1
|
Porter VL, Ng M, O'Neill K, MacLennan S, Corbett RD, Culibrk L, Hamadeh Z, Iden M, Schmidt R, Tsaih SW, Nakisige C, Origa M, Orem J, Chang G, Fan J, Nip KM, Akbari V, Chan SK, Hopkins J, Moore RA, Chuah E, Mungall KL, Mungall AJ, Birol I, Jones SJM, Rader JS, Marra MA. Rearrangements of viral and human genomes at human papillomavirus integration events and their allele-specific impacts on cancer genome regulation. Genome Res 2025; 35:653-670. [PMID: 39638560 PMCID: PMC12047271 DOI: 10.1101/gr.279041.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer. To resolve genome dysregulation associated with HPV integration, we performed Oxford Nanopore Technologies long-read sequencing on 72 cervical cancer genomes from a Ugandan data set that was previously characterized using short-read sequencing. We find recurrent structural rearrangement patterns at HPV integration events, which we categorize as del(etion)-like, dup(lication)-like, translocation, multi-breakpoint, or repeat region integrations. Integrations involving amplified HPV-human concatemers, particularly multi-breakpoint events, frequently harbor heterogeneous forms and copy numbers of the viral genome. Transcriptionally active integrants are characterized by unmethylated regions in both the viral and human genomes downstream from the viral transcription start site, resulting in HPV-human fusion transcripts. In contrast, integrants without evidence of expression lack consistent methylation patterns. Furthermore, whereas transcriptional dysregulation is limited to genes within 200 kb of an HPV integrant, dysregulation of the human epigenome in the form of allelic differentially methylated regions affects megabase expanses of the genome, irrespective of the integrant's transcriptional status. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.
Collapse
Affiliation(s)
- Vanessa L Porter
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Signe MacLennan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Richard D Corbett
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Zeid Hamadeh
- Cytogenomics Laboratory, Vancouver General Hospital, Vancouver, British Columbia V5Z 1N1, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada
| | - Marissa Iden
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin 53226, USA
| | - Rachel Schmidt
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin 53226, USA
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin 53226, USA
| | | | | | | | - Glenn Chang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Jeremy Fan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Simon K Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - James Hopkins
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin 53226, USA
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
Cai X, Xu L. Human Papillomavirus-Related Cancer Vaccine Strategies. Vaccines (Basel) 2024; 12:1291. [PMID: 39591193 PMCID: PMC11598756 DOI: 10.3390/vaccines12111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV) persistent infection is a major pathogenic factor for HPV-related cancers, such as cervical cancer (CC), vaginal cancer, vulvar cancer, anal cancer, penile cancer, and head and neck cancer (HNC). Since the introduction of the world's first prophylactic HPV vaccine, there has been a decline in the incidence of HPV infections and associated cancers. This article reviews the latest literature on the research progress, efficacy, and safety of HPV vaccines for these cancers, providing a reference for HPV vaccination strategy. METHODS By utilizing databases such as PubMed, Google Scholar, CNKI, and Wanfang, we conducted a literature search on research papers related to HPV vaccines from 2014 to 2024, employing keywords such as "HPV", "HPV vaccine", "CC", "vaginal cancer", "vulvar cancer", "anal cancer", "penile cancer" and "HNC". Additionally, we reviewed the latest information available on official websites, including the World Health Organization (WHO). Based on the quality and relevance of the papers, we selected over 100 of the most representative articles for further summarization and analysis. RESULTS Vaccination against HPV can effectively block the transmission of the virus and prevent HPV-related cancers. Current studies have confirmed the efficacy and safety of prophylactic HPV vaccination. However, numerous challenges remain. The global vaccination rate for preventive vaccines remains low, particularly in low- and middle-income countries. Nonetheless, in the future, we can enhance the accessibility, affordability, and coverage of HPV vaccines by expanding the indications of already licensed vaccines, continuously developing new vaccines. CONCLUSIONS The HPV vaccine is an extremely effective measure for the prevention and treatment of HPV-related cancers. Although there are many challenges in expanding the coverage of the HPV vaccine. It is believed that in the not-too-distant future, both prophylactic and therapeutic HPV vaccines will achieve commendable results.
Collapse
Affiliation(s)
| | - Ling Xu
- Department of Gynaecology, Minhang Hospital, Fudan University, Shanghai 201199, China;
| |
Collapse
|
3
|
Embry A, Gammon DB. Abortive Infection of Animal Cells: What Goes Wrong. Annu Rev Virol 2024; 11:193-213. [PMID: 38631917 PMCID: PMC11427174 DOI: 10.1146/annurev-virology-100422-023037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Even if a virus successfully binds to a cell, defects in any of the downstream steps of the viral life cycle can preclude the production of infectious virus particles. Such abortive infections are likely common in nature and can provide fundamental insights into the cell and host tropism of viral pathogens. Research over the past 60 years has revealed an incredible diversity of abortive infections by DNA and RNA viruses in various animal cell types. Here we discuss the general causes of abortive infections and provide specific examples from the literature to illustrate the range of abortive infections that have been reported. We also discuss how abortive infections can have critical roles in shaping host immune responses and in the development of virus-induced cancers. Finally, we describe how abortive infections can be applied to basic and clinical research, underscoring the importance of understanding these fascinating aspects of virus biology.
Collapse
Affiliation(s)
- Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
4
|
Molina MA, Steenbergen RDM, Pumpe A, Kenyon AN, Melchers WJG. HPV integration and cervical cancer: a failed evolutionary viral trait. Trends Mol Med 2024; 30:890-902. [PMID: 38853085 DOI: 10.1016/j.molmed.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Countless efforts have been made to eradicate cervical cancer worldwide, including improving disease screening and human papillomavirus (HPV) vaccination programs. Nevertheless, cervical cancer still claims the lives of more than 300 000 women every year. Persistent infections with high-risk HPV genotypes 16 and 18 are the main cause of cancer and may result in HPV integration into the host genome. The central dogma is that HPV integration is an important step in oncogenesis, but in fact, it impedes the virus from replicating and spreading. HPV causing cervical cancer can therefore be perceived as a failed evolutionary viral trait. Here we outline the occurrence and mechanisms of HPV integration and how this process results in oncogenic transformation.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Centre Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Centre Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Anna Pumpe
- Department of Medical Microbiology, Radboud University Medical Center, 6500, HB, Nijmegen, The Netherlands
| | - Angelique N Kenyon
- Department of Medical Microbiology, Radboud University Medical Center, 6500, HB, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, 6500, HB, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Haridevamuthu B. Genomic instability in HPV-positive oropharyngeal squamous cell carcinoma: The role of integration sites in treatment response. Oral Oncol 2024; 155:106895. [PMID: 38880007 DOI: 10.1016/j.oraloncology.2024.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Zhang Y, Liu T, He W. The application of organoids in cancers associated with pathogenic infections. Clin Exp Med 2024; 24:168. [PMID: 39052148 PMCID: PMC11272814 DOI: 10.1007/s10238-024-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Cancers associated with pathogen infections are gradually becoming important threats to human health globally, and it is of great significance to study the mechanisms of pathogen carcinogenesis. Current mechanistic studies rely on animal and two-dimensional (2D) cell culture models, but traditional methods have been proven insufficient for the rapid modeling of diseases caused by new pathogens. Therefore, research focus has shifted to organoid models, which can replicate the structural and genetic characteristics of the target tissues or organs in vitro, providing new platforms for the study of pathogen-induced oncogenic mechanisms. This review summarizes the application of organoid technology in the studies of four pathogen-associated cancers: gastric cancer linked to Helicobacter pylori, liver cancer associated with hepatitis B virus or hepatitis C virus, colorectal cancer caused by Escherichia coli, and cervical cancer related to human papillomavirus. This review also proposes several limitations of organoid technology to optimize organoid models and advance the treatment of cancer associated with pathogen infections in the future.
Collapse
Affiliation(s)
- Yuyu Zhang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China
| | - Tao Liu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China.
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China.
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China.
| | - Wenting He
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China.
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China.
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Furugori K, Suzuki H, Abe R, Horiuchi K, Akiyama T, Hirose T, Toyoda A, Takahashi H. Chimera RNA transcribed from integrated HPV18 genome with adjacent host genomic region promotes oncogenic gene expression through condensate formation. Genes Cells 2024; 29:532-548. [PMID: 38715205 DOI: 10.1111/gtc.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 07/06/2024]
Abstract
Most cervical cancers are caused by human papillomavirus (HPV) infection. In HeLa cells, the HPV18 viral genome is integrated at chromosome 8q24.21 and activates transcription of the proto-oncogene c-Myc. However, the mechanism of how the integrated HPV genome and its transcribed RNAs exhibit transcription activation function has not been fully elucidated. In this study, we found that HPV18 transcripts contain an enhancer RNA-like function to activate proximal genes including CCAT1-5L and c-Myc. We showed that the human genome-integrated HPV18 genes are activated by transcription coregulators including BRD4 and Mediator. The transcribed HPV18 RNAs form a liquid-like condensate at chromosome 8q24.21 locus, which in turn accumulates RNA polymerase II. Moreover, we focused on a relatively uncharacterized transcript from the upstream region of CCAT1, named URC. The URC RNA is transcribed as a chimera RNA with HPV18 and is composed of the 3'-untranslated region of the HPV18 transcript. We experimentally showed that the URC contributes to stabilization of HPV18 RNAs by supplying a polyadenylation site for the HPV18 transcript. Our findings suggest that integrated HPV18 at 8q24.21 locus produces HPV18-URC chimera RNA and promotes tumorigenesis through RNA-based condensate formation.
