1
|
Marín-Gual L, Hogg CJ, Chang JK, Pask AJ, Renfree MB, Waters PD, Ruiz-Herrera A. Meiotic dynamics in a unique Australian marsupial provide new insights into the evolution of neo-sex chromosomes in the early stages of differentiation. Front Cell Dev Biol 2025; 13:1562403. [PMID: 40181825 PMCID: PMC11965985 DOI: 10.3389/fcell.2025.1562403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Understanding the origin and fate of sex chromosomes has been one of the most intriguing questions in biology. In therian (marsupial and eutherian) mammals, most species are characterized by a heteromorphic XX female XY male sex chromosome system. It is commonly accepted that they originated from a pair of autosomes after gaining a sex-determining function, leading to recombination suppression and subsequent Y chromosome degeneration. Unlike eutherian sex chromosomes which share a pseudo-autosomal region (PAR), the marsupial sex chromosomes are typically tiny and lack any homology. However, there is a lack of empirical evidence on biological systems that represent early stages of sex chromosome differentiation. Here, we describe the meiotic dynamics of an XY1Y2 system in the greater bilby (Macrotis lagotis: family Thylacomyidae) that resulted from a fusion between an autosome and the ancestral X chromosome. We compared the similarities and differences in the regulation of meiosis in two other Australian marsupial species with different sex chromosome systems: the tammar wallaby (Macropus eugenii: family Macropodidae) and the fat-tailed dunnart (Sminthopsis crassicaudata: family Dasyuridae), both with the ancestral XY system. We performed a cytological analysis of meiotic prophase I, including the study of chromosome synapsis, double strand break formation (as a proxy of recombination) and meiotic sex chromosome inactivation. Our results suggest that the neo-PAR in the greater bilby represents an early stage of differentiation, providing new insights into sex chromosome evolution.
Collapse
Affiliation(s)
- Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - J. King Chang
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J. Pask
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Elías-Llumbet A, Lira S, Manterola M. Male aging in germ cells: What are we inheriting? Genet Mol Biol 2025; 47Suppl 1:e20240052. [PMID: 39969160 PMCID: PMC11837248 DOI: 10.1590/1678-4685-gmb-2024-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/04/2024] [Indexed: 02/20/2025] Open
Abstract
Aging is a significant risk factor for male fertility and can lead to severe developmental disorders in offspring. It disrupts testicular function and spermatogenesis, resulting in sperm abnormalities and DNA fragmentation. Male aging alters the genome and epigenome of germ cells due to persistent oxidative stress caused by the cumulative effects of environmental factors over a lifetime. At the molecular level, DNA damage occurs and is poorly repaired due to impaired DNA repair pathways, leading to unrepaired lesions and de novo mutations. Aging also creates distinct epigenetic landscapes that modify gene expression in germ cells, affect the DNA damage response, and generate de novo DNA and epigenetic mutations that are transmitted to the sperm and inherited by the offspring. This review discusses current knowledge on the age-associated effects on male germ cells and the genomic and epigenomic mechanisms contributing to altered male reproductive health and outcomes in progeny. We propose a male reproductive aging threshold, where cumulative exposure to risk factors leads to oxidative stress, impaired spermatogenesis, and altered reproductive outcomes. Finally, we discuss novel interventions to prevent premature testicular aging and emphasize the need for public health policies and counseling guidelines for men seeking paternity.
Collapse
Affiliation(s)
- Arturo Elías-Llumbet
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Chile, Faculty of Medicine, Institute of Biomedical Sciences, Human Genetics Program, Santiago, Chile
| | - Sebastián Lira
- Universidad Andres Bello, Research Center for Sustainability, Santiago, Santiago, Chile
| | - Marcia Manterola
- University of Chile, Faculty of Medicine, Institute of Biomedical Sciences, Human Genetics Program, Santiago, Chile
- University of Valparaíso, Center for Translational Studies in Stress and Mental Health (C-ESTRES), Valparaíso, Chile
| |
Collapse
|
3
|
Emmenecker C, Pakzad S, Ture F, Guerin J, Hurel A, Chambon A, Girard C, Mercier R, Kumar R. FIGL1 attenuates meiotic interhomolog repair and is counteracted by the RAD51 paralog XRCC2 and the chromosome axis protein ASY1 during meiosis. THE NEW PHYTOLOGIST 2024; 244:2442-2457. [PMID: 39420761 PMCID: PMC11579446 DOI: 10.1111/nph.20181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Two recombinases, RAD51 and DMC1, catalyze meiotic break repair to ensure crossovers (COs) between homologous chromosomes (interhomolog) rather than between sisters (intersister). FIDGETIN-LIKE-1 (FIGL1) downregulates both recombinases. However, the understanding of how FIGL1 functions in meiotic repair remains limited. Here, we discover new genetic interactions of Arabidopsis thaliana FIGL1 that are important in vivo determinants of meiotic repair outcome. In figl1 mutants, compromising RAD51-dependent repair, either through the loss of RAD51 paralogs (RAD51B or XRCC2) or RAD54 or by inhibiting RAD51 catalytic activity, results in either unrepaired breaks or meiotic CO defects. Further, XRCC2 physically interacts with FIGL1 and partially counteracts FIGL1 activity for RAD51 focus formation. Our data indicate that RAD51-mediated repair mechanisms compensate FIGL1 dysfunction. FIGL1 is not necessary for intersister repair in dmc1 but is essential for the completion of meiotic repair in mutants such as asy1 that have impaired DMC1 functions and interhomolog bias. We show that FIGL1 attenuates interhomolog repair, and ASY1 counteracts FIGL1 to promote interhomolog recombination. Altogether, this study underlines that multiple factors can counteract FIGL1 activity to promote accurate meiotic repair.
Collapse
Affiliation(s)
- Côme Emmenecker
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- University of Paris‐Sud, Université Paris‐Saclay91405OrsayFrance
| | - Simine Pakzad
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Fatou Ture
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Julie Guerin
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Aurélie Hurel
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Aurélie Chambon
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Chloé Girard
- Meiotic Recombination and Pairing Team, Université Paris‐Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC)91190Gif‐sur‐YvetteFrance
| | - Raphael Mercier
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10CologneGermany
| | - Rajeev Kumar
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| |
Collapse
|
4
|
Chen Z, Liu C, Qu W, Han Y, Zhu X, Li Z, Ma D, Huang M, Gong W, Sun Q, Lei J, Guo R, Luo M. PWWP3A deficiency accelerates testicular senescence in aged mice. Andrology 2024. [PMID: 39363403 DOI: 10.1111/andr.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The PWWP domain-containing proteins are involved in chromatin-associated biological processes, including transcriptional regulation and DNA repair, and most of them are significant for gametogenesis and early embryonic development in mammals. PWWP3A, one of the PWWP domain proteins, is a reader of H3K36me2/H3K36me3 and a response factor to DNA damage. However, the physiological role of PWWP3A in spermatogenesis and fertility remains unclear. OBJECTIVE The goal of this study was to explore the function and mechanism of PWWP3A in the process of spermatogenesis. MATERIALS AND METHODS We generated V5-Pwwp3a KI mice and PWWP3A polyclonal antibody to observe the localization of PWWP3A in vivo. Meanwhile, Pwwp3a KO mice was used to explore the function in spermatogenesis. RESULTS We reported that PWWP3A is a predominant expression in the testis of mice. During spermatogenesis, PWWP3A exhibits the temporal expression from early-pachytene to the round spermatids. The results of spermatocyte spreading and immunostaining showed that PWWP3A aggregated on the XY body, which then diffused as the XY chromosome separated at late-diplotene. Although the depletion of PWWP3A had no obvious reproductive defects in young male mice, there were observed morphological abnormalities in sperm heads. Immunoprecipitation demonstrated the interaction of PWWP3A with DNA repair proteins SMC5/6; however, PWWP3A deficiency did not result in any meiotic defects. Notably, the testes of aged male Pwwp3a KO mice displayed pronounced degeneration, and were characterized by the presence of vacuolated seminiferous tubules. Furthermore, RNA-seq analysis revealed an upregulation in the expression of genes which may be involving in immunoregulatory and inflammatory response pathways in aged Pwwp3a KO mice with testicular degeneration. CONCLUSIONS Our study showed that PWWP3A was highly enriched in the mouse testis, and the Pwwp3a KO mice were fertile. However, the aged Pwwp3a KO male mice displayed testicular atrophy that may be due to changes in the immune micro-environment or abnormal repair of DNA damage.
