1
|
Nanista EM, Poythress LE, Skipper IR, Haskins T, Cora MF, Rozario T. Anterior-posterior polarity signals differentially regulate regeneration-competence of the tapeworm Hymenolepis diminuta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642590. [PMID: 40161642 PMCID: PMC11952415 DOI: 10.1101/2025.03.11.642590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Competence to regenerate lost tissues varies widely across species. The rat tapeworm, Hymenolepis diminuta, undergoes continual cycles of shedding and regenerating thousands of reproductive segments to propagate the species. Despite its prowess, H. diminuta can only regenerate posteriorly from a singular tissue: the neck or germinative region (GR). What cells and signaling pathways restrict regeneration competence to the GR? In this study, we show that the head regulates regeneration-competence by promoting maintenance of the GR and inhibiting proglottid formation in a distance-dependent manner. Anterior-posterior (A-P) patterning within the GR provide local signals that mediate these head-dependent responses. βcat1 is necessary for stem cell maintenance, proliferation and proglottidization. On the other hand, sfrp is necessary for maintaining the GR at its proper length. Our study demonstrates that the head organizes a balance of pro- and anti-regeneration signals that must be integrated together and therefore control competence to regenerate.
Collapse
|
2
|
Lo KC, Petersen CP. map3k1 suppresses terminal differentiation of migratory eye progenitors in planarian regeneration. PLoS Genet 2025; 21:e1011457. [PMID: 40096024 PMCID: PMC11981174 DOI: 10.1371/journal.pgen.1011457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/09/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Proper stem cell targeting and differentiation is necessary for regeneration to succeed. In organisms capable of whole body regeneration, considerable progress has been made identifying wound signals initiating this process, but the mechanisms that control the differentiation of progenitors into mature organs are not fully understood. Using the planarian as a model system, we identify a novel function for map3k1, a MAP3K family member possessing both kinase and ubiquitin ligase domains, to negatively regulate terminal differentiation of stem cells during eye regeneration. Inhibition of map3k1 caused the formation of multiple ectopic eyes within the head, but without controlling overall head, brain, or body patterning. By contrast, other known regulators of planarian eye patterning like wnt11-6/wntA and notum also regulate head regionalization, suggesting map3k1 acts distinctly. Consistent with these results, eye resection and regeneration experiments suggest that unlike Wnt signaling perturbation, map3k1 inhibition did not shift the target destination of eye formation in the animal. map3k1(RNAi) ectopic eyes emerged in the regions normally occupied by migratory eye progenitors, and these animals produced a net excess of differentiated eye cells. Furthermore, the formation of ectopic eyes after map3k1 inhibition coincided with an increase to numbers of differentiated eye cells, a decrease in numbers of ovo+ eye progenitors, and also was preceded by eye progenitors prematurely expressing opsin/tyosinase markers of eye cell terminal differentiation. Therefore, map3k1 negatively regulates the process of terminal differentiation within the eye lineage. Similar ectopic eye phenotypes were also observed after inhibition of map2k4, map2k7, jnk, and p38, identifying a putative pathway through which map3k1 prevents differentiation. Together, these results suggest that map3k1 regulates a novel control point in the eye regeneration pathway which suppresses the terminal differentiation of progenitors during their migration to target destinations.
Collapse
Affiliation(s)
- Katherine C. Lo
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
3
|
Mbogo I, Kawano C, Nakamura R, Tsuchiya Y, Villar-Briones A, Hirao Y, Yasuoka Y, Hayakawa E, Tomii K, Watanabe H. A transphyletic study of metazoan β-catenin protein complexes. ZOOLOGICAL LETTERS 2024; 10:20. [PMID: 39623505 PMCID: PMC11613877 DOI: 10.1186/s40851-024-00243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024]
Abstract
Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution. In the present study, we performed a comparative analysis of β-catenin sequences in nonbilaterian lineages that diverged early in metazoan evolution. We also carried out transphyletic function experiments with β-catenin from nonbilaterian metazoans using developing Xenopus embryos, including secondary axis induction in embryos and proteomic analysis of β-catenin protein complexes. Comparative functional analysis of nonbilaterian β-catenins demonstrated sequence characteristics important for β-catenin functions, and the deep origin and evolutionary conservation of the cadherin-catenin complex. Proteins that co-immunoprecipitated with β-catenin included several proteins conserved among metazoans. These data provide new insights into the conserved repertoire of β-catenin complexes.