Collapse
Affiliation(s)
- Kazuki Furugori
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Keiko Horiuchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Tomohiko Akiyama
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Van Arsdale A, Turker L, Chang YC, Gould J, Harmon B, Maggi EC, Meshcheryakova O, Brown MP, Luong D, Van Doorslaer K, Einstein MH, Kuo DYS, Zheng D, Haas BJ, Lenz J, Montagna C. Structure and transcription of integrated HPV DNA in vulvar carcinomas. NPJ Genom Med 2024; 9:35. [PMID: 38898085 PMCID: PMC11187145 DOI: 10.1038/s41525-024-00418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
HPV infections are associated with a fraction of vulvar cancers. Through hybridization capture and DNA sequencing, HPV DNA was detected in five of thirteen vulvar cancers. HPV16 DNA was integrated into human DNA in three of the five. The insertions were in introns of human NCKAP1, C5orf67, and LRP1B. Integrations in NCKAP1 and C5orf67 were flanked by short direct repeats in the human DNA, consistent with HPV DNA insertions at sites of abortive, staggered, endonucleolytic incisions. The insertion in C5orf67 was present as a 36 kbp, human-HPV-hetero-catemeric DNA as either an extrachromosomal circle or a tandem repeat within the human genome. The human circularization/repeat junction was defined at single nucleotide resolution. The integrated viral DNA segments all retained an intact upstream regulatory region and the adjacent viral E6 and E7 oncogenes. RNA sequencing revealed that the only HPV genes consistently transcribed from the integrated viral DNAs were E7 and E6*I. The other two HPV DNA+ tumors had coinfections, but no evidence for integration. HPV-positive and HPV-negative vulvar cancers exhibited contrasting human, global gene expression patterns partially overlapping with previously observed differences between HPV-positive and HPV-negative cervical and oropharyngeal cancers. A substantial fraction of the differentially expressed genes involved immune system function. Thus, transcription and HPV DNA integration in vulvar cancers resemble those in other HPV-positive cancers. This study emphasizes the power of hybridization capture coupled with DNA and RNA sequencing to identify a broad spectrum of HPV types, determine human genome integration status of viral DNAs, and elucidate their structures.
Collapse
Affiliation(s)
- Anne Van Arsdale
- Department of Obstetrics Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lauren Turker
- Department of Obstetrics Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Lankenau Medical Center, Wynnewood, PA, 19096, USA
| | - Yoke-Chen Chang
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ, 08901, USA
| | - Joshua Gould
- Broad Institute, Cambridge, MA, 02142, USA
- Cellarity, Cambridge, MA, 02140, USA
| | - Bryan Harmon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elaine C Maggi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Twist Biosciences, South San Francisco, CA, 94080, USA
| | - Olga Meshcheryakova
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maxwell P Brown
- Broad Institute, Cambridge, MA, 02142, USA
- Verve Therapeutics, Boston, MA, 02215, USA
| | - Dana Luong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Mark H Einstein
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers New Jersey Medical School, Newark, NJ, 07102, USA
| | - Dennis Y S Kuo
- Department of Obstetrics Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Jack Lenz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cristina Montagna
- Department of Obstetrics Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ, 08901, USA.
| |
Collapse
|
9
|
Zhao Q, Yang S, Hao S, Chen Z, Tang L, Wu Z, Wu J, Xu M, Ma Z, Zhou L, Xu J, Qin Q. Identification of transcriptionally-active human papillomavirus integrants through nanopore sequencing reveals viable targets for gene therapy against cervical cancer. J Med Virol 2024; 96:e29769. [PMID: 38932482 DOI: 10.1002/jmv.29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Integration of the human papillomavirus (HPV) genome into the cellular genome is a key event that leads to constitutive expression of viral oncoprotein E6/E7 and drives the progression of cervical cancer. However, HPV integration patterns differ on a case-by-case basis among related malignancies. Next-generation sequencing technologies still face challenges for interrogating HPV integration sites. In this study, utilizing Nanopore long-read sequencing, we identified 452 and 108 potential integration sites from the cervical cancer cell lines (CaSki and HeLa) and five tissue samples, respectively. Based on long Nanopore chimeric reads, we were able to analyze the methylation status of the HPV long control region (LCR), which controls oncogene E6/E7 expression, and to identify transcriptionally-active integrants among the numerous integrants. As a proof of concept, we identified an active HPV integrant in between RUNX2 and CLIC5 on chromosome 6 in the CaSki cell line, which was supported by ATAC-seq, H3K27Ac ChIP-seq, and RNA-seq analysis. Knockout of the active HPV integrant, by the CRISPR/Cas9 system, dramatically crippled cell proliferation and induced cell senescence. In conclusion, identifying transcriptionally-active HPV integrants with Nanopore sequencing can provide viable targets for gene therapy against HPV-associated cancers.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Shuaibing Yang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Shijia Hao
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Zejia Chen
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Lihua Tang
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhaoting Wu
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jiaxin Wu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Mingqian Xu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Zebiao Ma
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Qingsong Qin
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
- International Science and Technology Collaboration Center for Emerging Infectious Diseases, Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Singh AK, Walavalkar K, Tavernari D, Ciriello G, Notani D, Sabarinathan R. Cis-regulatory effect of HPV integration is constrained by host chromatin architecture in cervical cancers. Mol Oncol 2024; 18:1189-1208. [PMID: 38013620 PMCID: PMC11076994 DOI: 10.1002/1878-0261.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Human papillomavirus (HPV) infections are the primary drivers of cervical cancers, and often HPV DNA gets integrated into the host genome. Although the oncogenic impact of HPV encoded genes is relatively well known, the cis-regulatory effect of integrated HPV DNA on host chromatin structure and gene regulation remains less understood. We investigated genome-wide patterns of HPV integrations and associated host gene expression changes in the context of host chromatin states and topologically associating domains (TADs). HPV integrations were significantly enriched in active chromatin regions and depleted in inactive ones. Interestingly, regardless of chromatin state, genomic regions flanking HPV integrations showed transcriptional upregulation. Nevertheless, upregulation (both local and long-range) was mostly confined to TADs with integration, but not affecting adjacent TADs. Few TADs showed recurrent integrations associated with overexpression of oncogenes within them (e.g. MYC, PVT1, TP63 and ERBB2) regardless of proximity. Hi-C and 4C-seq analyses in cervical cancer cell line (HeLa) demonstrated chromatin looping interactions between integrated HPV and MYC/PVT1 regions (~ 500 kb apart), leading to allele-specific overexpression. Based on these, we propose HPV integrations can trigger multimodal oncogenic activation to promote cancer progression.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Kaivalya Walavalkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Daniele Tavernari
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute for Experimental Cancer Research (ISREC), EPFLLausanneSwitzerland
| | - Giovanni Ciriello
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Dimple Notani
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | | |
Collapse
|
11
|
Chatterjee S, Starrett GJ. Microhomology-mediated repair machinery and its relationship with HPV-mediated oncogenesis. J Med Virol 2024; 96:e29674. [PMID: 38757834 DOI: 10.1002/jmv.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Human Papillomaviruses (HPV) are a diverse family of non-enveloped dsDNA viruses that infect the skin and mucosal epithelia. Persistent HPV infections can lead to cancer frequently involving integration of the virus into the host genome, leading to sustained oncogene expression and loss of capsid and genome maintenance proteins. Microhomology-mediated double-strand break repair, a DNA double-stranded breaks repair pathway present in many organisms, was initially thought to be a backup but it's now seen as vital, especially in homologous recombination-deficient contexts. Increasing evidence has identified microhomology (MH) near HPV integration junctions, suggesting MH-mediated repair pathways drive integration. In this comprehensive review, we present a detailed summary of both the mechanisms underlying MH-mediated repair and the evidence for its involvement in HPV integration in cancer. Lastly, we highlight the involvement of these processes in the integration of other DNA viruses and the broader implications on virus lifecycles and host innate immune response.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel J Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Lavaud M, Tesfaye R, Lassous L, Brounais B, Baud'huin M, Verrecchia F, Lamoureux F, Georges S, Ory B. Super-enhancers: drivers of cells' identities and cells' debacles. Epigenomics 2024; 16:681-700. [PMID: 38587919 PMCID: PMC11160454 DOI: 10.2217/epi-2023-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Precise spatiotemporal regulations of gene expression are essential for determining cells' fates and functions. Enhancers are cis-acting DNA elements that act as periodic transcriptional thrusters and their activities are cell type specific. Clusters of enhancers, called super-enhancers, are more densely occupied by transcriptional activators than enhancers, driving stronger expression of their target genes, which have prominent roles in establishing and maintaining cellular identities. Here we review the current knowledge on the composition and structure of super-enhancers to understand how they robustly stimulate the expression of cellular identity genes. We also review their involvement in the development of various cell types and both noncancerous and cancerous disorders, implying the therapeutic interest of targeting them to fight against various diseases.
