1
|
Frigerio C, Galli M, Castelli S, Da Prada A, Clerici M. Control of Replication Stress Response by Cytosolic Fe-S Cluster Assembly (CIA) Machinery. Cells 2025; 14:442. [PMID: 40136691 PMCID: PMC11941123 DOI: 10.3390/cells14060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Accurate DNA replication is essential for the maintenance of genome stability and the generation of healthy offspring. When DNA replication is challenged, signals accumulate at blocked replication forks that elicit a multifaceted cellular response, orchestrating DNA replication, DNA repair and cell cycle progression. This replication stress response promotes the recovery of DNA replication, maintaining chromosome integrity and preventing mutations. Defects in this response are linked to heightened genetic instability, which contributes to tumorigenesis and genetic disorders. Iron-sulfur (Fe-S) clusters are emerging as important cofactors in supporting the response to replication stress. These clusters are assembled and delivered to target proteins that function in the cytosol and nucleus via the conserved cytosolic Fe-S cluster assembly (CIA) machinery and the CIA targeting complex. This review summarizes recent advances in understanding the structure and function of the CIA machinery in yeast and mammals, emphasizing the critical role of Fe-S clusters in the replication stress response.
Collapse
Affiliation(s)
| | | | | | | | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy; (C.F.); (M.G.); (S.C.); (A.D.P.)
| |
Collapse
|
2
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2025; 599:190-208. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
3
|
Keszthelyi A, Mansoubi S, Whale A, Houseley J, Baxter J. The fork protection complex generates DNA topological stress-induced DNA damage while ensuring full and faithful genome duplication. Proc Natl Acad Sci U S A 2024; 121:e2413631121. [PMID: 39589889 PMCID: PMC11626154 DOI: 10.1073/pnas.2413631121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
The fork protection complex (FPC), composed of Mrc1, Tof1, and Csm3, supports rapid and stable DNA replication. Here, we show that FPC activity also introduces DNA damage by increasing DNA topological stress during replication. Mrc1 action increases DNA topological stress during plasmid replication, while Mrc1 or Tof1 activity causes replication stress and DNA damage within topologically constrained regions. We show that the recruitment of Top1 to the fork by Tof1 suppresses the DNA damage generated in these loci. While FPC activity introduces some DNA damage due to increased topological stress, the FPC is also necessary to prevent DNA damage in long replicons across the genome, indicating that the FPC is required for complete and faithful genome duplication. We conclude that FPC regulation must balance ensuring full genome duplication through rapid replication with minimizing the consequential DNA topological stress-induced DNA damage caused by rapid replication through constrained regions.
Collapse
Affiliation(s)
- Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
| | - Sahar Mansoubi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
- Biology Department, North Tehran Branch, Islamic Azad University, Tehran1477893855, Iran
| | - Alex Whale
- Epigenetics Programme The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, United Kingdom
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
| |
Collapse
|
4
|
Branzei D, Bene S, Gangwani L, Szakal B. The multifaceted roles of the Ctf4 replisome hub in the maintenance of genome integrity. DNA Repair (Amst) 2024; 142:103742. [PMID: 39137555 PMCID: PMC11425796 DOI: 10.1016/j.dnarep.2024.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
At the core of cellular life lies a carefully orchestrated interplay of DNA replication, recombination, chromatin assembly, sister-chromatid cohesion and transcription. These fundamental processes, while seemingly discrete, are inextricably linked during genome replication. A set of replisome factors integrate various DNA transactions and contribute to the transient formation of sister chromatid junctions involving either the cohesin complex or DNA four-way junctions. The latter structures serve DNA damage bypass and may have additional roles in replication fork stabilization or in marking regions of replication fork blockage. Here, we will discuss these concepts based on the ability of one replisome component, Ctf4, to act as a hub and functionally link these processes during DNA replication to ensure genome maintenance.
Collapse
Affiliation(s)
- Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy.
| | - Szabolcs Bene
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Barnabas Szakal
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy
| |
Collapse
|
5
|
Coulson-Gilmer C, Littler S, Barnes B, Brady R, Anagho H, Pillay N, Dey M, Macmorland W, Bronder D, Nelson L, Tighe A, Lin WH, Morgan R, Unwin R, Nielsen M, McGrail J, Taylor S. Intrinsic PARG inhibitor sensitivity is mimicked by TIMELESS haploinsufficiency and rescued by nucleoside supplementation. NAR Cancer 2024; 6:zcae030. [PMID: 39015544 PMCID: PMC11249981 DOI: 10.1093/narcan/zcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
A subset of cancer cells are intrinsically sensitive to inhibitors targeting PARG, the poly(ADP-ribose) glycohydrolase that degrades PAR chains. Sensitivity is accompanied by persistent DNA replication stress, and can be induced by inhibition of TIMELESS, a replisome accelerator. However, the nature of the vulnerability responsible for intrinsic sensitivity remains undetermined. To understand PARG activity dependency, we analysed Timeless model systems and intrinsically sensitive ovarian cancer cells. We show that nucleoside supplementation rescues all phenotypes associated with PARG inhibitor sensitivity, including replisome speed and fork stalling, S-phase completion and mitotic entry, proliferation dynamics and clonogenic potential. Importantly nucleoside supplementation restores PARG inhibitor resistance despite the continued presence of PAR chains, indicating that sensitivity does not correlate with PAR levels. In addition, we show that inhibition of thymidylate synthase, an enzyme required for dNTP homeostasis, induces PARG-dependency. Together, these observations suggest that PARG inhibitor sensitivity reflects an inability to control replisome speed and/or maintain helicase-polymerase coupling in response to nucleotide imbalances.