Collapse
Affiliation(s)
- Zhen Chen
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Cong Liu
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Qu
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yan Han
- The Assisted Reproduction Department, Yichun Maternal and Child Health Hospital, Yichun, China
| | - Xiaoyu Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zejia Li
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Dupeng Ma
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mengya Huang
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Weihao Gong
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Sun
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Junhao Lei
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Guo
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengcheng Luo
- Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Bunting MD, Godahewa GI, McPherson NO, Robertson LJ, Gierus L, Piltz SG, Edwards O, Tizard M, Thomas PQ. Investigating the potential of X chromosome shredding for mouse genetic biocontrol. Sci Rep 2024; 14:13466. [PMID: 38866815 PMCID: PMC11169450 DOI: 10.1038/s41598-024-63706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
CRISPR-Cas9 technology has facilitated development of strategies that can potentially provide more humane and effective methods to control invasive vertebrate species, such as mice. One promising strategy is X chromosome shredding which aims to bias offspring towards males, resulting in a gradual and unsustainable decline of females. This method has been explored in insects with encouraging results. Here, we investigated this strategy in Mus musculus by targeting repeat DNA sequences on the X chromosome with the aim of inducing sufficient DNA damage to specifically eliminate X chromosome-bearing sperm during gametogenesis. We tested three different guide RNAs (gRNAs) targeting different repeats on the X chromosome, together with three male germline-specific promoters for inducing Cas9 expression at different stages of spermatogenesis. A modest bias towards mature Y-bearing sperm was detected in some transgenic males, although this did not translate into significant male-biasing of offspring. Instead, cleavage of the X chromosome during meiosis typically resulted in a spermatogenic block, manifest as small testes volume, empty tubules, low sperm concentration, and sub/infertility. Our study highlights the importance of controlling the timing of CRISPR-Cas9 activity during mammalian spermatogenesis and the sensitivity of spermatocytes to X chromosome disruption.
Collapse
Affiliation(s)
- Mark D Bunting
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Gelshan I Godahewa
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- CSIRO Environment, Floreat, WA, 6014, Australia
| | - Nicole O McPherson
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Louise J Robertson
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Gierus
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sandra G Piltz
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | | | - Mark Tizard
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, 3220, Australia
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
6
|
An D, Chen X, Li Z, Dai L, Huang J, Xiao M, Liu H, Xu J, Ruan Y. Genetic variation in the BLM gene and its expression in the ovaries is closely related to kidding number in goats. Theriogenology 2024; 218:254-266. [PMID: 38367334 DOI: 10.1016/j.theriogenology.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Bloom (BLM) helicase plays an important role in DNA replication and the maintenance of genome integrity. BLM protein deficiency, which plays a vital role in the sperm-egg union and germ-cell development during reproduction, can lead to severe DNA damage in goats. However, the effect of BLM protein deficiency on goat litter size has not been reported. Herein, we studied the association between the genetic variation in the BLM gene and the number of kids per litter in Guizhou white goats. We explored differences in the expression of the BLM protein in the follicles of single and multi-kid nanny goats. We also analyzed the effects of dysregulated BLM gene expression on the proliferation and apoptosis of ovarian granulosa cells and the expression of genes related to follicle development in goats. Five single nucleotide polymorphism (SNP) loci, including the non-synonymous mutations g.38179 A > G, g.40626 G > C and g.89621 T > G; the intron synonymous mutation g.56961 G > A and the exon synonymous mutation g.65796 C > T were found in the BLM gene. All SNPs loci were in Hardy-Weinberg equilibrium, and correlation analysis showed that the g.65796 C > T and g.89621 T > G loci polymorphism was strongly associated with litter size in the first three litters (P < 0.05). The diplogenotype Hap 2/2 (AAGGAACCTT) showed no significant difference in litter size between different births, indicating that the diploid genotype is stable in different litter sizes. Bioinformatics analysis showed that three non-synonymous mutation loci (p.T488A, p.A662S, and p.S1373A) could affect BLM protein stability, and mutations in p.T488A and p.S1373A led to changes in amino acid polarity and associated interactions. qPCR results showed that the expression level of the BLM gene in the uterus and ovaries of TT genotype nanny goats was significantly higher than that of GG genotype nanny goats. Indirect immunofluorescence assay (IF) showed that the BLM protein was significantly overexpressed in both the primordial and growing follicles of nanny goats with multiple kids (P < 0.01). Disrupting BLM gene expression in the ovarian granulosa cells down-regulated the expression of the Cyp19A1 gene. It also significantly inhibited the proliferation of follicles and induces early apoptosis of the granulosa cells. These findings confirm that polymorphism in the BLM gene is closely related to the littering traits of Guizhou white goats, and it affects the reproductive performance of nanny goats by regulating the development of the oocytes and granulosa cells. This work provides new evidence on the regulatory effect of the BLM gene on the litter size of nanny goats.
Collapse
Affiliation(s)
- Dongwei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Ziyang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, 550025, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
7
|
López-Jiménez P, Berenguer I, Pérez-Moreno I, de Aledo JG, Parra MT, Page J, Gómez R. The Organotypic Culture of Mouse Seminiferous Tubules as a Reliable Methodology for the Study of Meiosis In Vitro. Methods Mol Biol 2024; 2818:147-160. [PMID: 39126472 DOI: 10.1007/978-1-0716-3906-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Male mouse meiosis has been traditionally studied using descriptive methods like histological sections and spreading or squashing techniques, which allow the observation of fixed meiocytes in either wildtype or genetically modified mice. For these studies, the sacrifice of the males and the extraction of the testicles are required to obtain the material of study. Other functional in vivo studies include the administration of intravenous or intraperitoneal drugs, or the exposure to mutagenic agents or generators of DNA damage, in order to study their impact on meiosis progression. However, in these studies, the exposure times or drug concentration are important limitations to consider when acknowledging animal welfare. Recently, several approaches have been proposed to offer alternative methodologies that allow the in vitro study of spermatocytes with a considerable reduction in the use of animals. Here we revisit and validate an optimal technique of organotypic culture of fragments of seminiferous tubules for meiotic studies. This technique is a trustable methodology to develop functional studies that preserve the histological configuration of the seminiferous tubule, aim homogeneity of the procedures (the use of the same animal for different study conditions), and allow procedures that would compromise the animal welfare. Therefore, this methodology is highly recommendable for the study of meiosis and spermatogenesis, while it supports the principle of 3R's for animal research.
Collapse
Affiliation(s)
- Pablo López-Jiménez
- Departamento de Biología, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Meiosis group, MRC Laboratory of Medical Sciences, London, UK
| | - Inés Berenguer
- Departamento de Biología, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Madrid, Spain
| | - Irene Pérez-Moreno
- Departamento de Biología, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - María Teresa Parra
- Departamento de Biología, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jesús Page
- Departamento de Biología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Rocío Gómez
- Departamento de Biología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
8
|
Hinch R, Donnelly P, Hinch AG. Meiotic DNA breaks drive multifaceted mutagenesis in the human germ line. Science 2023; 382:eadh2531. [PMID: 38033082 PMCID: PMC7615360 DOI: 10.1126/science.adh2531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023]
Abstract
Meiotic recombination commences with hundreds of programmed DNA breaks; however, the degree to which they are accurately repaired remains poorly understood. We report that meiotic break repair is eightfold more mutagenic for single-base substitutions than was previously understood, leading to de novo mutation in one in four sperm and one in 12 eggs. Its impact on indels and structural variants is even higher, with 100- to 1300-fold increases in rates per break. We uncovered new mutational signatures and footprints relative to break sites, which implicate unexpected biochemical processes and error-prone DNA repair mechanisms, including translesion synthesis and end joining in meiotic break repair. We provide evidence that these mechanisms drive mutagenesis in human germ lines and lead to disruption of hundreds of genes genome wide.
Collapse
Affiliation(s)
- Robert Hinch
- Big Data Institute, University of Oxford; Oxford, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford; Oxford, UK
- Genomics plc; Oxford, UK
| | | |
Collapse
|
9
|
Valero-Regalón FJ, Solé M, López-Jiménez P, Valerio-de Arana M, Martín-Ruiz M, de la Fuente R, Marín-Gual L, Renfree MB, Shaw G, Berríos S, Fernández-Donoso R, Waters PD, Ruiz-Herrera A, Gómez R, Page J. Divergent patterns of meiotic double strand breaks and synapsis initiation dynamics suggest an evolutionary shift in the meiosis program between American and Australian marsupials. Front Cell Dev Biol 2023; 11:1147610. [PMID: 37181752 PMCID: PMC10166821 DOI: 10.3389/fcell.2023.1147610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
In eutherian mammals, hundreds of programmed DNA double-strand breaks (DSBs) are generated at the onset of meiosis. The DNA damage response is then triggered. Although the dynamics of this response is well studied in eutherian mammals, recent findings have revealed different patterns of DNA damage signaling and repair in marsupial mammals. To better characterize these differences, here we analyzed synapsis and the chromosomal distribution of meiotic DSBs markers in three different marsupial species (Thylamys elegans, Dromiciops gliorides, and Macropus eugenii) that represent South American and Australian Orders. Our results revealed inter-specific differences in the chromosomal distribution of DNA damage and repair proteins, which were associated with differing synapsis patterns. In the American species T. elegans and D. gliroides, chromosomal ends were conspicuously polarized in a bouquet configuration and synapsis progressed exclusively from the telomeres towards interstitial regions. This was accompanied by sparse H2AX phosphorylation, mainly accumulating at chromosomal ends. Accordingly, RAD51 and RPA were mainly localized at chromosomal ends throughout prophase I in both American marsupials, likely resulting in reduced recombination rates at interstitial positions. In sharp contrast, synapsis initiated at both interstitial and distal chromosomal regions in the Australian representative M. eugenii, the bouquet polarization was incomplete and ephemeral, γH2AX had a broad nuclear distribution, and RAD51 and RPA foci displayed an even chromosomal distribution. Given the basal evolutionary position of T. elegans, it is likely that the meiotic features reported in this species represent an ancestral pattern in marsupials and that a shift in the meiotic program occurred after the split of D. gliroides and the Australian marsupial clade. Our results open intriguing questions about the regulation and homeostasis of meiotic DSBs in marsupials. The low recombination rates observed at the interstitial chromosomal regions in American marsupials can result in the formation of large linkage groups, thus having an impact in the evolution of their genomes.