Collapse
Affiliation(s)
- Mélanie Lavaud
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Robel Tesfaye
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
- Cancéropôle Grand-Ouest, Réseau Épigénétique, Medical School, Nantes, 44035, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| | - Léa Lassous
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Bénédicte Brounais
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Marc Baud'huin
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Franck Verrecchia
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - François Lamoureux
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Steven Georges
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Benjamin Ory
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
- Cancéropôle Grand-Ouest, Réseau Épigénétique, Medical School, Nantes, 44035, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| |
Collapse
|
13
|
Yarbrough WG, Schrank TP, Burtness BA, Issaeva N. De-Escalated Therapy and Early Treatment of Recurrences in HPV-Associated Head and Neck Cancer: The Potential for Biomarkers to Revolutionize Personalized Therapy. Viruses 2024; 16:536. [PMID: 38675879 PMCID: PMC11053602 DOI: 10.3390/v16040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human papillomavirus-associated (HPV+) head and neck squamous cell carcinoma (HNSCC) is the most common HPV-associated cancer in the United States, with a rapid increase in incidence over the last two decades. The burden of HPV+ HNSCC is likely to continue to rise, and given the long latency between infection and the development of HPV+ HNSCC, it is estimated that the effect of the HPV vaccine will not be reflected in HNSCC prevalence until 2060. Efforts have begun to decrease morbidity of standard therapies for this disease, and its improved characterization is being leveraged to identify and target molecular vulnerabilities. Companion biomarkers for new therapies will identify responsive tumors. A more basic understanding of two mechanisms of HPV carcinogenesis in the head and neck has identified subtypes of HPV+ HNSCC that correlate with different carcinogenic programs and that identify tumors with good or poor prognosis. Current development of biomarkers that reliably identify these two subtypes, as well as biomarkers that can detect recurrent disease at an earlier time, will have immediate clinical application.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Department of Pathology and Lab Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Travis P. Schrank
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Barbara A. Burtness
- Department of Medicine, Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA;
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Department of Pathology and Lab Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Rodriguez I, Rossi NM, Keskus AG, Xie Y, Ahmad T, Bryant A, Lou H, Paredes JG, Milano R, Rao N, Tulsyan S, Boland JF, Luo W, Liu J, O'Hanlon T, Bess J, Mukhina V, Gaykalova D, Yuki Y, Malik L, Billingsley KJ, Blauwendraat C, Carrington M, Yeager M, Mirabello L, Kolmogorov M, Dean M. Insights into the mechanisms and structure of breakage-fusion-bridge cycles in cervical cancer using long-read sequencing. Am J Hum Genet 2024; 111:544-561. [PMID: 38307027 PMCID: PMC10940022 DOI: 10.1016/j.ajhg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024] Open
Abstract
Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.
Collapse
Affiliation(s)
- Isabel Rodriguez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nicole M Rossi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Ayse G Keskus
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yi Xie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tanveer Ahmad
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Asher Bryant
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Hong Lou
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jesica Godinez Paredes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rose Milano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nina Rao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sonam Tulsyan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Joseph F Boland
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Wen Luo
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jia Liu
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tim O'Hanlon
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jazmyn Bess
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vera Mukhina
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medical Center, Baltimore, MD, USA
| | - Daria Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical System, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yuko Yuki
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Laksh Malik
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | | | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Mary Carrington
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Meredith Yeager
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mikhail Kolmogorov
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
15
|
Xu S, Shi C, Zhou R, Han Y, Li N, Qu C, Xia R, Zhang C, Hu Y, Tian Z, Liu S, Wang L, Li J, Zhang Z. Mapping the landscape of HPV integration and characterising virus and host genome interactions in HPV-positive oropharyngeal squamous cell carcinoma. Clin Transl Med 2024; 14:e1556. [PMID: 38279874 PMCID: PMC10819103 DOI: 10.1002/ctm2.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins. MATERIALS AND METHODS High-throughput viral integration detection was performed on 109 HPV(+)OPSCC tumours with relevant clinicopathological information. Of these tumours, 38 tumours underwent targeted gene sequencing, 29 underwent whole exome sequencing and 26 underwent RNA sequencing. RESULTS HPV integration was detected in 94% of tumours (with a mean integration count of 337). Tumours occurring at the tonsil/oropharyngeal wall that exhibit higher PD-L1 expression demonstrated increased integration sites (p = .024). HPV exhibited a propensity for integration at genomic sites located within specific fragile sites (FRA19A) or genes associated with functional roles such as cell proliferation and differentiation (PTEN, AR), immune evasion (CD274) and glycoprotein biosynthesis process (FUT8). The viral oncogenes E2, E4, E6 and E7 tended to remain intact. HPV fragments displayed enrichment within host copy number variation (CNV) regions. However, insertions into genes related to altered homologous recombination repair were infrequent. Genes with integration had distinct expression levels. Fifty-nine genes whose expression level was affected by viral integration were identified, for example, EPHB1, which was reported to be involved in cellular protein metabolic process. CONCLUSIONS HPV can promote oncogenesis through recurrent integration into functional host genome regions, leading to subsequent genomic aberrations and gene expression disruption. This study characterises viral integrations and virus-host interactions, enhancing our understanding of HPV-related carcinogenesis mechanisms.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Chaoji Shi
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Rong Zhou
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Yong Han
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - NianNian Li
- Department of BioinfomaticsSequantaShanghaiChina
| | - Chuxiang Qu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Ronghui Xia
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Chunye Zhang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Yuhua Hu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhen Tian
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Shuli Liu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Lizhen Wang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Jiang Li
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
16
|
Jesus ACC, Meniconi MCG, Galo LK, Duarte MIS, Sotto MN, Pagliari C. Plasmacytoid Dendritic Cells, the Expression of the Stimulator of Interferon Genes Protein (STING) and a Possible Role of Th17 Immune Response in Cervical Lesions Mediated by Human Papillomavirus. Indian J Microbiol 2023; 63:588-595. [PMID: 38031606 PMCID: PMC10682341 DOI: 10.1007/s12088-023-01117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Human papillomavirus (HPV) is a virus with a DNA structure that specifically targets squamous epithelial cells. In individuals with a healthy immune system, HPV infection is typically resolved naturally, leading to spontaneous regression. However, when the viral genetic material integrates into the host DNA, it can disrupt the immune response and eventually give rise to neoplastic manifestations. Remarkably, HPV infection appears to activate a protein called Stimulator of Interferon genes (STING), which contributes to the infiltration of Treg Foxp3 + cells. This cellular response acts as a predisposing factor in patients with HPV, potentially exacerbating the progression of the infection. The STING is versatile in different circumstances and can play a role in the immune response as an anti-tumour therapeutic target in HPV-related carcinogenesis. The function of Th17 cells is ambiguous, depending on the microenvironment in the tumour. In this study, 46 biopsies of the uterine cervix of human immunodeficiency virus (HIV) positive patients were divided into three groups: I-cervicitis (10); II-low-grade intraepithelial neoplasia (26); III-moderate or severe intraepithelial neoplasia (10) and it was performed an immunohistochemical technique with the specific antibodies to HPV, CD123, STING and IL17. Immunostained cells were quantified and statistically analysed. Antigens of HPV were detected in the cervical intraepithelial neoplasia (CIN) groups and were absent in cervicitis group. The expression of CD123 was positive in 10.87% of the casuistic, with no statistical difference among groups. STING was present in the three groups. Group 1 presented an area fraction that varied from 3 to 20%, group 2 presented a variation of 3-23% and group 3 presented an area fraction between 4 and 12%. Cells expressing IL17 were present in three groups, more frequent in cervicitis. Considering that the casuistic is composed of women carrying HIV, this infectious agent could influence the numerical similarities of the cells studied among three groups, even in the absence of HPV.
Collapse
Affiliation(s)
- Ana Carolina Caetano Jesus
- Programa de Pós-Graduação em Ciências da Saúde - Instituto de Assistência Médica ao Servidor Público Estadual, São Paulo, SP Brazil
- Departamento de Patologia, Faculdade de Medicina da USP, Universidade de São Paulo, Av Dr Arnaldo, 455 sala 1118, São Paulo, SP CEP 01246-903 Brazil
| | - Maria Cristina Gonçalves Meniconi
- Departamento de Patologia, Faculdade de Medicina da USP, Universidade de São Paulo, Av Dr Arnaldo, 455 sala 1118, São Paulo, SP CEP 01246-903 Brazil
| | - Luciane Kanashiro Galo
- Departamento de Patologia, Faculdade de Medicina da USP, Universidade de São Paulo, Av Dr Arnaldo, 455 sala 1118, São Paulo, SP CEP 01246-903 Brazil
| | - Maria Irma Seixas Duarte
- Departamento de Patologia, Faculdade de Medicina da USP, Universidade de São Paulo, Av Dr Arnaldo, 455 sala 1118, São Paulo, SP CEP 01246-903 Brazil
| | - Mirian Nacagami Sotto
- Departamento de Patologia, Faculdade de Medicina da USP, Universidade de São Paulo, Av Dr Arnaldo, 455 sala 1118, São Paulo, SP CEP 01246-903 Brazil
| | - Carla Pagliari
- Programa de Pós-Graduação em Ciências da Saúde - Instituto de Assistência Médica ao Servidor Público Estadual, São Paulo, SP Brazil
- Departamento de Patologia, Faculdade de Medicina da USP, Universidade de São Paulo, Av Dr Arnaldo, 455 sala 1118, São Paulo, SP CEP 01246-903 Brazil
| |
Collapse
|
17
|
Porter VL, O'Neill K, MacLennan S, Corbett RD, Ng M, Culibrk L, Hamadeh Z, Iden M, Schmidt R, Tsaih SW, Chang G, Fan J, Nip KM, Akbari V, Chan SK, Hopkins J, Moore RA, Chuah E, Mungall KL, Mungall AJ, Birol I, Jones SJM, Rader JS, Marra MA. Genomic structures and regulation patterns at HPV integration sites in cervical cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.564800. [PMID: 37961641 PMCID: PMC10635144 DOI: 10.1101/2023.11.04.564800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer, but its genomic consequences have been difficult to study using short-read technologies. To resolve the dysregulation associated with HPV integration, we performed long-read sequencing on 63 cervical cancer genomes. We identified six categories of integration events based on HPV-human genomic structures. Of all HPV integrants, defined as two HPV-human breakpoints bridged by an HPV sequence, 24% contained variable copies of HPV between the breakpoints, a phenomenon we termed heterologous integration. Analysis of DNA methylation within and in proximity to the HPV genome at individual integration events revealed relationships between methylation status of the integrant and its orientation and structure. Dysregulation of the human epigenome and neighboring gene expression in cis with the HPV-integrated allele was observed over megabase-ranges of the genome. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.