Collapse
Affiliation(s)
- Camilla Coulson-Gilmer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Samantha Littler
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Holda A Anagho
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nisha Pillay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Malini Dey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - William Macmorland
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Daniel Bronder
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Wei-Hsiang Lin
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Robert D Morgan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK
| | - Richard D Unwin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Michael L Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanne C McGrail
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
6
|
Liu S, Zhan W, He X, Hao M, Shen W, Zhang X, Wang M, Li Z, Hou R, Ou Z, Feng Y, Chen F. ATPR induces acute promyelocytic leukemia cells differentiation and cycle arrest via the lncRNA CONCR/DDX11/PML-RARα signaling axis. Gene 2024; 917:148443. [PMID: 38582263 DOI: 10.1016/j.gene.2024.148443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Acute promyelocytic leukemia (APL) is a type of acute myeloid leukemia (AML) with a high mortality rate, and the production of PML-RARα fusion protein is the cause of its pathogenesis. Our group has synthesized a novel compound, 4-amino-2-trifluoromethyl-phenyl retinate (ATPR), by structural modification of All-trans retinoic acid (ATRA), which has strong cell differentiation-inducing effects and inhibits the expression of PML-RARα. In this study, acute promyelocytic leukemia NB4 cells before and after ATPR induction were analyzed by whole transcriptome microarray, and the expression of lncRNA CONCR was found to be significantly downregulated. The role of CONCR in ATPR-induced cell differentiation and cycle arrest was explored through overexpression and silencing of CONCR. And then the database was used to predict that CONCR may bind to DEAD/H-Box Helicase 11 (DDX11) protein to further explore the role of CONCR binding to DDX11. The results showed that ATPR could reduce the expression of CONCR, and overexpression of CONCR could reverse the ATPR-induced cell differentiation and cycle blocking effect, and conversely silencing of CONCR could promote this effect. RNA immunoprecipitation (RIP) experiments showed that CONCR could bind to DDX11, the protein expression levels of DDX11 and PML-RARα were elevated after overexpression of CONCR. These results suggest that ATPR can regulate the expression of DDX11 through CONCR to affect the expression of PML-RARα fusion protein, which in turn induces the differentiation and maturation of APL cells.
Collapse
MESH Headings
- Humans
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Differentiation
- Cell Line, Tumor
- DEAD-box RNA Helicases/drug effects
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Gene Expression Regulation, Leukemic
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Oncogene Proteins, Fusion/drug effects
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Long Noncoding/drug effects
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Shen Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenjing Zhan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mengjia Hao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenwen Shen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiaoyue Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Meng Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zihan Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ruirui Hou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ziyao Ou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yubin Feng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, 230001, China.
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
7
|
Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM. Replication stress as a driver of cellular senescence and aging. Commun Biol 2024; 7:616. [PMID: 38777831 PMCID: PMC11111458 DOI: 10.1038/s42003-024-06263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Replication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response. Additionally, recent studies have revealed cellular pathways and phenotypes elicited by replication stress that align with designated hallmarks of aging. Here we review recent advances demonstrating the role of replication stress as an ultimate driver of cellular senescence and aging. We discuss clinical implications of the intriguing links between cellular senescence and aging including application of senotherapeutic approaches in the context of replication stress.
Collapse
Affiliation(s)
- Lauren M Herr
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ethan D Schaffer
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Amitzi L, Cozma E, Tong AHY, Chan K, Ross C, O'Neil N, Moffat J, Stirling P, Hieter P. Mapping of DDX11 genetic interactions defines sister chromatid cohesion as the major dependency. G3 (BETHESDA, MD.) 2024; 14:jkae052. [PMID: 38478595 PMCID: PMC11075568 DOI: 10.1093/g3journal/jkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 05/08/2024]
Abstract
DDX11/Chl1R is a conserved DNA helicase with roles in genome maintenance, DNA replication, and chromatid cohesion. Loss of DDX11 in humans leads to the rare cohesinopathy Warsaw breakage syndrome. DDX11 has also been implicated in human cancer where it has been proposed to have an oncogenic role and possibly to constitute a therapeutic target. Given the multiple roles of DDX11 in genome stability and its potential as an anticancer target, we set out to define a complete genetic interaction profile of DDX11 loss in human cell lines. Screening the human genome with clustered regularly interspaced short palindromic repeats (CRISPR) guide RNA drop out screens in DDX11-wildtype (WT) or DDX11-deficient cells revealed a strong enrichment of genes with functions related to sister chromatid cohesion. We confirm synthetic lethal relationships between DDX11 and the tumor suppressor cohesin subunit STAG2, which is frequently mutated in several cancer types and the kinase HASPIN. This screen highlights the importance of cohesion in cells lacking DDX11 and suggests DDX11 may be a therapeutic target for tumors with mutations in STAG2.
Collapse
Affiliation(s)
- Leanne Amitzi
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ecaterina Cozma
- Terry Fox Laboratory, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Amy Hin Yan Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Catherine Ross
- Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Nigel O'Neil
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S1A8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Peter Stirling
- Terry Fox Laboratory, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
9
|
Prorok P, Wolf E, Cardoso MC. Timeless-Tipin interactions with MCM and RPA mediate DNA replication stress response. Front Cell Dev Biol 2024; 12:1346534. [PMID: 38487270 PMCID: PMC10939015 DOI: 10.3389/fcell.2024.1346534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
The accuracy of replication is one of the most important mechanisms ensuring the stability of the genome. The fork protection complex prevents premature replisome stalling and/or premature disassembly upon stress. Here, we characterize the Timeless-Tipin complex, a component of the fork protection complex. We used microscopy approaches, including colocalization analysis and proximity ligation assay, to investigate the spatial localization of the complex during ongoing replication in human cells. Taking advantage of the replication stress induction and the ensuing polymerase-helicase uncoupling, we characterized the Timeless-Tipin localization within the replisome. Replication stress was induced using hydroxyurea (HU) and aphidicolin (APH). While HU depletes the substrate for DNA synthesis, APH binds directly inside the catalytic pocket of DNA polymerase and inhibits its activity. Our data revealed that the Timeless-Tipin complex, independent of the stress, remains bound on chromatin upon stress induction and progresses together with the replicative helicase. This is accompanied by the spatial dissociation of the complex from the blocked replication machinery. Additionally, after stress induction, Timeless interaction with RPA, which continuously accumulates on ssDNA, was increased. Taken together, the Timeless-Tipin complex acts as a universal guardian of the mammalian replisome in an unperturbed S-phase progression as well as during replication stress.
Collapse
Affiliation(s)
- Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Eva Wolf
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
10
|
Murayama Y, Endo S, Kurokawa Y, Kurita A, Iwasaki S, Araki H. Coordination of cohesin and DNA replication observed with purified proteins. Nature 2024; 626:653-660. [PMID: 38267580 DOI: 10.1038/s41586-023-07003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Two newly duplicated copies of genomic DNA are held together by the ring-shaped cohesin complex to ensure faithful inheritance of the genome during cell division1-3. Cohesin mediates sister chromatid cohesion by topologically entrapping two sister DNAs during DNA replication4,5, but how cohesion is established at the replication fork is poorly understood. Here, we studied the interplay between cohesin and replication by reconstituting a functional replisome using purified proteins. Once DNA is encircled before replication, the cohesin ring accommodates replication in its entirety, from initiation to termination, leading to topological capture of newly synthesized DNA. This suggests that topological cohesin loading is a critical molecular prerequisite to cope with replication. Paradoxically, topological loading per se is highly rate limiting and hardly occurs under the replication-competent physiological salt concentration. This inconsistency is resolved by the replisome-associated cohesion establishment factors Chl1 helicase and Ctf4 (refs. 6,7), which promote cohesin loading specifically during continuing replication. Accordingly, we found that bubble DNA, which mimics the state of DNA unwinding, induces topological cohesin loading and this is further promoted by Chl1. Thus, we propose that cohesin converts the initial electrostatic DNA-binding mode to a topological embrace when it encounters unwound DNA structures driven by enzymatic activities including replication. Together, our results show how cohesin initially responds to replication, and provide a molecular model for the establishment of sister chromatid cohesion.