Collapse
Affiliation(s)
- Ivan Mbogo
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Sysmex Corporation, Ltd. 1-5-1, Chuo-ku, Kobe, 651-0073, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Project Planning and Implementation Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoshitoshi Hirao
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4, Kawazu, Iizuka, 820-8502, Fukuoka, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
4
|
Lo KC, Petersen CP. map3k1 suppresses terminal differentiation of migratory eye progenitors in planarian regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617745. [PMID: 39416008 PMCID: PMC11483071 DOI: 10.1101/2024.10.11.617745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Proper stem cell targeting and differentiation is necessary for regeneration to succeed. In organisms capable of whole body regeneration, considerable progress has been made identifying wound signals initiating this process, but the mechanisms that control the differentiation of progenitors into mature organs are not fully understood. Using the planarian as a model system, we identify a novel function for map3k1, a MAP3K family member possessing both kinase and ubiquitin ligase domains, to negatively regulate terminal differentiation of stem cells during eye regeneration. Inhibition of map3k1 caused the formation of multiple ectopic eyes within the head, but without controlling overall head, brain, or body patterning. By contrast, other known regulators of planarian eye patterning like WntA and notum also regulate head regionalization, suggesting map3k1 acts distinctly. Eye resection and regeneration experiments suggest that unlike Wnt signaling perturbation, map3k1 inhibition did not shift the target destination of eye formation in the animal. Instead, map3k1(RNAi) ectopic eyes emerge in the regions normally occupied by migratory eye progenitors, and the onset of ectopic eyes after map3k1 inhibition coincides with a reduction to eye progenitor numbers. Furthermore, RNAi dosing experiments indicate that progenitors closer to their normal target are relatively more sensitive to the effects of map3k1, implicating this factors in controlling the site of terminal differentiation. Eye phenotypes were also observed after inhibition of map2k4, map2k7, jnk, and p38, identifying a putative pathway through which map3k1 prevents differentiation. Together, these results suggest that map3k1 regulates a novel control point in the eye regeneration pathway which suppresses the terminal differentiation of progenitors during their migration to target destinations.
Collapse
Affiliation(s)
- Katherine C. Lo
- Department of Molecular Biosciences, Northwestern University
| | | |
Collapse
|
5
|
Molina MD, Abduljabbar D, Guixeras A, Fraguas S, Cebrià F. LIM-HD transcription factors control axial patterning and specify distinct neuronal and intestinal cell identities in planarians. Open Biol 2023; 13:230327. [PMID: 38086422 PMCID: PMC10715919 DOI: 10.1098/rsob.230327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Adult planarians can regenerate the gut, eyes and even a functional brain. Proper identity and patterning of the newly formed structures require signals that guide and commit their adult stem cells. During embryogenesis, LIM-homeodomain (LIM-HD) transcription factors act in a combinatorial 'LIM code' to control cell fate determination and differentiation. However, our understanding about the role these genes play during regeneration and homeostasis is limited. Here, we report the full repertoire of LIM-HD genes in Schmidtea mediterranea. We found that lim homeobox (lhx) genes appear expressed in complementary patterns along the cephalic ganglia and digestive system of the planarian, with some of them being co-expressed in the same cell types. We have identified that Smed-islet1, -lhx1/5-1, -lhx2/9-3, -lhx6/8, -lmx1a/b-2 and -lmx1a/b-3 are essential to pattern and size the planarian brain as well as for correct regeneration of specific subpopulations of dopaminergic, serotonergic, GABAergic and cholinergic neurons, while Smed-lhx1/5.2 and -lhx2/9.2 are required for the proper expression of intestinal cell type markers, specifically the goblet subtype. LIM-HD are also involved in controlling axonal pathfinding (lhx6/8), axial patterning (islet1, lhx1/5-1, lmx1a/b-3), head/body proportions (islet2) and stem cell proliferation (lhx3/4, lhx2/9-3, lmx1a/b-2, lmx1a/b-3). Altogether, our results suggest that planarians might present a combinatorial LIM code that controls axial patterning and axonal growing and specifies distinct neuronal and intestinal cell identities.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Dema Abduljabbar
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Anna Guixeras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
6
|
Li G, Brumback BD, Huang L, Zhang DM, Yin T, Lipovsky CE, Hicks SC, Jimenez J, Boyle PM, Rentschler SL. Acute Glycogen Synthase Kinase-3 Inhibition Modulates Human Cardiac Conduction. JACC Basic Transl Sci 2022; 7:1001-1017. [PMID: 36337924 PMCID: PMC9626903 DOI: 10.1016/j.jacbts.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) inhibition has emerged as a potential therapeutic target for several diseases, including cancer. However, the role for GSK-3 regulation of human cardiac electrophysiology remains ill-defined. We demonstrate that SB216763, a GSK-3 inhibitor, can acutely reduce conduction velocity in human cardiac slices. Combined computational modeling and experimental approaches provided mechanistic insight into GSK-3 inhibition-mediated changes, revealing that decreased sodium-channel conductance and tissue conductivity may underlie the observed phenotypes. Our study demonstrates that GSK-3 inhibition in human myocardium alters electrophysiology and may predispose to an arrhythmogenic substrate; therefore, monitoring for adverse arrhythmogenic events could be considered.
