1
|
Almatroudi A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. BIOLOGY 2025; 14:165. [PMID: 40001933 PMCID: PMC11852148 DOI: 10.3390/biology14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Healthcare-associated infections pose a significant global health challenge, negatively impacting patient outcomes and burdening healthcare systems. A major contributing factor to healthcare-associated infections is the formation of biofilms, structured microbial communities encased in a self-produced extracellular polymeric substance matrix. Biofilms are critical in disease etiology and antibiotic resistance, complicating treatment and infection control efforts. Their inherent resistance mechanisms enable them to withstand antibiotic therapies, leading to recurrent infections and increased morbidity. This review explores the development of biofilms and their dual roles in health and disease. It highlights the structural and protective functions of the EPS matrix, which shields microbial populations from immune responses and antimicrobial agents. Key molecular mechanisms of biofilm resistance, including restricted antibiotic penetration, persister cell dormancy, and genetic adaptations, are identified as significant barriers to effective management. Biofilms are implicated in various clinical contexts, including chronic wounds, medical device-associated infections, oral health complications, and surgical site infections. Their prevalence in hospital environments exacerbates infection control challenges and underscores the urgent need for innovative preventive and therapeutic strategies. This review evaluates cutting-edge approaches such as DNase-mediated biofilm disruption, RNAIII-inhibiting peptides, DNABII proteins, bacteriophage therapies, antimicrobial peptides, nanoparticle-based solutions, antimicrobial coatings, and antimicrobial lock therapies. It also examines critical challenges associated with biofilm-related healthcare-associated infections, including diagnostic difficulties, disinfectant resistance, and economic implications. This review emphasizes the need for a multidisciplinary approach and underscores the importance of understanding biofilm dynamics, their role in disease pathogenesis, and the advancements in therapeutic strategies to combat biofilm-associated infections effectively in clinical settings. These insights aim to enhance treatment outcomes and reduce the burden of biofilm-related diseases.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Wu X, Alibayov B, Xiang X, Lattar SM, Sakai F, Medders AA, Antezana BS, Keller LE, Vidal AGJ, Tzeng YL, Robinson DA, Stephens DS, Yu Y, Vidal JE. Ultrastructural, metabolic and genetic characteristics of determinants facilitating the acquisition of macrolide resistance by Streptococcus pneumoniae. Drug Resist Updat 2024; 77:101138. [PMID: 39167981 PMCID: PMC11560628 DOI: 10.1016/j.drup.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
AIMS To investigate the molecular events associated with acquiring macrolide resistance genes [mefE/mel (Mega) or ermB] in Streptococcus pneumoniae (Spn) during nasopharyngeal colonization. METHODS AND RESULTS Genomic analysis of 128 macrolide-resistant Spn isolates revealed recombination events in genes of the conjugation apparatus, or the competence system, in strains carrying Tn916-related elements. Studies using confocal and electron microscopy demonstrated that during the transfer of Tn916-related elements in nasopharyngeal cell biofilms, pneumococcal strains formed clusters facilitating their acquisition of resistance determinants at a high recombination frequency (rF). Remarkably, these aggregates comprise both encapsulated and nonencapsulated pneumococci that span extracellular and intracellular compartments. rF assessments showed similar rates regardless Mega was associated with large integrative and conjugative elements (ICEs) (>23 kb) or not (∼5.4 kb). The rF for Mega Class IV(c) insertion region (∼53 kb) was three orders of magnitude higher than the transformation of the capsule locus. Metabolomics studies of the microenvironment created by colonization of human nasopharyngeal cells revealed a link between the acquisition of ICEs and the pathways involving nicotinic acid and sucrose. CONCLUSIONS Pneumococcal clusters, both extracellular and intracellular, facilitate macrolide resistance acquisition, and ICEs were acquired at a higher frequency than the capsule locus. Metabolic changes could serve as intervention targets.
Collapse
Affiliation(s)
- Xueqing Wu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Babek Alibayov
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Santiago M Lattar
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Fuminori Sakai
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Austin A Medders
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Brenda S Antezana
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - Lance E Keller
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Ana G J Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Yih-Ling Tzeng
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - David S Stephens
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - Yunsong Yu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China.
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States.
| |
Collapse
|
3
|
Wu X, Alibayov B, Xiang X, Lattar SM, Sakai F, Medders AA, Antezana B, Keller L, Vidal AGJ, Tzeng YL, Robinson DA, Stephens D, Yu Y, Vidal JE. Ultrastructural, metabolic and genetic determinants of the acquisition of macrolide resistance by Streptococcus pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573471. [PMID: 38234816 PMCID: PMC10793443 DOI: 10.1101/2023.12.27.573471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Aim Streptococcus pneumoniae (Spn) acquires genes for macrolide resistance, MEGA or ermB, in the human host. These genes are carried either in the chromosome, or on integrative conjugative elements (ICEs). Here, we investigated molecular determinants of the acquisition of macrolide resistance. Methods and Results Whole genome analysis was conducted for 128 macrolide-resistant pneumococcal isolates to identify the presence of MEGA (44.5%, 57/128) or ermB (100%), and recombination events in Tn916-related elements or in the locus comCDE encoding competence genes. Confocal and electron microscopy studies demonstrated that, during the acquisition of macrolide resistance, pneumococcal strains formed clusters of varying size, with the largest aggregates having a median size of ~1600 μm2. Remarkably, these pneumococcal aggregates comprise both encapsulated and nonencapsulated pneumococci, exhibited physical interaction, and spanned extracellular and intracellular compartments. We assessed the recombination frequency (rF) for the acquisition of macrolide resistance by a recipient D39 strain, from pneumococcal strains carrying MEGA (~5.4 kb) in the chromone, or in large ICEs (>23 kb). Notably, the rF for the acquisition of MEGA, whether in the chromosome or carried on an ICE was similar. However, the rF adjusted to the acquisition of the full-length ICE (~52 kb), compared to that of the capsule locus (~23 kb) that is acquired by transformation, was three orders of magnitude higher. Finally, metabolomics studies revealed a link between the acquisition of ICE and the metabolic pathways involving nicotinic acid and sucrose. Conclusions Extracellular and intracellular pneumococcal clusters facilitate the acquisition of full-length ICE at a rF higher than that of typical transformation events, involving distinct metabolic changes that present potential targets for interventions.
