1
|
Shen CC, Miura I, Lin TH, Toda M, Nguyen HN, Tseng HY, Lin SM. Exploring Mitonuclear Discordance: Ghost Introgression From an Ancient Extinction Lineage in the Odorrana swinhoana Complex. Mol Ecol 2025; 34:e17763. [PMID: 40219663 DOI: 10.1111/mec.17763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Mitonuclear discordance, the incongruence between mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA), is a well-documented phenomenon with various potential explanations. One emerging hypothesis, ghost introgression, refers to the genetic contribution of an ancient, extinct or unsampled lineage and can now be tested using modern genomic data and demographic models. In this study, we investigated the evolutionary history of the Odorrana swinhoana complex (Anura: Ranidae), which includes O. swinhoana, O. utsunomiyaorum and an unidentified population with highly divergent mtDNA. While mitochondrial phylogeny suggested this population as a basal lineage, nuclear data from ddRADseq revealed it as a mixture of the most derived O. swinhoana nuclear sequences combined with ancient mtDNA. Demographic modelling further supported ghost introgression, as all models incorporating a ghost population outperformed those without it. These findings suggest that an eastward expansion of western O. swinhoana replaced an ancient Odorrana lineage, leaving only its mtDNA and fragments of its nuclear genome in the hybrid population. Our results provide one of the first documented cases of ghost introgression in amphibians and highlight its potential as a widespread evolutionary process. This study also underscores the risks of relying solely on mtDNA for phylogenetic reconstruction and species delimitation.
Collapse
Affiliation(s)
- Chin-Chia Shen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tzong-Han Lin
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hung Ngoc Nguyen
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba-ken, Japan
| | - Hui-Yun Tseng
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
2
|
Liang SA, Ren T, Zhang J, He J, Wang X, Jiang X, He Y, McCoy RC, Fu Q, Akey JM, Mao Y, Chen L. A refined analysis of Neanderthal-introgressed sequences in modern humans with a complete reference genome. Genome Biol 2025; 26:32. [PMID: 39962554 PMCID: PMC11834205 DOI: 10.1186/s13059-025-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Leveraging long-read sequencing technologies, the first complete human reference genome, T2T-CHM13, corrects assembly errors in previous references and resolves the remaining 8% of the genome. While studies on archaic admixture in modern humans have so far relied on the GRCh37 reference due to the availability of archaic genome data, the impact of T2T-CHM13 in this field remains unexplored. RESULTS We remap the sequencing reads of the high-quality Altai Neanderthal and Denisovan genomes onto GRCh38 and T2T-CHM13. Compared to GRCh37, we find that T2T-CHM13 significantly improves read mapping quality in archaic samples. We then apply IBDmix to identify Neanderthal-introgressed sequences in 2504 individuals from 26 geographically diverse populations using different reference genomes. We observe that commonly used pre-phasing filtering strategies in public datasets substantially influence archaic ancestry determination, underscoring the need for careful filter selection. Our analysis identifies approximately 51 Mb of Neanderthal sequences unique to T2T-CHM13, predominantly in genomic regions where GRCh38 and T2T-CHM13 assemblies diverge. Additionally, we uncover novel instances of population-specific archaic introgression in diverse populations, spanning genes involved in metabolism, olfaction, and ion-channel function. Finally, to facilitate the exploration of archaic alleles and adaptive signals in human genomics and evolutionary research, we integrate these introgressed sequences and adaptive signals across all reference genomes into a visualization database, ASH ( www.arcseqhub.com ). CONCLUSIONS Our study enhances the detection of archaic variations in modern humans, highlights the importance of utilizing the T2T-CHM13 reference, and provides novel insights into the functional consequences of archaic hominin admixture.
Collapse
Affiliation(s)
- Shen-Ao Liang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Tianxin Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiayu Zhang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Jiahui He
- Ministry of Education Key Laboratory of Contemporary Anthropology, Center for Evolutionary Biology, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinrui Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuan He
- Ministry of Education Key Laboratory of Contemporary Anthropology, Center for Evolutionary Biology, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21212, USA
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Joshua M Akey
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, 322000, China.
| | - Lu Chen
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Caporale N, Leonardi O, Villa CE, Vitriolo A, Boeckx C, Testa G. Tile by tile: capturing the evolutionary mosaic of human conditions. Curr Opin Genet Dev 2025; 90:102297. [PMID: 39705881 DOI: 10.1016/j.gde.2024.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
The collection of Homo sapiens anatomical hallmarks hypothesized to support the 'human condition' did not appear at one specific time and place, but gradually, creating a reticulate evolutionary trajectory. The recent reconstruction of migration patterns and gene flows across different hominin species and populations draws a mosaic that we contend can be illuminated by genomic comparisons and specific experiments. Here, we first review key discoveries that could allow this experimental endeavor by describing recent advances in a variety of fields, stressing the importance of charting the current human neurodiversity as an interpretive substrate for evolutionary changes. Then, we identify key cellular and molecular observables. Finally, given the vast amount of possible variants, we focus the discussion on technologies that could allow their interrogation in a way that is compatible with the staggering amount of contemporary genomic and phenotypic characterization.