Collapse
Affiliation(s)
| | - Mireia Solé
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular, Universitat Autònoma de Barcelona, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Valerio-de Arana
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of The Polish Academy of Sciences, Jastrzębiec, Poland
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Soledad Berríos
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Raúl Fernández-Donoso
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Yu Z, Kim HJ, Dernburg AF. ATM signaling modulates cohesin behavior in meiotic prophase and proliferating cells. Nat Struct Mol Biol 2023; 30:436-450. [PMID: 36879153 PMCID: PMC10113158 DOI: 10.1038/s41594-023-00929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
Cohesins are ancient and ubiquitous regulators of chromosome architecture and function, but their diverse roles and regulation remain poorly understood. During meiosis, chromosomes are reorganized as linear arrays of chromatin loops around a cohesin axis. This unique organization underlies homolog pairing, synapsis, double-stranded break induction, and recombination. We report that axis assembly in Caenorhabditis elegans is promoted by DNA-damage response (DDR) kinases that are activated at meiotic entry, even in the absence of DNA breaks. Downregulation of the cohesin-destabilizing factor WAPL-1 by ATM-1 promotes axis association of cohesins containing the meiotic kleisins COH-3 and COH-4. ECO-1 and PDS-5 also contribute to stabilizing axis-associated meiotic cohesins. Further, our data suggest that cohesin-enriched domains that promote DNA repair in mammalian cells also depend on WAPL inhibition by ATM. Thus, DDR and Wapl seem to play conserved roles in cohesin regulation in meiotic prophase and proliferating cells.
Collapse
Affiliation(s)
- Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, Berkeley, CA, USA.
| |
Collapse
|
11
|
Zhang L, Stauffer WT, Wang JS, Wu F, Yu Z, Liu C, Kim HJ, Dernburg AF. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. eLife 2023; 12:e84492. [PMID: 36700544 PMCID: PMC9998088 DOI: 10.7554/elife.84492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Meiotic chromosome segregation relies on synapsis and crossover (CO) recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in 'homolog engagement' is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans, recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break (DSB) induction. Inactivation of CHK-2 terminates DSB formation and enables CO designation and cell cycle progression. These findings illuminate how meiotic cells ensure CO formation and accurate chromosome segregation.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Weston T Stauffer
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - John S Wang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Fan Wu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Chenshu Liu
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
12
|
Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Diaz-Pacheco BN, Berson E, Colaiácovo MP. Chromatin landscape, DSB levels, and cKU-70/80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genet 2023; 19:e1010627. [PMID: 36706157 PMCID: PMC9907818 DOI: 10.1371/journal.pgen.1010627] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/08/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Programmed DNA double-strand break (DSB) formation is essential for achieving accurate chromosome segregation during meiosis. DSB repair timing and template choice are tightly regulated. However, little is known about how DSB distribution and the choice of repair pathway are regulated along the length of chromosomes, which has direct effects on the recombination landscape and chromosome remodeling at late prophase I. Here, we use the spatiotemporal resolution of meiosis in the Caenorhabditis elegans germline along with genetic approaches to study distribution of DSB processing and its regulation. High-resolution imaging of computationally straightened chromosomes immunostained for the RAD-51 recombinase marking DSB repair sites reveals that the pattern of RAD-51 foci throughout pachytene resembles crossover distribution in wild type. Specifically, RAD-51 foci occur primarily along the gene-poor distal thirds of the chromosomes in both early and late pachytene, and on both the X and the autosomes. However, this biased off-center distribution can be abrogated by the formation of excess DSBs. Reduced condensin function, but not an increase in total physical axial length, results in a homogeneous distribution of RAD-51 foci, whereas regulation of H3K9 methylation is required for the enrichment of RAD-51 at off-center positions. Finally, the DSB recognition heterodimer cKU-70/80, but not the non-homologous end-joining canonical ligase LIG-4, contributes to the enriched off-center distribution of RAD-51 foci. Taken together, our data supports a model by which regulation of the chromatin landscape, DSB levels, and DSB detection by cKU-70/80 collaborate to promote DSB processing by homologous recombination at off-center regions of the chromosomes in C. elegans.
Collapse
Affiliation(s)
- Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna N. Diaz-Pacheco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Key J, Gispert S, Koornneef L, Sleddens-Linkels E, Kohli A, Torres-Odio S, Koepf G, Amr S, Reichlmeir M, Harter PN, West AP, Münch C, Baarends WM, Auburger G. CLPP Depletion Causes Diplotene Arrest; Underlying Testis Mitochondrial Dysfunction Occurs with Accumulation of Perrault Proteins ERAL1, PEO1, and HARS2. Cells 2022; 12:52. [PMID: 36611846 PMCID: PMC9818230 DOI: 10.3390/cells12010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Human Perrault syndrome (PRLTS) is autosomal, recessively inherited, and characterized by ovarian insufficiency with hearing loss. Among the genetic causes are mutations of matrix peptidase CLPP, which trigger additional azoospermia. Here, we analyzed the impact of CLPP deficiency on male mouse meiosis stages. Histology, immunocytology, different OMICS and biochemical approaches, and RT-qPCR were employed in CLPP-null mouse testis. Meiotic chromosome pairing and synapsis proceeded normally. However, the foci number of the crossover marker MLH1 was slightly reduced, and foci persisted in diplotene, most likely due to premature desynapsis, associated with an accumulation of the DNA damage marker γH2AX. No meiotic M-phase cells were detected. Proteome profiles identified strong deficits of proteins involved in male meiotic prophase (HSPA2, SHCBP1L, DMRT7, and HSF5), versus an accumulation of AURKAIP1. Histone H3 cleavage, mtDNA extrusion, and cGAMP increase suggested innate immunity activation. However, the deletion of downstream STING/IFNAR failed to alleviate pathology. As markers of underlying mitochondrial pathology, we observed an accumulation of PRLTS proteins ERAL1, PEO1, and HARS2. We propose that the loss of CLPP leads to the extrusion of mitochondrial nucleotide-binding proteins to cytosol and nucleus, affecting late meiotic prophase progression, and causing cell death prior to M-phase entry. This phenotype is more severe than in mito-mice or mutator-mice.
Collapse
Affiliation(s)
- Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Aneesha Kohli
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Gabriele Koepf
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Shady Amr
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Marina Reichlmeir
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt am Main, Germany
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 35392 Gießen, Germany
| | - Willy M. Baarends
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Franca MM, Condezo YB, Elzaiat M, Felipe-Medina N, Sánchez-Sáez F, Muñoz S, Sainz-Urruela R, Martín-Hervás MR, García-Valiente R, Sánchez-Martín MA, Astudillo A, Mendez J, Llano E, Veitia RA, Mendonca BB, Pendás AM. A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death Differ 2022; 29:2347-2361. [PMID: 35624308 PMCID: PMC9751091 DOI: 10.1038/s41418-022-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023] Open
Abstract
Primary ovarian insufficiency (POI) causes female infertility by abolishing normal ovarian function. Although its genetic etiology has been extensively investigated, most POI cases remain unexplained. Using whole-exome sequencing, we identified a homozygous variant in RAD51B -(c.92delT) in two sisters with POI. In vitro studies revealed that this variant leads to translation reinitiation at methionine 64. Here, we show that this is a pathogenic hypomorphic variant in a mouse model. Rad51bc.92delT/c.92delT mice exhibited meiotic DNA repair defects due to RAD51 and HSF2BP/BMRE1 accumulation in the chromosome axes leading to a reduction in the number of crossovers. Interestingly, the interaction of RAD51B-c.92delT with RAD51C and with its newly identified interactors RAD51 and HELQ was abrogated or diminished. Repair of mitomycin-C-induced chromosomal aberrations was impaired in RAD51B/Rad51b-c.92delT human and mouse somatic cells in vitro and in explanted mouse bone marrow cells. Accordingly, Rad51b-c.92delT variant reduced replication fork progression of patient-derived lymphoblastoid cell lines and pluripotent reprogramming efficiency of primary mouse embryonic fibroblasts. Finally, Rad51bc.92delT/c.92delT mice displayed increased incidence of pituitary gland hyperplasia. These results provide new mechanistic insights into the role of RAD51B not only in meiosis but in the maintenance of somatic genome stability.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
- Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Maëva Elzaiat
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - M Rosario Martín-Hervás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Rodrigo García-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel A Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca, Spain
| | | | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Université Paris-Saclay and Institut François Jacob, Comissariat à l'Energie Atomique, Gif-sur-Yvette, France.
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil.
