1
|
Bellelli F, Angioni D, Arosio B, Vellas B, De Souto Barreto P. Hallmarks of aging and Alzheimer's Disease pathogenesis: Paving the route for new therapeutic targets. Ageing Res Rev 2025; 106:102699. [PMID: 39986483 DOI: 10.1016/j.arr.2025.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Aging is the leading risk factor for Alzheimer's Disease (AD). Understanding the intricate interplay between biological aging and the AD pathophysiology may help to discover innovative treatments. The relationship between aging and core pathways of AD pathogenesis (amyloidopathy and tauopathy) have been extensively studied in preclinical models. However, the potential discordance between preclinical models and human pathology could represent a limitation in the identification of new therapeutic targets. This narrative review aims to gather the evidence currently available on the associations of β-Amyloid and Tau pathology with the hallmarks of aging in human studies. Briefly, our review suggests that while several hallmarks exhibit a robust association with AD pathogenesis (e.g., epigenetic alterations, chronic inflammation, dysbiosis), others (e.g., telomere attrition, cellular senescence, stem cell exhaustion) demonstrate either no relationship or weak associations. This is often due to limitations such as small sample sizes and study designs, being either cross-sectional or with short follow-up intervals, limiting the generalizability of the findings. Distinct hallmarks play varying roles in different stages of AD pathology, emphasizing the need for longitudinal studies with longer follow-up periods. Considering the intricate interconnections across the hallmarks of aging, future research on AD pathology should focus on multiple hallmarks simultaneously.
Collapse
Affiliation(s)
- Federico Bellelli
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Fellowship in Geriatric and Gerontology, University of Milan, Milan, Italy.
| | - Davide Angioni
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | | | - Bruno Vellas
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| |
Collapse
|
2
|
Yu K, Yao KR, Aguinaga MA, Choquette JM, Liu C, Wang Y, Liao D. G272V and P301L Mutations Induce Isoform Specific Tau Mislocalization to Dendritic Spines and Synaptic Dysfunctions in Cellular Models of 3R and 4R Tau Frontotemporal Dementia. J Neurosci 2024; 44:e1215232024. [PMID: 38858079 PMCID: PMC11236579 DOI: 10.1523/jneurosci.1215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.
Collapse
Affiliation(s)
- Ke Yu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Department of General Practice, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Katherine R Yao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Miguel A Aguinaga
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Jessica M Choquette
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Chengliang Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yuxin Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
3
|
Mayer MP. Hsf1 and Hsf2 in normal, healthy human tissues: Immunohistochemistry provokes new questions. Cell Stress Chaperones 2024; 29:437-439. [PMID: 38641046 PMCID: PMC11067330 DOI: 10.1016/j.cstres.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
The heat shock transcription factors heat shock transcription factor 1 and Hsf2 have been studied for many years, mainly in the context of stress response and in malignant cells. Their physiological function in nonmalignant human cells under nonstress conditions is still largely unknown. To approach this important issue, Joutsen et al. present immunohistochemical staining data on Hsf1 and Hsf2 in 80 nonpathological human tissue samples. The wealth of these data elicits many interesting questions that will spur many future research projects.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany.
| |
Collapse
|
4
|
Liu W, Xia S, Yao F, Huo J, Qian J, Liu X, Bai L, Song Y, Qian J. Deactivation of the Unfolded Protein Response Aggravated Renal AA Amyloidosis in HSF1 Deficiency Mice. Mol Cell Biol 2024; 44:165-177. [PMID: 38758542 PMCID: PMC11123510 DOI: 10.1080/10985549.2024.2347937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Shunjie Xia
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Yixing People’s Hospital, Yixing City, China
| | - Fang Yao
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jia Huo
- Department of Osteopathy, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junqiao Qian
- Department of Oral Surgery, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Xiaomeng Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Langning Bai
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yu Song
- Department of Biochemistry, Hebei Medical University, Shijiazhuang, China
| | - Jinze Qian
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Yang G, Gong C, Zheng X, Hu F, Liu J, Wang T, Chen X, Li M, Zhu Z, Zhang L, Li R. Early clues and molecular mechanism involved in neurodegenerative diseases induced in immature mice by combined exposure to polypropylene microplastics and DEHP. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122406. [PMID: 37597731 DOI: 10.1016/j.envpol.2023.122406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Studies have shown that exposure to either microplastics (MPs) or di-(2-ethylhexyl) phthalic acid (DEHP) alone can cause neurotoxicity in animals, but it remains uncertain whether and to what extent co-exposure to these two substances, which often occur together in reality, can also induce neurotoxicity. This study aimed to investigate the neurotoxicity and molecular mechanisms of combined exposure to DEHP and polypropylene microplastics (synthetic PP-MPs were used), the microplastics most commonly encountered by young children, in immature mice. The results showed that exposure to PP-MPs and/or DEHP did cause neurotoxic effects in immature mice, including induction of neurocognitive and memory deficits, damage to the CA3 region of the hippocampus, increased oxidative stress, and decreased AChE activity in the brain. The severity of the neurotoxicity increased with increasing concentrations of PP-MPs, combined exposure to PP-MPs and DEHP exhibited additive or synergistic effects. Transcriptomic analyses revealed that the PP-MPs and/or DEHP exposure altered the expression profiles of gene clusters involved in the stress response, and in protein processing in endoplasmic reticulum. Quantitative analyses further indicated that PP-MPs and/or DEHP exposure inhibited the activity of the heat shock response mediated by heat shock transcription factor 1, while chronically activated the unfolded protein response, consequently inducing neurotoxicity through neuronal apoptosis and neuroinflammation in the immature mice. As a pioneer study to highlight the neurotoxicity induced by combined exposure to PP-MPs and DEHP in immature mice, this research provides new insights into mitigating the health risks of PP-MPs and DEHP exposure in young children.
Collapse
Affiliation(s)
- Ge Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Cunyi Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xinyue Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Fei Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jie Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China; The Primary School Attached to Central China Normal University, Wuhan, 430079, China
| | - Tian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China; College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xinyue Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Min Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhihong Zhu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
6
|
Venediktov AA, Bushueva OY, Kudryavtseva VA, Kuzmin EA, Moiseeva AV, Baldycheva A, Meglinski I, Piavchenko GA. Closest horizons of Hsp70 engagement to manage neurodegeneration. Front Mol Neurosci 2023; 16:1230436. [PMID: 37795273 PMCID: PMC10546621 DOI: 10.3389/fnmol.2023.1230436] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023] Open
Abstract
Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too.
