi-stable structure could explain why L1ORF1p is evolving so rapidly. A second important finding is that the beginning of L1ORF1p needs to be positively charged – a requirement that warrants further exploration. The structural and mechanistic insight into L1ORF1p points to critical new steps in LINE-1 mobilization. It will help to design inhibitor molecules with the goal to halt the mobilization process at various points and to dissect such steps in great detail. Understanding how to control LINE-1 mobility could help to improve stem cell therapies and reproduction assistance techniques, due to the fact that LINE-1 mobility is a potential source of mutation in stem cells, egg and sperm cells, and newly formed embryos.
Collapse
Affiliation(s)
- Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|