1
|
Hullinger AC, Green VE, Klancher CA, Dalia TN, Dalia AB. Two transmembrane transcriptional regulators coordinate to activate chitin-induced natural transformation in Vibrio cholerae. PLoS Genet 2025; 21:e1011606. [PMID: 39965000 PMCID: PMC11856585 DOI: 10.1371/journal.pgen.1011606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/25/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Transcriptional regulators are a broad class of proteins that alter gene expression in response to environmental stimuli. Transmembrane transcriptional regulators (TTRs) are a subset of transcriptional regulators in bacteria that can directly regulate gene expression while remaining anchored in the membrane. Whether this constraint impacts the ability of TTRs to bind their DNA targets remains unclear. Vibrio cholerae uses two TTRs, ChiS and TfoS, to activate horizontal gene transfer by natural transformation in response to chitin by inducing the tfoR promoter (PtfoR). While TfoS was previously shown to bind and regulate PtfoR directly, the role of ChiS in PtfoR activation remains unclear. Here, we show that ChiS directly binds PtfoR upstream of TfoS, and that ChiS directly interacts with TfoS. By independently disrupting ChiS-PtfoR and ChiS-TfoS interactions, we show that ChiS-PtfoR interactions play the dominant role in PtfoR activation. Correspondingly, we show that in the absence of ChiS, recruitment of the PtfoR locus to the membrane is sufficient for PtfoR activation when TfoS is expressed at native levels. Finally, we show that the overexpression of TfoS can bypass the need for ChiS for PtfoR activation. All together, these data suggest a model whereby ChiS both (1) recruits the PtfoR DNA locus to the membrane for TfoS and (2) directly interacts with TfoS, thereby recruiting it to the membrane-proximal promoter. This work furthers our understanding of the molecular mechanisms that drive chitin-induced responses in V. cholerae and more broadly highlights how the membrane-embedded localization of TTRs can impact their activity.
Collapse
Affiliation(s)
- Allison C. Hullinger
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Virginia E. Green
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Catherine A. Klancher
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Hullinger AC, Green VE, Klancher CA, Dalia TN, Dalia AB. Two transmembrane transcriptional regulators coordinate to activate chitin-induced natural transformation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615920. [PMID: 39974991 PMCID: PMC11838194 DOI: 10.1101/2024.09.30.615920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Transcriptional regulators are a broad class of proteins that alter gene expression in response to environmental stimuli. Transmembrane transcriptional regulators (TTRs) are a subset of transcriptional regulators in bacteria that can directly regulate gene expression while remaining anchored in the membrane. Whether this constraint impacts the ability of TTRs to bind their DNA targets remains unclear. Vibrio cholerae uses two TTRs, ChiS and TfoS, to activate horizontal gene transfer by natural transformation in response to chitin by inducing the tfoR promoter (P tfoR ). While TfoS was previously shown to bind and regulate P tfoR directly, the role of ChiS in P tfoR activation remains unclear. Here, we show that ChiS directly binds P tfoR upstream of TfoS, and that ChiS directly interacts with TfoS. By independently disrupting ChiS-P tfoR and ChiS-TfoS interactions, we show that ChiS-P tfoR interactions play the dominant role in P tfoR activation. Correspondingly, we show that in the absence of ChiS, recruitment of the P tfoR locus to the membrane is sufficient for P tfoR activation when TfoS is expressed at native levels. Finally, we show that the overexpression of TfoS can bypass the need for ChiS for P tfoR activation. All together, these data suggest a model whereby ChiS both (1) recruits the P tfoR DNA locus to the membrane for TfoS and (2) directly interacts with TfoS, thereby recruiting it to the membrane-proximal promoter. This work furthers our understanding of the molecular mechanisms that drive chitin-induced responses in V. cholerae and more broadly highlights how the membrane-embedded localization of TTRs can impact their activity. AUTHOR SUMMARY Living organisms inhabit diverse environments where they encounter a wide range of stressors. To survive, they must rapidly sense and respond to their surroundings. One universally conserved mechanism to respond to stimuli is via the action of DNA-binding transcriptional regulators. In bacterial species, these regulators are canonically cytoplasmic proteins that freely diffuse within the cytoplasm. In contrast, an emerging class of transmembrane transcriptional regulators (TTRs) directly regulate gene expression from the cell membrane. Prior work shows that two TTRs, TfoS and ChiS, cooperate to activate horizontal gene transfer by natural transformation in response to chitin in the facultative pathogen Vibrio cholerae . However, how these TTRs coordinate to activate this response has remained unclear. Here, we show that ChiS likely promotes TfoS-dependent activation of natural transformation by (1) relocalizing its target promoter to the membrane and (2) recruiting TfoS to the membrane proximal promoter through a direct interaction. Together, these results inform our understanding of both the V. cholerae chitin response and how TTR function can be impacted by their membrane localization.