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| |
Collapse
|
15
|
Nath S, Welch LA, Flanagan MK, White MA. Meiotic pairing and double-strand break formation along the heteromorphic threespine stickleback sex chromosomes. Chromosome Res 2022; 30:429-442. [PMID: 35635635 DOI: 10.1007/s10577-022-09699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023]
Abstract
Double-strand break repair during meiosis is normally achieved using the homologous chromosome as a repair template. Heteromorphic sex chromosomes share little sequence homology, presenting unique challenges to the repair of double-strand breaks. Our understanding of how heteromorphic sex chromosomes behave during meiosis has been focused on ancient sex chromosomes, where the X and Y differ markedly in overall structure and gene content. It remains unclear how more recently evolved sex chromosomes that share considerably more sequence homology with one another pair and form double-strand breaks. One possibility is barriers to pairing evolve rapidly. Alternatively, recently evolved sex chromosomes may exhibit pairing and double-strand break repair that more closely resembles that of their autosomal ancestors. Here, we use the recently evolved X and Y chromosomes of the threespine stickleback fish (Gasterosteus aculeatus) to study patterns of pairing and double-stranded break formation using molecular cytogenetics. We found that the sex chromosomes of threespine stickleback fish did not pair exclusively in the pseudoautosomal region. Instead, the chromosomes fully paired in a non-homologous fashion. To achieve this, the X chromosome underwent synaptic adjustment during pachytene to match the axis length of the Y chromosome. Double-strand break formation and repair rate also matched that of the autosomes. Our results highlight that recently evolved sex chromosomes exhibit meiotic behavior that is reminiscent of autosomes and argues for further work to identify the homologous templates that are used to repair double-strand breaks on the X and Y chromosomes.
Collapse
Affiliation(s)
- Shivangi Nath
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Lucille A Welch
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Mary K Flanagan
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Michael A White
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA.
| |
Collapse
|
16
|
Ziesel A, Weng Q, Ahuja JS, Bhattacharya A, Dutta R, Cheng E, Börner GV, Lichten M, Hollingsworth NM. Rad51-mediated interhomolog recombination during budding yeast meiosis is promoted by the meiotic recombination checkpoint and the conserved Pif1 helicase. PLoS Genet 2022; 18:e1010407. [PMID: 36508468 PMCID: PMC9779700 DOI: 10.1371/journal.pgen.1010407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/22/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
During meiosis, recombination between homologous chromosomes (homologs) generates crossovers that promote proper segregation at the first meiotic division. Recombination is initiated by Spo11-catalyzed DNA double strand breaks (DSBs). 5' end resection of the DSBs creates 3' single strand tails that two recombinases, Rad51 and Dmc1, bind to form presynaptic filaments that search for homology, mediate strand invasion and generate displacement loops (D-loops). D-loop processing then forms crossover and non-crossover recombinants. Meiotic recombination occurs in two temporally distinct phases. During Phase 1, Rad51 is inhibited and Dmc1 mediates the interhomolog recombination that promotes homolog synapsis. In Phase 2, Rad51 becomes active and functions with Rad54 to repair residual DSBs, making increasing use of sister chromatids. The transition from Phase 1 to Phase 2 is controlled by the meiotic recombination checkpoint through the meiosis-specific effector kinase Mek1. This work shows that constitutive activation of Rad51 in Phase 1 results in a subset of DSBs being repaired by a Rad51-mediated interhomolog recombination pathway that is distinct from that of Dmc1. Strand invasion intermediates generated by Rad51 require more time to be processed into recombinants, resulting in a meiotic recombination checkpoint delay in prophase I. Without the checkpoint, Rad51-generated intermediates are more likely to involve a sister chromatid, thereby increasing Meiosis I chromosome nondisjunction. This Rad51 interhomolog recombination pathway is specifically promoted by the conserved 5'-3' helicase PIF1 and its paralog, RRM3 and requires Pif1 helicase activity and its interaction with PCNA. This work demonstrates that (1) inhibition of Rad51 during Phase 1 is important to prevent competition with Dmc1 for DSB repair, (2) Rad51-mediated meiotic recombination intermediates are initially processed differently than those made by Dmc1, and (3) the meiotic recombination checkpoint provides time during prophase 1 for processing of Rad51-generated recombination intermediates.
Collapse
Affiliation(s)
- Andrew Ziesel
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Qixuan Weng
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jasvinder S. Ahuja
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Abhishek Bhattacharya
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Raunak Dutta
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Evan Cheng
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - G. Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nancy M. Hollingsworth
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
17
|
Matveevsky S, Bakloushinskaya I, Tambovtseva V, Atsaeva M, Grishaeva T, Bogdanov A, Kolomiets O. Nonhomologous Chromosome Interactions in Prophase I: Dynamics of Bizarre Meiotic Contacts in the Alay Mole Vole Ellobius alaicus (Mammalia, Rodentia). Genes (Basel) 2022; 13:genes13122196. [PMID: 36553461 PMCID: PMC9778597 DOI: 10.3390/genes13122196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Nonhomologous chromosome interactions take place in both somatic and meiotic cells. Prior to this study, we had discovered special contacts through the SYCP3 (synaptonemal complex protein 3) filament between the short arms of nonhomologous acrocentrics at the pachytene stage in the Alay mole vole, and these contacts demonstrate several patterns from proximity to the complete fusion stage. Here, we investigated the nonhomologous chromosome contacts in meiotic prophase I. It turned out that such contacts do not introduce changes into the classic distribution of DNA double-strand breaks. It is noteworthy that not all meiotic contacts were localized in the H3k9me3-positive heterochromatic environment. Both in the mid zygotene and in the early-mid diplotene, three types of contacts (proximity, touching, and anchoring/tethering) were observed, whereas fusion seems to be characteristic only for pachytene. The number of contacts in the mid pachytene is significantly higher than that in the zygotene, and the distance between centromeres in nonhomologous contacts is also the smallest in mid pachytene for all types of contacts. Thus, this work provides a new insight into the behavior of meiotic contacts during prophase I and points to avenues of further research.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Valentina Tambovtseva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maret Atsaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Cell Biology, Morphology and Microbiology, Chechen State University, 364024 Grozny, Russia
| | - Tatiana Grishaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aleksey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
Continuous double-strand break induction and their differential processing sustain chiasma formation during Caenorhabditis elegans meiosis. Cell Rep 2022; 40:111403. [PMID: 36170820 DOI: 10.1016/j.celrep.2022.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Faithful chromosome segregation into gametes depends on Spo11-induced DNA double-strand breaks (DSBs). These yield single-stranded 3' tails upon resection to promote crossovers (COs). While early Mre11-dependent end resection is the predominant pathway in most organisms, Exo1 or Dna2/BLM can also contribute to the efficient processing of meiotic DSBs. Although its enzymatic activity has been thoroughly dissected, the temporal dynamics underlying Spo11 activity have remained mostly elusive. We show that, in Caenorhabditis elegans, SPO-11-mediated DSB induction takes place throughout early meiotic prophase I until mid-late pachynema. We find that late DSBs are essential for CO formation and are preferentially processed by EXO-1 and DNA-2 in a redundant fashion. Further, EXO-1-DNA-2-mediated resection ensures completion of conservative DSB repair and discourages activation of KU-dependent end joining. Taken together, our data unveil important temporal aspects of DSB induction and identify previously unknown functional implications for EXO-1-DNA-2-mediated resection activity in C. elegans.
Collapse
|
19
|
Gantz VM, Bier E. Active genetics comes alive: Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives): Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives). Bioessays 2022; 44:e2100279. [PMID: 35686327 PMCID: PMC9397133 DOI: 10.1002/bies.202100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based "active genetic" elements developed in 2015 bypassed the fundamental rules of traditional genetics. Inherited in a super-Mendelian fashion, such selfish genetic entities offered a variety of potential applications including: gene-drives to disseminate gene cassettes carrying desired traits throughout insect populations to control disease vectors or pest species, allelic drives biasing inheritance of preferred allelic variants, neutralizing genetic elements to delete and replace or to halt the spread of gene-drives, split-drives with the core constituent Cas9 endonuclease and guide RNA (gRNA) components inserted at separate genomic locations to accelerate assembly of complex arrays of genetic traits or to gain genetic entry into novel organisms (vertebrates, plants, bacteria), and interhomolog based copying systems in somatic cells to develop tools for treating inherited or infectious diseases. Here, we summarize the substantial advances that have been made on all of these fronts and look forward to the next phase of this rapidly expanding and impactful field.
Collapse
Affiliation(s)
- Valentino M Gantz
- Department of Cell and Developmental Biology, University of California, La Jolla, California, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, La Jolla, California, USA
| |
Collapse
|
20
|
Porubsky D, Höps W, Ashraf H, Hsieh P, Rodriguez-Martin B, Yilmaz F, Ebler J, Hallast P, Maria Maggiolini FA, Harvey WT, Henning B, Audano PA, Gordon DS, Ebert P, Hasenfeld P, Benito E, Zhu Q, Lee C, Antonacci F, Steinrücken M, Beck CR, Sanders AD, Marschall T, Eichler EE, Korbel JO. Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders. Cell 2022; 185:1986-2005.e26. [PMID: 35525246 PMCID: PMC9563103 DOI: 10.1016/j.cell.2022.04.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10-4 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Wolfram Höps
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Hufsah Ashraf
- Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and Bioinformatics, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Bernardo Rodriguez-Martin
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Jana Ebler
- Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and Bioinformatics, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Flavia Angela Maria Maggiolini
- Department of Biology, University of Bari "Aldo Moro", 70125 Bari, Italy; Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via Casamassima 148, 70010 Turi, Italy
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Barbara Henning
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A Audano
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - David S Gordon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Peter Ebert
- Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and Bioinformatics, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Eva Benito
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | | | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA; Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA; The University of Connecticut Health Center, 400 Farmington Rd., Farmington, CT 06032, USA
| | - Ashley D Sanders
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Charité-Universitätsmedizin, Berlin, Berlin, Germany
| | - Tobias Marschall
- Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and Bioinformatics, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
21
|
Ravindranathan R, Raveendran K, Papanikos F, San-Segundo P, Tóth A. Chromosomal synapsis defects can trigger oocyte apoptosis without elevating numbers of persistent DNA breaks above wild-type levels. Nucleic Acids Res 2022; 50:5617-5634. [PMID: 35580048 PMCID: PMC9177993 DOI: 10.1093/nar/gkac355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
Generation of haploid gametes depends on a modified version of homologous recombination in meiosis. Meiotic recombination is initiated by single-stranded DNA (ssDNA) ends originating from programmed DNA double-stranded breaks (DSBs) that are generated by the topoisomerase-related SPO11 enzyme. Meiotic recombination involves chromosomal synapsis, which enhances recombination-mediated DSB repair, and thus, crucially contributes to genome maintenance in meiocytes. Synapsis defects induce oocyte apoptosis ostensibly due to unrepaired DSBs that persist in asynaptic chromosomes. In mice, SPO11-deficient oocytes feature asynapsis, apoptosis and, surprisingly, numerous foci of the ssDNA-binding recombinase RAD51, indicative of DSBs of unknown origin. Hence, asynapsis is suggested to trigger apoptosis due to inefficient DSB repair even in mutants that lack programmed DSBs. By directly detecting ssDNAs, we discovered that RAD51 is an unreliable marker for DSBs in oocytes. Further, SPO11-deficient oocytes have fewer persistent ssDNAs than wild-type oocytes. These observations suggest that oocyte quality is safeguarded in mammals by a synapsis surveillance mechanism that can operate without persistent ssDNAs.