Collapse
Affiliation(s)
- Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@NicoloCaporale
| | - Oliviero Leonardi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@OlivieroLeonar2
| | - Carlo Emanuele Villa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@CarloEmanueleV1
| | - Alessandro Vitriolo
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@AVitriolScience
| | - Cedric Boeckx
- University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain; University of Barcelona Institute of Neurosciences, 08007 Barcelona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), 08007 Barcelona, Spain.
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
4
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neanderthal ancestry through time: Insights from genomes of ancient and present-day humans. Science 2024; 386:eadq3010. [PMID: 39666853 DOI: 10.1126/science.adq3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Gene flow from Neanderthals has shaped genetic and phenotypic variation in modern humans. We generated a catalog of Neanderthal ancestry segments in more than 300 genomes spanning the past 50,000 years. We examined how Neanderthal ancestry is shared among individuals over time. Our analysis revealed that the vast majority of Neanderthal gene flow is attributable to a single, shared extended period of gene flow that occurred between 50,500 to 43,500 years ago, as evidenced by ancestry correlation, colocalization of Neanderthal segments across individuals, and divergence from the sequenced Neanderthals. Most natural selection-positive and negative-on Neanderthal variants occurred rapidly after the gene flow. Our findings provide new insights into how contact with Neanderthals shaped modern human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alba Bossoms Mesa
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- The Francis Crick Institute, London, UK
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, University of Rochester, Rochester NY, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Villanea FA, Peede D, Kaufman EJ, Añorve-Garibay V, Chevy ET, Villa-Islas V, Witt KE, Zeloni R, Marnetto D, Moorjani P, Jay F, Valdmanis PN, Ávila-Arcos MC, Huerta-Sánchez E. The MUC19 gene in Denisovans, Neanderthals, and Modern Humans: An Evolutionary History of Recurrent Introgression and Natural Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559202. [PMID: 37808839 PMCID: PMC10557577 DOI: 10.1101/2023.09.25.559202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
We study the gene MUC19, for which modern humans carry a Denisovan-like haplotype. MUC19 is a mucin, a glycoprotein that forms gels with various biological functions. We find the diagnostic variants for the Denisovan-like MUC19 haplotype at high frequencies in admixed Latin American individuals among global populations, and at highest frequency in 23 ancient Indigenous American individuals, all predating population admixture with Europeans and Africans. We find that the Denisovan-like MUC19 haplotype carries a higher copy number of a 30 base-pair variable number tandem repeat, and that copy numbers of this repeat are exceedingly high in American populations and are under positive selection. This study provides the first example of positive selection acting on archaic alleles at coding sites and VNTRs. Finally, we find that some Neanderthals carry the Denisovan-like MUC19 haplotype, and that it was likely introgressed into human populations through Neanderthal introgression rather than Denisovan introgression.
Collapse
Affiliation(s)
| | - David Peede
- Department of Ecology, Evolution, and Organismal Biology, Brown University
- Center for Computational Molecular Biology, Brown University
- Institute at Brown for Environment and Society, Brown University
| | - Eli J Kaufman
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine
| | - Valeria Añorve-Garibay
- Center for Computational Molecular Biology, Brown University
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México
| | | | - Viridiana Villa-Islas
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México
| | - Kelsey E Witt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University
| | - Roberta Zeloni
- Department of Neurosciences "Rita Levi Montalcini", University of Turin
| | - Davide Marnetto
- Department of Neurosciences "Rita Levi Montalcini", University of Turin
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley
- Center for Computational Biology, University of California, Berkeley
| | - Flora Jay
- Université Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay, France
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México
| | - Emilia Huerta-Sánchez
- Department of Ecology, Evolution, and Organismal Biology, Brown University
- Center for Computational Molecular Biology, Brown University
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Ongaro L, Huerta-Sanchez E. A history of multiple Denisovan introgression events in modern humans. Nat Genet 2024; 56:2612-2622. [PMID: 39501127 DOI: 10.1038/s41588-024-01960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/25/2024] [Indexed: 12/12/2024]
Abstract
The identification of a new hominin group in the Altai mountains called Denisovans was one of the most exciting discoveries in human evolution in the last decade. Unlike Neanderthal remains, the Denisovan fossil record consists of only a finger bone, jawbone, teeth and skull fragments. Leveraging the surviving Denisovan segments in modern human genomes has uncovered evidence of at least three introgression events from distinct Denisovan populations into modern humans in the past. Each of them presents different levels of relatedness to the sequenced Altai Denisovan, indicating a complex relationship between these sister lineages. Here we review the evidence suggesting that several Denisovan populations, who likely had an extensive geographical range, were adapted to distinct environments and introgressed into modern humans multiple times. We further discuss how archaic variants have been affected by demographic history, negative and positive selection and close by proposing possible new lines of future research.