Collapse
Affiliation(s)
- Xueqing Wu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Santiago M. Lattar
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta GA 30322, United States
| | - Fuminori Sakai
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta GA 30322, United States
| | - Austin A. Medders
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Brenda Antezana
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - Lance Keller
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Ana G. J. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Yih-Ling Tzeng
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - D. Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - David Stephens
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - Yunsong Yu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| |
Collapse
|
4
|
Tsui HCT, Joseph M, Zheng JJ, Perez AJ, Manzoor I, Rued BE, Richardson JD, Branny P, Doubravová L, Massidda O, Winkler ME. Negative regulation of MurZ and MurA underlies the essentiality of GpsB- and StkP-mediated protein phosphorylation in Streptococcus pneumoniae D39. Mol Microbiol 2023; 120:351-383. [PMID: 37452010 PMCID: PMC10530524 DOI: 10.1111/mmi.15122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
GpsB links peptidoglycan synthases to other proteins that determine the shape of the respiratory pathogen Streptococcus pneumoniae (pneumococcus; Spn) and other low-GC Gram-positive bacteria. GpsB is also required for phosphorylation of proteins by the essential StkP(Spn) Ser/Thr protein kinase. Here we report three classes of frequently arising chromosomal duplications (≈21-176 genes) containing murZ (MurZ-family homolog of MurA) or murA that suppress ΔgpsB or ΔstkP. These duplications arose from three different repeated sequences and demonstrate the facility of pneumococcus to modulate gene dosage of numerous genes. Overproduction of MurZ or MurA alone or overproduction of MurZ caused by ΔkhpAB mutations suppressed ΔgpsB or ΔstkP phenotypes to varying extents. ΔgpsB and ΔstkP were also suppressed by MurZ amino-acid changes distant from the active site, including one in commonly studied laboratory strains, and by truncation or deletion of the homolog of IreB(ReoM). Unlike in other Gram-positive bacteria, MurZ is predominant to MurA in pneumococcal cells. However, ΔgpsB and ΔstkP were not suppressed by ΔclpCP, which did not alter MurZ or MurA amounts. These results support a model in which regulation of MurZ and MurA activity, likely by IreB(Spn), is the only essential requirement for StkP-mediated protein phosphorylation in exponentially growing D39 pneumococcal cells.
Collapse
Affiliation(s)
| | - Merrin Joseph
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Jiaqi J. Zheng
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Amilcar J. Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Irfan Manzoor
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Britta E. Rued
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - John D. Richardson
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Pavel Branny
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Doubravová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Orietta Massidda
- Department of Cellular, Computational, and Integrative Biology, University of Trento, Italy
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
5
|
Ikhimiukor OO, Souza SSR, Marcovici MM, Nye GJ, Gibson R, Andam CP. Leaky barriers to gene sharing between locally co-existing coagulase-negative Staphylococcus species. Commun Biol 2023; 6:482. [PMID: 37137974 PMCID: PMC10156822 DOI: 10.1038/s42003-023-04877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.
Collapse
Affiliation(s)
- Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Michael M Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Griffin J Nye
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Robert Gibson
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
6
|
Gibson PS, Veening JW. Gaps in the wall: understanding cell wall biology to tackle amoxicillin resistance in Streptococcus pneumoniae. Curr Opin Microbiol 2023; 72:102261. [PMID: 36638546 DOI: 10.1016/j.mib.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and one of the main pathogens responsible for otitis media infections in children. Amoxicillin (AMX) is a broad-spectrum β-lactam antibiotic, used frequently for the treatment of bacterial respiratory tract infections. Here, we discuss the pneumococcal response to AMX, including the mode of action of AMX, the effects on autolysin regulation, and the evolution of resistance through natural transformation. We discuss current knowledge gaps in the synthesis and translocation of peptidoglycan and teichoic acids, major constituents of the pneumococcal cell wall and critical to AMX activity. Furthermore, an outlook of AMX resistance research is presented, including the development of natural competence inhibitors to block evolution via horizontal gene transfer, and the use of high-throughput essentiality screens for the discovery of novel cotherapeutics.
Collapse
Affiliation(s)
- Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Tsui HCT, Joseph M, Zheng JJ, Perez AJ, Manzoor I, Rued BE, Richardson JD, Branny P, Doubravová L, Massidda O, Winkler ME. Chromosomal Duplications of MurZ (MurA2) or MurA (MurA1), Amino Acid Substitutions in MurZ (MurA2), and Absence of KhpAB Obviate the Requirement for Protein Phosphorylation in Streptococcus pneumoniae D39. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534294. [PMID: 37034771 PMCID: PMC10081211 DOI: 10.1101/2023.03.26.534294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
GpsB links peptidoglycan synthases to other proteins that determine the shape of the respiratory pathogen Streptococcus pneumoniae (pneumococcus; Spn ) and other low-GC Gram-positive bacteria. GpsB is also required for phosphorylation of proteins by the essential StkP( Spn ) Ser/Thr protein kinase. Here we report three classes of frequently arising chromosomal duplications (≈21-176 genes) containing murZ (MurZ-family homolog of MurA) or murA that suppress Δ gpsB or Δ stkP . These duplications arose from three different repeated sequences and demonstrate the facility of pneumococcus to modulate gene dosage of numerous genes. Overproduction of MurZ or MurA alone or overexpression of MurZ caused by Δ khpAB mutations suppressed Δ gpsB or Δ stkP phenotypes to varying extents. Δ gpsB and Δ stkP were also suppressed by MurZ amino-acid changes distant from the active site, including one in commonly studied laboratory strains, and by truncation or deletion of the homolog of IreB(ReoM). Unlike in other Gram-positive bacteria, MurZ is predominant to MurA in pneumococcal cells. However, Δ gpsB and Δ stkP were not suppressed by Δ clpCP , which did not alter MurZ or MurA amounts. These results support a model in which regulation of MurZ and MurA activity, likely by IreB( Spn ), is the only essential requirement for protein phosphorylation in exponentially growing D39 pneumococcal cells.