Collapse
Affiliation(s)
- Artem A. Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Yu Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Varvara A. Kudryavtseva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Egor A. Kuzmin
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandra V. Moiseeva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Anna Baldycheva
- STEMM Laboratory, University of Exeter, Exeter, United Kingdom
| | - Igor Meglinski
- Department of Physics, University of Oulu, Oulu, Finland
- College of Engineering and Physical Sciences, Aston University, Birmingham, United Kingdom
| | - Gennadii A. Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
7
|
Kaw K, Chattopadhyay A, Guan P, Chen J, Majumder S, Duan XY, Ma S, Zhang C, Kwartler CS, Milewicz DM. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol in smooth muscle cells. Eur Heart J 2023; 44:2713-2726. [PMID: 37377039 PMCID: PMC10393072 DOI: 10.1093/eurheartj/ehad373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS The variant p.Arg149Cys in ACTA2, which encodes smooth muscle cell (SMC)-specific α-actin, predisposes to thoracic aortic disease and early onset coronary artery disease in individuals without cardiovascular risk factors. This study investigated how this variant drives increased atherosclerosis. METHODS AND RESULTS Apoe-/- mice with and without the variant were fed a high-fat diet for 12 weeks, followed by evaluation of atherosclerotic plaque formation and single-cell transcriptomics analysis. SMCs explanted from Acta2R149C/+ and wildtype (WT) ascending aortas were used to investigate atherosclerosis-associated SMC phenotypic modulation. Hyperlipidemic Acta2R149C/+Apoe-/- mice have a 2.5-fold increase in atherosclerotic plaque burden compared to Apoe-/- mice with no differences in serum lipid levels. At the cellular level, misfolding of the R149C α-actin activates heat shock factor 1, which increases endogenous cholesterol biosynthesis and intracellular cholesterol levels through increased HMG-CoA reductase (HMG-CoAR) expression and activity. The increased cellular cholesterol in Acta2R149C/+ SMCs induces endoplasmic reticulum stress and activates PERK-ATF4-KLF4 signaling to drive atherosclerosis-associated phenotypic modulation in the absence of exogenous cholesterol, while WT cells require higher levels of exogenous cholesterol to drive phenotypic modulation. Treatment with the HMG-CoAR inhibitor pravastatin successfully reverses the increased atherosclerotic plaque burden in Acta2R149C/+Apoe-/- mice. CONCLUSION These data establish a novel mechanism by which a pathogenic missense variant in a smooth muscle-specific contractile protein predisposes to atherosclerosis in individuals without hypercholesterolemia or other risk factors. The results emphasize the role of increased intracellular cholesterol levels in driving SMC phenotypic modulation and atherosclerotic plaque burden.
Collapse
Affiliation(s)
- Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiyuan Chen
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Xue-yan Duan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuangtao Ma
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- Department of Medicine, Michigan State University, 1355 Bogue St, B226B Life Sciences, East Lansing, MI 48824, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, and Department of Cardiovascular Surgery, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Callie S Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
8
|
Franks H, Wang R, Li M, Wang B, Wildmann A, Ortyl T, O’Brien S, Young D, Liao FF, Sakata K. Heat shock factor HSF1 regulates BDNF gene promoters upon acute stress in the hippocampus, together with pCREB. J Neurochem 2023; 165:131-148. [PMID: 36227087 PMCID: PMC10097844 DOI: 10.1111/jnc.15707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
Heat shock factor 1 (HSF1) is a master stress-responsive transcriptional factor, protecting cells from death. However, its gene regulation in vivo in the brain in response to neuronal stimuli remains elusive. Here, we investigated its direct regulation of the brain-derived neurotrophic factor (BDNF) gene (Bdnf) in response to acute neuronal stress stimuli in the brain. The results of immunohistochemistry and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that administration of kainic acid (a glutamate receptor agonist inducing excitotoxity) to young adult mice induced HSF1 nuclear translocation and its binding to multiple Bdnf promoters in the hippocampus. Footshock, a physical stressor used for learning, also induced HSF1 binding to selected Bdnf promoters I and IV. This is, to our knowledge, the first demonstration of HSF1 gene regulation in response to neuronal stimuli in the hippocampus in vivo. HSF1 binding sites (HSEs) in Bdnf promoters I and IV were also detected when immunoprecipitated by an antibody of phosphorylated (p)CREB (cAMP-responsive element-binding protein), suggesting their possible interplay in acute stress-induced Bdnf transcription. Interestingly, their promoter binding patterns differed by KA and footshock, suggesting that HSF1 and pCREB orchestrate to render fine-tuned promoter control depending on the types of stress. Further, HSF1 overexpression increased Bdnf promoter activity in a luciferase assay, while virus infection of constitutively active-form HSF1 increased levels of BDNF mRNA and protein in vitro in primary cultured neurons. These results indicated that HSF1 activation of Bdnf promoter was sufficient to induce BDNF expression. Taken together, these results suggest that HSF1 promoter-specific control of Bdnf gene regulation plays an important role in neuronal protection and plasticity in the hippocampus in response to acute stress, possibly interplaying with pCREB.
Collapse
Affiliation(s)
- Hunter Franks
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ruishan Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Mingqi Li
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Bin Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ashton Wildmann
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Tyler Ortyl
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Shannon O’Brien
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Deborah Young
- Department of Pharmacology & Clinical Pharmacology, The
University of Auckland, Auckland, New Zealand
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| |
Collapse
|
9
|
Romero-Márquez JM, Navarro-Hortal MD, Orantes FJ, Esteban-Muñoz A, Pérez-Oleaga CM, Battino M, Sánchez-González C, Rivas-García L, Giampieri F, Quiles JL, Forbes-Hernández TY. In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado ( Persea americana Mill.) Honey from Southern Spain. Antioxidants (Basel) 2023; 12:antiox12020404. [PMID: 36829962 PMCID: PMC9952156 DOI: 10.3390/antiox12020404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
There is growing evidence that Alzheimer's disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | | | - Adelaida Esteban-Muñoz
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Cristina M. Pérez-Oleaga
- Department of Biostatistics, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Biostatistics, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Department of Biostatistics, Universidade Internacional do Cuanza, Cuito 250, Angola
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| |
Collapse
|
10
|
Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int J Mol Sci 2023; 24:ijms24010823. [PMID: 36614266 PMCID: PMC9820882 DOI: 10.3390/ijms24010823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily. These mechanisms can be considered promising for pharmacological regulation. Therefore, the aim of this review was to analyze the mechanisms of endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) in the pathogenesis of neurodegenerative diseases. Data on BiP and Sigma1R chaperones in clinical and experimental studies of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are presented. The possibility of neuroprotective effect dependent on Sigma1R ligand activation in these diseases is also demonstrated. The interaction between Sigma1R and BiP-associated signaling in the neuroprotection is discussed. The performed analysis suggests the feasibility of pharmacological regulation of chaperone function, possibility of ligand activation of Sigma1R in order to achieve a neuroprotective effect, and the need for further studies of the conjugation of cellular mechanisms controlled by Sigma1R and BiP chaperones.
Collapse
|
11
|
Gildea HK, Frankino PA, Tronnes SU, Pender CL, Durieux J, Dishart JG, Choi HO, Hunter TD, Cheung SS, Frakes AE, Sukarto E, Wickham K, Dillin A. Glia of C. elegans coordinate a protective organismal heat shock response independent of the neuronal thermosensory circuit. SCIENCE ADVANCES 2022; 8:eabq3970. [PMID: 36490338 PMCID: PMC9733925 DOI: 10.1126/sciadv.abq3970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/03/2022] [Indexed: 06/01/2023]
Abstract
Aging organisms lose the ability to induce stress responses, becoming vulnerable to protein toxicity and tissue damage. Neurons can signal to peripheral tissues to induce protective organelle-specific stress responses. Recent work shows that glia can independently induce such responses. Here, we show that overexpression of heat shock factor 1 (hsf-1) in the four astrocyte-like cephalic sheath cells of Caenorhabditis elegans induces a non-cell-autonomous cytosolic unfolded protein response, also known as the heat shock response (HSR). These animals have increased lifespan and heat stress resistance and decreased protein aggregation. Glial HSR regulation is independent of canonical thermosensory circuitry and known neurotransmitters but requires the small clear vesicle release protein UNC-13. HSF-1 and the FOXO transcription factor DAF-16 are partially required in peripheral tissues for non-cell-autonomous HSR, longevity, and thermotolerance. Cephalic sheath glial hsf-1 overexpression also leads to pathogen resistance, suggesting a role for this signaling pathway in immune function.