Collapse
|
18
|
Minarovits J. Human tumor viruses: induction of three-dimensional alterations in the host genome structure. Front Microbiol 2023; 14:1280210. [PMID: 37928671 PMCID: PMC10620758 DOI: 10.3389/fmicb.2023.1280210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Certain viruses called tumor viruses or oncoviruses are capable to change the gene expression pattern of distinct human or animal cell types in tissue culture, resulting in uncontrolled proliferation as well as a change in the social behavior of the infected cells: the oncovirus-transformed, immortalized cells are capable to form malignant neoplasms in suitable animal models. At present, seven human viruses are categorized as causative agents of distinct human malignancies. The genomes of human tumor viruses, typically encode viral oncoproteins and non- translated viral RNAs that affect the gene expression pattern of their target cells or induce genetic and epigenetic alterations contributing to oncogenesis. Recently, the application of chromatin conformation capture technologies and three-dimensional (3D) molecular imaging techniques revealed how the gene products or genomes of certain human tumor viruses interact with and induce alterations in the 3D host genome structure. This Mini Review aims to cover selected aspects of these developments. The papers, discussed briefly, describe how insertion of a novel viral binding site for the 3D genome organizer cellular protein CCCTC-binding factor (CTCF) into the DNA of T cells infected by human T-cell lymphotropic virus type 1 (HTLV-1) may contribute to lymphomagenesis, as well as how integration of high risk human papillomavirus genome into the host cell DNA may facilitate cervical carcinogenesis. Recent results regarding the interactions of cellular genomes with the episomal, chromatinized DNA genomes of oncogenic human herpesvirus, Epstein-Barr virus (EBV) will also be summarized, similarly to available data regarding contacts formed by episomal or integrated hepatitis B virus (HBV) DNA with host chromatin. Finally, a putative mechanism of hepatitis C virus (HCV) induced chromatin alterations will be presented, which may solve the riddle, how a cytoplasmic RNA virus without a viral oncogene could induce malingnant transfrormation of hepatocytes.
Collapse
Affiliation(s)
- Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
19
|
Rao A, Ni Z, Suresh D, Mohanty C, Wang AR, Lee DL, Nickel KP, Varambally SRJ, Lambert PF, Kendziorski C, Iyer G. Targeted inhibition of BET proteins in HPV-16 associated head and neck squamous cell carcinoma reveals heterogeneous transcription response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560587. [PMID: 37873389 PMCID: PMC10592929 DOI: 10.1101/2023.10.02.560587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. However, the mechanism of BET protein-mediated transcription of viral-cellular genes in the integrated viral-HNSCC genomes needs to be better understood. We show that BET inhibition downregulates E6 significantly independent of the viral transcription factor, E2, and there was overall heterogeneity in the downregulation of viral transcription in response to the effects of BET inhibition across HPV-associated cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4 and mirrored downregulation of viral E6 and E7 expression. Strikingly, there was heterogeneity in the reactivation of p53 levels despite E6 downregulation, while E7 downregulation did not alter Rb levels significantly. We identified that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A expression. Overall, our studies show that BET inhibition provokes a G1-cell cycle arrest with apoptotic activity and suggests that BET inhibition regulates both viral and cellular gene expression in HPV-associated HNSCC.
Collapse
Affiliation(s)
- Aakarsha Rao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Zijian Ni
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dhruthi Suresh
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Albert R. Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Denis L Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sooryanarayana Randall J. Varambally
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
20
|
Mori S, Ishii Y, Takeuchi T, Kukimoto I. Nuclear proinflammatory cytokine S100A9 enhances expression of human papillomavirus oncogenes via transcription factor TEAD1. J Virol 2023; 97:e0081523. [PMID: 37578237 PMCID: PMC10506480 DOI: 10.1128/jvi.00815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
21
|
Rodriguez I, Rossi NM, Keskus A, Xie Y, Ahmad T, Bryant A, Lou H, Paredes JG, Milano R, Rao N, Tulsyan S, Boland JF, Luo W, Liu J, O’Hanlon T, Bess J, Mukhina V, Gaykalova D, Yuki Y, Malik L, Billingsley K, Blauwendraat C, Carrington M, Yeager M, Mirabello L, Kolmogorov M, Dean M. Insights into the Mechanisms and Structure of Breakage-Fusion-Bridge Cycles in Cervical Cancer using Long-Read Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.21.23294276. [PMID: 37662332 PMCID: PMC10473792 DOI: 10.1101/2023.08.21.23294276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and this is one of the first analyses of these events using long-read sequencing. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes and only one BFB breakpoint showed chromothripsis. Five cell lines have a Chr11q BFB event, with YAP1/BIRC2/BIRC3 gene amplification. Indeed, YAP1 amplification is associated with a 10-year earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that cervical cancer patients with YAP1/BIRC2/BIRC3-amplification, especially those of African American ancestry, might benefit from targeted therapy. In summary, we uncovered new insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.
Collapse
Affiliation(s)
- Isabel Rodriguez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nicole M. Rossi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Ayse Keskus
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yi Xie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tanveer Ahmad
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Asher Bryant
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Hong Lou
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jesica Godinez Paredes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rose Milano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nina Rao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sonam Tulsyan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Joseph F. Boland
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Wen Luo
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jia Liu
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Tim O’Hanlon
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jazmyn Bess
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vera Mukhina
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medical Center, Baltimore, MD, USA
| | - Daria Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical System, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Laksh Malik
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA and Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Kimberley Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA and Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA and Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Meredith Yeager
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mikhail Kolmogorov
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
22
|
Li Y, Xiao M, Zhang Y, Li Z, Bai S, Su H, Peng R, Wang G, Hu X, Song X, Li X, Tang C, Lu G, Yin F, Zhang P, Du J. Identification of two novel papillomaviruses in belugas. Front Microbiol 2023; 14:1165839. [PMID: 37564289 PMCID: PMC10411887 DOI: 10.3389/fmicb.2023.1165839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Papillomaviruses (PVs) can cause hyperplasia in the skin and mucous membranes of humans, mammals, and non-mammalian animals, and are a significant risk factor for cervical and genital cancers. Methods Using next-generation sequencing (NGS), we identified two novel strains of papillomavirus, PV-HMU-1 and PV-HMU-2, in swabs taken from belugas (Delphinapterus leucas) at Polar Ocean Parks in Qingdao and Dalian. Results We amplified the complete genomes of both strains and screened ten belugas and one false killer whale (Pseudorca crassidens) for the late gene (L1) to determine the infection rate. In Qingdao, 50% of the two sampled belugas were infected with PV-HMU-1, while the false killer whale was negative. In Dalian, 71% of the eight sampled belugas were infected with PV-HMU-2. In their L1 genes, PV-HMU-1 and PV-HMU-2 showed 64.99 and 68.12% amino acid identity, respectively, with other members of Papillomaviridae. Phylogenetic analysis of combinatorial amino acid sequences revealed that PV-HMU-1 and PV-HMU-2 clustered with other known dolphin PVs but formed distinct branches. PVs carried by belugas were proposed as novel species under Firstpapillomavirinae. Conclusion The discovery of these two novel PVs enhances our understanding of the genetic diversity of papillomaviruses and their impact on the beluga population.
Collapse
Affiliation(s)
- Youyou Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, China
| | - Yun Zhang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zihan Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shijie Bai
- Marine Mammal and Marine Bioacoustics Laboratory, Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haoxiang Su
- National Health Commission, Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xinran Song
- Dalian Sun Asia Tourism Holding Co., Ltd., Dalian, China
| | - Xin Li
- Qingdao Polar Haichang Ocean Park, Qingdao, China
| | - Chuanning Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jiang Du
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- National Health Commission, Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Rossi NM, Dai J, Xie Y, Wangsa D, Heselmeyer-Haddad K, Lou H, Boland JF, Yeager M, Orozco R, Freites EA, Mirabello L, Gharzouzi E, Dean M. Extrachromosomal Amplification of Human Papillomavirus Episomes Is a Mechanism of Cervical Carcinogenesis. Cancer Res 2023; 83:1768-1781. [PMID: 36971511 PMCID: PMC10239328 DOI: 10.1158/0008-5472.can-22-3030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
SIGNIFICANCE Multimers of the HPV genome are generated in cervical tumors replicating as extrachromosomal episomes, which is associated with deletion and rearrangement of the HPV genome and provides a mechanism for oncogenesis without integration.