Collapse
|
8
|
Antezana BS, Lohsen S, Wu X, Vidal JE, Tzeng YL, Stephens DS. Dissemination of Tn 916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms. Microbiol Spectr 2023; 11:e0375922. [PMID: 36912669 PMCID: PMC10101023 DOI: 10.1128/spectrum.03759-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010. Although conjugation has been implicated as the transfer mechanism for ICEs in several bacteria, including S. pneumoniae, the molecular basis for widespread dissemination of pneumococcal Tn916-related ICEs remains to be fully elucidated. We found that Tn2009 acquisition was not detectable via in vitro transformation nor conjugative mating with donor GA16833, yielding a transfer frequency of <10-7. GA16833 Tn2009 conjugative gene expression was not significantly induced, and ICE circular intermediate formation was not detected in biofilms. Consistently, Tn2009 transfer efficiency in biofilms was not affected by deletion of the ICE conjugative gene ftsK. However, GA16833 Tn2009 transfer occurred efficiently at a recombination frequency (rF) of 10-4 in dual-strain biofilms formed in a human nasopharyngeal cell bioreactor. DNase I addition and deletions of the early competence gene comE or transformation apparatus genes comEA and comEC in the D39 recipient strain prevented Tn2009 acquisition (rF of <10-7). Genome sequencing and single nucleotide polymorphism analyses of independent recombinants of recipient genotype identified ~33- to ~55-kb donor DNAs containing intact Tn2009, supporting homologous recombination. Additional pneumococcal donor and recipient combinations were demonstrated to efficiently transfer Tn916-related ICEs at a rF of 10-4 in the biofilms. Tn916-related ICEs horizontally disseminate at high frequency in human nasopharyngeal S. pneumoniae biofilms by transformation and homologous recombination of >30-kb DNA fragments into the pneumococcal genome. IMPORTANCE The World Health Organization has designated Streptococcus pneumoniae as a priority pathogen for research and development of new drug treatments due to extensive multidrug resistance. Multiple strains of S. pneumoniae colonize and form mixed biofilms in the human nasopharynx, which could enable exchange of antibiotic resistance determinants. Tn916-related integrative and conjugative elements (ICEs) are largely responsible for the widespread presence of macrolide and tetracycline resistance in S. pneumoniae. Utilizing a system that simulates colonization of donor and recipient S. pneumoniae strains in the human nasopharynx, efficient transfer of Tn916-related ICEs occurred in human nasopharyngeal biofilms, in contrast to in vitro conditions of planktonic cells with exogenous DNA. This high-frequency Tn916-related ICE transfer between S. pneumoniae strains in biofilms was due to transformation and homologous recombination, not conjugation. Understanding the molecular mechanism for dissemination of Tn916-related ICEs can facilitate the design of new strategies to combat antibiotic resistance.
Collapse
Affiliation(s)
- Brenda S. Antezana
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Sarah Lohsen
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xueqing Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Yih-Ling Tzeng
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S. Stephens
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Goyal M, Pelegrin AC, Jaillard M, Saharman YR, Klaassen CHW, Verbrugh HA, Severin JA, van Belkum A. Whole Genome Multi-Locus Sequence Typing and Genomic Single Nucleotide Polymorphism Analysis for Epidemiological Typing of Pseudomonas aeruginosa From Indonesian Intensive Care Units. Front Microbiol 2022; 13:861222. [PMID: 35910643 PMCID: PMC9329958 DOI: 10.3389/fmicb.2022.861222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
We have previously studied carbapenem non-susceptible Pseudomonas aeruginosa (CNPA) strains from intensive care units (ICUs) in a referral hospital in Jakarta, Indonesia (Pelegrin et al., 2019). We documented that CNPA transmissions and acquisitions among patients were variable over time and that these were not significantly reduced by a set of infection control measures. Three high risk international CNPA clones (sequence type (ST)235, ST823, ST357) dominated, and carbapenem resistance was due to carbapenemase-encoding genes and mutations in the porin OprD. Pelegrin et al. (2019) reported core genome analysis of these strains. We present a more refined and detailed whole genome-based analysis of major clones represented in the same dataset. As per our knowledge, this is the first study reporting Single Nucleotide Polymorphisms (wgSNP) analysis of Pseudomonas strains. With whole genome-based Multi Locus Sequence Typing (wgMLST) of the 3 CNPA clones (ST235, ST357 and ST823), three to eleven subgroups with up to 200 allelic variants were observed for each of the CNPA clones. Furthermore, we analyzed these CNPA clone clusters for the presence of wgSNP to redefine CNPA transmission events during hospitalization. A maximum number 35350 SNPs (including non-informative wgSNPs) and 398 SNPs (ST-specific_informative-wgSNPs) were found in ST235, 34,570 SNPs (including non-informative wgSNPs) and 111 SNPs (ST-specific_informative-wgSNPs) in ST357 and 26,443 SNPs (including non-informative SNPs) and 61 SNPs (ST-specific_informative-wgSNPs) in ST823. ST-specific_Informative-wgSNPs were commonly noticed in sensor-response regulator genes. However, the majority of non-informative wgSNPs was found in conserved hypothetical proteins or in uncharacterized proteins. Of note, antibiotic resistance and virulence genes segregated according to the wgSNP analyses. A total of 8 transmission chains for ST235 strains followed by 9 and 4 possible transmission chains for ST357 and ST823 were traceable on the basis of pairwise distances of informative-wgSNPs (0 to 4 SNPs) among the strains. The present study demonstrates the value of detailed whole genome sequence analysis for highly refined epidemiological analysis of P. aeruginosa.