Collapse
Affiliation(s)
- Holly K. Gildea
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Phillip A. Frankino
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sarah U. Tronnes
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Corinne L. Pender
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jenni Durieux
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Julian G. Dishart
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hyun Ok Choi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tayla D. Hunter
- Department of Biology, Howard University, Washington, DC, USA
| | - Shannon S. Cheung
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley E. Frakes
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward Sukarto
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin Wickham
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Kiso-Farnè K, Tsuruyama T. Epidermal growth factor receptor cascade prioritizes the maximization of signal transduction. Sci Rep 2022; 12:16950. [PMID: 36216834 PMCID: PMC9550784 DOI: 10.1038/s41598-022-20663-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
Many studies have been performed to quantify cell signaling. Cell signaling molecules are phosphorylated in response to extracellular stimuli, with the phosphorylation sequence forming a signal cascade. The information gain during a signal event is given by the logarithm of the phosphorylation molecule ratio. The average information gain can be regarded as the signal transduction quantity (ST), which is identical to the Kullback-Leibler divergence (KLD), a relative entropy. We previously reported that if the total ST value in a given signal cascade is maximized, the ST rate (STR) of each signaling molecule per signal duration (min) approaches a constant value. To experimentally verify this theoretical conclusion, we measured the STR of the epidermal growth factor (EGF)-related cascade in A431 skin cancer cells following stimulation with EGF using antibody microarrays against phosphorylated signal molecules. The results were consistent with those from the theoretical analysis. Thus, signaling transduction systems may adopt a strategy that prioritizes the maximization of ST. Furthermore, signal molecules with similar STRs may form a signal cascade. In conclusion, ST and STR are promising properties for quantitative analysis of signal transduction.
Collapse
Affiliation(s)
- Kaori Kiso-Farnè
- grid.258799.80000 0004 0372 2033Center for anatomical, pathological, and forensic medical researches, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Tatsuaki Tsuruyama
- grid.258799.80000 0004 0372 2033Center for anatomical, pathological, and forensic medical researches, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan ,grid.258799.80000 0004 0372 2033Drug and Discovery Medicine, Graduate School of Medicine, Medical Innovation Center, Kyoto University, Kyoto, 606-8507 Japan ,grid.69566.3a0000 0001 2248 6943Department of Physics, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku 6-3, Sendai, 980-8578 Japan ,grid.418889.40000 0001 2198 115XDepartment of Molecular Biosciences, Radiation Effects Research Foundation, Minami-ku, Hiroshima, 732-0815 Japan ,grid.415392.80000 0004 0378 7849Department of Tumor Research, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka, 530-8480 Japan
| |
Collapse
|
13
|
Wang C, Chang Y, Zhu J, Ma R, Li G. Dual Role of Inositol-requiring Enzyme 1α–X-box Binding protein 1 Signaling in Neurodegenerative Diseases. Neuroscience 2022; 505:157-170. [DOI: 10.1016/j.neuroscience.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
14
|
Blessing EM, Parekh A, Betensky RA, Babb J, Saba N, Debure L, Varga AW, Ayappa I, Rapoport DM, Butler TA, de Leon MJ, Wisniewski T, Lopresti BJ, Osorio RS. Association between lower body temperature and increased tau pathology in cognitively normal older adults. Neurobiol Dis 2022; 171:105748. [PMID: 35550158 PMCID: PMC9751849 DOI: 10.1016/j.nbd.2022.105748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Preclinical studies suggest body temperature (Tb) and consequently brain temperature has the potential to bidirectionally interact with tau pathology in Alzheimer's Disease (AD). Tau phosphorylation is substantially increased by a small (<1 °C) decrease in temperature within the human physiological range, and thermoregulatory nuclei are affected by tau pathology early in the AD continuum. In this study we evaluated whether Tb (as a proxy for brain temperature) is cross-sectionally associated with clinically utilized markers of tau pathology in cognitively normal older adults. METHODS Tb was continuously measured with ingestible telemetry sensors for 48 h. This period included two nights of nocturnal polysomnography to delineate whether Tb during waking vs sleep is differentially associated with tau pathology. Tau phosphorylation was assessed with plasma and cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (P-tau), sampled the day following Tb measurement. In addition, neurofibrillary tangle (NFT) burden in early Braak stage regions was imaged with PET-MR using the [18F]MK-6240 radiotracer on average one month later. RESULTS Lower Tb was associated with increased NFT burden, as well as increased plasma and CSF P-tau levels (p < 0.05). NFT burden was associated with lower Tb during waking (p < 0.05) but not during sleep intervals. Plasma and CSF P-tau levels were highly correlated with each other (p < 0.05), and both variables were correlated with tau tangle radiotracer uptake (p < 0.05). CONCLUSIONS These results, the first available for human, suggest that lower Tb in older adults may be associated with increased tau pathology. Our findings add to the substantial preclinical literature associating lower body and brain temperature with tau hyperphosphorylation. CLINICAL TRIAL NUMBER NCT03053908.
Collapse
Affiliation(s)
- Esther M Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Rebecca A Betensky
- Department of NYU School of Global Public Health, New York, NY 10016, United States of America.
| | - James Babb
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Natalie Saba
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Ludovic Debure
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Indu Ayappa
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - David M Rapoport
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Tracy A Butler
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Mony J de Leon
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Thomas Wisniewski
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Ricardo S Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America; Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| |
Collapse
|
15
|
Criado-Marrero M, Blazier DM, Gould LA, Gebru NT, Rodriguez Ospina S, Armendariz DS, Darling AL, Beaulieu-Abdelahad D, Blair LJ. Evidence against a contribution of the CCAAT-enhancer binding protein homologous protein (CHOP) in mediating neurotoxicity in rTg4510 mice. Sci Rep 2022; 12:7372. [PMID: 35513476 PMCID: PMC9072347 DOI: 10.1038/s41598-022-11025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
Tau accumulation and progressive loss of neurons are associated with Alzheimer’s disease (AD). Aggregation of tau has been associated with endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). While ER stress and the UPR have been linked to AD, the contribution of these pathways to tau-mediated neuronal death is still unknown. We tested the hypothesis that reducing C/EBP Homologous Protein (CHOP), a UPR induced transcription factor associated with cell death, would mitigate tau-mediated neurotoxicity through the ER stress pathway. To evaluate this, 8.5-month-old male rTg4510 tau transgenic mice were injected with a CHOP-targeting or scramble shRNA AAV9 that also expressed EGFP. Following behavioral assessment, brain tissue was collected at 12 months, when ER stress and neuronal loss is ongoing. No behavioral differences in locomotion, anxiety-like behavior, or learning and memory were found in shCHOP mice. Unexpectedly, mice expressing shCHOP had higher levels of CHOP, which did not affect neuronal count, UPR effector (ATF4), or tau tangles. Overall, this suggests that CHOP is a not a main contributor to neuronal death in rTg4510 mice. Taken together with previous studies, we conclude that ER stress, including CHOP upregulation, does not worsen outcomes in the tauopathic brain.