Collapse
Affiliation(s)
- Yasuto Murayama
- Department of Chromosome Science, National Institute of Genetics, Mishima, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOUKENDAI), Mishima, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan.
| | - Shizuko Endo
- Department of Chromosome Science, National Institute of Genetics, Mishima, Japan
| | - Yumiko Kurokawa
- Department of Chromosome Science, National Institute of Genetics, Mishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOUKENDAI), Mishima, Japan
| | - Ayako Kurita
- Department of Chromosome Science, National Institute of Genetics, Mishima, Japan
| | - Sanae Iwasaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Japan
| | - Hiroyuki Araki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Japan
- Joint Support-Centre for Data Science Research, Research Organisation of Information and Systems, Tachikawa, Japan
| |
Collapse
|
11
|
Boavida A, Napolitano LM, Santos D, Cortone G, Jegadesan NK, Onesti S, Branzei D, Pisani FM. FANCJ DNA helicase is recruited to the replisome by AND-1 to ensure genome stability. EMBO Rep 2024; 25:876-901. [PMID: 38177925 PMCID: PMC10897178 DOI: 10.1038/s44319-023-00044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.
Collapse
Affiliation(s)
- Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giuseppe Cortone
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Dana Branzei
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy.
| |
Collapse
|
12
|
Vipat S, Moiseeva TN. The TIMELESS Roles in Genome Stability and Beyond. J Mol Biol 2024; 436:168206. [PMID: 37481157 DOI: 10.1016/j.jmb.2023.168206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
TIMELESS protein (TIM) protects replication forks from stalling at difficult-to-replicate regions and plays an important role in DNA damage response, including checkpoint signaling, protection of stalled replication forks and DNA repair. Loss of TIM causes severe replication stress, while its overexpression is common in various types of cancer, providing protection from DNA damage and resistance to chemotherapy. Although TIM has mostly been studied for its part in replication stress response, its additional roles in supporting genome stability and a wide variety of other cellular pathways are gradually coming to light. This review discusses the diverse functions of TIM and its orthologs in healthy and cancer cells, open questions, and potential future directions.
Collapse
Affiliation(s)
- Sameera Vipat
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Tatiana N Moiseeva
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia.
| |
Collapse
|
13
|
Cao K, Wang R, Li L, Liao Y, Hu X, Li R, Liu X, Xiong XD, Wang Y, Liu X. Targeting DDX11 promotes PARP inhibitor sensitivity in hepatocellular carcinoma by attenuating BRCA2-RAD51 mediated homologous recombination. Oncogene 2024; 43:35-46. [PMID: 38007537 DOI: 10.1038/s41388-023-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Homologous recombination (HR) is a major DNA double-strand break (DSB) repair pathway of clinical interest because of treatment with poly(ADP-ribose) polymerase inhibitors (PARPi). Cooperation between RAD51 and BRCA2 is pivotal for DNA DSB repair, and its dysfunction induces HR deficiency and sensitizes cancer cells to PARPi. The depletion of the DEAD-box protein DDX11 was found to suppress HR in hepatocellular carcinoma (HCC) cells. The HR ability of HCC cells is not always dependent on the DDX11 level because of natural DDX11 mutations. In Huh7 cells, natural DDX11 mutations were detected, increasing the susceptibility of Huh7 cells to olaparib in vitro and in vivo. The HR deficiency of Huh7 cells was restored when CRISPR/Cas9-mediated knock-in genomic editing was used to revert the DDX11 Q238H mutation to wild type. The DDX11 Q238H mutation impeded the phosphorylation of DDX11 by ATM at serine 237, preventing the recruitment of RAD51 to damaged DNA sites by disrupting the interaction between RAD51 and BRCA2. Clinically, a high level of DDX11 correlated with advanced clinical characteristics and a poor prognosis and served as an independent risk factor for overall and disease-free survival in patients with HCC. We propose that HCC with a high level of wild-type DDX11 tends to be more resistant to PARPi because of enhanced recombination repair, and the key mutation of DDX11 (Q238H) is potentially exploitable.
Collapse
Affiliation(s)
- Kun Cao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Ruonan Wang
- Scientific Research Platform Service Management Center, Guangdong Medical University, Dongguan, 523808, China
| | - Lianhai Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Yuting Liao
- Department of Radiotherapy, General Hospital of Southern Theater Command of the Chinese People's Liberation Army, Guangzhou, 510016, China
| | - Xiao Hu
- Department of Surgery, The Second People's Hospital of Guangdong Province, Guangzhou, 510317, China
| | - Ruixue Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Xiuwen Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Yanjie Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
14
|
Pellegrini L. The CMG DNA helicase and the core replisome. Curr Opin Struct Biol 2023; 81:102612. [PMID: 37244171 DOI: 10.1016/j.sbi.2023.102612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
Eukaryotic DNA replication is performed by the replisome, a large and dynamic multi-protein machine endowed with the required enzymatic components for the synthesis of new DNA. Recent cryo-electron microscopy (cryoEM) analyses have revealed the conserved architecture of the core eukaryotic replisome, comprising the CMG (Cdc45-MCM-GINS) DNA helicase, the leading-strand DNA polymerase epsilon, the Timeless-Tipin heterodimer, the hub protein AND-1 and the checkpoint protein Claspin. These results bid well for arriving soon at an integrated understanding of the structural basis of semi-discontinuous DNA replication. They further set the scene for the characterisation of the mechanisms that interface DNA synthesis with concurrent processes such as DNA repair, propagation of chromatin structure and establishment of sister chromatid cohesion.
Collapse
|
15
|
Saldanha J, Rageul J, Patel JA, Kim H. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork. Int J Mol Sci 2023; 24:10488. [PMID: 37445667 PMCID: PMC10341514 DOI: 10.3390/ijms241310488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.