Collapse
Affiliation(s)
- Nicole M. Rossi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jieqiong Dai
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yi Xie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Darawalee Wangsa
- Center for Cancer Research, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Heselmeyer-Haddad
- Center for Cancer Research, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Lou
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph F. Boland
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Enrique Alvirez Freites
- Hospital Central Universitario “Dr. Antonio M Pineda,” Barquisimeto, Lara State, Venezuela, and Universidad Andino de Cusco, Cusco, Perú
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
24
|
Zeng X, Wang Y, Liu B, Rao X, Cao C, Peng F, Zhi W, Wu P, Peng T, Wei Y, Chu T, Xu M, Xu Y, Ding W, Li G, Lin S, Wu P. Multi-omics data reveals novel impacts of human papillomavirus integration on the epigenomic and transcriptomic signatures of cervical tumorigenesis. J Med Virol 2023; 95:e28789. [PMID: 37212325 DOI: 10.1002/jmv.28789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Integration of human papilloma virus (HPV) DNA into the human genome may progressively contribute to cervical carcinogenesis. To explore how HPV integration affects gene expression by altering DNA methylation during carcinogenesis, we analyzed a multiomics dataset for cervical cancer. We obtained multiomics data by HPV-capture sequencing, RNA sequencing, and Whole Genome Bisulfite Sequencing from 50 patients with cervical cancer. We detected 985 and 485 HPV-integration sites in matched tumor and adjacent paratumor tissues. Of these, LINC00486 (n = 19), LINC02425 (n = 11), LLPH (n = 11), PROS1 (n = 5), KLF5 (n = 4), LINC00392 (n = 3), MIR205HG (n = 3) and NRG1 (n = 3) were identified as high-frequency HPV-integrated genes, including five novel recurrent genes. Patients at clinical stage II had the highest number of HPV integrations. E6 and E7 genes of HPV16 but not HPV18 showed significantly fewer breakpoints than random distribution. HPV integrations occurring in exons were associated with altered gene expression in tumor tissues but not in paratumor tissues. A list of HPV-integrated genes regulated at transcriptomic or epigenetic level was reported. We also carefully checked the candidate genes with regulation pattern correlated in both levels. HPV fragments integrated at MIR205HG mainly came from the L1 gene of HPV16. RNA expression of PROS1 was downregulated when HPV integrated in its upstream region. RNA expression of MIR205HG was elevated when HPV integrated into its enhancer. The promoter methylation levels of PROS1 and MIR205HG were all negatively correlated with their gene expressions. Further experimental validations proved that upregulation of MIR205HG could promote the proliferative and migrative abilities of cervical cancer cells. Our data provides a new atlas for epigenetic and transcriptomic regulations regarding HPV integrations in cervical cancer genome. We demonstrate that HPV integration may affect gene expression by altering methylation levels of MIR205HG and PROS1. Our study provides novel biological and clinical insights into HPV-induced cervical cancer.
Collapse
Affiliation(s)
- Xi Zeng
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuyouye Wang
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjie Rao
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Canhui Cao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Peng
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Chu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoliang Li
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Suzuki H. Human papilloma virus hijacks enhancers to activate oncogenes in head and neck squamous cell carcinoma cells. Int J Cancer 2023; 152:1739-1740. [PMID: 36691827 DOI: 10.1002/ijc.34440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Affiliation(s)
- Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
26
|
Mima M, Okabe A, Hoshii T, Nakagawa T, Kurokawa T, Kondo S, Mizokami H, Fukuyo M, Fujiki R, Rahmutulla B, Yoshizaki T, Hanazawa T, Misawa K, Kaneda A. Tumorigenic activation around HPV integrated sites in head and neck squamous cell carcinoma. Int J Cancer 2023; 152:1847-1862. [PMID: 36650703 DOI: 10.1002/ijc.34439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
Human papillomavirus (HPV) is causally involved in the development of head and neck squamous cell carcinoma (HNSCC). The integration of HPV drives tumorigenesis through expression of oncogenic viral genes as well as genomic alterations in surrounding regions. To elucidate involvement of epigenetic dysregulation in tumorigenesis, we here performed integrated analyses of the epigenome, transcriptome and interactome using ChIP-seq, RNA-seq and Hi-C and 4C-seq for HPV(+) HNSCCs. We analyzed clinical HNSCC using The Cancer Genome Atlas data and found that genes neighboring HPV integration sites were significantly upregulated and were correlated with oncogenic phenotypes in HPV(+) HNSCCs. While we found four HPV integration sites in HPV(+) HNSCC cell line UPCI-SCC-090 through target enrichment sequencing, 4C-seq revealed 0.5 to 40 Mb of HPV-interacting regions (HPVIRs) where host genomic regions interacted with integrated HPV genomes. While 9% of the HPVIRs were amplified and activated epigenetically forming super-enhancers, the remaining non-amplified regions were found to show a significant increase in H3K27ac levels and an upregulation of genes associated with GO terms, for example, Signaling by WNT and Cell Cycle. Among those genes, ITPR3 was significantly upregulated, involving UPCI-SCC-090-specific super-enhancer formation around the ITPR3 promoter and in the 80-kb-downstream region. The knockdown of ITPR3 by siRNA or CRISPR deletions of the distant enhancer region led to a significant suppression of cell proliferation. The epigenetic activation of HPVIRs was also confirmed in other cell lines, UM-SCC-47 and UM-SCC-104. These data indicate that epigenetic activation in HPVIRs contributes, at least partially, to genesis of HPV(+) HNSCC.
Collapse
Affiliation(s)
- Masato Mima
- Department of Otorhinolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuya Nakagawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoya Kurokawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoru Kondo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Harue Mizokami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
27
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
28
|
Singh Kushwah A, Srivastava K, Banerjee M. Differential expression of DNA repair genes and treatment outcome of chemoradiotherapy (CRT) in cervical cancer. Gene 2023; 868:147389. [PMID: 36963733 DOI: 10.1016/j.gene.2023.147389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Cervical cancer (CaCx) is the malignancy of uterine cervix which induce by human papillomavirus (HPV) infections. HPV infection starts with the induction of double-stranded breaks by increasing oxidative stress and modulation of DNA repair pathways. Deficiency in DNA repair pathways and accumulation of DNA damage increases mutation rates resulting in genomic instability and cancer development. Patients with HPV-associated CaCx display increased sensitivity to cisplatin-based chemoradiotherapy (CRT) and improved survival rates. However, the cellular mechanisms responsible for this characteristic difference are unclear. Here, we have evaluated expression of DNA repair genes in peripheral blood cells and correlated them with treatment outcomes. A total of 211 study subjects includes in the study comprised 103 CaCx patients and 108 healthy controls. All the study subjects were analyzed for the expression profile of DNA repair genes by using real-time PCR (RT-PCR). The differentially expressed DNA repair gene was correlated with the treatment outcome of CRT. OGG1, XRCC2, XRCC3, XRCC4 and XRCC6 genes were found to be significant (P=0.001) down-regulated as compared to controls. While XRCC5 and RAD51 showed significant up-regulated (P=0.024 and 0.041) in CaCx patients. XRCC6 was associated (P=0.033) with poor vital while up-regulated RAD51 showed slight association (P=0.075) with better vital with an increased 2.96- and 2.33-fold risk in the study population. In the case of overall survival, down-regulated XRCC4 was associated (P=0.042) with poor survival (27 months) with the least hazard ratio (0.56 HR). Down-regulated OGG1 involved BER, XRCC2 and XRCC3 in homologous recombination and XRCC4, XRCC5 and XRCC6 in Non-homologous end-joining repair, which showed a deficiency of DNA repair capacity resulting caused of an accumulation of DNA damage and genome instability. Impaired DNA repair gene expression is responsible for poor prognosis and survival in CaCx. Therefore, these gene expressions can be considered a potential prognostic, diagnostic and therapeutic biomarker for CaCx.
Collapse
Affiliation(s)
- Atar Singh Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, Uttar Pradesh, India; Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Kirti Srivastava
- Department of Radiotherapy, King George's Medical University, Lucknow-226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, Uttar Pradesh, India.
| |
Collapse
|
29
|
Kusakabe M, Taguchi A, Tanikawa M, Hoshi D, Tsuchimochi S, Qian X, Toyohara Y, Kawata A, Wagatsuma R, Yamaguchi K, Yamamoto Y, Ikemura M, Sone K, Mori-Uchino M, Matsunaga H, Tsuruga T, Nagamatsu T, Kukimoto I, Wada-Hiraike O, Kawazu M, Ushiku T, Takeyama H, Oda K, Kawana K, Hippo Y, Osuga Y. Application of organoid culture from HPV18-positive small cell carcinoma of the uterine cervix for precision medicine. Cancer Med 2023; 12:8476-8489. [PMID: 36691316 PMCID: PMC10134306 DOI: 10.1002/cam4.5588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/17/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Small cell carcinoma of the uterine cervix (SCCC) is a rare and highly malignant human papillomavirus (HPV)-associated cancer in which human genes related to the integration site can serve as a target for precision medicine. The aim of our study was to establish a workflow for precision medicine of HPV-associated cancer using patient-derived organoid. METHODS Organoid was established from the biopsy of a patient diagnosed with HPV18-positive SCCC. Therapeutic targets were identified by whole exome sequencing (WES) and RNA-seq analysis. Drug sensitivity testing was performed using organoids and organoid-derived mouse xenograft model. RESULTS WES revealed that both the original tumor and organoid had 19 somatic variants in common, including the KRAS p.G12D pathogenic variant. Meanwhile, RNA-seq revealed that HPV18 was integrated into chromosome 8 at 8q24.21 with increased expression of the proto-oncogene MYC. Drug sensitivity testing revealed that a KRAS pathway inhibitor exerted strong anti-cancer effects on the SCCC organoid compared to a MYC inhibitor, which were also confirmed in the xenograft model. CONCLUSION In this study, we confirmed two strategies for identifying therapeutic targets of HPV-derived SCCC, WES for identifying pathogenic variants and RNA sequencing for identifying HPV integration sites. Organoid culture is an effective tool for unveiling the oncogenic process of rare tumors and can be a breakthrough for the development of precision medicine for patients with HPV-positive SCCC.