Collapse
Key Words
- ABC, active β-catenin
- APD, action potential duration
- BDM, 2,3-butanedione monoxime
- CV, conduction velocity
- Cx43, connexin 43
- GNa, sodium-channel conductance
- GOF, gain of function
- GSK-3 inhibitor
- GSK-3, glycogen synthase kinase 3
- INa, sodium current
- LV, left ventricle
- NaV1.5, pore-forming α-subunit protein of the voltage-gated cardiac sodium channel
- PCR, polymerase chain reaction
- RMP, resting membrane potential
- RT-qPCR, reverse transcription-quantitative polymerase chain reaction
- SB2, SB216763
- SB216763
- cDNA, complementary DNA
- dVm/dtmax, maximum upstroke velocity
- electrophysiology
- human cardiac slices
Collapse
Affiliation(s)
- Gang Li
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
| | - Brittany D. Brumback
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
| | - Lei Huang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - David M. Zhang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Catherine E. Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Stephanie C. Hicks
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Jesus Jimenez
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Patrick M. Boyle
- Department of Bioengineering, Center for Cardiovascular Biology, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, Missouri, USA
| |
Collapse
|
7
|
Regulation of Eye Determination and Regionalization in the Spider Parasteatoda tepidariorum. Cells 2022; 11:cells11040631. [PMID: 35203282 PMCID: PMC8870698 DOI: 10.3390/cells11040631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Animal visual systems are enormously diverse, but their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Spiders are particular masters of visual system innovation, and offer an excellent opportunity to study the evolution of animal eyes. Several RDGs have been identified in spider eye primordia, but their interactions and regulation remain unclear. From our knowledge of RDG network regulation in Drosophila melanogaster, we hypothesize that orthologs of Pax6, eyegone, Wnt genes, hh, dpp, and atonal could play important roles in controlling eye development in spiders. We analyzed the expression of these genes in developing embryos of the spider Parasteatodatepidariorum, both independently and in relation to the eye primordia, marked using probes for the RDG sine oculis. Our results support conserved roles for Wnt genes in restricting the size and position of the eye field, as well as for atonal initiating photoreceptor differentiation. However, we found no strong evidence for an upstream role of Pax6 in eye development, despite its label as a master regulator of animal eye development; nor do eyg, hh or dpp compensate for the absence of Pax6. Conversely, our results indicate that hh may work with Wnt signaling to restrict eye growth, a role similar to that of Sonichedgehog (Shh) in vertebrates.