Collapse
Affiliation(s)
- Joanne Saldanha
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jinal A. Patel
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
16
|
Shrestha S, Minamino M, Chen ZA, Bouchoux C, Rappsilber J, Uhlmann F. Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors. Chromosoma 2023; 132:117-135. [PMID: 37166686 PMCID: PMC10247859 DOI: 10.1007/s00412-023-00797-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
The chromosomal cohesin complex establishes sister chromatid cohesion during S phase, which forms the basis for faithful segregation of DNA replication products during cell divisions. Cohesion establishment is defective in the absence of either of three non-essential Saccharomyces cerevisiae replication fork components Tof1-Csm3 and Mrc1. Here, we investigate how these conserved factors contribute to cohesion establishment. Tof1-Csm3 and Mrc1 serve known roles during DNA replication, including replication checkpoint signaling, securing replication fork speed, as well as recruiting topoisomerase I and the histone chaperone FACT. By modulating each of these functions independently, we rule out that one of these known replication roles explains the contribution of Tof1-Csm3 and Mrc1 to cohesion establishment. Instead, using purified components, we reveal direct and multipronged protein interactions of Tof1-Csm3 and Mrc1 with the cohesin complex. Our findings open the possibility that a series of physical interactions between replication fork components and cohesin facilitate successful establishment of sister chromatid cohesion during DNA replication.
Collapse
Affiliation(s)
- Sudikchya Shrestha
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Zhuo A Chen
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
17
|
Patel JA, Kim H. The TIMELESS effort for timely DNA replication and protection. Cell Mol Life Sci 2023; 80:84. [PMID: 36892674 PMCID: PMC9998586 DOI: 10.1007/s00018-023-04738-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
Accurate replication of the genome is fundamental to cellular survival and tumor prevention. The DNA replication fork is vulnerable to DNA lesions and damages that impair replisome progression, and improper control over DNA replication stress inevitably causes fork stalling and collapse, a major source of genome instability that fuels tumorigenesis. The integrity of the DNA replication fork is maintained by the fork protection complex (FPC), in which TIMELESS (TIM) constitutes a key scaffold that couples the CMG helicase and replicative polymerase activities, in conjunction with its interaction with other proteins associated with the replication machinery. Loss of TIM or the FPC in general results in impaired fork progression, elevated fork stalling and breakage, and a defect in replication checkpoint activation, thus underscoring its pivotal role in protecting the integrity of both active and stalled replication forks. TIM is upregulated in multiple cancers, which may represent a replication vulnerability of cancer cells that could be exploited for new therapies. Here, we discuss recent advances on our understanding of the multifaceted roles of TIM in DNA replication and stalled fork protection, and how its complex functions are engaged in collaboration with other genome surveillance and maintenance factors.
Collapse
Affiliation(s)
- Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
- Stony Brook Cancer Center and Renaissance School of Medicine, Stony Brook University, Basic Sciences Tower 8-125, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.
| |
Collapse
|
18
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
19
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
20
|
Zuilkoski CM, Skibbens RV. Integrating Sister Chromatid Cohesion Establishment to DNA Replication. Genes (Basel) 2022; 13:genes13040625. [PMID: 35456431 PMCID: PMC9032331 DOI: 10.3390/genes13040625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The intersection through which two fundamental processes meet provides a unique vantage point from which to view cellular regulation. On the one hand, DNA replication is at the heart of cell division, generating duplicate chromosomes that allow each daughter cell to inherit a complete copy of the parental genome. Among other factors, the PCNA (proliferating cell nuclear antigen) sliding clamp ensures processive DNA replication during S phase and is essential for cell viability. On the other hand, the process of chromosome segregation during M phase—an act that occurs long after DNA replication—is equally fundamental to a successful cell division. Eco1/Ctf7 ensures that chromosomes faithfully segregate during mitosis, but functions during DNA replication to activate cohesins and thereby establish cohesion between sister chromatids. To achieve this, Eco1 binds PCNA and numerous other DNA replication fork factors that include MCM helicase, Chl1 helicase, and the Rtt101-Mms1-Mms22 E3 ubiquitin ligase. Here, we review the multi-faceted coordination between cohesion establishment and DNA replication. SUMMARY STATEMENT: New findings provide important insights into the mechanisms through which DNA replication and the establishment of sister chromatid cohesion are coupled.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47401, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Correspondence: ; Tel.: +610-758-6162
| |
Collapse
|
21
|
Batté A, van der Horst SC, Tittel-Elmer M, Sun SM, Sharma S, van Leeuwen J, Chabes A, van Attikum H. Chl1 helicase controls replication fork progression by regulating dNTP pools. Life Sci Alliance 2022; 5:5/4/e202101153. [PMID: 35017203 PMCID: PMC8761496 DOI: 10.26508/lsa.202101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Chl1 helicase affects RPA-dependent checkpoint activation after replication fork arrest by ensuring proper dNTP levels, thereby controlling replication fork progression under stress conditions. Eukaryotic cells have evolved a replication stress response that helps to overcome stalled/collapsed replication forks and ensure proper DNA replication. The replication checkpoint protein Mrc1 plays important roles in these processes, although its functional interactions are not fully understood. Here, we show that MRC1 negatively interacts with CHL1, which encodes the helicase protein Chl1, suggesting distinct roles for these factors during the replication stress response. Indeed, whereas Mrc1 is known to facilitate the restart of stalled replication forks, we uncovered that Chl1 controls replication fork rate under replication stress conditions. Chl1 loss leads to increased RNR1 gene expression and dNTP levels at the onset of S phase likely without activating the DNA damage response. This in turn impairs the formation of RPA-coated ssDNA and subsequent checkpoint activation. Thus, the Chl1 helicase affects RPA-dependent checkpoint activation in response to replication fork arrest by ensuring proper intracellular dNTP levels, thereby controlling replication fork progression under replication stress conditions.
Collapse
Affiliation(s)
- Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Mireille Tittel-Elmer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, Netherlands
| | - Su Ming Sun
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, Université de Lausanne, Lausanne-Dorigny, Switzerland
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Grabarczyk DB. The Fork Protection Complex: A Regulatory Hub at the Head of the Replisome. Subcell Biochem 2022; 99:83-107. [PMID: 36151374 DOI: 10.1007/978-3-031-00793-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As well as accurately duplicating DNA, the eukaryotic replisome performs a variety of other crucial tasks to maintain genomic stability. For example, organizational elements, like cohesin, must be transferred from the front of the fork to the new strands, and when there is replication stress, forks need to be protected and checkpoint signalling activated. The Tof1-Csm3 (or Timeless-Tipin in humans) Fork Protection Complex (FPC) ensures efficient replisome progression and is required for a range of replication-associated activities. Recent studies have begun to reveal the structure of this complex, and how it functions within the replisome to perform its diverse roles. The core of the FPC acts as a DNA grip on the front of the replisome to regulate fork progression. Other flexibly linked domains and motifs mediate interactions with proteins and specific DNA structures, enabling the FPC to act as a hub at the head of the replication fork.