Collapse
Affiliation(s)
- Linda Ongaro
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Emilia Huerta-Sanchez
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Witt KE, Villanea FA. Computational Genomics and Its Applications to Anthropological Questions. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70010. [PMID: 40071816 PMCID: PMC11898561 DOI: 10.1002/ajpa.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 03/15/2025]
Abstract
The advent of affordable genome sequencing and the development of new computational tools have established a new era of genomic knowledge. Sequenced human genomes number in the tens of thousands, including thousands of ancient human genomes. The abundance of data has been met with new analysis tools that can be used to understand populations' demographic and evolutionary histories. Thus, a variety of computational methods now exist that can be leveraged to answer anthropological questions. This includes novel likelihood and Bayesian methods, machine learning techniques, and a vast array of population simulators. These computational tools provide powerful insights gained from genomic datasets, although they are generally inaccessible to those with less computational experience. Here, we outline the theoretical workings behind computational genomics methods, limitations and other considerations when applying these computational methods, and examples of how computational methods have already been applied to anthropological questions. We hope this review will empower other anthropologists to utilize these powerful tools in their own research.
Collapse
Affiliation(s)
- Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human GeneticsClemson UniversityClemsonSouth CarolinaUSA
| | | |
Collapse
|
8
|
McFarland KN, Tiwari A, Hashem V, Zhang L, Zeng D, Vincent J, Arredondo MJ, Johnson KL, Gan SR, Yabe I, Skov L, Rasmussen A, Ashizawa T. Extended haplotype with rs41524547-G defines the ancestral origin of SCA10. Hum Mol Genet 2024; 33:1567-1574. [PMID: 38832639 PMCID: PMC12099295 DOI: 10.1093/hmg/ddae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal dominant ataxia caused by a large expansion of the (ATTCT)n repeat in ATXN10. SCA10 was described in Native American and Asian individuals which prompted a search for an expanded haplotype to confirm a common ancestral origin for the expansion event. All patients with SCA10 expansions in our cohort share a single haplotype defined at the 5'-end by the minor allele of rs41524547, located ~35 kb upstream of the SCA10 expansion. Intriguingly, rs41524547 is located within the miRNA gene, MIR4762, within its DROSHA cleavage site and just outside the seed sequence for mir4792-5p. The world-wide frequency of rs41524547-G is less than 5% and found almost exclusively in the Americas and East Asia-a geographic distribution that mirrors reported SCA10 cases. We identified rs41524547-G(+) DNA from the 1000 Genomes/International Genome Sample Resource and our own general population samples and identified SCA10 repeat expansions in up to 25% of these samples. The reduced penetrance of these SCA10 expansions may be explained by a young (pre-onset) age at sample collection, a small repeat size, purity of repeat units, or the disruption of miR4762-5p function. We conclude that rs41524547-G is the most robust at-risk SNP allele for SCA10, is useful for screening of SCA10 expansions in population genetics studies and provides the most compelling evidence to date for a single, prehistoric origin of SCA10 expansions sometime prior to or during the migration of individuals across the Bering Land Bridge into the Americas.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, College of Medicine, The McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, United States
- Center for Translational Research in Neurodegeneration, University of Florida, 1275 Center Drive, Gainesville, FL 32610, United States
| | - Anjana Tiwari
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| | - Vera Hashem
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Yinghua East Street 2, Chaoyang, Beijing 100029, China
| | - Desmond Zeng
- Department of Neurology, College of Medicine, The McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, United States
| | - Justin Vincent
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| | - Maria J Arredondo
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| | - Kristy L Johnson
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, Oklahoma 73104, United States
| | - Shi Rui Gan
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 20 Cha Zhong Lu, Tailing District, Fuzhou 362000, China
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, 7 Chome Kita 15 Jonishi, Kita Ward, Sapporo 060-8638, Japan
| | - Laurits Skov
- Bioinformatics Research Centre, Aarhus University, Universitetsbyen 81, 3., Building 1872, Aarhus C. DK-8000, Denmark
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, Oklahoma 73104, United States
| | - Tetsuo Ashizawa
- Department of Neurology, College of Medicine, The McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, United States
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| |
Collapse
|
9
|
Li L, Comi TJ, Bierman RF, Akey JM. Recurrent gene flow between Neanderthals and modern humans over the past 200,000 years. Science 2024; 385:eadi1768. [PMID: 38991054 DOI: 10.1126/science.adi1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
Although it is well known that the ancestors of modern humans and Neanderthals admixed, the effects of gene flow on the Neanderthal genome are not well understood. We develop methods to estimate the amount of human-introgressed sequences in Neanderthals and apply it to whole-genome sequence data from 2000 modern humans and three Neanderthals. We estimate that Neanderthals have 2.5 to 3.7% human ancestry, and we leverage human-introgressed sequences in Neanderthals to revise estimates of Neanderthal ancestry in modern humans, show that Neanderthal population sizes were significantly smaller than previously estimated, and identify two distinct waves of modern human gene flow into Neanderthals. Our data provide insights into the genetic legacy of recurrent gene flow between modern humans and Neanderthals.