Collapse
Affiliation(s)
- Marangelie Criado-Marrero
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Danielle M Blazier
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Lauren A Gould
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Niat T Gebru
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Santiago Rodriguez Ospina
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Debra S Armendariz
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - April L Darling
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - David Beaulieu-Abdelahad
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA. .,Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
16
|
Reyes A, Navarro AJ, Diethelm-Varela B, Kalergis AM, González PA. Is there a role for HSF1 in viral infections? FEBS Open Bio 2022; 12:1112-1124. [PMID: 35485710 PMCID: PMC9157408 DOI: 10.1002/2211-5463.13419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Cells undergo numerous processes to adapt to new challenging conditions and stressors. Heat stress is regulated by a family of heat shock factors (HSFs) that initiate a heat shock response by upregulating the expression of heat shock proteins (HSPs) intended to counteract cellular damage elicited by increased environmental temperature. Heat shock factor 1 (HSF1) is known as the master regulator of the heat shock response and upon its activation induces the transcription of genes that encode for molecular chaperones, such as HSP40, HSP70, and HSP90. Importantly, an accumulating body of studies relates HSF1 with viral infections; the induction of fever during viral infection may activate HSF1 and trigger a consequent heat shock response. Here, we review the role of HSF1 in different viral infections and its impact on the health outcome for the host. Studying the relationship between HSF1 and viruses could open new potential therapeutic strategies given the availability of drugs that regulate the activation of this transcription factor.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Areli J Navarro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina Pontificia, Universidad Católica de Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| |
Collapse
|
17
|
Kmiecik SW, Mayer MP. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 2021; 47:218-234. [PMID: 34810080 DOI: 10.1016/j.tibs.2021.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023]
Abstract
To thrive and to fulfill their functions, cells need to maintain proteome homeostasis even in the face of adverse environmental conditions or radical restructuring of the proteome during differentiation. At the center of the regulation of proteome homeostasis is an ancient transcriptional mechanism, the so-called heat shock response (HSR), orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). As Hsf1 is implicated in aging and several pathologies like cancer and neurodegenerative disorders, understanding the regulation of Hsf1 could open novel therapeutic opportunities. In this review, we discuss the regulation of Hsf1's transcriptional activity by multiple layers of control circuits involving Hsf1 synthesis and degradation, conformational rearrangements and post-translational modifications (PTMs), and molecular chaperones in negative feedback loops.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Heat Shock Factor 1 Prevents Age-Related Hearing Loss by Decreasing Endoplasmic Reticulum Stress. Cells 2021; 10:cells10092454. [PMID: 34572102 PMCID: PMC8468389 DOI: 10.3390/cells10092454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is a common stress factor during the aging process. Heat shock factor 1 (HSF1) plays a critical role in ER stress; however, its exact function in age-related hearing loss (ARHL) has not been fully elucidated. The purpose of the present study was to identify the role of HSF1 in ARHL. In this study, we demonstrated that the loss of inner and outer hair cells and their supporting cells was predominant in the high-frequency region (basal turn, 32 kHz) in ARHL cochleae. In the aging cochlea, levels of the ER stress marker proteins p-eIF2α and CHOP increased as HSF1 protein levels decreased. The levels of various heat shock proteins (HSPs) also decreased, including HSP70 and HSP40, which were markedly downregulated, and the expression levels of Bax and cleaved caspase-3 apoptosis-related proteins were increased. However, HSF1 overexpression showed significant hearing protection effects in the high-frequency region (basal turn, 32 kHz) by decreasing CHOP and cleaved caspase-3 and increasing the HSP40 and HSP70 proteins. These findings were confirmed by HSF1 functional studies using an auditory cell model. Therefore, we propose that HSF1 can function as a mediator to prevent ARHL by decreasing ER stress-dependent apoptosis in the aging cochlea.
Collapse
|
19
|
Ismael S, Wajidunnisa, Sakata K, McDonald MP, Liao FF, Ishrat T. ER stress associated TXNIP-NLRP3 inflammasome activation in hippocampus of human Alzheimer's disease. Neurochem Int 2021; 148:105104. [PMID: 34153352 PMCID: PMC9479581 DOI: 10.1016/j.neuint.2021.105104] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Although the exact etiology of Alzheimer's disease (AD) is poorly understood, experimental and clinical evidences suggest the contribution of neuroinflammation in the pathogenesis of AD. Pathologically, AD brain is characterized by an imbalance in redox status, elevated endoplasmic reticulum (ER) stress, synaptic dysfunction, inflammation, and progressive neurodegeneration. It has been noted that continuous accumulation of amyloid-beta (Aβ) and intracellular neurofibrillary tangles (NFTs) in AD brain trigger ER stress, which contributes to neurodegeneration. Similarly, experimental evidences supports the hypothesis that thioredoxin-interacting protein (TXNIP), an endogenous regulator of redox regulator thioredoxin (TRX), is activated by ER stress and contributes to activation of NLRP3 (NOD-like receptor protein 3) inflammatory cascade in hippocampus of the AD brain. Hippocampus of postmortem human AD and aged matched non-AD controls were analyzed for the expression ER stress markers and TXNIP-NLRP3 inflammasome at cellular and molecular levels. We found higher expression of TXNIP at protein and transcript levels in close association with pathological markers of AD such as Aβ and NFTs in AD hippocampus. In addition, our results demonstrated that TXNIP was co-localized in neurons and microglia. Moreover, expression of binding immunoglobulin protein (BiP), activated eukaryotic initiation factor-2α (eIf2α) and C/EBP homology protein (CHOP), proteins involved the development of ER stress, were elevated in AD hippocampus. Further, elevated expression of effector molecules of NLRP3 inflammasome activation such as apoptosis associated speck-like protein (ASC), cleaved caspase-1 and cleaved interleukin-1β were observed in the AD hippocampus. The study suggests that TXNIP could be a link that connect ER stress with neuroinflammation. Thus, TXNIP can be a possible therapeutic target to mitigate the progression of neuroinflammation in the pathogenesis of AD.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wajidunnisa
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kazuko Sakata
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michael P McDonald
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
20
|
Hetz C. Adapting the proteostasis capacity to sustain brain healthspan. Cell 2021; 184:1545-1560. [PMID: 33691137 DOI: 10.1016/j.cell.2021.02.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Sustaining neuronal proteostasis during the course of our life is a central aspect required for brain function. The dynamic nature of synaptic composition and abundance is a requisite to drive cognitive and motor processes involving a tight control of many aspects of protein biosynthesis and degradation. Through the concerted action of specialized stress sensors, the proteostasis network monitors and limits the accumulation of damaged, misfolded, or aggregated proteins. These stress pathways signal to the cytosol and nucleus to reprogram gene expression, enabling adaptive programs to recover cell function. During aging, the activity of the proteostasis network declines, which may increase the risk of accumulating abnormal protein aggregates, a hallmark of most neurodegenerative diseases. Here, I discuss emerging concepts illustrating the functional significance of adaptive signaling pathways to normal brain physiology and their contribution to age-related disorders. Pharmacological and gene therapy strategies to intervene and boost proteostasis are expected to extend brain healthspan and ameliorate disease states.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