Collapse
|
8
|
Elhaj Mahmoud D, Kaabachi W, Sassi N, Mokhtar A, Ben Ammar L, Rekik S, Tarhouni L, Kallel-Sellami M, Cheour E, Laadhar L. Expression of extracellular matrix components and cytokine receptors in human fibrocytes during rheumatoid arthritis. Connect Tissue Res 2021; 62:720-731. [PMID: 33427511 DOI: 10.1080/03008207.2021.1873962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Fibroblast-like synoviocytes (FLS) represent one of the principal effectors of joint damage in rheumatoid arthritis (RA). Recent discovery of the circulating fibrocyte, a potential precursor of FLS, has raised issues regarding the characterization of fibrocytes with respect to their morphology and their biological role. In this study, we evaluated the morphology of fibrocytes in vitro and their ability to produce different extracellular matrix (ECM) components in comparison with two populations of RA FLS: synovial fluid FLS (fd-FLS) and intimal lining FLS (td-FLS). We also studied the expression of ECM regulators and a set of cytokine receptors involved in the pathogenesis of RA. Materials and Methods: Fibrocytes were cultured from peripheral blood of patients with RA. FLS were cultured from synovial fluids and tissues. ECM proteins (collagen I (col I) and fibronectin), Matrix metalloproteinases (MMP) (MMP3, and MMP9), ECM regulators (β catenin, TCF4, and c-fos), and cytokine receptors (CXCR1, CXCR2, CXCR3, IL1RI, IL1RII, and IL6Rα) were analyzed using qRT-PCR and/or western blot. Results: Our results demonstrated that fibronectin and MMP3 levels were higher in FLS compared to fibrocytes. Although MMP9 was expressed in the three cell types, its level was greater in fibrocytes than in td/fd FLS. The three cell types expressed CXCR3, IL1RI, IL1RII, and IL6Rα, while the expression of CXCR1 and CXCR2 was restricted to fibrocytes. Conclusion: Our results demonstrated that fibrocytes express ECM molecules and cytokines receptors. The observed differences between fibrocytes and FLS may be due to their distinct functions or differentiation state during RA.Abbreviations: RA: Rheumatoid ArthritisFLS: fibroblast-like synoviocytestd: tissue derivedfd: fluid derivedSF: Synovial FluidWnt: WinglessMMP: Matrix MetalloproteinaseCIA: murine collagen induced arthritisECM: Extracellular matrixcol I: Collagen ITCF/LEF: T-cell factor/lymphoid enhancer-binding factorAP1: Activator Protein 1.
Collapse
Affiliation(s)
- Dorra Elhaj Mahmoud
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, la Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Wajih Kaabachi
- Basic Sciences Department, Unit Research 12SP15 "Homeostasis and Cell Dysfunction", Medicine School of Tunis, Tunis Tunisia
| | - Nadia Sassi
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, la Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Amel Mokhtar
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, la Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Sonia Rekik
- Rheumatology Department, La Rabta Hospital, Tunis, Tunisie
| | - Lamjed Tarhouni
- Department of Hand and Reconstructive Surgery, Kassab Institute of Traumatic and Orthopedic Surgery, Tunis, Tunisia
| | - Maryam Kallel-Sellami
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, la Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Elhem Cheour
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, la Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Lilia Laadhar
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, la Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Fraguas S, Cárcel S, Vivancos C, Molina MD, Ginés J, Mazariegos J, Sekaran T, Bartscherer K, Romero R, Cebrià F. CREB-binding protein (CBP) gene family regulates planarian survival and stem cell differentiation. Dev Biol 2021; 476:53-67. [PMID: 33774010 DOI: 10.1016/j.ydbio.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
In developmental biology, the regulation of stem cell plasticity and differentiation remains an open question. CBP(CREB-binding protein)/p300 is a conserved gene family that functions as a transcriptional co-activator and plays important roles in a wide range of cellular processes, including cell death, the DNA damage response, and tumorigenesis. The acetyl transferase activity of CBPs is particularly important, as histone and non-histone acetylation results in changes in chromatin architecture and protein activity that affect gene expression. Many studies have described the conserved functions of CBP/p300 in stem cell proliferation and differentiation. The planarian Schmidtea mediterranea is an excellent model for the in vivo study of the molecular mechanisms underlying stem cell differentiation during regeneration. However, how this process is regulated genetically and epigenetically is not well-understood yet. We identified 5 distinct Smed-cbp genes in S. mediterranea that show different expression patterns. Functional analyses revealed that Smed-cbp-2 appears to be essential for stem cell maintenance. On the other hand, the silencing of Smed-cbp-3 resulted in the growth of blastemas that were apparently normal, but remained largely unpigmented and undifferentiated. Smed-cbp-3 silencing also affected the differentiation of several cell lineages including neural, epidermal, digestive, and excretory cell types. Finally, we analysed the predicted interactomes of CBP-2 and CBP-3 as an initial step to better understand their functions in planarian stem cell biology. Our results indicate that planarian cbp genes play key roles in stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Sheila Cárcel
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Coral Vivancos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Ma Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Jordi Ginés
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Judith Mazariegos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | | | | | - Rafael Romero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain.