Collapse
Affiliation(s)
- Liming Li
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Troy J Comi
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Rob F Bierman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Joshua M Akey
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
10
|
Reyna-Blanco CS, Caduff M, Galimberti M, Leuenberger C, Wegmann D. Inference of Locus-Specific Population Mixtures from Linked Genome-Wide Allele Frequencies. Mol Biol Evol 2024; 41:msae137. [PMID: 38958167 PMCID: PMC11255385 DOI: 10.1093/molbev/msae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Admixture between populations and species is common in nature. Since the influx of new genetic material might be either facilitated or hindered by selection, variation in mixture proportions along the genome is expected in organisms undergoing recombination. Various graph-based models have been developed to better understand these evolutionary dynamics of population splits and mixtures. However, current models assume a single mixture rate for the entire genome and do not explicitly account for linkage. Here, we introduce TreeSwirl, a novel method for inferring branch lengths and locus-specific mixture proportions by using genome-wide allele frequency data, assuming that the admixture graph is known or has been inferred. TreeSwirl builds upon TreeMix that uses Gaussian processes to estimate the presence of gene flow between diverged populations. However, in contrast to TreeMix, our model infers locus-specific mixture proportions employing a hidden Markov model that accounts for linkage. Through simulated data, we demonstrate that TreeSwirl can accurately estimate locus-specific mixture proportions and handle complex demographic scenarios. It also outperforms related D- and f-statistics in terms of accuracy and sensitivity to detect introgressed loci.
Collapse
Affiliation(s)
- Carlos S Reyna-Blanco
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Madleina Caduff
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Marco Galimberti
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| |
Collapse
|
11
|
Yermakovich D, André M, Brucato N, Kariwiga J, Leavesley M, Pankratov V, Mondal M, Ricaut FX, Dannemann M. Denisovan admixture facilitated environmental adaptation in Papua New Guinean populations. Proc Natl Acad Sci U S A 2024; 121:e2405889121. [PMID: 38889149 PMCID: PMC11214076 DOI: 10.1073/pnas.2405889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Neandertals and Denisovans, having inhabited distinct regions in Eurasia and possibly Oceania for over 200,000 y, experienced ample time to adapt to diverse environmental challenges these regions presented. Among present-day human populations, Papua New Guineans (PNG) stand out as one of the few carrying substantial amounts of both Neandertal and Denisovan DNA, a result of past admixture events with these archaic human groups. This study investigates the distribution of introgressed Denisovan and Neandertal DNA within two distinct PNG populations, residing in the highlands of Mt Wilhelm and the lowlands of Daru Island. These locations exhibit unique environmental features, some of which may parallel the challenges that archaic humans once confronted and adapted to. Our results show that PNG highlanders carry higher levels of Denisovan DNA compared to PNG lowlanders. Among the Denisovan-like haplotypes with higher frequencies in highlander populations, those exhibiting the greatest frequency difference compared to lowlander populations also demonstrate more pronounced differences in population frequencies than frequency-matched nonarchaic variants. Two of the five most highly differentiated of those haplotypes reside in genomic areas linked to brain development genes. Conversely, Denisovan-like haplotypes more frequent in lowlanders overlap with genes associated with immune response processes. Our findings suggest that Denisovan DNA has provided genetic variation associated with brain biology and immune response to PNG genomes, some of which might have facilitated adaptive processes to environmental challenges.
Collapse
Affiliation(s)
- Danat Yermakovich
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Mathilde André
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Nicolas Brucato
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Toulouse Institut National Polytechnique, Université Toulouse 3–Paul Sabatier, cedex 9, Toulouse31062, France
| | - Jason Kariwiga
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- School of Social Science, University of Queensland, St. Lucia, QLD4072, Australia
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- The Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage & College of Arts, Society and Education, James Cook University, Cairns, QLD4870, Australia
| | - Vasili Pankratov
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Mayukh Mondal
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel24118, Germany
| | - François-Xavier Ricaut
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Toulouse Institut National Polytechnique, Université Toulouse 3–Paul Sabatier, cedex 9, Toulouse31062, France
| | - Michael Dannemann
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| |
Collapse
|
12
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neandertal ancestry through time: Insights from genomes of ancient and present-day humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593955. [PMID: 38798350 PMCID: PMC11118355 DOI: 10.1101/2024.05.13.593955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gene flow from Neandertals has shaped the landscape of genetic and phenotypic variation in modern humans. We identify the location and size of introgressed Neandertal ancestry segments in more than 300 genomes spanning the last 50,000 years. We study how Neandertal ancestry is shared among individuals to infer the time and duration of the Neandertal gene flow. We find the correlation of Neandertal segment locations across individuals and their divergence to sequenced Neandertals, both support a model of single major Neandertal gene flow. Our catalog of introgressed segments through time confirms that most natural selection-positive and negative-on Neandertal ancestry variants occurred immediately after the gene flow, and provides new insights into how the contact with Neandertals shaped human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N. M. Iasi
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Alba Bossoms Mesa
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Mateja Hajdinjak
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Benjamin M. Peter
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- Department of Biology, University of Rochester; Rochester NY, 14620,USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
- Center for Computational Biology, University of California Berkeley; Berkeley, CA 94720, USA
| |
Collapse
|
13
|