Collapse
|
3
|
Green VE, Klancher CA, Yamamoto S, Dalia AB. The molecular mechanism for carbon catabolite repression of the chitin response in Vibrio cholerae. PLoS Genet 2023; 19:e1010767. [PMID: 37172034 PMCID: PMC10208484 DOI: 10.1371/journal.pgen.1010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/24/2023] [Accepted: 04/30/2023] [Indexed: 05/14/2023] Open
Abstract
Vibrio cholerae is a facultative pathogen that primarily occupies marine environments. In this niche, V. cholerae commonly interacts with the chitinous shells of crustacean zooplankton. As a chitinolytic microbe, V. cholerae degrades insoluble chitin into soluble oligosaccharides. Chitin oligosaccharides serve as both a nutrient source and an environmental cue that induces a strong transcriptional response in V. cholerae. Namely, these oligosaccharides induce the chitin sensor, ChiS, to activate the genes required for chitin utilization and horizontal gene transfer by natural transformation. Thus, interactions with chitin impact the survival of V. cholerae in marine environments. Chitin is a complex carbon source for V. cholerae to degrade and consume, and the presence of more energetically favorable carbon sources can inhibit chitin utilization. This phenomenon, known as carbon catabolite repression (CCR), is mediated by the glucose-specific Enzyme IIA (EIIAGlc) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). In the presence of glucose, EIIAGlc becomes dephosphorylated, which inhibits ChiS transcriptional activity by an unknown mechanism. Here, we show that dephosphorylated EIIAGlc interacts with ChiS. We also isolate ChiS suppressor mutants that evade EIIAGlc-dependent repression and demonstrate that these alleles no longer interact with EIIAGlc. These findings suggest that EIIAGlc must interact with ChiS to exert its repressive effect. Importantly, the ChiS suppressor mutations we isolated also relieve repression of chitin utilization and natural transformation by EIIAGlc, suggesting that CCR of these behaviors is primarily regulated through ChiS. Together, our results reveal how nutrient conditions impact the fitness of an important human pathogen in its environmental reservoir.
Collapse
Affiliation(s)
- Virginia E. Green
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Catherine A. Klancher
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
4
|
RefZ and Noc Act Synthetically to Prevent Aberrant Divisions during Bacillus subtilis Sporulation. J Bacteriol 2022; 204:e0002322. [PMID: 35506695 DOI: 10.1128/jb.00023-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation, Bacillus subtilis undergoes an atypical cell division that requires overriding mechanisms that protect chromosomes from damage and ensure inheritance by daughter cells. Instead of assembling between segregated chromosomes at midcell, the FtsZ-ring coalesces polarly, directing division over one chromosome. The DNA-binding protein RefZ facilitates the timely assembly of polar Z-rings and partially defines the region of chromosome initially captured in the forespore. RefZ binds to motifs (RBMs) located proximal to the origin of replication (oriC). Although refZ and the RBMs are conserved across the Bacillus genus, a refZ deletion mutant sporulates with wild-type efficiency, so the functional significance of RefZ during sporulation remains unclear. To further investigate RefZ function, we performed a candidate-based screen for synthetic sporulation defects by combining ΔrefZ with deletions of genes previously implicated in FtsZ regulation and/or chromosome capture. Combining ΔrefZ with deletions of ezrA, sepF, parA, or minD did not detectably affect sporulation. In contrast, a ΔrefZ Δnoc mutant exhibited a sporulation defect, revealing a genetic interaction between RefZ and Noc. Using reporters of sporulation progression, we determined the ΔrefZ Δnoc mutant exhibited sporulation delays after Spo0A activation but prior to late sporulation, with a subset of cells failing to divide polarly or activate the first forespore-specific sigma factor, SigF. The ΔrefZ Δnoc mutant also exhibited extensive dysregulation of cell division, producing cells with extra, misplaced, or otherwise aberrant septa. Our results reveal a previously unknown epistatic relationship that suggests refZ and noc contribute synthetically to regulating cell division and supporting spore development. IMPORTANCE The DNA-binding protein RefZ and its binding sites (RBMs) are conserved in sequence and location on the chromosome across the Bacillus genus and contribute to the timing of polar FtsZ-ring assembly during sporulation. Only a small number of noncoding and nonregulatory DNA motifs are known to be conserved in chromosomal position in bacteria, suggesting there is strong selective pressure for their maintenance; however, a refZ deletion mutant sporulates efficiently, providing no clues as to their functional significance. Here, we find that in the absence of the nucleoid occlusion factor Noc, deletion of refZ results in a sporulation defect characterized by developmental delays and aberrant divisions.