Collapse
Affiliation(s)
- Ramya Ravindranathan
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Attila Tóth
- To whom correspondence should be addressed. Tel: +49 351 458 6467; Fax: +49 351 458 6305;
| |
Collapse
|
22
|
Verkuijl SAN, Ang JXD, Alphey L, Bonsall MB, Anderson MAE. The Challenges in Developing Efficient and Robust Synthetic Homing Endonuclease Gene Drives. Front Bioeng Biotechnol 2022; 10:856981. [PMID: 35419354 PMCID: PMC8996256 DOI: 10.3389/fbioe.2022.856981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Making discrete and precise genetic changes to wild populations has been proposed as a means of addressing some of the world's most pressing ecological and public health challenges caused by insect pests. Technologies that would allow this, such as synthetic gene drives, have been under development for many decades. Recently, a new generation of programmable nucleases has dramatically accelerated technological development. CRISPR-Cas9 has improved the efficiency of genetic engineering and has been used as the principal effector nuclease in different gene drive inheritance biasing mechanisms. Of these nuclease-based gene drives, homing endonuclease gene drives have been the subject of the bulk of research efforts (particularly in insects), with many different iterations having been developed upon similar core designs. We chart the history of homing gene drive development, highlighting the emergence of challenges such as unintended repair outcomes, "leaky" expression, and parental deposition. We conclude by discussing the progress made in developing strategies to increase the efficiency of homing endonuclease gene drives and mitigate or prevent unintended outcomes.
Collapse
Affiliation(s)
- Sebald A. N. Verkuijl
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Joshua X. D. Ang
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
23
|
Marín-Gual L, González-Rodelas L, Pujol G, Vara C, Martín-Ruiz M, Berríos S, Fernández-Donoso R, Pask A, Renfree MB, Page J, Waters PD, Ruiz-Herrera A. Strategies for meiotic sex chromosome dynamics and telomeric elongation in Marsupials. PLoS Genet 2022; 18:e1010040. [PMID: 35130272 PMCID: PMC8853506 DOI: 10.1371/journal.pgen.1010040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 01/14/2022] [Indexed: 01/30/2023] Open
Abstract
During meiotic prophase I, homologous chromosomes pair, synapse and recombine in a tightly regulated process that ensures the generation of genetically variable haploid gametes. Although the mechanisms underlying meiotic cell division have been well studied in model species, our understanding of the dynamics of meiotic prophase I in non-traditional model mammals remains in its infancy. Here, we reveal key meiotic features in previously uncharacterised marsupial species (the tammar wallaby and the fat-tailed dunnart), plus the fat-tailed mouse opossum, with a focus on sex chromosome pairing strategies, recombination and meiotic telomere homeostasis. We uncovered differences between phylogroups with important functional and evolutionary implications. First, sex chromosomes, which lack a pseudo-autosomal region in marsupials, had species specific pairing and silencing strategies, with implications for sex chromosome evolution. Second, we detected two waves of γH2AX accumulation during prophase I. The first wave was accompanied by low γH2AX levels on autosomes, which correlated with the low recombination rates that distinguish marsupials from eutherian mammals. In the second wave, γH2AX was restricted to sex chromosomes in all three species, which correlated with transcription from the X in tammar wallaby. This suggests non-canonical functions of γH2AX on meiotic sex chromosomes. Finally, we uncover evidence for telomere elongation in primary spermatocytes of the fat-tailed dunnart, a unique strategy within mammals. Our results provide new insights into meiotic progression and telomere homeostasis in marsupials, highlighting the importance of capturing the diversity of meiotic strategies within mammals. The generation of haploid gametes is a hallmark of sexual reproduction. And this is accomplished by a complex, albeit tightly regulated, reductional cell division called meiosis. Although meiosis has been extensively studied in eutherian mammal model species, our understanding of the mechanisms regulating chromosome synapsis, recombination and segregation during meiosis progression is still incomplete especially in non-eutherian mammals. To fill this gap and capture the diversity of meiotic strategies among mammals, we study previously uncharacterised representative marsupial species, an evolutionary assemblage that last shared a common ancestry more than 80 million years ago. We uncover novel, hence non-canonical, strategies for sex chromosome pairing, DNA repair, recombination and transcription. Most importantly, we reveal the uniqueness of marsupial meiosis, which includes the unprecedented detection of alternative mechanism (ALT) for the paternal control of telomere length during prophase I. Our findings suggest that ALT (previously only associated to cancer cells) could play a role in telomere homeostasis in mammalian germ cells.
Collapse
Affiliation(s)
- Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Gala Pujol
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Soledad Berríos
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Raúl Fernández-Donoso
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrew Pask
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
24
|
Pereira C, Arroyo-Martinez GA, Guo MZ, Downey MS, Kelly ER, Grive KJ, Mahadevaiah SK, Sims JR, Faca VM, Tsai C, Schiltz CJ, Wit N, Jacobs H, Clark NL, Freire R, Turner J, Lyndaker AM, Brieno-Enriquez MA, Cohen PE, Smolka MB, Weiss RS. Multiple 9-1-1 complexes promote homolog synapsis, DSB repair, and ATR signaling during mammalian meiosis. eLife 2022; 11:68677. [PMID: 35133274 PMCID: PMC8824475 DOI: 10.7554/elife.68677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage response mechanisms have meiotic roles that ensure successful gamete formation. While completion of meiotic double-strand break (DSB) repair requires the canonical RAD9A-RAD1-HUS1 (9A-1-1) complex, mammalian meiocytes also express RAD9A and HUS1 paralogs, RAD9B and HUS1B, predicted to form alternative 9-1-1 complexes. The RAD1 subunit is shared by all predicted 9-1-1 complexes and localizes to meiotic chromosomes even in the absence of HUS1 and RAD9A. Here, we report that testis-specific disruption of RAD1 in mice resulted in impaired DSB repair, germ cell depletion, and infertility. Unlike Hus1 or Rad9a disruption, Rad1 loss in meiocytes also caused severe defects in homolog synapsis, impaired phosphorylation of ATR targets such as H2AX, CHK1, and HORMAD2, and compromised meiotic sex chromosome inactivation. Together, these results establish critical roles for both canonical and alternative 9-1-1 complexes in meiotic ATR activation and successful prophase I completion.
Collapse
Affiliation(s)
| | | | - Matthew Z Guo
- Department of Biomedical Sciences, Cornell University
| | | | - Emma R Kelly
- Division of Mathematics and Natural Sciences, Elmira College
| | | | | | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University
| | - Vitor M Faca
- Department of Biochemistry and Immunology, FMRP, University of São Paulo
| | - Charlton Tsai
- Department of Biomedical Sciences, Cornell University
| | | | - Niek Wit
- Division of Immunology, The Netherlands Cancer Institute
| | - Heinz Jacobs
- Division of Immunology, The Netherlands Cancer Institute
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna
- Universidad Fernando Pessoa Canarias
| | - James Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute
| | - Amy M Lyndaker
- Division of Mathematics and Natural Sciences, Elmira College
| | - Miguel A Brieno-Enriquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University
| | | |
Collapse
|
25
|
Grunwald HA, Weitzel AJ, Cooper KL. Applications of and considerations for using CRISPR-Cas9-mediated gene conversion systems in rodents. Nat Protoc 2022; 17:3-14. [PMID: 34949863 DOI: 10.1038/s41596-021-00646-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023]
Abstract
Genetic elements that are inherited at super-Mendelian frequencies could be used in a 'gene drive' to spread an allele to high prevalence in a population with the goal of eliminating invasive species or disease vectors. We recently demonstrated that the gene conversion mechanism underlying a CRISPR-Cas9-mediated gene drive is feasible in mice. Although substantial technical hurdles remain, overcoming these could lead to strategies that might decrease the spread of rodent-borne Lyme disease or eliminate invasive populations of mice and rats that devastate island ecology. Perhaps more immediately achievable at moderate gene conversion efficiency, applications in a laboratory setting could produce complex genotypes that reduce the time and cost in both dollars and animal lives compared with Mendelian inheritance strategies. Here, we discuss what we have learned from early efforts to achieve CRISPR-Cas9-mediated gene conversion, potential for broader applications in the laboratory, current limitations, and plans for optimizing this potentially powerful technology.