André M, Brucato N, Hudjasov G, Pankratov V, Yermakovich D, Montinaro F, Kreevan R, Kariwiga J, Muke J, Boland A, Deleuze JF, Meyer V, Evans N, Cox MP, Leavesley M, Dannemann M, Org T, Metspalu M, Mondal M, Ricaut FX. Positive selection in the genomes of two Papua New Guinean populations at distinct altitude levels. Nat Commun 2024; 15:3352. [PMID: 38688933 PMCID: PMC11061283 DOI: 10.1038/s41467-024-47735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Highlanders and lowlanders of Papua New Guinea have faced distinct environmental stress, such as hypoxia and environment-specific pathogen exposure, respectively. In this study, we explored the top genomics regions and the candidate driver SNPs for selection in these two populations using newly sequenced whole-genomes of 54 highlanders and 74 lowlanders. We identified two candidate SNPs under selection - one in highlanders, associated with red blood cell traits and another in lowlanders, which is associated with white blood cell count - both potentially influencing the heart rate of Papua New Guineans in opposite directions. We also observed four candidate driver SNPs that exhibit linkage disequilibrium with an introgressed haplotype, highlighting the need to explore the possibility of adaptive introgression within these populations. This study reveals that the signatures of positive selection in highlanders and lowlanders of Papua New Guinea align closely with the challenges they face, which are specific to their environments.
Collapse
Affiliation(s)
- Mathilde André
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
- Centre for Genomics, Evolution & Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
| | - Nicolas Brucato
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Georgi Hudjasov
- Centre for Genomics, Evolution & Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
| | - Vasili Pankratov
- Centre for Genomics, Evolution & Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
| | - Danat Yermakovich
- Centre for Genomics, Evolution & Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
- Department of Biosciences, Biotechnology and the Environment, University of Bari, Bari, Italy
| | - Rita Kreevan
- Centre for Genomics, Evolution & Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
| | - Jason Kariwiga
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, University 134, PO Box 320, National Capital District, Papua New Guinea
- School of Social Science, University of Queensland, St Lucia, QLD, Australia
| | - John Muke
- Social Research Institute Ltd, Port Moresby, Papua New Guinea
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Vincent Meyer
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Nicholas Evans
- ARC Centre of Excellence for the Dynamics of Language, Coombs Building, Fellows Road, CHL, CAP, Australian National University, Canberra, ACT, Australia
| | - Murray P Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, University 134, PO Box 320, National Capital District, Papua New Guinea
- College of Arts, Society and Education, James Cook University, P.O. Box 6811, Cairns, QLD, 4870, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Michael Dannemann
- Centre for Genomics, Evolution & Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
| | - Tõnis Org
- Centre for Genomics, Evolution & Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia
| | - Mayukh Mondal
- Centre for Genomics, Evolution & Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Tartumaa, Estonia.
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
| | - François-Xavier Ricaut
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
14
|
Groh JS, Coop G. The temporal and genomic scale of selection following hybridization. Proc Natl Acad Sci U S A 2024; 121:e2309168121. [PMID: 38489387 PMCID: PMC10962946 DOI: 10.1073/pnas.2309168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the evolutionary dynamics within hybrid populations that underlie these patterns have been lacking. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of ancestry variation at varying spatial genomic scales through time. Here, we develop methods based on the Discrete Wavelet Transform to study the genomic scale of local ancestry variation and its association with recombination rates and show that these methods capture temporal dynamics of drift and genome-wide selection after hybridization. We apply these methods to published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio) and to inferred Neanderthal introgression in modern humans. Across systems, upward of 20% of variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. Signatures of selection at fine genomic scales suggest selection over longer time scales; however, we suggest that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from contiguous segments of genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey S. Groh
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| | - Graham Coop
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| |
Collapse
|
15
|
Kerdoncuff E, Skov L, Patterson N, Zhao W, Lueng YY, Schellenberg GD, Smith JA, Dey S, Ganna A, Dey AB, Kardia SL, Lee J, Moorjani P. 50,000 years of Evolutionary History of India: Insights from ~2,700 Whole Genome Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580575. [PMID: 38405782 PMCID: PMC10888882 DOI: 10.1101/2024.02.15.580575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
India has been underrepresented in whole genome sequencing studies. We generated 2,762 high coverage genomes from India-including individuals from most geographic regions, speakers of all major languages, and tribal and caste groups-providing a comprehensive survey of genetic variation in India. With these data, we reconstruct the evolutionary history of India through space and time at fine scales. We show that most Indians derive ancestry from three ancestral groups related to ancient Iranian farmers, Eurasian Steppe pastoralists and South Asian hunter-gatherers. We uncover a common source of Iranian-related ancestry from early Neolithic cultures of Central Asia into the ancestors of Ancestral South Indians (ASI), Ancestral North Indians (ANI), Austro-asiatic-related and East Asian-related groups in India. Following these admixtures, India experienced a major demographic shift towards endogamy, resulting in extensive homozygosity and identity-by-descent sharing among individuals. At deep time scales, Indians derive around 1-2% of their ancestry from gene flow from archaic hominins, Neanderthals and Denisovans. By assembling the surviving fragments of archaic ancestry in modern Indians, we recover ~1.5 Gb (or 50%) of the introgressing Neanderthal and ~0.6 Gb (or 20%) of the introgressing Denisovan genomes, more than any other previous archaic ancestry study. Moreover, Indians have the largest variation in Neanderthal ancestry, as well as the highest amount of population-specific Neanderthal segments among worldwide groups. Finally, we demonstrate that most of the genetic variation in Indians stems from a single major migration out of Africa that occurred around 50,000 years ago, with minimal contribution from earlier migration waves. Together, these analyses provide a detailed view of the population history of India and underscore the value of expanding genomic surveys to diverse groups outside Europe.