21
|
Lee DS, Kim JE. Regional specific activations of ERK1/2 and CDK5 differently regulate astroglial responses to ER stress in the rat hippocampus following status epilepticus. Brain Res 2021; 1753:147262. [PMID: 33422538 DOI: 10.1016/j.brainres.2020.147262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023]
Abstract
Endoplasmic reticulum (ER) triggers the regional specific astroglial responses to status epilepticus (SE, a prolonged seizure activity). However, the epiphenomena/downstream effecters for ER stress and the mechanism of ER stress signaling in astroglial apoptosis have not been fully understood. In the present study, tunicamycin-induced ER stress resulted in reactive astrogliosis-like events showing astroglial hypertrophy with the elevated extracellular signal-activated protein kinase 1/2 (ERK1/2) and cyclin-dependent kinase 5 (CDK5) phosphorylations in the CA1 region of the rat hippocampus. However, tunicamycin increased CDK5, but not ERK1/2, phosphorylation in the molecular layer of the dentate gyrus. Roscovitine (a CDK5 inhibitor) suppressed the effect of tunicamycin in the molecular layer of the dentate gyrus and the CA1 region, while U0126 (an ERK1/2 inhibitor) reversed it in the CA1 region. Salubrinal (an ER stress inhibitor) abrogated activations of ERK1/2 and CDK5, and attenuated reactive astrogliosis in the CA1 region and astroglial apoptosis in the molecular layer of the dentate gyrus following status epilepticus (SE, a prolonged seizure activity). These findings indicate that ER stress may induce reactive astrogliosis via ERK1/2-mediated CDK5 activation in the CA1 region. In the molecular layer of the dentate gyrus, however, ER stress may participate in astroglial apoptosis through ERK1/2-independent CDK5 activation following SE.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| |
Collapse
|
22
|
Bressler KR, Ross JA, Ilnytskyy S, Vanden Dungen K, Taylor K, Patel K, Zovoilis A, Kovalchuk I, Thakor N. Depletion of eukaryotic initiation factor 5B (eIF5B) reprograms the cellular transcriptome and leads to activation of endoplasmic reticulum (ER) stress and c-Jun N-terminal kinase (JNK). Cell Stress Chaperones 2021; 26:253-264. [PMID: 33123915 PMCID: PMC7736443 DOI: 10.1007/s12192-020-01174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
During the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.
Collapse
Affiliation(s)
- Kamiko R Bressler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Joseph A Ross
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Chinook Contract Research Inc., 97 East Lake Ramp NE, Airdrie, Alberta, T4A 2 K4, Canada
| | - Slava Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| | - Keiran Vanden Dungen
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| | - Katrina Taylor
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| | - Kush Patel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3 M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3 M4, Canada
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada.
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada.
- Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3M4, Canada.
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, 4401 University Drive W, Lethbridge, Alberta, T1K 3 M4, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
23
|
Braun NJ, Yao KR, Alford PW, Liao D. Mechanical injuries of neurons induce tau mislocalization to dendritic spines and tau-dependent synaptic dysfunction. Proc Natl Acad Sci U S A 2020; 117:29069-29079. [PMID: 33139536 PMCID: PMC7682580 DOI: 10.1073/pnas.2008306117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is associated with repeated traumatic brain injuries (TBI) and is characterized by cognitive decline and the presence of neurofibrillary tangles (NFTs) of the protein tau in patients' brains. Here we provide direct evidence that cell-scale mechanical deformation can elicit tau abnormalities and synaptic deficits in neurons. Using computational modeling, we find that the early pathological loci of NFTs in CTE brains are regions of high deformation during injury. The mechanical energy associated with high-strain rate deformation alone can induce tau mislocalization to dendritic spines and synaptic deficits in cultured rat hippocampal neurons. These cellular changes are mediated by tau hyperphosphorylation and can be reversed through inhibition of GSK3β and CDK5 or genetic deletion of tau. Together, these findings identify a mechanistic pathway that directly relates mechanical deformation of neurons to tau-mediated synaptic impairments and provide a possibly exploitable therapeutic pathway to combat CTE.
Collapse
Affiliation(s)
- Nicholas J Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Katherine R Yao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455;
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
24
|
Eagleman DE, Zhu J, Liu DC, Seimetz J, Kalsotra A, Tsai NP. Unbiased proteomic screening identifies a novel role for the E3 ubiquitin ligase Nedd4-2 in translational suppression during ER stress. J Neurochem 2020; 157:1809-1820. [PMID: 33064840 DOI: 10.1111/jnc.15219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum (ER) stress occurs when protein folding or maturation is disrupted. A malfunction in the ER stress response can lead to cell death and has been observed in many neurological diseases. However, how the ER stress response is regulated in neuronal cells remains largely unclear. Here, we studied an E3 ubiquitin ligase named neural precursor cell expressed developmentally down-regulated protein 4-like (Nedd4-2). Nedd4-2 is highly expressed in the brain and has a high affinity toward ubiquitinating membrane-bound proteins. We first utilized unbiased proteomic profiling with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) of isolated membrane fractions from mouse whole brains to identify novel targets of Nedd4-2. Through this screen, we found that the expression and ubiquitination of ribosomal proteins are regulated by Nedd4-2 and we confirmed an association between Nedd4-2 and ribosomes through ribosome sedimentation and polysome profiling. Further, we utilized immunoprecipitation and western blotting to show that induction of ER stress promotes an association between Nedd4-2 and ribosomal proteins, which is mediated through dephosphorylation of Nedd4-2 at serine-342. This increased interaction between Nedd4-2 and ribosomal proteins in turn mediates ER stress-associated translational suppression. In summary, the results of this study demonstrate a novel regulatory mechanism underlying the ER stress response and a novel function of Nedd4-2 in translational control. Our findings may shed light on neurological diseases in which the ER stress response or the function of Nedd4-2 is dysregulated.
Collapse
Affiliation(s)
- Daphne E Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Seimetz
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R.Woese Institute of Genomic Biology, University of Illinois, Champaign, IL, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
25
|
Harnessing the Proteostasis Network in Alcohol-associated Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Bocai NI, Marcora MS, Belfiori-Carrasco LF, Morelli L, Castaño EM. Endoplasmic Reticulum Stress in Tauopathies: Contrasting Human Brain Pathology with Cellular and Animal Models. J Alzheimers Dis 2020; 68:439-458. [PMID: 30775999 DOI: 10.3233/jad-181021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.