Collapse
Affiliation(s)
- Hannah A Grunwald
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexander J Weitzel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Weitzel AJ, Grunwald HA, Weber C, Levina R, Gantz VM, Hedrick SM, Bier E, Cooper KL. Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline. PLoS Biol 2021; 19:e3001478. [PMID: 34941868 PMCID: PMC8699911 DOI: 10.1371/journal.pbio.3001478] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022] Open
Abstract
Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a "gene drive," to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously showed that such a system of gene conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double-strand DNA break (DSB) is feasible in the female mouse germline. In the male germline, however, all DSBs were instead repaired by end joining (EJ) mechanisms to form an "insertion/deletion" (indel) mutation. These observations suggested that timing Cas9 expression to coincide with meiosis I is critical to favor conditions when homologous chromosomes are aligned and interchromosomal homology-directed repair (HDR) mechanisms predominate. Here, using a Cas9 knock-in allele at the Spo11 locus, we show that meiotic expression of Cas9 does indeed mediate gene conversion in the male as well as in the female germline. However, the low frequency of both HDR and indel mutation in both male and female germlines suggests that Cas9 may be expressed from the Spo11 locus at levels too low for efficient DSB formation. We suggest that more robust Cas9 expression initiated during early meiosis I may improve the efficiency of gene conversion and further increase the rate of "super-mendelian" inheritance from both male and female mice.
Collapse
Affiliation(s)
- Alexander J. Weitzel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Hannah A. Grunwald
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Ceri Weber
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Rimma Levina
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Valentino M. Gantz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Stephen M. Hedrick
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Ethan Bier
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- Tata Institute for Genetics and Society, University of California San Diego, La Jolla, California, United States of America
| | - Kimberly L. Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- Tata Institute for Genetics and Society, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
27
|
Lukaszewicz A, Lange J, Keeney S, Jasin M. De novo deletions and duplications at recombination hotspots in mouse germlines. Cell 2021; 184:5970-5984.e18. [PMID: 34793701 PMCID: PMC8616837 DOI: 10.1016/j.cell.2021.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
28
|
Gil-Fernández A, Ribagorda M, Martín-Ruiz M, López-Jiménez P, Laguna T, Gómez R, Parra MT, Viera A, Veyrunes F, Page J. Meiotic Behavior of Achiasmate Sex Chromosomes in the African Pygmy Mouse Mus mattheyi Offers New Insights into the Evolution of Sex Chromosome Pairing and Segregation in Mammals. Genes (Basel) 2021; 12:1434. [PMID: 34573416 PMCID: PMC8471055 DOI: 10.3390/genes12091434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
X and Y chromosomes in mammals are different in size and gene content due to an evolutionary process of differentiation and degeneration of the Y chromosome. Nevertheless, these chromosomes usually share a small region of homology, the pseudoautosomal region (PAR), which allows them to perform a partial synapsis and undergo reciprocal recombination during meiosis, which ensures their segregation. However, in some mammalian species the PAR has been lost, which challenges the pairing and segregation of sex chromosomes in meiosis. The African pygmy mouse Mus mattheyi shows completely differentiated sex chromosomes, representing an uncommon evolutionary situation among mouse species. We have performed a detailed analysis of the location of proteins involved in synaptonemal complex assembly (SYCP3), recombination (RPA, RAD51 and MLH1) and sex chromosome inactivation (γH2AX) in this species. We found that neither synapsis nor chiasmata are found between sex chromosomes and their pairing is notably delayed compared to autosomes. Interestingly, the Y chromosome only incorporates RPA and RAD51 in a reduced fraction of spermatocytes, indicating a particular DNA repair dynamic on this chromosome. The analysis of segregation revealed that sex chromosomes are associated until metaphase-I just by a chromatin contact. Unexpectedly, both sex chromosomes remain labelled with γH2AX during first meiotic division. This chromatin contact is probably enough to maintain sex chromosome association up to anaphase-I and, therefore, could be relevant to ensure their reductional segregation. The results presented suggest that the regulation of both DNA repair and epigenetic modifications in the sex chromosomes can have a great impact on the divergence of sex chromosomes and their proper transmission, widening our understanding on the relationship between meiosis and the evolution of sex chromosomes in mammals.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Tamara Laguna
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| | - Frederic Veyrunes
- Institut des Sciences de l’Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.G.-F.); (M.R.); (M.M.-R.); (P.L.-J.); (T.L.); (R.G.); (M.T.P.); (A.V.)
| |
Collapse
|
29
|
Rillo-Bohn R, Adilardi R, Mitros T, Avşaroğlu B, Stevens L, Köhler S, Bayes J, Wang C, Lin S, Baskevitch KA, Rokhsar DS, Dernburg AF. Analysis of meiosis in Pristionchus pacificus reveals plasticity in homolog pairing and synapsis in the nematode lineage. eLife 2021; 10:70990. [PMID: 34427184 PMCID: PMC8455136 DOI: 10.7554/elife.70990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Meiosis is conserved across eukaryotes yet varies in the details of its execution. Here we describe a new comparative model system for molecular analysis of meiosis, the nematode Pristionchus pacificus, a distant relative of the widely studied model organism Caenorhabditis elegans. P. pacificus shares many anatomical and other features that facilitate analysis of meiosis in C. elegans. However, while C. elegans has lost the meiosis-specific recombinase Dmc1 and evolved a recombination-independent mechanism to synapse its chromosomes, P. pacificus expresses both DMC-1 and RAD-51. We find that SPO-11 and DMC-1 are required for stable homolog pairing, synapsis, and crossover formation, while RAD-51 is dispensable for these key meiotic processes. RAD-51 and DMC-1 localize sequentially to chromosomes during meiotic prophase and show nonoverlapping functions. We also present a new genetic map for P. pacificus that reveals a crossover landscape very similar to that of C. elegans, despite marked divergence in the regulation of synapsis and crossing-over between these lineages.
Collapse
Affiliation(s)
- Regina Rillo-Bohn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Renzo Adilardi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Barış Avşaroğlu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Lewis Stevens
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Darwin Tree of Life Project, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Joshua Bayes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Clara Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Sabrina Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - K Alienor Baskevitch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Energy Joint Genome Institute, Berkeley, United States.,Okinawa Institute of Science and Technology Graduate University, Onna, Japan.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,California Institute for Quantitative Biosciences, Berkeley, United States
| |
Collapse
|
30
|
Takemoto K, Tani N, Takada-Horisawa Y, Fujimura S, Tanno N, Yamane M, Okamura K, Sugimoto M, Araki K, Ishiguro KI. Meiosis-Specific C19orf57/4930432K21Rik/BRME1 Modulates Localization of RAD51 and DMC1 to DSBs in Mouse Meiotic Recombination. Cell Rep 2021; 31:107686. [PMID: 32460033 DOI: 10.1016/j.celrep.2020.107686] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022] Open
Abstract
Meiotic recombination is critical for genetic exchange and generation of chiasmata that ensures faithful chromosome segregation during meiosis I. Meiotic recombination is initiated by DNA double-strand break (DSB) followed by multiple processes of DNA repair. The exact mechanisms for how recombinases localize to DSB remain elusive. Here, we show that C19orf57/4930432K21Rik/BRME1 is a player for meiotic recombination in mice. C19orf57/4930432K21Rik/BRME1 associates with single-stranded DNA (ssDNA) binding proteins, BRCA2 and MEILB2/HSF2BP, which are critical recruiters of recombinases onto DSB sites. Disruption of C19orf57/4930432K21Rik/BRME1 shows severe impact on DSB repair and male fertility. Remarkably, removal of ssDNA binding proteins from DSB sites is delayed, and reciprocally, the loading of RAD51 and DMC1 onto resected ssDNA is impaired in Brme1 knockout (KO) spermatocytes. We propose that C19orf57/4930432K21Rik/BRME1 modulates localization of recombinases to meiotic DSB sites through the interaction with the BRCA2-MEILB2/HSF2BP complex during meiotic recombination.
Collapse
Affiliation(s)
- Kazumasa Takemoto
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuki Takada-Horisawa
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuhiro Tanno
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Mariko Yamane
- RIKEN, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kaho Okamura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Michihiko Sugimoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
31
|
Li Z, Marcel N, Devkota S, Auradkar A, Hedrick SM, Gantz VM, Bier E. CopyCatchers are versatile active genetic elements that detect and quantify inter-homolog somatic gene conversion. Nat Commun 2021; 12:2625. [PMID: 33976171 PMCID: PMC8113449 DOI: 10.1038/s41467-021-22927-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
CRISPR-based active genetic elements, or gene-drives, copied via homology-directed repair (HDR) in the germline, are transmitted to progeny at super-Mendelian frequencies. Active genetic elements also can generate widespread somatic mutations, but the genetic basis for such phenotypes remains uncertain. It is generally assumed that such somatic mutations are generated by non-homologous end-joining (NHEJ), the predominant double stranded break repair pathway active in somatic cells. Here, we develop CopyCatcher systems in Drosophila to detect and quantify somatic gene conversion (SGC) events. CopyCatchers inserted into two independent genetic loci reveal unexpectedly high rates of SGC in the Drosophila eye and thoracic epidermis. Focused RNAi-based genetic screens identify several unanticipated loci altering SGC efficiency, one of which (c-MYC), when downregulated, promotes SGC mediated by both plasmid and homologous chromosome-templates in human HEK293T cells. Collectively, these studies suggest that CopyCatchers can serve as effective discovery platforms to inform potential gene therapy strategies.