Collapse
Affiliation(s)
- Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Hoshi
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Saki Tsuchimochi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xi Qian
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,CBBD-OIL, AIST-Waseda University, Tokyo, Japan
| | - Kohei Yamaguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,CBBD-OIL, AIST-Waseda University, Tokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Fan J, Fu Y, Peng W, Li X, Shen Y, Guo E, Lu F, Zhou S, Liu S, Yang B, Qin X, Hu D, Xiao R, Li X, Yang S, Yuan C, Shu Y, Huang H, Wan T, Pi Y, Wang S, Chen W, Wang H, Zhong L, Yuan L, Wen B, Kong B, Mills GB, Zou D, Xia B, Song K, Chen G, Ma D, Sun C. Multi-omics characterization of silent and productive HPV integration in cervical cancer. CELL GENOMICS 2023; 3:100211. [PMID: 36777180 PMCID: PMC9903858 DOI: 10.1016/j.xgen.2022.100211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/21/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023]
Abstract
Cervical cancer (CC) that is caused by high-risk human papillomavirus (HPV) remains a significant public health problem worldwide. HPV integration sites can be silent or actively transcribed, leading to the production of viral-host fusion transcripts. Herein, we demonstrate that only productive HPV integration sites were nonrandomly distributed across both viral and host genomes, suggesting that productive integration sites are under selection and likely to contribute to CC pathophysiology. Furthermore, using large-scale, multi-omics (clinical, genomic, transcriptional, proteomic, phosphoproteomic, and single-cell) data, we demonstrate that tumors with productive HPV integration are associated with higher E6/E7 proteins and enhanced tumor aggressiveness and immunoevasion. Importantly, productive HPV integration increases from carcinoma in situ to advanced disease. This study improves our understanding of the functional consequences of HPV fusion transcripts on the biology and pathophysiology of HPV-driven CCs, suggesting that productive HPV integration should be evaluated as an indicator of high risk for progression to aggressive cancers.
Collapse
Affiliation(s)
- Junpeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Wenju Peng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuanming Shen
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610000, China
| | - Si Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Siqi Yang
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250000, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan 250000, China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan 250000, China
| | - Yao Shu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250000, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan 250000, China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan 250000, China
| | - He Huang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510000, China
| | - Ting Wan
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510000, China
| | - Yanan Pi
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Shuxiang Wang
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Wenjuan Chen
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 404100, China
| | - Haixia Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 404100, China
| | - Lin Zhong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 404100, China
| | - Li Yuan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 404100, China
| | - Baogang Wen
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 404100, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250000, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan 250000, China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan 250000, China
| | - Gordon B. Mills
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Sciences University, Portland, OR 97201, USA
- Knight Cancer Institute, Portland, OR 97201, USA
| | - Dongling Zou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 404100, China
| | - Bairong Xia
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250000, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan 250000, China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan 250000, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
31
|
Friedman MJ, Lee H, Kwon YC, Oh S. Dynamics of Viral and Host 3D Genome Structure upon Infection. J Microbiol Biotechnol 2022; 32:1515-1526. [PMID: 36398441 PMCID: PMC9843816 DOI: 10.4014/jmb.2208.08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Young-Chan Kwon
- Center for Convergent Research of Emerging Virus Infections, Korean Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soohwan Oh
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
32
|
Løvestad AH, Repesa A, Costanzi JM, Lagström S, Christiansen IK, Rounge TB, Ambur OH. Differences in integration frequencies and APOBEC3 profiles of five high-risk HPV types adheres to phylogeny. Tumour Virus Res 2022; 14:200247. [PMID: 36100161 PMCID: PMC9485212 DOI: 10.1016/j.tvr.2022.200247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent infection with Human Papillomavirus (HPV) is responsible for almost all cases of cervical cancers, and HPV16 and HPV18 associated with the majority of these. These types differ in the proportion of viral minor nucleotide variants (MNVs) caused by APOBEC3 mutagenesis as well as integration frequencies. Whether these traits extend to other types remains uncertain. This study aimed to investigate and compare genomic variability and chromosomal integration in the two phylogenetically distinct Alpha-7 and Alpha-9 clades of carcinogenic HPV types. The TaME-seq protocol was employed to sequence cervical cell samples positive for HPV31, HPV33 or HPV45 and combine these with data from a previous study on HPV16 and HPV18. APOBEC3 mutation signatures were found in Alpha-9 (HPV16/31/33) but not in Alpha-7 (HPV18/45). HPV45 had significantly more MNVs compared to the other types. Alpha-7 had higher integration frequency compared to Alpha-9. An increase in integration frequency with increased diagnostic severity was found for Alpha-7. The results highlight important differences and broaden our understanding of the molecular mechanisms behind cervical cancer induced by high-risk HPV types from the Alpha-7 and Alpha-9 clades.
Collapse
Affiliation(s)
- Alexander Hesselberg Løvestad
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Adina Repesa
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Jean-Marc Costanzi
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway; Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
33
|
Wang Y, Kumar KR, Liehr T. Molecular combing and its application in clinical settings. Mol Cytogenet 2022; 15:50. [DOI: 10.1186/s13039-022-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractMolecular combing technology (MCT) is an effective means for stretching DNA molecules and making them thus accessible for in situ studies. MCT uses the force exerted in the process of liquid flow via surface tension to stretch DNA molecules and spread them on solid surfaces, i.e. glass cover slips. Many DNA molecules can be stretched at the same time in parallel and neatly arranged side-by-side, making the approach convenient for statistical analysis. Accordingly, DNA replication and transcription can be studied at the single molecule level. In this paper, the principle, experimental methods, important applications, advantages and shortcuts of MCT in medical field are presented and discussed.
Collapse
|
34
|
Wendel SO, Stoltz A, Xu X, Snow JA, Wallace N. HPV 16 E7 alters translesion synthesis signaling. Virol J 2022; 19:165. [PMID: 36266721 DOI: 10.1186/s12985-022-01899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
A subset of human papillomaviruses (HPVs) are the cause of virtually every cervical cancer. These so-called "high-risk" HPVs encode two major oncogenes (HPV E6 and E7) that are necessary for transformation. Among "high-risk" HPVs, HPV16 causes most cervical cancers and is often used as a representative model for oncogenic HPVs. The HPV16 E7 oncogene facilitates the HPV16 lifecycle by binding and destabilizing RB, which ensures the virus has access to cellular replication machinery. RB destabilization increases E2F1-responsive gene expression and causes replication stress. While HPV16 E6 mitigates some of the deleterious effects associated with this replication stress by degrading p53, cells undergo separate adaptations to tolerate the stress. Here, we demonstrate that this includes the activation of the translesion synthesis (TLS) pathway, which prevents replication stress from causing replication fork collapse. We show that significantly elevated TLS gene expression is more common in cervical cancers than 15 out of the 16 the other cancer types that we analyzed. In addition to increased TLS protein abundance, HPV16 E7 expressing cells have a reduced ability to induct a critical TLS factor (POLη) in response to replication stress-inducing agents. Finally, we show that increased expression of at least one TLS gene is associated with improved survival for women with cervical cancer.
Collapse
Affiliation(s)
| | - Avanelle Stoltz
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Xuan Xu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jazmine A Snow
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
35
|
Direct Comparison of HPV16 Viral Genomic Integration, Copy Loss, and Structural Variants in Oropharyngeal and Uterine Cervical Cancers Reveal Distinct Relationships to E2 Disruption and Somatic Alteration. Cancers (Basel) 2022; 14:cancers14184488. [PMID: 36139648 PMCID: PMC9496734 DOI: 10.3390/cancers14184488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Squamous cell carcinoma of the oropharynx caused by HPV type 16 (HPV16+ OPSCC) is the most common HPV-associated malignancy in the USA and has many molecular differences from uterine cervical squamous cell carcinoma (UCSCC). Our understanding of HPV oncogenesis relied on studies of UCSCC revealing a consensus model reliant on HPV integration with a loss of E2. Here, we compare patterns of HPV integration in UCSCC and OPSCC by analysis of affinity capture sequencing of the HPV16 genome in 104 OPSCC and 44 UCSCC tumors. These cohorts were contemporaneously sequenced using an identical strategy. Integration was identified using discordant read pair clustering and assembly-based approaches. Viral integration sites, structural variants, and copy losses were examined. While large-scale deep losses of HPV16 genes were common in UCSCC and were associated with E2 loss, deep copy losses of the HPV16 genome were infrequent in HPV16+ OPSCC. Similarly, structural variants within HPV16 favored E2 loss in UCSCC but not OPSCC. HPV16 integration sites were non-random, with recurrent integration hot-spots identified. OPSCC tumors had many more integration sites per tumor when compared to UCSCC and had more integration sites in genomic regions with high gene density. These data show that viral integration and E2 disruption are distinct in UCSCC and OPSCC. Our findings also add to growing literature suggesting that HPV tumorigenesis in OPSCC does not follow the model developed based on UCSCC.