Collapse
Affiliation(s)
- Manisha Goyal
- bioMérieux Open Innovation and Partnerships, Macry-LÉtoile, France
| | | | | | - Yulia Rosa Saharman
- Department of Clinical Microbiology, Faculty of Medicine, Dr. Cipto Mangunkusumo General Hospital, Universitas Indonesia, Jakarta, Indonesia
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Henri A. Verbrugh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Juliëtte A. Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Alex van Belkum
- bioMérieux Open Innovation and Partnerships, Macry-LÉtoile, France
- *Correspondence: Alex van Belkum,
| |
Collapse
|
10
|
Gibson PS, Bexkens E, Zuber S, Cowley LA, Veening JW. The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathog 2022; 18:e1010727. [PMID: 35877768 PMCID: PMC9352194 DOI: 10.1371/journal.ppat.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how antimicrobial resistance spreads is critical for optimal application of new treatments. In the naturally competent human pathogen Streptococcus pneumoniae, resistance to β-lactam antibiotics is mediated by recombination events in genes encoding the target proteins, resulting in reduced drug binding affinity. However, for the front-line antibiotic amoxicillin, the exact mechanism of resistance still needs to be elucidated. Through successive rounds of transformation with genomic DNA from a clinically resistant isolate, we followed amoxicillin resistance development. Using whole genome sequencing, we showed that multiple recombination events occurred at different loci during one round of transformation. We found examples of non-contiguous recombination, and demonstrated that this could occur either through multiple D-loop formation from one donor DNA molecule, or by the integration of multiple DNA fragments. We also show that the final minimum inhibitory concentration (MIC) differs depending on recipient genome, explained by differences in the extent of recombination at key loci. Finally, through back transformations of mutant alleles and fluorescently labelled penicillin (bocillin-FL) binding assays, we confirm that pbp1a, pbp2b, pbp2x, and murM are the main resistance determinants for amoxicillin resistance, and that the order of allele uptake is important for successful resistance evolution. We conclude that recombination events are complex, and that this complexity contributes to the highly diverse genotypes of amoxicillin-resistant pneumococcal isolates.
Collapse
Affiliation(s)
- Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylvia Zuber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lauren A. Cowley
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter. mBio 2022; 13:e0263121. [PMID: 35073754 PMCID: PMC8787482 DOI: 10.1128/mbio.02631-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii infection poses a major health threat, with recurrent treatment failure due to antibiotic resistance, notably to carbapenems. While genomic analyses of clinical strains indicate that homologous recombination plays a major role in the acquisition of antibiotic resistance genes, the underlying mechanisms of horizontal gene transfer often remain speculative. Our understanding of the acquisition of antibiotic resistance is hampered by the lack of experimental systems able to reproduce genomic observations. We here report the detection of recombination events occurring spontaneously in mixed bacterial populations and which can result in the acquisition of resistance to carbapenems. We show that natural transformation is the main driver of intrastrain but also interstrain recombination events between A. baumannii clinical isolates and pathogenic species of Acinetobacter. We observed that interbacterial natural transformation in mixed populations is more efficient at promoting the acquisition of large resistance islands (AbaR4 and AbaR1) than when the same bacteria are supplied with large amounts of purified genomic DNA. Importantly, analysis of the genomes of the recombinant progeny revealed large recombination tracts (from 13 to 123 kb) similar to those observed in the genomes of clinical isolates. Moreover, we highlight that transforming DNA availability is a key determinant of the rate of recombinants and results from both spontaneous release and interbacterial predatory behavior. In the light of our results, natural transformation should be considered a leading mechanism of genome recombination and horizontal gene transfer of antibiotic resistance genes in Acinetobacter baumannii.
Collapse
|
12
|
Vasileva D, Streich J, Burdick L, Klingeman D, Chhetri HB, Brelsford C, Ellis JC, Close DM, Jacobson D, Michener J. Protoplast fusion in Bacillus species produces frequent, unbiased, genome-wide homologous recombination. Nucleic Acids Res 2022; 50:6211-6223. [PMID: 35061904 PMCID: PMC9226520 DOI: 10.1093/nar/gkac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.
Collapse
Affiliation(s)
| | | | | | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Hari B Chhetri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Christa M Brelsford
- Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J Christopher Ellis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dan M Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel A Jacobson
- Correspondence may also be addressed to Daniel A. Jacobson. Tel: +1 865 574 6134; Fax: +1 865 241 2869;
| | - Joshua K Michener
- To whom correspondence should be addressed. Tel: +1 865 576 7957; Fax: +1 865 576 8646;
| |
Collapse
|
13
|
Bouma-Gregson K, Crits-Christoph A, Olm MR, Power ME, Banfield JF. Microcoleus (Cyanobacteria) form watershed-wide populations without strong gradients in population structure. Mol Ecol 2021; 31:86-103. [PMID: 34608694 PMCID: PMC9298114 DOI: 10.1111/mec.16208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
The relative importance of separation by distance and by environment to population genetic diversity can be conveniently tested in river networks, where these two drivers are often independently distributed over space. To evaluate the importance of dispersal and environmental conditions in shaping microbial population structures, we performed genome‐resolved metagenomic analyses of benthic Microcoleus‐dominated cyanobacterial mats collected in the Eel and Russian River networks (California, USA). The 64 Microcoleus genomes were clustered into three species that shared >96.5% average nucleotide identity (ANI). Most mats were dominated by one strain, but minor alleles within mats were often shared, even over large spatial distances (>300 km). Within the most common Microcoleus species, the ANI between the dominant strains within mats decreased with increasing spatial separation. However, over shorter spatial distances (tens of kilometres), mats from different subwatersheds had lower ANI than mats from the same subwatershed, suggesting that at shorter spatial distances environmental differences between subwatersheds in factors like canopy cover, conductivity, and mean annual temperature decreases ANI. Since mats in smaller creeks had similar levels of nucleotide diversity (π) as mats in larger downstream subwatersheds, within‐mat genetic diversity does not appear to depend on the downstream accumulation of upstream‐derived strains. The four‐gamete test and sequence length bias suggest recombination occurs between almost all strains within each species, even between populations separated by large distances or living in different habitats. Overall, our results show that, despite some isolation by distance and environmental conditions, sufficient gene‐flow occurs among cyanobacterial strains to prevent either driver from producing distinctive population structures across the watershed.