Collapse
Affiliation(s)
- Zhiqian Li
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Nimi Marcel
- Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Stephen M Hedrick
- Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA, USA.
| |
Collapse
|
32
|
Dai X, Jiang Y, Gu J, Jiang Z, Wu Y, Yu C, Yin H, Zhang J, Shi Q, Shen L, Sha Q, Fan H. The CNOT4 Subunit of the CCR4-NOT Complex is Involved in mRNA Degradation, Efficient DNA Damage Repair, and XY Chromosome Crossover during Male Germ Cell Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003636. [PMID: 34026442 PMCID: PMC8132151 DOI: 10.1002/advs.202003636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/23/2021] [Indexed: 05/03/2023]
Abstract
The CCR4-NOT complex is a major mRNA deadenylase in eukaryotes, comprising the catalytic subunits CNOT6/6L and CNOT7/8, as well as CNOT4, a regulatory subunit with previously undetermined functions. These subunits have been hypothesized to play synergistic biochemical functions during development. Cnot7 knockout male mice have been reported to be infertile. In this study, viable Cnot6/6l double knockout mice are constructed, and the males are fertile. These results indicate that CNOT7 has CNOT6/6L-independent functions in vivo. It is also demonstrated that CNOT4 is required for post-implantation embryo development and meiosis progression during spermatogenesis. Conditional knockout of Cnot4 in male germ cells leads to defective DNA damage repair and homologous crossover between X and Y chromosomes. CNOT4 functions as a previously unrecognized mRNA adaptor of CCR4-NOT by targeting mRNAs to CNOT7 for deadenylation of poly(A) tails, thereby mediating the degradation of a subset of transcripts from the zygotene to pachytene stage. The mRNA removal promoted by the CNOT4-regulated CCR4-NOT complex during the zygotene-to-pachytene transition is crucial for the appropriate expression of genes involved in the subsequent events of spermatogenesis, normal DNA double-strand break repair during meiosis, efficient crossover between X and Y chromosomes, and ultimately, male fertility.
Collapse
Affiliation(s)
- Xing‐Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jia‐Hui Gu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhi‐Yan Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yun‐Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Chao Yu
- College of Life ScienceZhejiang UniversityHangzhou310058China
| | - Hao Yin
- First Affiliated Hospital of USTCHefei National Laboratory for Physical Sciences at MicroscaleSchool of Basic Medical SciencesDivision of Life Sciences and MedicineCAS Center for Excellence in Molecular Cell ScienceUniversity of Science and Technology of ChinaHefei230027China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XIANGYAChangsha410008China
| | - Qing‐Hua Shi
- First Affiliated Hospital of USTCHefei National Laboratory for Physical Sciences at MicroscaleSchool of Basic Medical SciencesDivision of Life Sciences and MedicineCAS Center for Excellence in Molecular Cell ScienceUniversity of Science and Technology of ChinaHefei230027China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qian‐Qian Sha
- Fertility Preservation LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| |
Collapse
|
33
|
Li G, Yang X, Wang L, Pan Y, Chen S, Shang L, Zhang Y, Wu Y, Zhou Z, Chen Q, Zhang X, Zhang L, Wang Y, Li J, Jin L, Wu Y, Zhang X, Zhang F. Haploinsufficiency in non-homologous end joining factor 1 induces ovarian dysfunction in humans and mice. J Med Genet 2021; 59:579-588. [PMID: 33888552 DOI: 10.1136/jmedgenet-2020-107398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a common disease in women that leads to a reduced reproductive lifespan. The aetiology of POI is genetically heterogeneous, with certain double-strand break (DSB) repair genes being implicated in POI. Although non-homologous end joining (NHEJ) is an efficient DSB repair pathway, the functional relationship between this pathway and POI remains unknown. METHODS AND RESULTS We conducted whole-exome sequencing in a Chinese family and identified a rare heterozygous loss-of-function variant in non-homologous end joining factor 1 (NHEJ1): c.532C>T (p.R178*), which co-segregated with POI and irregular menstruation. The amount of NHEJ1 protein in the proband was half of the normal level, indicating a link between NHEJ1 haploinsufficiency and POI. Furthermore, another rare heterozygous NHEJ1 variant c.500A>G (p.Y167C) was identified in one of 100 sporadic POI cases. Both variants were predicted to be deleterious by multiple in silico tools. In vitro assays showed that knock-down of NHEJ1 in human KGN ovarian cells impaired DNA repair capacity. We also generated a knock-in mouse model with a heterozygous Nhej1 variant equivalent to NHEJ1 p.R178* in familial patients. Compared with wild-type mice, heterozygous Nhej1-mutated female mice required a longer time to first birth, and displayed reduced numbers of primordial and growing follicles. Moreover, these mice exhibited higher sensitivity to DSB-inducing drugs. All these phenotypes are analogous to the progressive loss of ovarian function observed in POI. CONCLUSIONS Our observations in both humans and mice suggest that NHEJ1 haploinsufficiency is associated with non-syndromic POI, providing novel insights into genetic counselling and clinical prevention of POI.
Collapse
Affiliation(s)
- Guoqing Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xi Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yuncheng Pan
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Siyuan Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lingyue Shang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yicheng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yucheng Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Zixue Zhou
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Qing Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xue Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yingchen Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojin Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
34
|
Kar FM, Hochwagen A. Phospho-Regulation of Meiotic Prophase. Front Cell Dev Biol 2021; 9:667073. [PMID: 33928091 PMCID: PMC8076904 DOI: 10.3389/fcell.2021.667073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York, NY, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
35
|
Alfaro E, López‐Jiménez P, González‐Martínez J, Malumbres M, Suja JA, Gómez R. PLK1 regulates centrosome migration and spindle dynamics in male mouse meiosis. EMBO Rep 2021; 22:e51030. [PMID: 33615693 PMCID: PMC8025030 DOI: 10.15252/embr.202051030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo-like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo-like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.
Collapse
Affiliation(s)
- Enrique Alfaro
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Pablo López‐Jiménez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | | | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - José A Suja
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Rocío Gómez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
36
|
Gil-Fernández A, Saunders PA, Martín-Ruiz M, Ribagorda M, López-Jiménez P, Jeffries DL, Parra MT, Viera A, Rufas JS, Perrin N, Veyrunes F, Page J. Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genet 2020; 16:e1008959. [PMID: 33180767 PMCID: PMC7685469 DOI: 10.1371/journal.pgen.1008959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
Sex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in almost all mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed or largely reduced in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution. Sex chromosomes seem to evolve and differentiate at different rates in different taxa. The reasons for this variability are still debated. It is well established that recombination suppression around the sex-determining region triggers differentiation, and several studies have investigated this process from a genetic point of view. However, the cellular context in which recombination arrest occurs has received little attention so far. In this report, we show that meiosis, the cellular division in which pairing and recombination between chromosomes takes place, can affect the incipient differentiation of X and Y chromosomes. Combining cytogenetic and genomic approaches, we found that in the African pygmy mouse Mus minutoides, which has recently undergone sex chromosome-autosome fusions, synapsis and DNA repair dynamics are disturbed along the newly added region of the sex chromosomes. We argue that these alterations are a by-product of the fusion itself, and cause recombination suppression across a large region of the neo-sex chromosome pair. Therefore, we propose that the meiotic context in which sex or neo-sex chromosomes arise is crucial to understand the very early stages of their differentiation, as it could promote or hinder recombination suppression, and therefore impact the rate at which these chromosomes differentiate.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paul A. Saunders
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S. Rufas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
37
|
Bloom JC, Schimenti JC. Sexually dimorphic DNA damage responses and mutation avoidance in the mouse germline. Genes Dev 2020; 34:1637-1649. [PMID: 33184219 PMCID: PMC7706705 DOI: 10.1101/gad.341602.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
In this study, Bloom and Schimenti examine the response of primordial germ cells to DNA damage. Using both environmental and genetic stresses, the authors reveal the importance of the G1 checkpoint in preventing accumulation of complex mutations in the germline, and the differentiation of the DNA damage response during germ cell development. Germ cells specified during fetal development form the foundation of the mammalian germline. These primordial germ cells (PGCs) undergo rapid proliferation, yet the germline is highly refractory to mutation accumulation compared with somatic cells. Importantly, while the presence of endogenous or exogenous DNA damage has the potential to impact PGCs, there is little known about how these cells respond to stressors. To better understand the DNA damage response (DDR) in these cells, we exposed pregnant mice to ionizing radiation (IR) at specific gestational time points and assessed the DDR in PGCs. Our results show that PGCs prior to sex determination lack a G1 cell cycle checkpoint. Additionally, the response to IR-induced DNA damage differs between female and male PGCs post-sex determination. IR of female PGCs caused uncoupling of germ cell differentiation and meiotic initiation, while male PGCs exhibited repression of piRNA metabolism and transposon derepression. We also used whole-genome single-cell DNA sequencing to reveal that genetic rescue of DNA repair-deficient germ cells (Fancm−/−) leads to increased mutation incidence and biases. Importantly, our work uncovers novel insights into how PGCs exposed to DNA damage can become developmentally defective, leaving only those genetically fit cells to establish the adult germline.