Collapse
|
36
|
Linden N, Jones RB. Potential multi-modal effects of provirus integration on HIV-1 persistence: lessons from other viruses. Trends Immunol 2022; 43:617-629. [PMID: 35817699 PMCID: PMC9429957 DOI: 10.1016/j.it.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists as proviruses integrated into the genomic DNA of CD4+ T cells. The mechanisms underlying the persistence and clonal expansion of these cells remain incompletely understood. Cases have been described in which proviral integration can alter host gene expression to drive cellular proliferation. Here, we review observations from other genome-integrating human viruses to propose additional putative modalities by which HIV-1 integration may alter cellular function to favor persistence, such as by altering susceptibility to cytotoxicity in virus-expressing cells. We propose that signals implicating such mechanisms may have been masked thus far by the preponderance of defective and/or nonreactivatable HIV-1 proviruses, but could be revealed by focusing on the integration sites of intact proviruses with expression potential.
Collapse
Affiliation(s)
- Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
37
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
38
|
Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer. Nat Commun 2022; 13:2563. [PMID: 35538075 PMCID: PMC9091225 DOI: 10.1038/s41467-022-30190-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/19/2022] [Indexed: 01/03/2023] Open
Abstract
Integration of human papillomavirus (HPV) DNA into the human genome is considered as a key event in cervical carcinogenesis. Here, we perform comprehensive characterization of large-range virus-human integration events in 16 HPV16-positive cervical tumors using the Nanopore long-read sequencing technology. Four distinct integration types characterized by the integrated HPV DNA segments are identified with Type B being particularly notable as lacking E6/E7 genes. We further demonstrate that multiple clonal integration events are involved in the use of shared breakpoints, the induction of inter-chromosomal translocations and the formation of extrachromosomal circular virus-human hybrid structures. Combined with the corresponding RNA-seq data, we highlight LINC00290, LINC02500 and LENG9 as potential driver genes in cervical cancer. Finally, we reveal the spatial relationship of HPV integration and its various structural variations as well as their functional consequences in cervical cancer. These findings provide insight into HPV integration and its oncogenic progression in cervical cancer. The molecular mechanisms underlying cervical carcinogenesis following integration of HPV DNA into the human genome remain elusive. Here, the authors perform long-read sequencing in 16 HPV16-positive cervical tumors and identify distinct integration types, structural variations and potential driver genes.
Collapse
|
39
|
Bai H, Yang J, Meng S, Liu C. Oral Microbiota-Driven Cell Migration in Carcinogenesis and Metastasis. Front Cell Infect Microbiol 2022; 12:864479. [PMID: 35573798 PMCID: PMC9103474 DOI: 10.3389/fcimb.2022.864479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The oral cavity harbors approximately 1,000 microbial species, and both pathogenic and commensal strains are involved in the development of carcinogenesis by stimulating chronic inflammation, affecting cell proliferation, and inhibiting cell apoptosis. Moreover, some substances produced by oral bacteria can also act in a carcinogenic manner. The link between oral microbiota and chronic inflammation as well as cell proliferation has been well established. Recently, increasing evidence has indicated the association of the oral microbiota with cell migration, which is crucial in regulating devastating diseases such as cancer. For instance, increased cell migration induced the spread of highly malignant cancer cells. Due to advanced technologies, the mechanistic understanding of cell migration in carcinogenesis and cancer metastasis is undergoing rapid progress. Thus, this review addressed the complexities of cell migration in carcinogenesis and cancer metastasis. We also integrate recent findings on the molecular mechanisms by which the oral microbiota regulates cell migration, with emphasis on the effect of the oral microbiota on adhesion, polarization, and guidance. Finally, we also highlight critical techniques, such as intravital microscopy and superresolution microscopy, for studies in this field.
Collapse
Affiliation(s)
- Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| |
Collapse
|
40
|
Yang S, Zhao Q, Tang L, Chen Z, Wu Z, Li K, Lin R, Chen Y, Ou D, Zhou L, Xu J, Qin Q. Whole Genome Assembly of Human Papillomavirus by Nanopore Long-Read Sequencing. Front Genet 2022; 12:798608. [PMID: 35058971 PMCID: PMC8764290 DOI: 10.3389/fgene.2021.798608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a causal agent for most cervical cancers. The physical status of the HPV genome in these cancers could be episomal, integrated, or both. HPV integration could serve as a biomarker for clinical diagnosis, treatment, and prognosis. Although whole-genome sequencing by next-generation sequencing (NGS) technologies, such as the Illumina sequencing platform, have been used for detecting integrated HPV genome in cervical cancer, it faces challenges of analyzing long repeats and translocated sequences. In contrast, Oxford nanopore sequencing technology can generate ultra-long reads, which could be a very useful tool for determining HPV genome sequence and its physical status in cervical cancer. As a proof of concept, in this study, we completed whole genome sequencing from a cervical cancer tissue and a CaSki cell line with Oxford Nanopore Technologies. From the cervical cancer tissue, a 7,894 bp-long HPV35 genomic sequence was assembled from 678 reads at 97-fold coverage of HPV genome, sharing 99.96% identity with the HPV sequence obtained by Sanger sequencing. A 7904 bp-long HPV16 genomic sequence was assembled from data generated from the CaSki cell line at 3857-fold coverage, sharing 99.99% identity with the reference genome (NCBI: U89348). Intriguingly, long reads generated by nanopore sequencing directly revealed chimeric cellular-viral sequences and concatemeric genomic sequences, leading to the discovery of 448 unique integration breakpoints in the CaSki cell line and 60 breakpoints in the cervical cancer sample. Taken together, nanopore sequencing is a unique tool to identify HPV sequences and would shed light on the physical status of HPV genome in its associated cancers.
Collapse
Affiliation(s)
- Shuaibing Yang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Qianqian Zhao
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Lihua Tang
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zejia Chen
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhaoting Wu
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Kaixin Li
- Undergraduate Program of Innovation and Entrepreneurship, Shantou University Medical College, Shantou, China
| | - Ruoru Lin
- Undergraduate Program of Innovation and Entrepreneurship, Shantou University Medical College, Shantou, China
| | - Yang Chen
- Undergraduate Program of Innovation and Entrepreneurship, Shantou University Medical College, Shantou, China
| | - Danlin Ou
- Undergraduate Program of Innovation and Entrepreneurship, Shantou University Medical College, Shantou, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou, China
| |
Collapse
|
41
|
Symer DE, Akagi K, Geiger HM, Song Y, Li G, Emde AK, Xiao W, Jiang B, Corvelo A, Toussaint NC, Li J, Agrawal A, Ozer E, El-Naggar AK, Du Z, Shewale JB, Stache-Crain B, Zucker M, Robine N, Coombes KR, Gillison ML. Diverse tumorigenic consequences of human papillomavirus integration in primary oropharyngeal cancers. Genome Res 2021; 32:55-70. [PMID: 34903527 PMCID: PMC8744672 DOI: 10.1101/gr.275911.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC) and immune evasion (i.e., CD274). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression.
Collapse
Affiliation(s)
- David E Symer
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Yang Song
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gaiyun Li
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Weihong Xiao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bo Jiang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - André Corvelo
- New York Genome Center, New York, New York 10013, USA
| | | | - Jingfeng Li
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Amit Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Enver Ozer
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Adel K El-Naggar
- Division of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zoe Du
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jitesh B Shewale
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Mark Zucker
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
42
|
Suzuki HI, Onimaru K. Biomolecular condensates in cancer biology. Cancer Sci 2021; 113:382-391. [PMID: 34865286 PMCID: PMC8819300 DOI: 10.1111/cas.15232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the characteristics of cancer cells is essential for the development of improved diagnosis and therapeutics. From a gene regulation perspective, the super‐enhancer concept has been introduced to systematically understand the molecular mechanisms underlying the identities of various cell types and has been extended to the analysis of cancer cells and cancer genome alterations. In addition, several characteristic features of super‐enhancers have led to the recognition of the link between gene regulation and biomolecular condensates, which is often mediated by liquid‐liquid phase separation. Several lines of evidence have suggested molecular and biophysical principles and their alterations in cancer cells, which are particularly associated with gene regulation and cell signaling (“ transcriptional” and “signaling” condensates). These findings collectively suggest that the modification of biomolecular condensates represents an important mechanism by which cancer cells acquire various cancer hallmark traits and establish functional innovation for cancer initiation and progression. The condensate model also provides the molecular basis of the vulnerability of cancer cells to transcriptional perturbation and further suggests the possibility of therapeutic targeting of condensates. This review summarizes recent findings regarding the relationships between super‐enhancers and biomolecular condensate models, multiple scenarios of condensate alterations in cancers, and the potential of the condensate model for therapeutic development.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Koh Onimaru
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| |
Collapse
|
43
|
Warburton A, Markowitz TE, Katz JP, Pipas JM, McBride AA. Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. NPJ Genom Med 2021; 6:101. [PMID: 34848725 PMCID: PMC8632991 DOI: 10.1038/s41525-021-00264-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Oncogenic human papillomavirus (HPV) genomes are often integrated into host chromosomes in HPV-associated cancers. HPV genomes are integrated either as a single copy or as tandem repeats of viral DNA interspersed with, or without, host DNA. Integration occurs frequently in common fragile sites susceptible to tandem repeat formation and the flanking or interspersed host DNA often contains transcriptional enhancer elements. When co-amplified with the viral genome, these enhancers can form super-enhancer-like elements that drive high viral oncogene expression. Here we compiled highly curated datasets of HPV integration sites in cervical (CESC) and head and neck squamous cell carcinoma (HNSCC) cancers, and assessed the number of breakpoints, viral transcriptional activity, and host genome copy number at each insertion site. Tumors frequently contained multiple distinct HPV integration sites but often only one “driver” site that expressed viral RNA. As common fragile sites and active enhancer elements are cell-type-specific, we mapped these regions in cervical cell lines using FANCD2 and Brd4/H3K27ac ChIP-seq, respectively. Large enhancer clusters, or super-enhancers, were also defined using the Brd4/H3K27ac ChIP-seq dataset. HPV integration breakpoints were enriched at both FANCD2-associated fragile sites and enhancer-rich regions, and frequently showed adjacent focal DNA amplification in CESC samples. We identified recurrent integration “hotspots” that were enriched for super-enhancers, some of which function as regulatory hubs for cell-identity genes. We propose that during persistent infection, extrachromosomal HPV minichromosomes associate with these transcriptional epicenters and accidental integration could promote viral oncogene expression and carcinogenesis.