Collapse
Affiliation(s)
- Elise Kerdoncuff
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yuk Yee Lueng
- Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States of America
| | - Gerard D. Schellenberg
- Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States of America
| | - Jennifer A. Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - AB Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jinkook Lee
- Department of Economics, and Center for Economic & Social Research, University of Southern California, Los Angeles, California, United States of America
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
- Center for Computational Biology, University of California, Berkeley, United States of America
| |
Collapse
|
16
|
Huang X, Rymbekova A, Dolgova O, Lao O, Kuhlwilm M. Harnessing deep learning for population genetic inference. Nat Rev Genet 2024; 25:61-78. [PMID: 37666948 DOI: 10.1038/s41576-023-00636-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 09/06/2023]
Abstract
In population genetics, the emergence of large-scale genomic data for various species and populations has provided new opportunities to understand the evolutionary forces that drive genetic diversity using statistical inference. However, the era of population genomics presents new challenges in analysing the massive amounts of genomes and variants. Deep learning has demonstrated state-of-the-art performance for numerous applications involving large-scale data. Recently, deep learning approaches have gained popularity in population genetics; facilitated by the advent of massive genomic data sets, powerful computational hardware and complex deep learning architectures, they have been used to identify population structure, infer demographic history and investigate natural selection. Here, we introduce common deep learning architectures and provide comprehensive guidelines for implementing deep learning models for population genetic inference. We also discuss current challenges and future directions for applying deep learning in population genetics, focusing on efficiency, robustness and interpretability.
Collapse
Affiliation(s)
- Xin Huang
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Aigerim Rymbekova
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Olga Dolgova
- Integrative Genomics Laboratory, CIC bioGUNE - Centro de Investigación Cooperativa en Biociencias, Derio, Biscaya, Spain
| | - Oscar Lao
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Martin Kuhlwilm
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Di Santo LN, Quilodrán CS, Currat M. Temporal Variation in Introgressed Segments' Length Statistics Computed from a Limited Number of Ancient Genomes Sheds Light on Past Admixture Pulses. Mol Biol Evol 2023; 40:msad252. [PMID: 37992125 PMCID: PMC10715198 DOI: 10.1093/molbev/msad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Hybridization is recognized as an important evolutionary force, but identifying and timing admixture events between divergent lineages remain a major aim of evolutionary biology. While this has traditionally been done using inferential tools on contemporary genomes, the latest advances in paleogenomics have provided a growing wealth of temporally distributed genomic data. Here, we used individual-based simulations to generate chromosome-level genomic data for a 2-population system and described temporal neutral introgression patterns under a single- and 2-pulse admixture model. We computed 6 summary statistics aiming to inform the timing and number of admixture pulses between interbreeding entities: lengths of introgressed sequences and their variance within genomes, as well as genome-wide introgression proportions and related measures. The first 2 statistics could confidently be used to infer interlineage hybridization history, peaking at the beginning and shortly after an admixture pulse. Temporal variation in introgression proportions and related statistics provided more limited insights, particularly when considering their application to ancient genomes still scant in number. Lastly, we computed these statistics on Homo sapiens paleogenomes and successfully inferred the hybridization pulse from Neanderthal that occurred approximately 40 to 60 kya. The scarce number of genomes dating from this period prevented more precise inferences, but the accumulation of paleogenomic data opens promising perspectives as our approach only requires a limited number of ancient genomes.