Collapse
Affiliation(s)
- Keith Bouma-Gregson
- Office of Information Management and Analysis, State Water Resources Control Board, Sacramento, California, USA.,Earth and Planetary Science Department, University of California, Berkeley, California, USA
| | | | - Mathew R Olm
- Plant and Microbial Ecology Department, University of California, Berkeley, California, USA
| | - Mary E Power
- Integrative Biology Department, University of California, Berkeley, California, USA
| | - Jillian F Banfield
- Earth and Planetary Science Department, University of California, Berkeley, California, USA.,Plant and Microbial Ecology Department, University of California, Berkeley, California, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
14
|
A Multi–Membrane System to Study the Effects of Physical and Metabolic Interactions in Microbial Co-Cultures and Consortia. FERMENTATION 2021. [DOI: 10.3390/fermentation7040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Continuous cell-to-cell contact between different species is a general feature of all natural environments. However, almost all research is conducted on single-species cultures, reflecting a biotechnological bias and problems associated with the complexities of reproducibly growing and controlling multispecies systems. Consequently, biotic stress due to the presence of other species remains poorly understood. In this context, understanding the effects of physical contact between species when compared to metabolic contact alone is one of the first steps to unravelling the mechanisms that underpin microbial ecological interactions. The current technologies to study the effects of cell-to-cell contact present disadvantages, such as the inefficient or discontinuous exchange of metabolites when preventing contact between species. This paper presents and characterizes a novel bioreactor system that uses ceramic membranes to create a “multi-membrane” compartmentalized system whereby two or more species can be co-cultured without the mixing of the species, while ensuring the efficient sharing of all of the media components. The system operates continuously, thereby avoiding the discontinuities that characterize other systems, which either have to use hourly backwashes to clean their membranes, or have to change the direction of the flow between compartments. This study evaluates the movement of metabolites across the membrane in co-cultures of yeast, microalgae and bacterial species, and monitors the movement of the metabolites produced during co-culturing. These results show that the multi-membrane system proposed in this study represents an effective system for studying the effects of cell-to-cell contact in microbial consortia. The system can also be adapted for various biotechnological purposes, such as the production of metabolites when more than one species is required for such a process.
Collapse
|
15
|
Lam T, Ellison CK, Eddington DT, Brun YV, Dalia AB, Morrison DA. Competence pili in Streptococcus pneumoniae are highly dynamic structures that retract to promote DNA uptake. Mol Microbiol 2021; 116:381-396. [PMID: 33754381 DOI: 10.1111/mmi.14718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
González-Díaz A, Machado MP, Càmara J, Yuste J, Varon E, Domenech M, Del Grosso M, Marimón JM, Cercenado E, Larrosa N, Quesada MD, Fontanals D, El-Mniai A, Cubero M, Carriço JA, Martí S, Ramirez M, Ardanuy C. Two multi-fragment recombination events resulted in the β-lactam-resistant serotype 11A-ST6521 related to Spain9V-ST156 pneumococcal clone spreading in south-western Europe, 2008 to 2016. ACTA ACUST UNITED AC 2020; 25. [PMID: 32347199 PMCID: PMC7189650 DOI: 10.2807/1560-7917.es.2020.25.16.1900457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BackgroundThe successful pneumococcal clone Spain9V-ST156 (PMEN3) is usually associated with vaccine serotypes 9V and 14.AimOur objective was to analyse the increase of a serotype 11A variant of PMEN3 as cause of invasive pneumococcal disease (IPD) in Spain and its spread in south-western Europe.MethodsWe conducted a prospective multicentre study of adult IPD in Spain (2008-16). Furthermore, a subset of 61 penicillin-resistant serotype 11A isolates from France, Italy, Portugal and Spain were subjected to whole genome sequencing (WGS) and compared with 238 genomes from the European Nucleotide Archive (ENA).ResultsAlthough the incidence of serotype 11A in IPD was stable, a clonal shift was detected from CC62 (penicillin-susceptible) to CC156 (penicillin-resistant). By WGS, three major 11A-CC156 lineages were identified, linked to ST156 (n = 5 isolates; France, Italy and Portugal), ST166 (n = 4 isolates; France and Portugal) and ST838/6521 (n = 52 isolates; France, Portugal and Spain). Acquisition of the 11A capsule allowed to escape vaccine effect. AP200 (11A-ST62) was the donor for ST156 and ST838/6521 but not for ST166. In-depth analysis of ST838/6521 lineage showed two multi-fragment recombination events including four and seven fragments from an 11A-ST62 and an NT-ST344 representative, respectively.ConclusionThe increase in penicillin-resistant serotype 11A IPD in Spain was linked to the spread of a vaccine escape PMEN3 recombinant clone. Several recombination events were observed in PMEN3 acquiring an 11A capsule. The most successful 11A-PMEN3 lineage spreading in south-western Europe appeared after two multi-fragment recombination events with representatives of two major pneumococcal clones (11A-ST62 and NT-ST344).
Collapse
Affiliation(s)
- Aida González-Díaz
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| | - Miguel P Machado
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Jordi Càmara
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| | - José Yuste
- Pneumococcal Reference Laboratory, Centro Nacional de Referencia, ISCIII, Madrid, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Emmanuelle Varon
- National Reference Centre for Pneumococci, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Miriam Domenech
- Pneumococcal Reference Laboratory, Centro Nacional de Referencia, ISCIII, Madrid, Spain
| | - María Del Grosso
- Infection Diseases Department, Istituto Superiore di Sanità, Rome, Italy
| | - José María Marimón
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Microbiology Department, San Sebastian, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Emilia Cercenado
- Clinical Microbiology and Infectious Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Nieves Larrosa
- Microbiology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - María Dolores Quesada
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Hospital Universitari Germans Trias i Pujol, UAB, Badalona, Spain
| | - Dionisia Fontanals
- Microbiology Department, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Assiya El-Mniai
- National Reference Centre for Pneumococci, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Meritxell Cubero
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| | - João A Carriço
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Sara Martí
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| | - Mario Ramirez
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Carmen Ardanuy
- Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de LLobregat, Spain
| |
Collapse
|
17
|
Sharapova Y, Švedas V, Suplatov D. Catalytic and lectin domains in neuraminidase A from Streptococcus pneumoniae are capable of an intermolecular assembly: Implications for biofilm formation. FEBS J 2020; 288:3217-3230. [PMID: 33108702 DOI: 10.1111/febs.15610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023]
Abstract
Neuraminidase A from Streptococcus pneumoniae (NanA) is a cell wall-bound modular enzyme containing one lectin and one catalytic domain. Unlike homologous NanB and NanC expressed by the same bacterium, the two domains within one NanA molecule do not form a stable interaction and are spatially separated by a 16-amino acid-long flexible linker. In this work, the ability of NanA to form intermolecular assemblies was characterized using the methods of molecular modeling and bioinformatic analysis based on crystallographic data and by bringing together previously published experimental data. It was concluded that two catalytic domains, as well as one catalytic and one lectin domain, originating from two cell wall-bound NanA molecules, can interact through a previously uncharacterized interdomain interface to form complexes stabilized by a network of intermolecular hydrogen bonds and salt bridges. Supercomputer modeling strongly indicated that artocarpin, an earlier experimentally discovered inhibitor of the pneumococcal biofilm formation, is able to bind to a site located in the catalytic domain of one NanA entity and prevent its interaction with the lectin or catalytic domain of another NanA entity, thus directly precluding the generation of intermolecular assemblies. The revealed structural adaptation is discussed as one plausible mechanism of noncatalytic participation of this potentially key pathogenicity enzyme in pneumococcal biofilm formation.