Collapse
|
5
|
Species-Specific Quorum Sensing Represses the Chitobiose Utilization Locus in Vibrio cholerae. Appl Environ Microbiol 2020; 86:AEM.00915-20. [PMID: 32651201 DOI: 10.1128/aem.00915-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/04/2020] [Indexed: 01/30/2023] Open
Abstract
The marine facultative pathogen Vibrio cholerae forms complex multicellular communities on the chitinous shells of crustacean zooplankton in its aquatic reservoir. V. cholerae-chitin interactions are critical for the growth, evolution, and waterborne transmission of cholera. This is due, in part, to chitin-induced changes in gene expression in this pathogen. Here, we sought to identify factors that influence chitin-induced expression of one locus, the chitobiose utilization operon (chb), which is required for the uptake and catabolism of the chitin disaccharide. Through a series of genetic screens, we identified that the master regulator of quorum sensing, HapR, is a direct repressor of the chb operon. We also found that the levels of HapR in V. cholerae are regulated by the ClpAP protease. Furthermore, we show that the canonical quorum sensing cascade in V. cholerae regulates chb expression in an HapR-dependent manner. Through this analysis, we found that signaling via the species-specific autoinducer CAI-1, but not the interspecies autoinducer AI-2, influences chb expression. This phenomenon of species-specific regulation may enhance the fitness of this pathogen in its environmental niche.IMPORTANCE In nature, bacteria live in multicellular and multispecies communities. Microbial species can sense the density and composition of their community through chemical cues using a process called quorum sensing (QS). The marine pathogen Vibrio cholerae is found in communities on the chitinous shells of crustaceans in its aquatic reservoir. V. cholerae interactions with chitin are critical for the survival, evolution, and waterborne transmission of this pathogen. Here, we show that V. cholerae uses QS to regulate the expression of one locus required for V. cholerae-chitin interactions.
Collapse
|
6
|
M Jayakumar J, Balasubramanian D, Reddi G, Almagro-Moreno S. Synergistic role of abiotic factors driving viable but non-culturable Vibrio cholerae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:454-465. [PMID: 32542975 DOI: 10.1111/1758-2229.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Vibrio cholerae O1, a natural inhabitant of estuarine environments, is found in a dormant, viable but non-culturable (VBNC) state during interepidemic periods. Although the individual roles of abiotic factors affecting VBNC formation have been extensively studied, their interplay in driving this phenomenon remains largely unaddressed. Here, we identified that major abiotic factors synergize with low nutrient conditions governing entry of cells into the VBNC state. Specifically, V. cholerae cells exposed to a combination of alkaline pH and high salinity under aeration at low temperatures (VBNC-inducing conditions) synergize to facilitate rapid entry into VBNC, whereas the opposite conditions prevented entry into the state. The major virulence regulator ToxR, and the stringent response protein RelA played opposing roles, repressing and facilitating VBNC entry respectively. Further, VBNC-inducing conditions negated the effects of ToxR and RelA, facilitating rapid formation of VBNC cells. In summary, this study highlights the synergy between critical abiotic factors and identified ToxR and RelA as two associated regulators, allowing for the persistence of V. cholerae in aquatic environments. Insights obtained in this study will help better understand environmental survival non-sporulating bacteria and transmission of facultative bacterial pathogens.