Collapse
Affiliation(s)
- Daniel B Grabarczyk
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, Würzburg, Germany.
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
23
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
24
|
Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 2021; 40:e108819. [PMID: 34694004 PMCID: PMC8634136 DOI: 10.15252/embj.2021108819] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
The human replisome is an elaborate arrangement of molecular machines responsible for accurate chromosome replication. At its heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition to unwinding the parental DNA duplex, arranges many proteins including the leading-strand polymerase Pol ε, together with TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied roles in maintaining smooth replisome progression. How these proteins are coordinated in the human replisome is poorly understood. We have determined a 3.2 Å cryo-EM structure of a human replisome comprising CMG, Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1 bound to replication fork DNA. The structure permits a detailed understanding of how AND-1, TIMELESS-TIPIN and Pol ε engage CMG, reveals how CLASPIN binds to multiple replisome components and identifies the position of the Pol ε catalytic domain. Furthermore, the intricate network of contacts contributed by MCM subunits and TIMELESS-TIPIN with replication fork DNA suggests a mechanism for strand separation.
Collapse
|
25
|
Kawasumi R, Abe T, Psakhye I, Miyata K, Hirota K, Branzei D. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release. Genes Dev 2021; 35:1368-1382. [PMID: 34503989 PMCID: PMC8494208 DOI: 10.1101/gad.348581.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.
Collapse
Affiliation(s)
- Ryotaro Kawasumi
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Takuya Abe
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ivan Psakhye
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Keiji Miyata
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Dana Branzei
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| |
Collapse
|
26
|
Hodáková Z, Nans A, Kunzelmann S, Mehmood S, Taylor I, Uhlmann F, Cherepanov P, Singleton MR. Structural characterisation of the Chaetomium thermophilum Chl1 helicase. PLoS One 2021; 16:e0251261. [PMID: 33970942 PMCID: PMC8109800 DOI: 10.1371/journal.pone.0251261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
Chl1 is a member of the XPD family of 5'-3' DNA helicases, which perform a variety of roles in genome maintenance and transmission. They possess a variety of unique structural features, including the presence of a highly variable, partially-ordered insertion in the helicase domain 1. Chl1 has been shown to be required for chromosome segregation in yeast due to its role in the formation of persistent chromosome cohesion during S-phase. Here we present structural and biochemical data to show that Chl1 has the same overall domain organisation as other members of the XPD family, but with some conformational alterations. We also present data suggesting the insert domain in Chl1 regulates its DNA binding.
Collapse
Affiliation(s)
- Zuzana Hodáková
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, United Kingdom
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Shahid Mehmood
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Ian Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Martin R. Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
27
|
DDX11 loss causes replication stress and pharmacologically exploitable DNA repair defects. Proc Natl Acad Sci U S A 2021; 118:2024258118. [PMID: 33879618 PMCID: PMC8092582 DOI: 10.1073/pnas.2024258118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Replication stress can affect development and is a hallmark of cancers. Warsaw breakage syndrome is a developmental disorder caused by mutations in the conserved DDX11 DNA helicase. Here, using human cellular models of DDX11 deficiency, we report that DDX11 helicase prevents replication stress and mediates homology-directed repair via homologous recombination. Mechanistically, DDX11 promotes resection, enabling RPA and RAD51 focus formation, and acts nonredundantly with the RAD51 mediators BRCA1 and BRCA2. As a result, targeting DDX11 confers improved chemotherapy responsiveness in both chemotherapy-sensitive and drug-resistant BRCA1/2-mutated cancers that regained homologous recombination proficiency by suppressor mutation or somatic reversion. The results pinpoint DDX11 as a critical replication stress mitigating factor whose targeting can improve chemotherapeutic response in a range of cancers. DDX11 encodes an iron–sulfur cluster DNA helicase required for development, mutated, and overexpressed in cancers. Here, we show that loss of DDX11 causes replication stress and sensitizes cancer cells to DNA damaging agents, including poly ADP ribose polymerase (PARP) inhibitors and platinum drugs. We find that DDX11 helicase activity prevents chemotherapy drug hypersensitivity and accumulation of DNA damage. Mechanistically, DDX11 acts downstream of 53BP1 to mediate homology-directed repair and RAD51 focus formation in manners nonredundant with BRCA1 and BRCA2. As a result, DDX11 down-regulation aggravates the chemotherapeutic sensitivity of BRCA1/2-mutated cancers and resensitizes chemotherapy drug–resistant BRCA1/2-mutated cancer cells that regained homologous recombination proficiency. The results further indicate that DDX11 facilitates recombination repair by assisting double strand break resection and the loading of both RPA and RAD51 on single-stranded DNA substrates. We propose DDX11 as a potential target in cancers by creating pharmacologically exploitable DNA repair vulnerabilities.
Collapse
|
28
|
The Genome Stability Maintenance DNA Helicase DDX11 and Its Role in Cancer. Genes (Basel) 2021; 12:genes12030395. [PMID: 33802088 PMCID: PMC8000936 DOI: 10.3390/genes12030395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
DDX11/ChlR1 is a super-family two iron–sulfur cluster containing DNA helicase with roles in DNA replication and sister chromatid cohesion establishment, and general chromosome architecture. Bi-allelic mutations of the DDX11 gene cause a rare hereditary disease, named Warsaw breakage syndrome, characterized by a complex spectrum of clinical manifestations (pre- and post-natal growth defects, microcephaly, intellectual disability, heart anomalies and sister chromatid cohesion loss at cellular level) in accordance with the multifaceted, not yet fully understood, physiological functions of this DNA helicase. In the last few years, a possible role of DDX11 in the onset and progression of many cancers is emerging. Herein we summarize the results of recent studies, carried out either in tumoral cell lines or in xenograft cancer mouse models, suggesting that DDX11 may have an oncogenic role. The potential of DDX11 DNA helicase as a pharmacological target for novel anti-cancer therapeutic interventions, as inferred from these latest developments, is also discussed.