Collapse
Affiliation(s)
- Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María S Marcora
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lautaro F Belfiori-Carrasco
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, Perveen A, Abdel-Daim MM, Ashraf GM. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2020; 57:2902-2919. [PMID: 32430843 DOI: 10.1007/s12035-020-01929-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease involving aggregation of misfolded proteins inside the neuron causing prolonged cellular stress. The neuropathological hallmarks of AD include the formation of senile plaques and neurofibrillary tangles in specific brain regions that lead to synaptic loss and neuronal death. The exact mechanism of neuron dysfunction in AD remains obscure. In recent years, endoplasmic reticulum (ER) dysfunction has been implicated in neuronal degeneration seen in AD. Apart from AD, many other diseases also involve misfolded proteins aggregations in the ER, a condition referred to as ER stress. The response of the cell to ER stress is to activate a group of signaling pathways called unfolded protein response (UPR) that stimulates a particular transcriptional program to restore ER function and ensure cell survival. ER stress also involves the generation of reactive oxygen species (ROS) that, together with mitochondrial ROS and decreased effectiveness of antioxidant mechanisms, producing a condition of chronic oxidative stress. The unfolded proteins may not always produce a response that leads to the restoration of cellular functions, but they may also lead to inflammation by a set of different pathways with deleterious consequences. In this review, we extensively discuss the role of ER stress and how to target it using different pharmacological approaches in AD development and onset.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Sharma
- Department of Physiology, AIIMS Jodhpur, Jodhpur, India
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
28
|
Trivedi R, Jurivich DA. A molecular perspective on age-dependent changes to the heat shock axis. Exp Gerontol 2020; 137:110969. [PMID: 32407864 DOI: 10.1016/j.exger.2020.110969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
Aging is a complex process associated with progressive damage that leads to cellular dysfunction often accompanied by frailty and age-related diseases. Coping with all types of physiologic stress declines with age. While representing a primordial, cross-species response in poikilo- and homeotherms, the age-dependent perturbation of the stress response is more complex than previously thought. This short review examines how age influences the stress axis at multiple levels that involve both activating and attenuating pathways.
Collapse
Affiliation(s)
- Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, USA.
| | - Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, USA.
| |
Collapse
|
29
|
Basic Limonoid modulates Chaperone-mediated Proteostasis and dissolve Tau fibrils. Sci Rep 2020; 10:4023. [PMID: 32132570 PMCID: PMC7055235 DOI: 10.1038/s41598-020-60773-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Alzheimer's disease pathology is associated with accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. The formation of initial nucleus triggers conformational changes in Tau and leads to its deposition. Hence, there is a need to eliminate these toxic proteins for proper functioning of neuronal cells. In this aspect, we screened the effect of basic limonoids such as gedunin, epoxyazadiradione, azadirone and azadiradione on inhibiting Tau aggregation as well as disintegration of induced Tau aggregates. It was observed that these basic limonoids effectively prevented aggregates formation by Tau and also exhibited the property of destabilizing matured Tau aggregates. The molecular docking analysis suggests that the basic limonoids interact with hexapeptide regions of aggregated Tau. Although these limonoids caused the conformational changes in Tau to β-sheet structure, the cytological studies indicate that basic limonoids rescued cell death. The dual role of limonoids in Tau aggregation inhibition and disintegration of matured aggregates suggests them to be potent molecules in overcoming Tau pathology. Further, their origin from a medicinally important plant neem, which known to possess remarkable biological activities was also found to play protective role in HEK293T cells. Basic limonoids were non-toxic to HEK293T cells and also aided in activation of HSF1 by inducing its accumulation in nucleus. Western blotting and immunofluorescence studies showed that HSF1 in downstream increased the transcription of Hsp70 thus, aggravating cytosolic Hsp70 levels that can channel clearance of aberrant Tau. All these results mark basic limonoids as potential therapeutic natural products.
Collapse
|
30
|
Papanikolopoulou K, Skoulakis EMC. Altered Proteostasis in Neurodegenerative Tauopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:177-194. [PMID: 32274757 DOI: 10.1007/978-3-030-38266-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tauopathies are a heterogeneous group of neurodegenerative dementias involving perturbations in the levels, phosphorylation or mutations of the neuronal microtubule-binding protein Tau. Tauopathies are characterized by accumulation of hyperphosphorylated Tau leading to formation of a range of aggregates including macromolecular ensembles such as Paired Helical filaments and Neurofibrilary Tangles whose morphology characterizes and differentiates these disease states. Why nonphysiological Tau proteins elude the surveillance normal proteostatic mechanisms and eventually form these macromolecular assemblies is a central mostly unresolved question of cardinal importance for diagnoses and potential therapeutic interventions. We discuss the response of the Ubiquitin-Proteasome system, autophagy and the Endoplasmic Reticulum-Unfolded Protein response in Tauopathy models and patients, revealing interactions of components of these systems with Tau, but also of the effects of pathological Tau on these systems which eventually lead to Tau aggregation and accumulation. These interactions point to potential disease biomarkers and future potential therapeutic targets.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece.
| |
Collapse
|
31
|
Liu DC, Eagleman DE, Tsai NP. Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation. PLoS Genet 2019; 15:e1008364. [PMID: 31557161 PMCID: PMC6762060 DOI: 10.1371/journal.pgen.1008364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
Seizures can induce endoplasmic reticulum (ER) stress, and sustained ER stress contributes to neuronal death after epileptic seizures. Despite the recent debate on whether inhibiting ER stress can reduce neuronal death after seizures, whether and how ER stress impacts neural activity and seizures remain unclear. In this study, we discovered that the acute ER stress response functions to repress neural activity through a protein translation-dependent mechanism. We found that inducing ER stress promotes the expression and distribution of murine double minute-2 (Mdm2) in the nucleus, leading to ubiquitination and down-regulation of the tumor suppressor p53. Reduction of p53 subsequently maintains protein translation, before the onset of translational repression seen during the latter phase of the ER stress response. Disruption of Mdm2 in an Mdm2 conditional knockdown (cKD) mouse model impairs ER stress-induced p53 down-regulation, protein translation, and reduction of neural activity and seizure severity. Importantly, these defects in Mdm2 cKD mice were restored by both pharmacological and genetic inhibition of p53 to mimic the inactivation of p53 seen during ER stress. Altogether, our study uncovered a novel mechanism by which neurons respond to acute ER stress. Further, this mechanism plays a beneficial role in reducing neural activity and seizure severity. These findings caution against inhibition of ER stress as a neuroprotective strategy for seizures, epilepsies, and other pathological conditions associated with excessive neural activity. One-third of epilepsy patients respond poorly to current anti-epileptic drugs. Thus, there is an urgent need to characterize cellular behavior during seizures, and the corresponding molecular mechanisms in order to develop better therapies. Seizures are known to induce ER stress but how the ER stress response functions to modulate seizure activity is unknown. Our study provides evidence to demonstrate a novel and beneficial role for the ER stress response in reducing neural activity and seizure severity. Mechanistically, we found that these beneficial effects are mediated by elevated protein translation, which is triggered by the activation of Mdm2-p53 signaling, during the early ER stress response. Our findings suggest that therapeutic attempts to reduce ER stress in epilepsies may result in worsening seizure activity and therefore caution against inhibition of ER stress as a neuroprotective strategy for epilepsies.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Daphne E. Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
32
|
Teravskis PJ, Oxnard BR, Miller EC, Kemper L, Ashe KH, Liao D. Phosphorylation in two discrete tau domains regulates a stepwise process leading to postsynaptic dysfunction. J Physiol 2019; 599:2483-2498. [PMID: 31194886 DOI: 10.1113/jp277459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Tau mislocalization to dendritic spines and associated postsynaptic deficits are mediated through different and non-overlapping phosphorylation sites. Tau mislocalization to dendritic spines depends upon the phosphorylation of either Ser396 or Ser404 in the C-terminus. Postsynaptic dysfunction instead depends upon the phosphorylation of at least one of five residues in the proline-rich region of tau. The blockade of both glycogen synthetase kinase 3β and cyclin-dependent kinase 5 is required to prevent P301L-induced tau mislocalization to dendritic spines, supporting redundant pathways that control tau mislocalization to spines. ABSTRACT Tau protein consists of an N-terminal projection domain, a microtubule-binding domain and a C-terminal domain. In neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia, the hyperphosphorylation of tau changes its shape, binding partners and resulting function. An early consequence of tau phosphorylation by proline-directed kinases is postsynaptic dysfunction associated with the mislocalization of tau to dendritic spines. The specific phosphorylation sites leading to these abnormalities have not been elucidated. Here, using imaging and electrophysiological techniques to study cultured rat hippocampal neurons, we show that postsynaptic dysfunction results from a sequential process involving differential phosphorylation in the N-terminal and C-terminal domains. First, tau mislocalizes to dendritic spines, in a manner that depends upon the phosphorylation of either Ser396 or Ser404 in the C-terminal domain. The blockade of both glycogen synthetase kinase 3β and cyclin-dependent kinase 5 prevents tau mislocalization to dendritic spines. Second, a reduction of functional AMPA receptors depends upon the phosphorylation of at least one of five residues (Ser202, Thr205, Thr212, Thr217 and Thr231) in the proline-rich region of the N-terminal domain. This is the first report of differential phosphorylation in distinct tau domains governing separate, but linked, steps leading to synaptic dysfunction.