Collapse
Affiliation(s)
- Lionel N Di Santo
- Department of Genetics and Evolution, University of Geneva, Geneva CH-1205
| | | | - Mathias Currat
- Department of Genetics and Evolution, University of Geneva, Geneva CH-1205
- Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva CH-1205
| |
Collapse
|
18
|
Wroblewski TH, Witt KE, Lee SB, Malhi RS, Peede D, Huerta-Sánchez E, Villanea FA, Claw KG. Pharmacogenetic Variation in Neanderthals and Denisovans and Implications for Human Health and Response to Medications. Genome Biol Evol 2023; 15:evad222. [PMID: 38051947 PMCID: PMC10727477 DOI: 10.1093/gbe/evad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Modern humans carry both Neanderthal and Denisovan (archaic) genome elements that are part of the human gene pool and affect the life and health of living individuals. The impact of archaic DNA may be particularly evident in pharmacogenes-genes responsible for the processing of exogenous substances such as food, pollutants, and medications-as these can relate to changing environmental effects, and beneficial variants may have been retained as modern humans encountered new environments. However, the health implications and contribution of archaic ancestry in pharmacogenes of modern humans remain understudied. Here, we explore 11 key cytochrome P450 genes (CYP450) involved in 75% of all drug metabolizing reactions in three Neanderthal and one Denisovan individuals and examine archaic introgression in modern human populations. We infer the metabolizing efficiency of these 11 CYP450 genes in archaic individuals and find important predicted phenotypic differences relative to modern human variants. We identify several single nucleotide variants shared between archaic and modern humans in each gene, including some potentially function-altering mutations in archaic CYP450 genes, which may result in altered metabolism in living people carrying these variants. We also identified several variants in the archaic CYP450 genes that are novel and unique to archaic humans as well as one gene, CYP2B6, that shows evidence for a gene duplication found only in Neanderthals and modern Africans. Finally, we highlight CYP2A6, CYP2C9, and CYP2J2, genes which show evidence for archaic introgression into modern humans and posit evolutionary hypotheses that explain their allele frequencies in modern populations.
Collapse
Affiliation(s)
- Tadeusz H Wroblewski
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelsey E Witt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, South Carolina, USA
| | - Seung-been Lee
- Precision Medicine Institute, Macrogen Inc., Seoul, Republic of Korea
| | - Ripan S Malhi
- Department of Anthropology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Illinois, USA
| | - David Peede
- Department of Ecology, Evolution, and Organismal Biology and Center for Computational and Molecular Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Emilia Huerta-Sánchez
- Department of Ecology, Evolution, and Organismal Biology and Center for Computational and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | | | - Katrina G Claw
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
19
|
Harris DN, Platt A, Hansen MEB, Fan S, McQuillan MA, Nyambo T, Mpoloka SW, Mokone GG, Belay G, Fokunang C, Njamnshi AK, Tishkoff SA. Diverse African genomes reveal selection on ancient modern human introgressions in Neanderthals. Curr Biol 2023; 33:4905-4916.e5. [PMID: 37837965 PMCID: PMC10841429 DOI: 10.1016/j.cub.2023.09.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
Comparisons of Neanderthal genomes to anatomically modern human (AMH) genomes show a history of Neanderthal-to-AMH introgression stemming from interbreeding after the migration of AMHs from Africa to Eurasia. All non-sub-Saharan African AMHs have genomic regions genetically similar to Neanderthals that descend from this introgression. Regions of the genome with Neanderthal similarities have also been identified in sub-Saharan African populations, but their origins have been unclear. To better understand how these regions are distributed across sub-Saharan Africa, the source of their origin, and what their distribution within the genome tells us about early AMH and Neanderthal evolution, we analyzed a dataset of high-coverage, whole-genome sequences from 180 individuals from 12 diverse sub-Saharan African populations. In sub-Saharan African populations with non-sub-Saharan African ancestry, as much as 1% of their genomes can be attributed to Neanderthal sequence introduced by recent migration, and subsequent admixture, of AMH populations originating from the Levant and North Africa. However, most Neanderthal homologous regions in sub-Saharan African populations originate from migration of AMH populations from Africa to Eurasia ∼250 kya, and subsequent admixture with Neanderthals, resulting in ∼6% AMH ancestry in Neanderthals. These results indicate that there have been multiple migration events of AMHs out of Africa and that Neanderthal and AMH gene flow has been bi-directional. Observing that genomic regions where AMHs show a depletion of Neanderthal introgression are also regions where Neanderthal genomes show a depletion of AMH introgression points to deleterious interactions between introgressed variants and background genomes in both groups-a hallmark of incipient speciation.