| |
Collapse
|
10
|
Zhao X, Shao P, Gai K, Li F, Shan Q, Xue HH. β-catenin and γ-catenin are dispensable for T lymphocytes and AML leukemic stem cells. eLife 2020; 9:55360. [PMID: 32820720 PMCID: PMC7462606 DOI: 10.7554/elife.55360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The β-catenin transcriptional coregulator is involved in various biological and pathological processes; however, its requirements in hematopoietic cells remain controversial. We re-targeted the Ctnnb1 gene locus to generate a true β-catenin-null mutant mouse strain. Ablation of β-catenin alone, or in combination with its homologue γ-catenin, did not affect thymocyte maturation, survival or proliferation. Deficiency in β/γ-catenin did not detectably affect differentiation of CD4+T follicular helper cells or that of effector and memory CD8+ cytotoxic cells in response to acute viral infection. In an MLL-AF9 AML mouse model, genetic deletion of β-catenin, or even all four Tcf/Lef family transcription factors that interact with β-catenin, did not affect AML onset in primary recipients, or the ability of leukemic stem cells (LSCs) in propagating AML in secondary recipients. Our data thus clarify on a long-standing controversy and indicate that β-catenin is dispensable for T cells and AML LSCs.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Kexin Gai
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Fengyin Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States.,New Jersey Veterans Affairs Health Care System, East Orange, United States
| |
Collapse
|
11
|
James K, Olson PD. The tapeworm interactome: inferring confidence scored protein-protein interactions from the proteome of Hymenolepis microstoma. BMC Genomics 2020; 21:346. [PMID: 32380953 PMCID: PMC7204028 DOI: 10.1186/s12864-020-6710-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background Reference genome and transcriptome assemblies of helminths have reached a level of completion whereby secondary analyses that rely on accurate gene estimation or syntenic relationships can be now conducted with a high level of confidence. Recent public release of the v.3 assembly of the mouse bile-duct tapeworm, Hymenolepis microstoma, provides chromosome-level characterisation of the genome and a stabilised set of protein coding gene models underpinned by bioinformatic and empirical data. However, interactome data have not been produced. Conserved protein-protein interactions in other organisms, termed interologs, can be used to transfer interactions between species, allowing systems-level analysis in non-model organisms. Results Here, we describe a probabilistic, integrated network of interologs for the H. microstoma proteome, based on conserved protein interactions found in eukaryote model species. Almost a third of the 10,139 gene models in the v.3 assembly could be assigned interaction data and assessment of the resulting network indicates that topologically-important proteins are related to essential cellular pathways, and that the network clusters into biologically meaningful components. Moreover, network parameters are similar to those of single-species interaction networks that we constructed in the same way for S. cerevisiae, C. elegans and H. sapiens, demonstrating that information-rich, system-level analyses can be conducted even on species separated by a large phylogenetic distance from the major model organisms from which most protein interaction evidence is based. Using the interolog network, we then focused on sub-networks of interactions assigned to discrete suites of genes of interest, including signalling components and transcription factors, germline multipotency genes, and genes differentially-expressed between larval and adult worms. Results show not only an expected bias toward highly-conserved proteins, such as components of intracellular signal transduction, but in some cases predicted interactions with transcription factors that aid in identifying their target genes. Conclusions With key helminth genomes now complete, systems-level analyses can provide an important predictive framework to guide basic and applied research on helminths and will become increasingly informative as new protein-protein interaction data accumulate.