Collapse
Affiliation(s)
- Peter J Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,School of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Breeta R Oxnard
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eric C Miller
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lisa Kemper
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA.,N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN, 55455, USA.,GRECC, Minneapolis VA Medical Center, Minneapolis, MN, 55417, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
33
|
Cirone M, Gilardini Montani MS, Granato M, Garufi A, Faggioni A, D'Orazi G. Autophagy manipulation as a strategy for efficient anticancer therapies: possible consequences. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:262. [PMID: 31200739 PMCID: PMC6570888 DOI: 10.1186/s13046-019-1275-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Autophagy is a catabolic process whose activation may help cancer cells to adapt to cellular stress although, in some instances, it can induce cell death. Autophagy stimulation or inhibition has been considered an opportunity to treat cancer, especially in combination with anticancer therapies, although autophagy manipulation may be viewed as controversial. Thus, whether to induce or to inhibit autophagy may be the best option in the different cancer patients is still matter of debate. Her we will recapitulate the possible advantages or disadvantages of manipulating autophagy in cancer, not only with the aim to obtain cancer cell death and disable oncogenes, but also to evaluate its interplay with the immune response which is fundamental for the success of anticancer therapies.
Collapse
Affiliation(s)
- Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessia Garufi
- Department of Medical Science, University 'G. D'Annunzio', 66013, Chieti, Italy.,Department of Research, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Gabriella D'Orazi
- Department of Medical Science, University 'G. D'Annunzio', 66013, Chieti, Italy. .,Department of Research, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
34
|
Transcriptional Regulation of Selenoprotein F by Heat Shock Factor 1 during Selenium Supplementation and Stress Response. Cells 2019; 8:cells8050479. [PMID: 31109102 PMCID: PMC6562903 DOI: 10.3390/cells8050479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
Changes of Selenoprotein F (SELENOF) protein levels have been reported during selenium supplementation, stressful, and pathological conditions. However, the mechanisms of how these external factors regulate SELENOF gene expression are largely unknown. In this study, HEK293T cells were chosen as an in vitro model. The 5′-flanking regions of SELENOF were analyzed for promoter features. Dual-Glo Luciferase assays were used to detect promoter activities. Putative binding sites of Heat Shock Factor 1 (HSF1) were predicted in silico and the associations were further proved by chromatin immunoprecipitation (ChIP) assay. Selenate and tunicamycin (Tm) treatment were used to induce SELENOF up-regulation. The fold changes in SELENOF expression and other relative proteins were analyzed by Q-PCR and western blot. Our results showed that selenate and Tm treatment up-regulated SELENOF at mRNA and protein levels. SELENOF 5′-flanking regions from −818 to −248 were identified as core positive regulatory element regions. Four putative HSF1 binding sites were predicted in regions from −1430 to −248, and six out of seven primers detected positive results in ChIP assay. HSF1 over-expression and heat shock activation increased the promoter activities, and mRNA and protein levels of SELENOF. Over-expression and knockdown of HSF1 showed transcriptional regulation effects on SELENOF during selenate and Tm treatment. In conclusion, HSF1 was discovered as one of the transcription factors that were associated with SELENOF 5′-flanking regions and mediated the up-regulation of SELENOF during selenate and Tm treatment. Our work has provided experimental data for the molecular mechanism of SELENOF gene regulation, as well as uncovered the involvement of HSF1 in selenotranscriptomic for the first time.
Collapse
|
35
|
Kim JE, Park JJ, Lee MR, Choi JY, Song BR, Park JW, Kang MJ, Son HJ, Hong JT, Hwang DY. Constipation in Tg2576 mice model for Alzheimer's disease associated with dysregulation of mechanism involving the mAChR signaling pathway and ER stress response. PLoS One 2019; 14:e0215205. [PMID: 30978260 PMCID: PMC6461235 DOI: 10.1371/journal.pone.0215205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/28/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Although constipation has been researched in various neurological disorders, including Parkinson's disease (PD) and spinal cord injury (SCI), the pathological mechanism of this symptom has not been investigated in Alzheimer's disease (AD) associated with loss of nerve cells in the brain. This study was undertaken to gain scientific evidences for a molecular correlation between constipation and AD. METHODS To understand the etiology, we measured alterations in various constipation parameters, muscarinic acetylcholine receptors (mAChRs) and endoplasmic reticulum (ER) stress response, in 11-month-old Tg2576 transgenic (Tg) mice showing AD-like phenotypes. RESULTS A high accumulation of amyloid beta (Aβ) peptides, a key marker of AD pathology, were detected in the cortex and hippocampus of Tg mice. Furthermore, significant alterations were observed in various constipation parameters including stool weight, histological structure, cytological structure and mucin secretion in Tg2576 mice. Moreover, M2 and M3 expression and the downstream signaling pathways of mAChRs were decreased in the Tg group, as compared with non-Tg (NT) group. Furthermore, activation of ER stress proteins and alteration of ER structure were also detected in the same group. CONCLUSIONS The results of the present study provide strong novel evidence that the neuropathological constipation detected in Tg2576 mice is linked to dysregulation of the mAChR signaling pathways and ER stress response.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jin Ju Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jun Young Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Bo Ram Song
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Won Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Ju Kang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hong Joo Son
- Department of Life Science and Environmental Biochemistry, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
36
|
Hashimoto S, Saido TC. Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer's disease. Open Biol 2019; 8:rsob.180024. [PMID: 29695619 PMCID: PMC5936719 DOI: 10.1098/rsob.180024] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) stress response is regarded as an important process in the aetiology of Alzheimer's disease (AD). The accumulation of pathogenic misfolded proteins and the disruption of intracellular calcium (Ca2+) signalling are considered to be fundamental mechanisms that underlie the induction of ER stress, leading to neuronal cell death. Indeed, a number of studies have proposed molecular mechanisms linking ER stress to AD pathogenesis based on results from in vitro systems and AD mouse models. However, stress responsivity was largely different between each mouse model, even though all of these models display AD-related pathologies. While several reports have shown elevated ER stress responses in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (Tg) AD mouse models, we and other groups, in contrast, observed no such ER stress response in APP-single-Tg or App-knockin mice. Therefore, it is debatable whether the ER stress observed in APP and PS1 double-Tg mice is due to AD pathology. From these findings, the roles of ER stress in AD pathogenesis needs to be carefully addressed in future studies. In this review, we summarize research detailing the relationship between ER stress and AD, and analyse the results in detail.