Collapse
Affiliation(s)
- Yana Sharapova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Suplatov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Bradshaw JL, Rafiqullah IM, Robinson DA, McDaniel LS. Transformation of nonencapsulated Streptococcus pneumoniae during systemic infection. Sci Rep 2020; 10:18932. [PMID: 33144660 PMCID: PMC7641166 DOI: 10.1038/s41598-020-75988-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a principal cause of bacterial middle ear infections, pneumonia, and meningitis. Capsule-targeted pneumococcal vaccines have likely contributed to increased carriage of nonencapsulated S. pneumoniae (NESp). Some NESp lineages are associated with highly efficient DNA uptake and transformation frequencies. However, NESp strains lack capsule that may increase disease severity. We tested the hypothesis that NESp could acquire capsule during systemic infection and transform into more virulent pneumococci. We reveal that NESp strains MNZ67 and MNZ41 are highly transformable and resistant to multiple antibiotics. Natural transformation of NESp when co-administered with heat-killed encapsulated strain WU2 in a murine model of systemic infection resulted in encapsulation of NESp and increased virulence during bacteremia. Functional capsule production increased the pathogenic potential of MNZ67 by significantly decreasing complement deposition on the bacterial surface. However, capsule acquisition did not further decrease complement deposition on the relatively highly pathogenic strain MNZ41. Whole genome sequencing of select transformants demonstrated that recombination of up to 56.7 kbp length occurred at the capsule locus, along with additional recombination occurring at distal sites harboring virulence-associated genes. These findings indicate NESp can compensate for lack of capsule production and rapidly evolve into more virulent strains.
Collapse
Affiliation(s)
- Jessica L Bradshaw
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Iftekhar M Rafiqullah
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - D Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Larry S McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
19
|
Garriss G, Henriques-Normark B. Lysogeny in Streptococcus pneumoniae. Microorganisms 2020; 8:E1546. [PMID: 33036379 PMCID: PMC7600539 DOI: 10.3390/microorganisms8101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are major contributors to the evolution, pathogenesis and overall biology of their host bacteria. During their life cycle, temperate bacteriophages form stable associations with their host by integrating into the chromosome, a process called lysogeny. Isolates of the human pathogen Streptococcus pneumoniae are frequently lysogenic, and genomic studies have allowed the classification of these phages into distinct phylogenetic groups. Here, we review the recent advances in the characterization of temperate pneumococcal phages, with a focus on their genetic features and chromosomal integration loci. We also discuss the contribution of phages, and specific phage-encoded features, to colonization and virulence. Finally, we discuss interesting research perspectives in this field.
Collapse
Affiliation(s)
- Geneviève Garriss
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Bioclinicum, 171 76 Stockholm, Sweden
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
20
|
Kurushima J, Campo N, van Raaphorst R, Cerckel G, Polard P, Veening JW. Unbiased homeologous recombination during pneumococcal transformation allows for multiple chromosomal integration events. eLife 2020; 9:e58771. [PMID: 32965219 PMCID: PMC7567608 DOI: 10.7554/elife.58771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
The spread of antimicrobial resistance and vaccine escape in the human pathogen Streptococcus pneumoniae can be largely attributed to competence-induced transformation. Here, we studied this process at the single-cell level. We show that within isogenic populations, all cells become naturally competent and bind exogenous DNA. We find that transformation is highly efficient and that the chromosomal location of the integration site or whether the transformed gene is encoded on the leading or lagging strand has limited influence on recombination efficiency. Indeed, we have observed multiple recombination events in single recipients in real-time. However, because of saturation and because a single-stranded donor DNA replaces the original allele, transformation efficiency has an upper threshold of approximately 50% of the population. The fixed mechanism of transformation results in a fail-safe strategy for the population as half of the population generally keeps an intact copy of the original genome.
Collapse
Affiliation(s)
- Jun Kurushima
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI)ToulouseFrance
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Guillaume Cerckel
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI)ToulouseFrance
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| |
Collapse
|
21
|
Lam T, Maienschein-Cline M, Eddington DT, Morrison DA. Multiplex gene transfer by genetic transformation between isolated S. pneumoniae cells confined in microfluidic droplets. Integr Biol (Camb) 2019; 11:415-424. [PMID: 31990351 PMCID: PMC7011181 DOI: 10.1093/intbio/zyz036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Gene exchange via genetic transformation makes major contributions to antibiotic resistance of the human pathogen, Streptococcus pneumoniae (pneumococcus). The transfers begin when a pneumococcal cell, in a transient specialized physiological state called competence, attacks and lyses another cell, takes up fragments of the liberated DNA, and integrates divergent genes into its genome. Recently, it has been demonstrated that the pneumococcal cells can be enclosed in femtoliter-scale droplets for study of the transformation mechanism, offering the ability to characterize individual cell-cell interactions and overcome the limitations of current methods involving bulk mixed cultures. To determine the relevance and reliability of this new method for study of bacterial genetic transformation, we compared recombination events occurring in 44 recombinants recovered after competence-mediated gene exchange between pairs of cells confined in femtoliter-scale droplets vs. those occurring in exchanges in parallel bulk culture mixtures. The pattern of recombination events in both contexts exhibited the hallmarks of the macro-recombination exchanges previously observed within the more complex natural contexts of biofilms and long-term evolution in the human host.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Kwun MJ, Oggioni MR, Bentley SD, Fraser C, Croucher NJ. Synergistic Activity of Mobile Genetic Element Defences in Streptococcus pneumoniae. Genes (Basel) 2019; 10:genes10090707. [PMID: 31540216 PMCID: PMC6771155 DOI: 10.3390/genes10090707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/02/2023] Open
Abstract
A diverse set of mobile genetic elements (MGEs) transmit between Streptococcus pneumoniae cells, but many isolates remain uninfected. The best-characterised defences against horizontal transmission of MGEs are restriction-modification systems (RMSs), of which there are two phase-variable examples in S. pneumoniae. Additionally, the transformation machinery has been proposed to limit vertical transmission of chromosomally integrated MGEs. This work describes how these mechanisms can act in concert. Experimental data demonstrate RMS phase variation occurs at a sub-maximal rate. Simulations suggest this may be optimal if MGEs are sometimes vertically inherited, as it reduces the probability that an infected cell will switch between RMS variants while the MGE is invading the population, and thereby undermine the restriction barrier. Such vertically inherited MGEs can be deleted by transformation. The lack of between-strain transformation hotspots at known prophage att sites suggests transformation cannot remove an MGE from a strain in which it is fixed. However, simulations confirmed that transformation was nevertheless effective at preventing the spread of MGEs into a previously uninfected cell population, if a recombination barrier existed between co-colonising strains. Further simulations combining these effects of phase variable RMSs and transformation found they synergistically inhibited MGEs spreading, through limiting both vertical and horizontal transmission.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London W2 1PG, UK.