Collapse
Affiliation(s)
- Alix Warburton
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua P Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA.
| |
Collapse
|
44
|
Multi-omics mapping of human papillomavirus integration sites illuminates novel cervical cancer target genes. Br J Cancer 2021; 125:1408-1419. [PMID: 34526665 PMCID: PMC8575955 DOI: 10.1038/s41416-021-01545-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Integration of human papillomavirus (HPV) into the host genome is a dominant feature of invasive cervical cancer (ICC), yet the tumorigenicity of cis genomic changes at integration sites remains largely understudied. METHODS Combining multi-omics data from The Cancer Genome Atlas with patient-matched long-read sequencing of HPV integration sites, we developed a strategy for using HPV integration events to identify and prioritise novel candidate ICC target genes (integration-detected genes (IDGs)). Four IDGs were then chosen for in vitro functional studies employing small interfering RNA-mediated knockdown in cell migration, proliferation and colony formation assays. RESULTS PacBio data revealed 267 unique human-HPV breakpoints comprising 87 total integration events in eight tumours. Candidate IDGs were filtered based on the following criteria: (1) proximity to integration site, (2) clonal representation of integration event, (3) tumour-specific expression (Z-score) and (4) association with ICC survival. Four candidates prioritised based on their unknown function in ICC (BNC1, RSBN1, USP36 and TAOK3) exhibited oncogenic properties in cervical cancer cell lines. Further, annotation of integration events provided clues regarding potential mechanisms underlying altered IDG expression in both integrated and non-integrated ICC tumours. CONCLUSIONS HPV integration events can guide the identification of novel IDGs for further study in cervical carcinogenesis and as putative therapeutic targets.
Collapse
|
45
|
Liblekas L, Piirsoo A, Laanemets A, Tombak EM, Laaneväli A, Ustav E, Ustav M, Piirsoo M. Analysis of the Replication Mechanisms of the Human Papillomavirus Genomes. Front Microbiol 2021; 12:738125. [PMID: 34733254 PMCID: PMC8558456 DOI: 10.3389/fmicb.2021.738125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
The life-cycle of human papillomaviruses (HPVs) includes three distinct phases of the viral genome replication. First, the viral genome is amplified in the infected cells, and this amplification is often accompanied by the oligomerization of the viral genomes. Second stage includes the replication of viral genomes in concert with the host cell genome. The viral genome is further amplified during the third stage of the viral-life cycle, which takes place only in the differentiated keratinocytes. We have previously shown that the HPV18 genomes utilize at least two distinct replication mechanisms during the initial amplification. One of these mechanisms is a well-described bidirectional replication via theta type of replication intermediates. The nature of another replication mechanism utilized by HPV18 involves most likely recombination-dependent replication. In this paper, we show that the usage of different replication mechanisms is a property shared also by other HPV types, namely HPV11 and HPV5. We further show that the emergence of the recombination dependent replication coincides with the oligomerization of the viral genomes and is dependent on the replicative DNA polymerases. We also show that the oligomeric genomes of HPV18 replicate almost exclusively using recombination dependent mechanism, whereas monomeric HPV31 genomes replicate bi-directionally during the maintenance phase of the viral life-cycle.
Collapse
Affiliation(s)
- Lisett Liblekas
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | | - Ene Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
46
|
Warburton A, Della Fera AN, McBride AA. Dangerous Liaisons: Long-Term Replication with an Extrachromosomal HPV Genome. Viruses 2021; 13:1846. [PMID: 34578427 PMCID: PMC8472234 DOI: 10.3390/v13091846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
Papillomaviruses cause persistent, and usually self-limiting, infections in the mucosal and cutaneous surfaces of the host epithelium. However, in some cases, infection with an oncogenic HPV can lead to cancer. The viral genome is a small, double-stranded circular DNA molecule that is assembled into nucleosomes at all stages of infection. The viral minichromosome replicates at a low copy number in the nucleus of persistently infected cells using the cellular replication machinery. When the infected cells differentiate, the virus hijacks the host DNA damage and repair pathways to replicate viral DNA to a high copy number to generate progeny virions. This strategy is highly effective and requires a close association between viral and host chromatin, as well as cellular processes associated with DNA replication, repair, and transcription. However, this association can lead to accidental integration of the viral genome into host DNA, and under certain circumstances integration can promote oncogenesis. Here we describe the fate of viral DNA at each stage of the viral life cycle and how this might facilitate accidental integration and subsequent carcinogenesis.
Collapse
Affiliation(s)
| | | | - Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.); (A.N.D.F.)
| |
Collapse
|
47
|
Mouse papillomavirus type 1 (MmuPV1) DNA is frequently integrated in benign tumors by microhomology-mediated end-joining. PLoS Pathog 2021; 17:e1009812. [PMID: 34343212 PMCID: PMC8362953 DOI: 10.1371/journal.ppat.1009812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
MmuPV1 is a useful model for studying papillomavirus-induced tumorigenesis. We used RNA-seq to look for chimeric RNAs that map to both MmuPV1 and host genomes. In tumor tissues, a higher proportion of total viral reads were virus-host chimeric junction reads (CJRs) (1.9‰ - 7‰) than in tumor-free tissues (0.6‰ - 1.3‰): most CJRs mapped to the viral E2/E4 region. Although most of the MmuPV1 integration sites were mapped to intergenic regions and introns throughout the mouse genome, integrations were seen more than once in several genes: Malat1, Krt1, Krt10, Fabp5, Pard3, and Grip1; these data were confirmed by rapid amplification of cDNA ends (RACE)-Single Molecule Real-Time (SMRT)-seq or targeted DNA-seq. Microhomology sequences were frequently seen at host-virus DNA junctions. MmuPV1 infection and integration affected the expression of host genes. We found that factors for DNA double-stranded break repair and microhomology-mediated end-joining (MMEJ), such as H2ax, Fen1, DNA polymerase Polθ, Cdk1, and Plk1, exhibited a step-wise increase and Mdc1 a decrease in expression in MmuPV1-infected tissues and MmuPV1 tumors relative to normal tissues. Increased expression of mitotic kinases CDK1 and PLK1 appears to be correlated with CtIP phosphorylation in MmuPV1 tumors, suggesting a role for MMEJ-mediated DNA joining in the MmuPV1 integration events that are associated with MmuPV1-induced progression of tumors. Persistent high-risk HPV infection leads viral DNA integration into the host genome and promotes viral carcinogenesis. We have been using the MmuPV1 mouse-infection model to study papillomavirus tumorigenesis and asked whether MmuPV1 DNA also integrates into the genomes of infected mouse cells. Strikingly, we found that MmuPV1 integration into the infected host genome, like high-risk HPV infections, is very common and the mapped integration sites were distributed on all of the mouse chromosomes. Consistently, we identified microhomology sequences in the range of 2–10 nts always at the integration junction regions. We further verified the MMEJ-mediated viral DNA integration in tumor tissues during MmuPV1 infection and a step-wise increase in the expression of the DNA repair MMEJ host factors from normal tissues, to tumor-free MmuPV1 infected tissues, and then to MmuPV1 tumors. Our observations provide the first evidence of MmuPV1 integration in virus-infected cells and a conceptual advance of how papillomavirus DNA integration contributes to the development of papillomavirus-associated precancers to cancers.
Collapse
|
48
|
Groves IJ, Drane ELA, Michalski M, Monahan JM, Scarpini CG, Smith SP, Bussotti G, Várnai C, Schoenfelder S, Fraser P, Enright AJ, Coleman N. Short- and long-range cis interactions between integrated HPV genomes and cellular chromatin dysregulate host gene expression in early cervical carcinogenesis. PLoS Pathog 2021; 17:e1009875. [PMID: 34432858 PMCID: PMC8439666 DOI: 10.1371/journal.ppat.1009875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/14/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.
Collapse
Affiliation(s)
- Ian J. Groves
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emma L. A. Drane
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Michalski
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jack M. Monahan
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Cinzia G. Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen P. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Giovanni Bussotti
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
McBride AA, Warburton A, Khurana S. Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Front Mol Biosci 2021; 8:725794. [PMID: 34386523 PMCID: PMC8353396 DOI: 10.3389/fmolb.2021.725794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle.
Collapse
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
50
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|