Collapse
Affiliation(s)
- Jane M Jayakumar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Geethika Reddi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| |
Collapse
|
7
|
ChiS is a noncanonical DNA-binding hybrid sensor kinase that directly regulates the chitin utilization program in Vibrio cholerae. Proc Natl Acad Sci U S A 2020; 117:20180-20189. [PMID: 32719134 DOI: 10.1073/pnas.2001768117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Two-component signal transduction systems (TCSs) represent a major mechanism that bacteria use to sense and respond to their environment. Prototypical TCSs are composed of a membrane-embedded histidine kinase, which senses an environmental stimulus and subsequently phosphorylates a cognate partner protein called a response regulator that regulates gene expression in a phosphorylation-dependent manner. Vibrio cholerae uses the hybrid histidine kinase ChiS to activate the expression of the chitin utilization program, which is critical for the survival of this facultative pathogen in its aquatic reservoir. A cognate response regulator for ChiS has not been identified and the mechanism of ChiS-dependent signal transduction remains unclear. Here, we show that ChiS is a noncanonical membrane-embedded one-component system that can both sense chitin and directly regulate gene expression via a cryptic DNA binding domain. Unlike prototypical TCSs, we find that ChiS DNA binding is diminished, rather than stimulated, by phosphorylation. Finally, we provide evidence that ChiS likely activates gene expression by directly recruiting RNA polymerase. This work addresses the mechanism of action for a major transcription factor in V. cholerae and highlights the versatility of signal transduction systems in bacterial species.
Collapse
|
8
|
Colclough AL, Scadden J, Blair JMA. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genomics 2019; 20:731. [PMID: 31606035 PMCID: PMC6790063 DOI: 10.1186/s12864-019-6075-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background TetR-family transcriptional regulators (TFTRs) are DNA binding factors that regulate gene expression in bacteria. Well-studied TFTRs, such as AcrR, which regulates efflux pump expression, are usually encoded alongside target operons. Recently, it has emerged that there are many TFTRs which act as global multi-target regulators. Our classical view of TFTRs as simple, single-target regulators therefore needs to be reconsidered. As some TFTRs regulate essential processes (e.g. metabolism) or processes which are important determinants of resistance and virulence (e.g. biofilm formation and efflux gene expression) and as TFTRs are present throughout pathogenic bacteria, they may be good drug discovery targets for tackling antimicrobial resistant infections. However, the prevalence and conservation of individual TFTR genes in Gram-negative species, has to our knowledge, not yet been studied. Results Here, a wide-scale search for TFTRs in available proteomes of clinically relevant pathogens Salmonella and Escherichia species was performed and these regulators further characterised. The majority of identified TFTRs are involved in efflux regulation in both Escherichia and Salmonella. The percentage variance in TFTR genes of these genera was found to be higher in those regulating genes involved in efflux, bleach survival or biofilm formation than those regulating more constrained processes. Some TFTRs were found to be present in all strains and species of these two genera, whereas others (i.e. TetR) are only present in some strains and some (i.e. RamR) are genera-specific. Two further pathogens on the WHO priority pathogen list (K. pneumoniae and P. aeruginosa) were then searched for the presence of the TFTRs conserved in Escherichia and Salmonella. Conclusions Through bioinformatics and literature analyses, we present that TFTRs are a varied and heterogeneous family of proteins required for the regulation of numerous important processes, with consequences to antimicrobial resistance and virulence, and that the roles and responses of these proteins are frequently underestimated. Electronic supplementary material The online version of this article (10.1186/s12864-019-6075-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A L Colclough
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J Scadden
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J M A Blair
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Taniguchi S, Kasho K, Ozaki S, Katayama T. Escherichia coli CrfC Protein, a Nucleoid Partition Factor, Localizes to Nucleoid Poles via the Activities of Specific Nucleoid-Associated Proteins. Front Microbiol 2019; 10:72. [PMID: 30792700 PMCID: PMC6374313 DOI: 10.3389/fmicb.2019.00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
The Escherichia coli CrfC protein is an important regulator of nucleoid positioning and equipartition. Previously we revealed that CrfC homo-oligomers bind the clamp, a DNA-binding subunit of the DNA polymerase III holoenzyme, promoting colocalization of the sister replication forks, which ensures the nucleoid equipartition. In addition, CrfC localizes at the cell pole-proximal loci via an unknown mechanism. Here, we demonstrate that CrfC localizes to the distinct subnucleoid structures termed nucleoid poles (the cell pole-proximal nucleoid-edges) even in elongated cells as well as in wild-type cells. Systematic analysis of the nucleoid-associated proteins (NAPs) and related proteins revealed that HU, the most abundant NAP, and SlmA, the nucleoid occlusion factor regulating the localization of cell division apparatus, promote the specific localization of CrfC foci. When the replication initiator DnaA was inactivated, SlmA and HU were required for formation of CrfC foci. In contrast, when the replication initiation was inhibited with a specific mutant of the helicase-loader DnaC, CrfC foci were sustained independently of SlmA and HU. H-NS, which forms clusters on AT-rich DNA regions, promotes formation of CrfC foci as well as transcriptional regulation of crfC. In addition, MukB, the chromosomal structure mainetanice protein, and SeqA, a hemimethylated nascent DNA region-binding protein, moderately stimulated formation of CrfC foci. However, IHF, a structural homolog of HU, MatP, the replication terminus-binding protein, Dps, a stress-response factor, and FtsZ, an SlmA-interacting factor in cell division apparatus, little or only slightly affected CrfC foci formation and localization. Taken together, these findings suggest a novel and unique mechanism that CrfC localizes to the nucleoid poles in two steps, assembly and recruitment, dependent upon HU, MukB, SeqA, and SlmA, which is stimulated directly or indirectly by H-NS and DnaA. These factors might concordantly affect specific nucleoid substructures. Also, these nucleoid dynamics might be significant in the role for CrfC in chromosome partition.