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Stephen D Bentley
- Pathogens and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK.
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
23
|
Matthey N, Stutzmann S, Stoudmann C, Guex N, Iseli C, Blokesch M. Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae. eLife 2019; 8:e48212. [PMID: 31478834 PMCID: PMC6783263 DOI: 10.7554/elife.48212] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023] Open
Abstract
Natural competence for transformation is a primary mode of horizontal gene transfer. Competent bacteria are able to absorb free DNA from their surroundings and exchange this DNA against pieces of their own genome when sufficiently homologous. However, the prevalence of non-degraded DNA with sufficient coding capacity is not well understood. In this context, we previously showed that naturally competent Vibrio cholerae use their type VI secretion system (T6SS) to actively acquire DNA from non-kin neighbors. Here, we explored the conditions of the DNA released through T6SS-mediated killing versus passive cell lysis and the extent of the transfers that occur due to these conditions. We show that competent V. cholerae acquire DNA fragments with a length exceeding 150 kbp in a T6SS-dependent manner. Collectively, our data support the notion that the environmental lifestyle of V. cholerae fosters the exchange of genetic material with sufficient coding capacity to significantly accelerate bacterial evolution.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Nicolas Guex
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | | | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| |
Collapse
|
24
|
Refining the Pneumococcal Competence Regulon by RNA Sequencing. J Bacteriol 2019; 201:JB.00780-18. [PMID: 30885934 PMCID: PMC6560143 DOI: 10.1128/jb.00780-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen responsible for over a million deaths every year. Although both vaccination programs and antibiotic therapies have been effective in prevention and treatment of pneumococcal infections, respectively, the sustainability of these solutions is uncertain. The pneumococcal genome is highly flexible, leading to vaccine escape and antibiotic resistance. This flexibility is predominantly facilitated by competence, a state allowing the cell to take up and integrate exogenous DNA. Thus, it is essential to obtain a detailed overview of gene expression during competence. This is stressed by the fact that administration of several classes of antibiotics can lead to competence. Previous studies on the competence regulon were performed with microarray technology and were limited to an incomplete set of known genes. Using RNA sequencing combined with an up-to-date genome annotation, we provide an updated overview of competence-regulated genes. Competence for genetic transformation allows the opportunistic human pathogen Streptococcus pneumoniae to take up exogenous DNA for incorporation into its own genome. This ability may account for the extraordinary genomic plasticity of this bacterium, leading to antigenic variation, vaccine escape, and the spread of antibiotic resistance. The competence system has been thoroughly studied, and its regulation is well understood. Additionally, over the last decade, several stress factors have been shown to trigger the competent state, leading to the activation of several stress response regulons. The arrival of next-generation sequencing techniques allowed us to update the competence regulon, the latest report on which still depended on DNA microarray technology. Enabled by the availability of an up-to-date genome annotation, including transcript boundaries, we assayed time-dependent expression of all annotated features in response to competence induction, were able to identify the affected promoters, and produced a more complete overview of the various regulons activated during the competence state. We show that 4% of all annotated genes are under direct control of competence regulators ComE and ComX, while the expression of a total of up to 17% of all genes is affected, either directly or indirectly. Among the affected genes are various small RNAs with an as-yet-unknown function. Besides the ComE and ComX regulons, we were also able to refine the CiaR, VraR (LiaR), and BlpR regulons, underlining the strength of combining transcriptome sequencing (RNA-seq) with a well-annotated genome. IMPORTANCEStreptococcus pneumoniae is an opportunistic human pathogen responsible for over a million deaths every year. Although both vaccination programs and antibiotic therapies have been effective in prevention and treatment of pneumococcal infections, respectively, the sustainability of these solutions is uncertain. The pneumococcal genome is highly flexible, leading to vaccine escape and antibiotic resistance. This flexibility is predominantly facilitated by competence, a state allowing the cell to take up and integrate exogenous DNA. Thus, it is essential to obtain a detailed overview of gene expression during competence. This is stressed by the fact that administration of several classes of antibiotics can lead to competence. Previous studies on the competence regulon were performed with microarray technology and were limited to an incomplete set of known genes. Using RNA sequencing combined with an up-to-date genome annotation, we provide an updated overview of competence-regulated genes.
Collapse
|
25
|
Salvadori G, Junges R, Morrison DA, Petersen FC. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications. Front Cell Infect Microbiol 2019; 9:94. [PMID: 31001492 PMCID: PMC6456647 DOI: 10.3389/fcimb.2019.00094] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
The mitis group of streptococci comprises species that are common colonizers of the naso-oral-pharyngeal tract of humans. Streptococcus pneumoniae and Streptococcus mitis are close relatives and share ~60–80% of orthologous genes, but still present striking differences in pathogenic potential toward the human host. S. mitis has long been recognized as a reservoir of antibiotic resistance genes for S. pneumoniae, as well as a source for capsule polysaccharide variation, leading to resistance and vaccine escape. Both species share the ability to become naturally competent, and in this context, competence-associated killing mechanisms such as fratricide are thought to play an important role in interspecies gene exchange. Here, we explore the general mechanism of natural genetic transformation in the two species and touch upon the fundamental clinical and evolutionary implications of sharing similar competence, fratricide mechanisms, and a large fraction of their genomic DNA.