Collapse
Affiliation(s)
- Jordana C Bloom
- Department of Biomedical Sciences,, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences,, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
38
|
Li Q, Hariri S, Engebrecht J. Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1-BARD1 in Caenorhabditis elegans. Genetics 2020; 216:359-379. [PMID: 32796008 PMCID: PMC7536853 DOI: 10.1534/genetics.120.303292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022] Open
Abstract
Meiosis is regulated in a sex-specific manner to produce two distinct gametes, sperm and oocytes, for sexual reproduction. To determine how meiotic recombination is regulated in spermatogenesis, we analyzed the meiotic phenotypes of mutants in the tumor suppressor E3 ubiquitin ligase BRC-1-BRD-1 complex in Caenorhabditis elegans male meiosis. Unlike in mammals, this complex is not required for meiotic sex chromosome inactivation, the process whereby hemizygous sex chromosomes are transcriptionally silenced. Interestingly, brc-1 and brd-1 mutants show meiotic recombination phenotypes that are largely opposing to those previously reported for female meiosis. Fewer meiotic recombination intermediates marked by the recombinase RAD-51 were observed in brc-1 and brd-1 mutants, and the reduction in RAD-51 foci could be suppressed by mutation of nonhomologous-end-joining proteins. Analysis of GFP::RPA-1 revealed fewer foci in the brc-1brd-1 mutant and concentration of BRC-1-BRD-1 to sites of meiotic recombination was dependent on DNA end resection, suggesting that the complex regulates the processing of meiotic double-strand breaks to promote repair by homologous recombination. Further, BRC-1-BRD-1 is important to promote progeny viability when male meiosis is perturbed by mutations that block the pairing and synapsis of different chromosome pairs, although the complex is not required to stabilize the RAD-51 filament as in female meiosis under the same conditions. Analyses of crossover designation and formation revealed that BRC-1-BRD-1 inhibits supernumerary COs when meiosis is perturbed. Together, our findings suggest that BRC-1-BRD-1 regulates different aspects of meiotic recombination in male and female meiosis.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - Sara Hariri
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| |
Collapse
|
39
|
Bloom JC, Schimenti JC. A reporter mouse for in vivo detection of DNA damage in embryonic germ cells. Genesis 2020; 58:e23368. [PMID: 32343484 PMCID: PMC7897368 DOI: 10.1002/dvg.23368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/08/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Maintaining genome integrity in the germline is essential for survival and propagation of a species. In both mouse and human, germ cells originate during fetal development and are hypersensitive to both endogenous and exogenous DNA damaging agents. Currently, mechanistic understanding of how primordial germ cells respond to DNA damage is limited in part by the tools available to study these cells. We developed a mouse transgenic reporter strain expressing a 53BP1-mCherry fusion protein under the control of the Oct4ΔPE embryonic germ cell-specific promoter. This reporter binds sites of DNA double strand breaks (DSBs) on chromatin, forming foci. Using ionizing radiation as a DNA DSB-inducing agent, we show that the transgenic reporter expresses specifically in the embryonic germ cells of both sexes and forms DNA damage induced foci in both a dose- and time-dependent manner. The dynamic time-sensitive and dose-sensitive DNA damage detection ability of this transgenic reporter, in combination with its specific expression in embryonic germ cells, makes it a versatile and valuable tool for increasing our understanding of DNA damage responses in these unique cells.
Collapse
Affiliation(s)
- Jordana C. Bloom
- Department of Biomedical Sciences and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - John C. Schimenti
- Department of Biomedical Sciences and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| |
Collapse
|
40
|
Bondarieva A, Raveendran K, Telychko V, Rao HBDP, Ravindranathan R, Zorzompokou C, Finsterbusch F, Dereli I, Papanikos F, Tränkner D, Schleiffer A, Fei JF, Klimova A, Ito M, Kulkarni DS, Roeder I, Hunter N, Tóth A. Proline-rich protein PRR19 functions with cyclin-like CNTD1 to promote meiotic crossing over in mouse. Nat Commun 2020; 11:3101. [PMID: 32555348 PMCID: PMC7303132 DOI: 10.1038/s41467-020-16885-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/27/2020] [Indexed: 01/05/2023] Open
Abstract
Orderly chromosome segregation is enabled by crossovers between homologous chromosomes in the first meiotic division. Crossovers arise from recombination-mediated repair of programmed DNA double-strand breaks (DSBs). Multiple DSBs initiate recombination, and most are repaired without crossover formation, although one or more generate crossovers on each chromosome. Although the underlying mechanisms are ill-defined, the differentiation and maturation of crossover-specific recombination intermediates requires the cyclin-like CNTD1. Here, we identify PRR19 as a partner of CNTD1. We find that, like CNTD1, PRR19 is required for timely DSB repair and the formation of crossover-specific recombination complexes. PRR19 and CNTD1 co-localise at crossover sites, physically interact, and are interdependent for accumulation, indicating a PRR19-CNTD1 partnership in crossing over. Further, we show that CNTD1 interacts with a cyclin-dependent kinase, CDK2, which also accumulates in crossover-specific recombination complexes. Thus, the PRR19-CNTD1 complex may enable crossover differentiation by regulating CDK2.
Collapse
Affiliation(s)
- Anastasiia Bondarieva
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Vladyslav Telychko
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - H B D Prasada Rao
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Ramya Ravindranathan
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Chrysoula Zorzompokou
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Friederike Finsterbusch
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Daniel Tränkner
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), 1030, Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Ji-Feng Fei
- Institute for Brain Research and Rehabilitation, South China Normal University, 510631, Guangzhou, China
| | - Anna Klimova
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Masaru Ito
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Dhananjaya S Kulkarni
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Ingo Roeder
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
- Department of Molecular & Cellular Biology, University of California Davis, Davis, CA, USA
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
41
|
Meiotic Chromosome Contacts as a Plausible Prelude for Robertsonian Translocations. Genes (Basel) 2020; 11:genes11040386. [PMID: 32252399 PMCID: PMC7230836 DOI: 10.3390/genes11040386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from ‘contact first’ to ‘contact first in meiosis’.
Collapse
|
42
|
Dokshin GA, Davis GM, Sawle AD, Eldridge MD, Nicholls PK, Gourley TE, Romer KA, Molesworth LW, Tatnell HR, Ozturk AR, de Rooij DG, Hannon GJ, Page DC, Mello CC, Carmell MA. GCNA Interacts with Spartan and Topoisomerase II to Regulate Genome Stability. Dev Cell 2020; 52:53-68.e6. [PMID: 31839538 PMCID: PMC7227305 DOI: 10.1016/j.devcel.2019.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/14/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
GCNA proteins are expressed across eukarya in pluripotent cells and have conserved functions in fertility. GCNA homologs Spartan (DVC-1) and Wss1 resolve DNA-protein crosslinks (DPCs), including Topoisomerase-DNA adducts, during DNA replication. Here, we show that GCNA mutants in mouse and C. elegans display defects in genome maintenance including DNA damage, aberrant chromosome condensation, and crossover defects in mouse spermatocytes and spontaneous genomic rearrangements in C. elegans. We show that GCNA and topoisomerase II (TOP2) physically interact in both mice and worms and colocalize on condensed chromosomes during mitosis in C. elegans embryos. Moreover, C. elegans gcna-1 mutants are hypersensitive to TOP2 poison. Together, our findings support a model in which GCNA provides genome maintenance functions in the germline and may do so, in part, by promoting the resolution of TOP2 DPCs.
Collapse
Affiliation(s)
- Gregoriy A Dokshin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory M Davis
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Ashley D Sawle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Taylin E Gourley
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Katherine A Romer
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Luke W Molesworth
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Hannah R Tatnell
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Ahmet R Ozturk
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dirk G de Rooij
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, the Netherlands; Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam 1105, the Netherlands
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Michelle A Carmell
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
43
|
Signatures of replication timing, recombination, and sex in the spectrum of rare variants on the human X chromosome and autosomes. Proc Natl Acad Sci U S A 2019; 116:17916-17924. [PMID: 31427530 PMCID: PMC6731651 DOI: 10.1073/pnas.1900714116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sources of human germline mutations are poorly understood. Part of the difficulty is that mutations occur very rarely, and so direct pedigree-based approaches remain limited in the numbers that they can examine. To address this problem, we consider the spectrum of low-frequency variants in a dataset (Genome Aggregation Database, gnomAD) of 13,860 human X chromosomes and autosomes. X-autosome differences are reflective of germline sex differences and have been used extensively to learn about male versus female mutational processes; what is less appreciated is that they also reflect chromosome-level biochemical features that differ between the X and autosomes. We tease these components apart by comparing the mutation spectrum in multiple genomic compartments on the autosomes and between the X and autosomes. In so doing, we are able to ascribe specific mutation patterns to replication timing and recombination and to identify differences in the types of mutations that accrue in males and females. In particular, we identify C > G as a mutagenic signature of male meiotic double-strand breaks on the X, which may result from late repair. Our results show how biochemical processes of damage and repair in the germline interact with sex-specific life history traits to shape mutation patterns on both the X chromosome and autosomes.
Collapse
|