Collapse
Affiliation(s)
- Katherine James
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK. .,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, UK.
| | - Peter D Olson
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, UK
| |
Collapse
|
12
|
Montagne J, Preza M, Castillo E, Brehm K, Koziol U. Divergent Axin and GSK-3 paralogs in the beta-catenin destruction complexes of tapeworms. Dev Genes Evol 2019; 229:89-102. [PMID: 31041506 DOI: 10.1007/s00427-019-00632-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/16/2019] [Indexed: 01/06/2023]
Abstract
The Wnt/beta-catenin pathway has many key roles in the development of animals, including a conserved and central role in the specification of the primary (antero-posterior) body axis. The posterior expression of Wnt ligands and the anterior expression of secreted Wnt inhibitors are known to be conserved during the larval metamorphosis of tapeworms. However, their downstream signaling components for Wnt/beta-catenin signaling have not been characterized. In this work, we have studied the core components of the beta-catenin destruction complex of the human pathogen Echinococcus multilocularis, the causative agent of alveolar echinococcosis. We focused on two Axin paralogs that are conserved in tapeworms and other flatworm parasites. Despite their divergent sequences, both Axins could robustly interact with one E. multilocularis beta-catenin paralog and limited its accumulation in a heterologous mammalian expression system. Similarly to what has been described in planarians (free-living flatworms), other beta-catenin paralogs showed limited or no interaction with either Axin and are unlikely to function as effectors in Wnt signaling. Additionally, both Axins interacted with three divergent GSK-3 paralogs that are conserved in free-living and parasitic flatworms. Axin paralogs have highly segregated expression patterns along the antero-posterior axis in the tapeworms E. multilocularis and Hymenolepis microstoma, indicating that different beta-catenin destruction complexes may operate in different regions during their larval metamorphosis.
Collapse
Affiliation(s)
- Jimena Montagne
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay
| | - Matías Preza
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay
| | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay.
| |
Collapse
|
13
|
Nek2B activates the wnt pathway and promotes triple-negative breast cancer chemothezrapy-resistance by stabilizing β-catenin. J Exp Clin Cancer Res 2019; 38:243. [PMID: 31174562 PMCID: PMC6556028 DOI: 10.1186/s13046-019-1231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background The chemotherapy-resistance of triple-negative breast cancer (TNBC) remains a major challenge. The Nek2B kinase and β-catenin serve as crucial regulators of mitotic processes. The aim of this study was to test the correlation between Nek2B and TNBC chemotherapy sensitivity, and to determine the regulation of Nek2B on β-catenin and wnt/β-catenin signal pathway. Methods Gene Expression Omnibus(GEO) databases were used to gather gene exprsssion data of TNBC patients who undergoing chemotherapy. The co-expression of Nek2B and β-catenin in TNBC surgical sections and cells were analysed by immunohistochemistry, Q-RT-PCR, Western-blot and immunofluorescent staining. The impact of the expression of Nek2B and β-catenin in prognosis was also assessed using the Kaplan-Meier curves. CCK8 assay was used to detect the IC50 value of TNBC cell line. The endogenous binding capacity of Nek2B and β-catenin and phosphorylation of β-catenin by Nek2B were detected using co-immunoprecipitation (CO-IP). Chromatin immune-precipitation (ChIP) analysis and Luciferase Assays were used to evaluate the binding ability of the Nek2B, β-catenin and TCF4 complex with LEF-1 promoter. Nek2B-siRNA and Nek2B plasmid were injected into nude mice, and tumorigenesis was monitored. Results We found that overexpression of Nek2B and β-catenin in TNBC samples, was associated with patients poor prognosis. Patients with positive Nek2B expression were less sensitive to paclitaxel-containing neoadjuvant chemotherapy. Interestingly, in a panel of established TNBC cell line, Nek2B and β-catenin were highly expressed in cells exhibiting paclitaxel resistance. Our data also suggest that β-catenin binded to and was phosphorylated by Nek2B, and was in a complex with TCF4. Nek2B mainly regulates the expression of β-catenin in TNBC nucleus. Nek2B, β-catenin and TCF4 can be binded with the WRE functional area of LEF-1 promoter. Nek2B can activite wnt signaling pathway and wnt downstream target genes. The tumors treated by Nek2B siRNA associated with paclitaxel were the smallest in nude mouse, and Nek2B can regulate the expression of β-catenin and wnt downstream target genes in vivo. Conclusion Our study suggested that Nek2B can bind to β-catenin and the co-expression correlated with TNBC patients poor prognosis. It appears that Nek2B and β-catenin might synergize to promote chemotherapy resistance.
Collapse
|