Collapse
Affiliation(s)
- Gabriela Salvadori
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Roger Junges
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Donald A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernanda C Petersen
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Lam T, Brennan MD, Morrison DA, Eddington DT. Femtoliter droplet confinement of Streptococcus pneumoniae: bacterial genetic transformation by cell-cell interaction in droplets. LAB ON A CHIP 2019; 19:682-692. [PMID: 30657515 PMCID: PMC6487891 DOI: 10.1039/c8lc01367e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Streptococcus pneumoniae (pneumococcus), a deadly bacterial human pathogen, uses genetic transformation to gain antibiotic resistance. Genetic transformation begins when a pneumococcal strain in a transient specialized physiological state called competence, attacks and lyses another strain, releasing DNA, taking up fragments of the liberated DNA, and integrating divergent genes into its genome. While many steps of the process are known and generally understood, the precise mechanism of this natural genetic transformation is not fully understood and the current standard strategies to study it have limitations in specifically controlling and observing the process in detail. To overcome these limitations, we have developed a droplet microfluidic system for isolating individual episodes of bacterial transformation between two confined cells of pneumococcus. By encapsulating the cells in a 10 μm diameter aqueous droplet, we provide an improved experimental model of genetic transformation, as both participating cells can be identified, and the released DNA is spatially restricted near the attacking strain. Specifically, the bacterial cells, one rifampicin (R) resistant, the other novobiocin (N) and spectinomycin (S) resistant were encapsulated in droplets carried by the fluorinated oil FC-40 with 5% surfactant and allowed to carry out competence-specific attack and DNA uptake (and consequently gain antibiotic resistances) within the droplets. The droplets were then broken, and recombinants were recovered by selective plating with antibiotics. The new droplet system encapsulated 2 or more cells in a droplet with a probability up to 71%, supporting gene transfer rates comparable to standard mixtures of unconfined cells. Thus, confinement in droplets allows characterization of natural genetic transformation during a strictly defined interaction between two confined cells.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
27
|
Muschiol S, Aschtgen MS, Nannapaneni P, Henriques-Normark B. Gram-Positive Type IV Pili and Competence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0011-2018. [PMID: 30737914 PMCID: PMC11588153 DOI: 10.1128/microbiolspec.psib-0011-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (T4P) are remarkable bacterial surface appendages that carry out a range of functions. Various types of T4P have been identified in bacteria and archaea, making them almost universal structures in prokaryotes. T4P are best characterized in Gram-negative bacteria, in which pilus biogenesis and T4P-mediated functions have been studied for decades. Recent advances in microbial whole-genome sequencing have provided ample evidence for the existence of T4P also in many Gram-positive species. However, comparatively little is known, and T4P in Gram-positive bacteria are just beginning to be dissected. So far, they have mainly been studied in Clostridium and Streptococcus spp. and are involved in diverse cellular processes such as adhesion, motility, and horizontal gene transfer. Here we summarize the current understanding of T4P in Gram-positive species and their functions, with particular focus on the type IV competence pilus produced by the human pathogen Streptococcus pneumoniae and its role in natural transformation.
Collapse
Affiliation(s)
- Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Marie-Stephanie Aschtgen
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| |
Collapse
|
28
|
Hiller NL, Sá-Leão R. Puzzling Over the Pneumococcal Pangenome. Front Microbiol 2018; 9:2580. [PMID: 30425695 PMCID: PMC6218428 DOI: 10.3389/fmicb.2018.02580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
The Gram positive bacterium Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human host, and in the nasopharynx, sinus, and middle ear it survives as a biofilm. This mode of growth is optimal for multi-strain colonization and genetic exchange. Over the last decades, the far-reaching use of antibiotics and the widespread implementation of pneumococcal multivalent conjugate vaccines have posed considerable selective pressure on pneumococci. This scenario provides an exceptional opportunity to study the evolution of the pangenome of a clinically important bacterium, and has the potential to serve as a case study for other species. The goal of this review is to highlight key findings in the studies of pneumococcal genomic diversity and plasticity.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
29
|
Alfsnes K, Frye SA, Eriksson J, Eldholm V, Brynildsrud OB, Bohlin J, Harrison OB, Hood DW, Maiden MCJ, Tønjum T, Ambur OH. A genomic view of experimental intraspecies and interspecies transformation of a rifampicin-resistance allele into Neisseria meningitidis. Microb Genom 2018; 4. [PMID: 30251949 PMCID: PMC6321871 DOI: 10.1099/mgen.0.000222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The spread of antibiotic resistance within and between different bacterial populations is a major health problem on a global scale. The identification of genetic transformation in genomic data from Neisseria meningitidis, the meningococcus (Mc), and other bacteria is problematic, since similar or even identical alleles may be involved. A particular challenge in naturally transformable bacteria generally is to distinguish between common ancestry and true recombined sites in sampled genome sequences. Furthermore, the identification of recombination following experimental transformation of homologous alleles requires identifiable differences between donor and recipient, which in itself influences the propensity for homologous recombination (HR). This study identifies the distribution of HR events following intraspecies and interspecies Mc transformations of rpoB alleles encoding rifampicin resistance by whole-genome DNA sequencing and single nucleotide variant analysis. The HR events analysed were confined to the genomic region surrounding the single nucleotide genetic marker used for selection. An exponential length distribution of these recombined events was found, ranging from a few nucleotides to about 72 kb stretches. The lengths of imported sequences were on average found to be longer following experimental transformation of the recipient with genomic DNA from an intraspecies versus an interspecies donor (P<0.001). The recombination events were generally observed to be mosaic, with donor sequences interspersed with recipient sequence. Here, we present four models to explain these observations, by fragmentation of the transformed DNA, by interruptions of the recombination mechanism, by secondary recombination of endogenous self-DNA, or by repair/replication mechanisms.
Collapse
Affiliation(s)
| | - Stephan A Frye
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Jens Eriksson
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Vegard Eldholm
- 3Department of Molecular Biology, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Odile B Harrison
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Derek W Hood
- 6Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Martin C J Maiden
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Tone Tønjum
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,7Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,8OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|