Collapse
|
29
|
Boavida A, Santos D, Mahtab M, Pisani FM. Functional Coupling between DNA Replication and Sister Chromatid Cohesion Establishment. Int J Mol Sci 2021; 22:2810. [PMID: 33802105 PMCID: PMC8001024 DOI: 10.3390/ijms22062810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
Several lines of evidence suggest the existence in the eukaryotic cells of a tight, yet largely unexplored, connection between DNA replication and sister chromatid cohesion. Tethering of newly duplicated chromatids is mediated by cohesin, an evolutionarily conserved hetero-tetrameric protein complex that has a ring-like structure and is believed to encircle DNA. Cohesin is loaded onto chromatin in telophase/G1 and converted into a cohesive state during the subsequent S phase, a process known as cohesion establishment. Many studies have revealed that down-regulation of a number of DNA replication factors gives rise to chromosomal cohesion defects, suggesting that they play critical roles in cohesion establishment. Conversely, loss of cohesin subunits (and/or regulators) has been found to alter DNA replication fork dynamics. A critical step of the cohesion establishment process consists in cohesin acetylation, a modification accomplished by dedicated acetyltransferases that operate at the replication forks. Defects in cohesion establishment give rise to chromosome mis-segregation and aneuploidy, phenotypes frequently observed in pre-cancerous and cancerous cells. Herein, we will review our present knowledge of the molecular mechanisms underlying the functional link between DNA replication and cohesion establishment, a phenomenon that is unique to the eukaryotic organisms.
Collapse
Affiliation(s)
- Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (A.B.); (D.S.); (M.M.)
| | - Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (A.B.); (D.S.); (M.M.)
| | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (A.B.); (D.S.); (M.M.)
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Francesca M. Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (A.B.); (D.S.); (M.M.)
| |
Collapse
|
30
|
Santos D, Mahtab M, Boavida A, Pisani FM. Role of the DDX11 DNA Helicase in Warsaw Breakage Syndrome Etiology. Int J Mol Sci 2021; 22:2308. [PMID: 33669056 PMCID: PMC7956524 DOI: 10.3390/ijms22052308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Warsaw breakage syndrome (WABS) is a genetic disorder characterized by sister chromatid cohesion defects, growth retardation, microcephaly, hearing loss and other variable clinical manifestations. WABS is due to biallelic mutations of the gene coding for the super-family 2 DNA helicase DDX11/ChlR1, orthologous to the yeast chromosome loss protein 1 (Chl1). WABS is classified in the group of "cohesinopathies", rare hereditary diseases that are caused by mutations in genes coding for subunits of the cohesin complex or protein factors having regulatory roles in the sister chromatid cohesion process. In fact, among the cohesion regulators, an important player is DDX11, which is believed to be important for the functional coupling of DNA synthesis and cohesion establishment at the replication forks. Here, we will review what is known about the molecular and cellular functions of human DDX11 and its role in WABS etiopathogenesis, even in light of recent findings on the role of cohesin and its regulator network in promoting chromatin loop formation and regulating chromatin spatial organization.
Collapse
Affiliation(s)
- Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Francesca M. Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| |
Collapse
|
31
|
Su SG, Li QL, Zhang MF, Zhang PW, Shen H, Zhang CZ. An E2F1/DDX11/EZH2 Positive Feedback Loop Promotes Cell Proliferation in Hepatocellular Carcinoma. Front Oncol 2021; 10:593293. [PMID: 33614480 PMCID: PMC7892623 DOI: 10.3389/fonc.2020.593293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for one of the leading causes of cancer-related death, and is attributed to the dysregulation of genes involved in genome stability. DDX11, a DNA helicase, has been implicated in rare genetic disease and human cancers. Yet, its clinical value, biological function, and the underlying mechanism in HCC progression are not fully understood. Here, we show that DDX11 is upregulated in HCC and exhibits oncogenic activity via EZH2/p21 signaling. High expression of DDX11 is significantly correlated with poor outcomes of HCC patients in two independent cohorts. DDX11 overexpression increases HCC cell viabilities and colony formation, whereas DDX11 knockdown arrests cells at G1 phase without alteration of p53 expression. Ectopic expression of DDX11 reduces, while depletion of DDX11 induces the expression of p21. Treatment of p21 siRNA markedly attenuates the cell growth suppression caused by DDX11 silence. Further studies reveal that DDX11 interacts with EZH2 in HCC cells to protect it from ubiquitination-mediated protein degradation, consequently resulting in the downregulation of p21. In addition, E2F1 is identified as one of the upstream regulators of DDX11, and forms a positive feedback loop with EZH2 to upregulate DDX11 and facilitate cell proliferation. Collectively, our data suggest DDX11 as a promising prognostic factor and an oncogene in HCC via a E2F1/DDX11/EZH2 positive feedback loop.
Collapse
Affiliation(s)
- Shu-Guang Su
- Department of Pathology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Qiu-Li Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng-Wei Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Huimin Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Bottega R, Ravera S, Napolitano LMR, Chiappetta V, Zini N, Crescenzi B, Arniani S, Faleschini M, Cortone G, Faletra F, Medagli B, Sirchia F, Moretti M, de Lange J, Cappelli E, Mecucci C, Onesti S, Pisani FM, Savoia A. Genomic integrity and mitochondrial metabolism defects in Warsaw syndrome cells: a comparison with Fanconi anemia. J Cell Physiol 2021; 236:5664-5675. [PMID: 33432587 DOI: 10.1002/jcp.30265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
Warsaw breakage syndrome (WABS), is caused by biallelic mutations of DDX11, a gene coding a DNA helicase. We have recently reported two affected sisters, compound heterozygous for a missense (p.Leu836Pro) and a frameshift (p.Lys303Glufs*22) variant. By investigating the pathogenic mechanism, we demonstrate the inability of the DDX11 p.Leu836Pro mutant to unwind forked DNA substrates, while retaining DNA binding activity. We observed the accumulation of patient-derived cells at the G2/M phase and increased chromosomal fragmentation after mitomycin C treatment. The phenotype partially overlaps with features of the Fanconi anemia cells, which shows not only genomic instability but also defective mitochondria. This prompted us to examine mitochondrial functionality in WABS cells and revealed an altered aerobic metabolism. This opens the door to the further elucidation of the molecular and cellular basis of an impaired mitochondrial phenotype and sheds light on this fundamental process in cell physiology and the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Roberta Bottega
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Viviana Chiappetta
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Barbara Crescenzi
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Cortone
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Barbara Medagli
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fabio Sirchia
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Martina Moretti
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Job de Lange
- Amsterdam UMC, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Enrico Cappelli
- UO Ematologia, IRCCS Istituto Giannina Gaslini, Genova, Italy, Genova, Italy
| | - Cristina Mecucci
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Anna Savoia
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
33
|
Lerner LK, Holzer S, Kilkenny ML, Šviković S, Murat P, Schiavone D, Eldridge CB, Bittleston A, Maman JD, Branzei D, Stott K, Pellegrini L, Sale JE. Timeless couples G-quadruplex detection with processing by DDX11 helicase during DNA replication. EMBO J 2020; 39:e104185. [PMID: 32705708 PMCID: PMC7506991 DOI: 10.15252/embj.2019104185] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.