Collapse
Affiliation(s)
- Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
37
|
Gamir-Morralla A, Sacristán S, Medina M, Iglesias T. Effects of Thioflavin T and GSK-3 Inhibition on Lifespan and Motility in a Caenorhabditis elegans Model of Tauopathy. J Alzheimers Dis Rep 2019; 3:47-57. [PMID: 30842997 PMCID: PMC6400111 DOI: 10.3233/adr-180087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to study lifespan and aging, protein aggregation, and neurodegeneration, as well as to carry out drug screenings. The C. elegans strain aex-3/T337 expresses human pathogenic V337M mutant tau under a pan-neuronal promoter and presents uncoordinated locomotion, accumulation of phosphorylated insoluble tau, and shortened lifespan. Herein we have used this strain to assay two compounds that could affect tau aggregation and/or phosphorylation, and looked for phenotypic changes in their lifespan and motility. The first compound is Thioflavin T (ThT), a member of the tetracycline family with protein antiaggregant properties, yet to be tested in a tauopathy model. The second is a novel small molecule, NP103, a highly selective inhibitor of glycogen synthase kinase-3 (GSK-3), the main kinase contributing to pathogenic tau hyperphosphorylation. Importantly, we find that ThT extends lifespan of aex-3/T337 worms as it does with control N2 animals, showing both strains similar locomotion features under this treatment. By contrast, NP103 improves the paralysis phenotype of aex-3/T337 mutants but not their lifespan. Our results show that both treatments present beneficial effects for this model of tauopathy and encourage pursuing further investigations on their therapeutic potential for AD and other tauopathies.
Collapse
Affiliation(s)
- Andrea Gamir-Morralla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Sacristán
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel Medina
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Li L, Ismael S, Nasoohi S, Sakata K, Liao FF, McDonald MP, Ishrat T. Thioredoxin-Interacting Protein (TXNIP) Associated NLRP3 Inflammasome Activation in Human Alzheimer's Disease Brain. J Alzheimers Dis 2019; 68:255-265. [PMID: 30741672 PMCID: PMC10947081 DOI: 10.3233/jad-180814] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of age-associated dementia characterized by amyloid-β plaques and neurofibrillary tangles. Recent studies have demonstrated that thioredoxin-interacting protein (TXNIP), an endogenous regulator of redox/glucose induced stress and inflammation, is now known to be upregulated in stroke, traumatic brain injury, diabetes and AD. We hypothesized that TXNIP overexpression sustains neurodegeneration through activation of the nucleotide binding and oligomerization domain-like receptor protein 3 in human AD brains. We analyzed TXNIP and the components of the NLRP3 inflammasome in the cortex of postmortem human brain samples by western blotting, real-time PCR, and immunohistochemical techniques in comparison with age-matched non-demented controls. Our results demonstrate that TXNIP protein as well as its mRNA levels in the cortex was significantly upregulated in AD compared to control brains. Moreover, using double immunofluorescence staining, TXNIP and interlukin-1β (IL-1β) were co-localized near Aβ plaques and p-tau. These results suggest an association between TXNIP overexpression levels and AD pathogenesis. Further, a significant increased expression of cleaved caspase-1 and IL-1β, the products of inflammasome activation, was detected in the cortex of AD brains. Together, these findings suggest that TXNIP, an upstream promising new therapeutic target, is a molecular link between inflammation and AD. The significant contribution of TXNIP to AD pathology suggests that strategies focusing on specific targeting of the TXNIP-NLRP3 inflammasome may lead to novel therapies for the management of AD and other age-related dementias.
Collapse
Affiliation(s)
- Lexiao Li
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazuko Sakata
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael P. McDonald
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
39
|
Rossin F, Villella VR, D'Eletto M, Farrace MG, Esposito S, Ferrari E, Monzani R, Occhigrossi L, Pagliarini V, Sette C, Cozza G, Barlev NA, Falasca L, Fimia GM, Kroemer G, Raia V, Maiuri L, Piacentini M. TG2 regulates the heat-shock response by the post-translational modification of HSF1. EMBO Rep 2018; 19:embr.201745067. [PMID: 29752334 DOI: 10.15252/embr.201745067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/24/2018] [Accepted: 04/13/2018] [Indexed: 01/24/2023] Open
Abstract
Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response.
Collapse
Affiliation(s)
- Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Valeria Rachela Villella
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Speranza Esposito
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Ferrari
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Romina Monzani
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Occhigrossi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - Nikolai A Barlev
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, Russia
| | - Laura Falasca
- National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Guido Kroemer
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Luigi Maiuri
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,SCDU of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy .,National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| |
Collapse
|
40
|
Huang C, Wu J, Xu L, Wang J, Chen Z, Yang R. Regulation of HSF1 protein stabilization: An updated review. Eur J Pharmacol 2018; 822:69-77. [PMID: 29341886 DOI: 10.1016/j.ejphar.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
Heat shock factor 1 (HSF1) is a transcriptional factor that determines the efficiency of heat shock responses (HSRs) in the cell. Given its function has been extensively studied in recent years, HSF1 is considered a potential target for the treatment of disorders associated with protein aggregation. The activity of HSF1 is traditionally regulated at the transcriptional level in which the transactivation domain of HSF1 is modified by extensive array of pos-translational modifications, such as phosphorylation, sumoylation, and acetylation. Recently, HSF1 is also reported to be regulated at the monomeric level. For example, in neurodegenerative disorders such as Huntington's disease and Alzheimer's disease the expression levels of the monomeric HSF1 are found to be reduced markedly. Methylene blue (MB) and riluzole, two clinical available drugs, increase the amount of the monomeric HSF1 in both cells and animals. Since the monomeric HSF1 not only determines the efficiency of HSRs, but exerts protective effects in a trimerization-independent manner, increasing the amount of the monomeric HSF1 via stabilization of HSF1 may be an alternative strategy for the amplification of HSR. However, to date we have no outlined knowledges about HSF1 protein stabilization, though studies regarding the regulation of the monomeric HSF1 have been documented in recent years. Here, we summarize the regulation of the monomeric HSF1 by some previously reported factors, such as synuclein, Huntingtin (Htt), TDP-43, unfolded protein response (UPR), MB and doxorubicin (DOX), as well as their possible mechanisms, aiming to push the understanding about HSF1 protein stabilization.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Li Xu
- Department of Ultrasound, Danyang People's Hospital, #2 Xinmin Western Road, Danyang 212300, Jiangsu, China
| | - Jili Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, # 6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20Xisi Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|