Collapse
Affiliation(s)
- Saki Taniguchi
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Xu T, Cao H, Zhu W, Wang M, Du Y, Yin Z, Chen M, Liu Y, Yang B, Liu B. RNA-seq-based monitoring of gene expression changes of viable but non-culturable state of Vibrio cholerae induced by cold seawater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:594-604. [PMID: 30058121 DOI: 10.1111/1758-2229.12685] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the acute diarrheal disease cholera. Entry into a viable but non-culturable (VBNC) state is a survival strategy by which V. cholerae withstands natural stresses and is important for the transition between the aquatic and host environments during the V. cholerae life cycle. In this study, the formation of VBNC V. cholerae induced by cold seawater exposure was investigated using RNA sequencing (RNA-seq). The analysis revealed that the expression of 1420 genes was changed on VBNC state formation. In the VBNC cells, genes related to biofilm formation, chitin utilization and stress responses were upregulated, whereas those related to cell division, morphology and ribosomal activity were mainly downregulated. The concurrent acquisition of a carbon source and the arrest of cell division in cells with low metabolic activity help bacteria increase their resistance to unfavourable environments. Moreover, two transcriptional regulators, SlmA and MetJ, were found to play roles in both VBNC formation and intestinal colonization, suggesting that some genes may function in both processes. This acquired knowledge will improve our understanding of the molecular mechanisms of stress tolerance and may help control future cholera infections and outbreaks.
Collapse
Affiliation(s)
- Tingting Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Wei Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Yuhui Du
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Zhiqiu Yin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Chen
- Lab of Microbiology, Shanghai Municipal Center for Disease Control & Prevention, Shanghai, People's Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Durica-Mitic S, Göpel Y, Görke B. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0013-2017. [PMID: 29573258 PMCID: PMC11633585 DOI: 10.1128/microbiolspec.rwr-0013-2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Survival of bacteria in ever-changing habitats with fluctuating nutrient supplies requires rapid adaptation of their metabolic capabilities. To this end, carbohydrate metabolism is governed by complex regulatory networks including posttranscriptional mechanisms that involve small regulatory RNAs (sRNAs) and RNA-binding proteins. sRNAs limit the response to substrate availability and set the threshold or time required for induction and repression of carbohydrate utilization systems. Carbon catabolite repression (CCR) also involves sRNAs. In Enterobacteriaceae, sRNA Spot 42 cooperates with the transcriptional regulator cyclic AMP (cAMP)-receptor protein (CRP) to repress secondary carbohydrate utilization genes when a preferred sugar is consumed. In pseudomonads, CCR operates entirely at the posttranscriptional level, involving RNA-binding protein Hfq and decoy sRNA CrcZ. Moreover, sRNAs coordinate fluxes through central carbohydrate metabolic pathways with carbohydrate availability. In Gram-negative bacteria, the interplay between RNA-binding protein CsrA and its cognate sRNAs regulates glycolysis and gluconeogenesis in response to signals derived from metabolism. Spot 42 and cAMP-CRP jointly downregulate tricarboxylic acid cycle activity when glycolytic carbon sources are ample. In addition, bacteria use sRNAs to reprogram carbohydrate metabolism in response to anaerobiosis and iron limitation. Finally, sRNAs also provide homeostasis of essential anabolic pathways, as exemplified by the hexosamine pathway providing cell envelope precursors. In this review, we discuss the manifold roles of bacterial sRNAs in regulation of carbon source uptake and utilization, substrate prioritization, and metabolism.
Collapse
Affiliation(s)
- Svetlana Durica-Mitic
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|