Collapse
Affiliation(s)
- Leticia K Lerner
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
Centre de Recherche des CordeliersCell Death and Drug Resistance in Hematological Disorders TeamINSERM UMRS 1138Sorbonne UniversitéParisFrance
| | - Sandro Holzer
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | | | - Joseph D Maman
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Dana Branzei
- IFOMFondazione Italiana per la Ricerca sul CancroInstitute of Molecular OncologyMilanItaly
| | - Katherine Stott
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Luca Pellegrini
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
34
|
van Schie JJM, Faramarz A, Balk JA, Stewart GS, Cantelli E, Oostra AB, Rooimans MA, Parish JL, de Almeida Estéves C, Dumic K, Barisic I, Diderich KEM, van Slegtenhorst MA, Mahtab M, Pisani FM, Te Riele H, Ameziane N, Wolthuis RMF, de Lange J. Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nat Commun 2020; 11:4287. [PMID: 32855419 PMCID: PMC7452896 DOI: 10.1038/s41467-020-18066-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.
Collapse
Affiliation(s)
- Janne J M van Schie
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Atiq Faramarz
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Jesper A Balk
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Erika Cantelli
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Anneke B Oostra
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Martin A Rooimans
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Katja Dumic
- Department of Pediatric Endocrinology and Diabetes, University Hospital Centre Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Ingeborg Barisic
- Children's Hospital Zagreb, Center of Excellence for Reproductive and Regenerative Medicine, Medical School University of Zagreb, Zagreb, Croatia
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Hein Te Riele
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Najim Ameziane
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
- Centogene, Am Strande 7, 18055, Rostock, Germany
| | - Rob M F Wolthuis
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands.
| | - Job de Lange
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Srinivasan M, Fumasoni M, Petela NJ, Murray A, Nasmyth KA. Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs. eLife 2020; 9:e56611. [PMID: 32515737 PMCID: PMC7282809 DOI: 10.7554/elife.56611] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
Sister chromatid cohesion essential for mitotic chromosome segregation is thought to involve the co-entrapment of sister DNAs within cohesin rings. Although cohesin can load onto chromosomes throughout the cell cycle, it only builds cohesion during S phase. A key question is whether cohesion is generated by conversion of cohesin complexes associated with un-replicated DNAs ahead of replication forks into cohesive structures behind them, or from nucleoplasmic cohesin that is loaded de novo onto nascent DNAs associated with forks, a process that would be dependent on cohesin's Scc2 subunit. We show here that in S. cerevisiae, both mechanisms exist and that each requires a different set of replisome-associated proteins. Cohesion produced by cohesin conversion requires Tof1/Csm3, Ctf4 and Chl1 but not Scc2 while that created by Scc2-dependent de novo loading at replication forks requires the Ctf18-RFC complex. The association of specific replisome proteins with different types of cohesion establishment opens the way to a mechanistic understanding of an aspect of DNA replication unique to eukaryotic cells.
Collapse
Affiliation(s)
| | - Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Naomi J Petela
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Andrew Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Kim A Nasmyth
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
36
|
Baretić D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP. Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Mol Cell 2020; 78:926-940.e13. [PMID: 32369734 PMCID: PMC7276988 DOI: 10.1016/j.molcel.2020.04.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
The eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG, including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), which has important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3 to 3.5 Å resolution electron cryomicroscopy (cryo-EM) structures comprising CMG, Ctf4, and the fork protection complex at a replication fork. The structures provide high-resolution views of CMG-DNA interactions, revealing a mechanism for strand separation, and show Csm3/Tof1 “grip” duplex DNA ahead of CMG via a network of interactions important for efficient replication fork pausing. Although Mrc1 was not resolved in our structures, we determine its topology in the replisome by cross-linking mass spectrometry. Collectively, our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability. Cryo-EM structure of Csm3/Tof1 and Ctf4 bound to the eukaryotic CMG helicase Csm3/Tof1 are positioned at the front of the replisome where they grip duplex DNA High-resolution views of CMG-DNA contacts suggest a mechanism for strand separation Mrc1 binds across one side of CMG contacting the front and back of the replisome
Collapse
Affiliation(s)
- Domagoj Baretić
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | | | - Valentina Aria
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Giuseppe Cannone
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Mark Skehel
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK.
| |
Collapse
|
37
|
Yu Y, Zhao D, Li K, Cai Y, Xu P, Li R, Li J, Chen X, Chen P, Cui G. E2F1 mediated DDX11 transcriptional activation promotes hepatocellular carcinoma progression through PI3K/AKT/mTOR pathway. Cell Death Dis 2020; 11:273. [PMID: 32332880 PMCID: PMC7181644 DOI: 10.1038/s41419-020-2478-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/20/2023]
Abstract
The DEAD/DEAH box helicase 11 (DDX11) plays vital roles in regulating the initiation of DNA replication. However, its precise function and regulation in hepatocellular carcinoma (HCC) have never been reported yet. In the current study, we found that DDX11 was overexpressed in HCC tissues. High DDX11 expression was positively correlated with large tumor size, tumor multiplicity, late tumor-node-metastasis (TNM) stage and poor prognosis. Additional, gain-of-function and loss-of-function experimental results revealed that DDX11 overexpression promoted HCC cell proliferation, migration, invasion and inhibited cell apoptosis in vitro. Overexpression of DDX11 also enhanced HCC tumorigenicity in vivo. Furthermore, DDX11 was transcriptionally regulated by transcription factor E2F1 in HCC, as demonstrated by chromatin immunoprecipitation (Ch-IP) and luciferase reporter assays. Mechanistically, E2F1/DDX11 axis promoted HCC cell proliferation, migration and invasion, at least in part, through activating PI3K/AKT/mTOR signaling pathway. Conclusively, our study demonstrates that E2F1-enhanced DDX11 expression promotes HCC progression through PI3K/AKT/mTOR pathway and DDX11 might be a potential therapeutic and prognostic target for HCC treatment.
Collapse
Affiliation(s)
- Yan Yu
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Zhao
- Department of Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Kongfei Li
- Department of Hematology, Yinzhou People's Hospital affiliated to Medical College of Ningbo University, Ningbo, 315000, China
| | - Yubo Cai
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Penglin Xu
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Li
- Nursing Department, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Juan Li
- Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaolong Chen
- Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ping Chen
- Department of Infectious Diseases, Shulan Hospital, Hangzhou, 310012, China.
- Department of Infectious Diseases, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, China.
| | - Guangying Cui
- Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
38
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
39
|
Simon AK, Kummer S, Wild S, Lezaja A, Teloni F, Jozwiakowski SK, Altmeyer M, Gari K. The iron-sulfur helicase DDX11 promotes the generation of single-stranded DNA for CHK1 activation. Life Sci Alliance 2020; 3:3/3/e201900547. [PMID: 32071282 PMCID: PMC7032568 DOI: 10.26508/lsa.201900547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
The iron–sulfur cluster helicase DDX11 promotes the generation of ssDNA and the phosphorylation of CHK1 at serine-345, possibly by unwinding replication-dependent DNA secondary structures. The iron–sulfur (FeS) cluster helicase DDX11 is associated with a human disorder termed Warsaw Breakage Syndrome. Interestingly, one disease-associated mutation affects the highly conserved arginine-263 in the FeS cluster-binding motif. Here, we demonstrate that the FeS cluster in DDX11 is required for DNA binding, ATP hydrolysis, and DNA helicase activity, and that arginine-263 affects FeS cluster binding, most likely because of its positive charge. We further show that DDX11 interacts with the replication factors DNA polymerase delta and WDHD1. In vitro, DDX11 can remove DNA obstacles ahead of Pol δ in an ATPase- and FeS domain-dependent manner, and hence generate single-stranded DNA. Accordingly, depletion of DDX11 causes reduced levels of single-stranded DNA, a reduction of chromatin-bound replication protein A, and impaired CHK1 phosphorylation at serine-345. Taken together, we propose that DDX11 plays a role in dismantling secondary structures during DNA replication, thereby promoting CHK1 activation.
Collapse
Affiliation(s)
- Anna K Simon
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sandra Kummer
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Faramarz A, Balk JA, van Schie JJM, Oostra AB, Ghandour CA, Rooimans MA, Wolthuis RMF, de Lange J. Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2. PLoS One 2020; 15:e0220348. [PMID: 31935221 PMCID: PMC6959578 DOI: 10.1371/journal.pone.0220348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
In a process linked to DNA replication, duplicated chromosomes are entrapped in large, circular cohesin complexes and functional sister chromatid cohesion (SCC) is established by acetylation of the SMC3 cohesin subunit. Roberts Syndrome (RBS) and Warsaw Breakage Syndrome (WABS) are rare human developmental syndromes that are characterized by defective SCC. RBS is caused by mutations in the SMC3 acetyltransferase ESCO2, whereas mutations in the DNA helicase DDX11 lead to WABS. We found that WABS-derived cells predominantly rely on ESCO2, not ESCO1, for residual SCC, growth and survival. Reciprocally, RBS-derived cells depend on DDX11 to maintain low levels of SCC. Synthetic lethality between DDX11 and ESCO2 correlated with a prolonged delay in mitosis, and was rescued by knockdown of the cohesin remover WAPL. Rescue experiments using human or mouse cDNAs revealed that DDX11, ESCO1 and ESCO2 act on different but related aspects of SCC establishment. Furthermore, a DNA binding DDX11 mutant failed to correct SCC in WABS cells and DDX11 deficiency reduced replication fork speed. We propose that DDX11, ESCO1 and ESCO2 control different fractions of cohesin that are spatially and mechanistically separated.
Collapse
Affiliation(s)
- Atiq Faramarz
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Cherien A. Ghandour
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Pisani FM. Spotlight on Warsaw Breakage Syndrome. APPLICATION OF CLINICAL GENETICS 2019; 12:239-248. [PMID: 31824187 PMCID: PMC6901054 DOI: 10.2147/tacg.s186476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Warsaw breakage syndrome (WABS) is a very rare recessive hereditary disease caused by mutations in the gene coding for the DNA helicase DDX11, involved in genome stability maintenance and sister cohesion establishment. Typical clinical features observed in WABS patients include growth retardation, facial dysmorphia, microcephaly, hearing loss due to cochlear malformations and, at cytological level, sister chromatid cohesion defects. Molecular bases of WABS have not yet been elucidated, due to lack of disease animal model systems and limited knowledge of the DDX11 physiological functions. However, WABS is considered to belong to the group of cohesinopathies, genetic disorders due to mutations of subunits or regulators of cohesin, the protein complex responsible for tethering sister chromatids from the time of their synthesis till they separate in mitosis. Recent evidences suggest that cohesin and its regulators have additional key roles in chromatin organization by promoting the formation of chromatin loops. This “non-canonical” function of cohesin is expected to impact gene transcription during cell differentiation and embryonic development and its dis-regulation, caused by mutation/loss of genes encoding cohesin subunits or regulators, could originate the developmental defects observed in cohesinopathies. Ethiopathogenesis of WABS is discussed in line with these recent findings and evidence of a possible role of DDX11 as a cohesin regulator.
Collapse
Affiliation(s)
- Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples 80131, Italy
| |
Collapse
|
42
|
Nishiyama T. Cohesion and cohesin-dependent chromatin organization. Curr Opin Cell Biol 2019; 58:8-14. [PMID: 30544080 DOI: 10.1016/j.ceb.2018.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Cohesin, one of structural maintenance of chromosomes (SMC) complexes, forms a ring-shaped protein complex, and mediates sister chromatid cohesion for accurate chromosome segregation and precise genome inheritance. The cohesin ring entraps one or two DNA molecules to achieve cohesion, which is further regulated by cohesin-binding proteins and modification enzymes in a cell cycle-dependent manner. Recent significant advancements in Hi-C technologies have revealed numerous cohesin-dependent higher-order chromatin structures. Simultaneously, single-molecule imaging has also unveiled the detailed dynamics of cohesin on DNA and/or chromatin. Thus, those studies are providing novel visions for the authentic chromatin structure regulated by cohesin.
Collapse
Affiliation(s)
- Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| |
Collapse
|
43
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
44
|
Pisani FM, Napolitano E, Napolitano LMR, Onesti S. Molecular and Cellular Functions of the Warsaw Breakage Syndrome DNA Helicase DDX11. Genes (Basel) 2018; 9:genes9110564. [PMID: 30469382 PMCID: PMC6266566 DOI: 10.3390/genes9110564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022] Open
Abstract
DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron–sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.
Collapse
Affiliation(s)
- Francesca M Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Ettore Napolitano
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Luisa M R Napolitano
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| | - Silvia Onesti
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| |
Collapse
|