Collapse
Affiliation(s)
- Daniel N Harris
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Platt
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai 200438, China
| | - Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Nyambo
- Department of Biochemistry and Molecular Biology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB 0022, Gaborone, Botswana
| | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Private Bag UB 0022, Gaborone, Botswana
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon; Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Zhang Y, Zhu Q, Shao Y, Jiang Y, Ouyang Y, Zhang L, Zhang W. Inferring Historical Introgression with Deep Learning. Syst Biol 2023; 72:1013-1038. [PMID: 37257491 DOI: 10.1093/sysbio/syad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Resolving phylogenetic relationships among taxa remains a challenge in the era of big data due to the presence of genetic admixture in a wide range of organisms. Rapidly developing sequencing technologies and statistical tests enable evolutionary relationships to be disentangled at a genome-wide level, yet many of these tests are computationally intensive and rely on phased genotypes, large sample sizes, restricted phylogenetic topologies, or hypothesis testing. To overcome these difficulties, we developed a deep learning-based approach, named ERICA, for inferring genome-wide evolutionary relationships and local introgressed regions from sequence data. ERICA accepts sequence alignments of both population genomic data and multiple genome assemblies, and efficiently identifies discordant genealogy patterns and exchanged regions across genomes when compared with other methods. We further tested ERICA using real population genomic data from Heliconius butterflies that have undergone adaptive radiation and frequent hybridization. Finally, we applied ERICA to characterize hybridization and introgression in wild and cultivated rice, revealing the important role of introgression in rice domestication and adaptation. Taken together, our findings demonstrate that ERICA provides an effective method for teasing apart evolutionary relationships using whole genome data, which can ultimately facilitate evolutionary studies on hybridization and introgression.
Collapse
Affiliation(s)
- Yubo Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingjie Zhu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yi Shao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yanchen Jiang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Pawar H, Rymbekova A, Cuadros-Espinoza S, Huang X, de Manuel M, van der Valk T, Lobon I, Alvarez-Estape M, Haber M, Dolgova O, Han S, Esteller-Cucala P, Juan D, Ayub Q, Bautista R, Kelley JL, Cornejo OE, Lao O, Andrés AM, Guschanski K, Ssebide B, Cranfield M, Tyler-Smith C, Xue Y, Prado-Martinez J, Marques-Bonet T, Kuhlwilm M. Ghost admixture in eastern gorillas. Nat Ecol Evol 2023; 7:1503-1514. [PMID: 37500909 PMCID: PMC10482688 DOI: 10.1038/s41559-023-02145-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Archaic admixture has had a substantial impact on human evolution with multiple events across different clades, including from extinct hominins such as Neanderthals and Denisovans into modern humans. In great apes, archaic admixture has been identified in chimpanzees and bonobos but the possibility of such events has not been explored in other species. Here, we address this question using high-coverage whole-genome sequences from all four extant gorilla subspecies, including six newly sequenced eastern gorillas from previously unsampled geographic regions. Using approximate Bayesian computation with neural networks to model the demographic history of gorillas, we find a signature of admixture from an archaic 'ghost' lineage into the common ancestor of eastern gorillas but not western gorillas. We infer that up to 3% of the genome of these individuals is introgressed from an archaic lineage that diverged more than 3 million years ago from the common ancestor of all extant gorillas. This introgression event took place before the split of mountain and eastern lowland gorillas, probably more than 40 thousand years ago and may have influenced perception of bitter taste in eastern gorillas. When comparing the introgression landscapes of gorillas, humans and bonobos, we find a consistent depletion of introgressed fragments on the X chromosome across these species. However, depletion in protein-coding content is not detectable in eastern gorillas, possibly as a consequence of stronger genetic drift in this species.
Collapse
Affiliation(s)
- Harvinder Pawar
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Aigerim Rymbekova
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Wien, Austria
| | | | - Xin Huang
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Wien, Austria
| | - Marc de Manuel
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Tom van der Valk
- Department of Bioinformatics and Genetics, Scilifelab, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Irene Lobon
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | | | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Dubai, United Arab Emirates
| | - Olga Dolgova
- Integrative Genomics Lab, CIC bioGUNE-Centro de Investigación Cooperativa en Biociencias, Parque Científico Tecnológico de Bizkaia building 801A, Derio, Spain
| | - Sojung Han
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Wien, Austria
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Qasim Ayub
- Wellcome Sanger Institute, Hinxton, UK
- Monash University Malaysia Genomics Facility, School of Science, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | | | - Joanna L Kelley
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Omar E Cornejo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Oscar Lao
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Science for Life Laboratory, Uppsala, Sweden
| | | | - Mike Cranfield
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, University of California Davis, School of Veterinary Medicine, Davis, CA, USA
| | | | - Yali Xue
- Wellcome Sanger Institute, Hinxton, UK
| | - Javier Prado-Martinez
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Wellcome Sanger Institute, Hinxton, UK
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain.
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, Barcelona, Spain.
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Barcelona, Spain.
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Wien, Austria.
| |
Collapse
|
22
|
Chang J, Nakamura K, Chao C, Luo M, Liao P. Ghost introgression facilitates genomic divergence of a sympatric cryptic lineage in Cycas revoluta. Ecol Evol 2023; 13:e10435. [PMID: 37600490 PMCID: PMC10439367 DOI: 10.1002/ece3.10435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
A cryptic lineage is a genetically diverged but morphologically unrecognized variant of a known species. Clarifying cryptic lineage evolution is essential for quantifying species diversity. In sympatric cryptic lineage divergence compared with allopatric divergence, the forces of divergent selection and mating patterns override geographical isolation. Introgression, by supplying preadapted or neutral standing genetic variations, can promote sympatric cryptic lineage divergence via selection. However, most studies concentrated on extant species introgression, ignoring the genetic legacy of introgression from extinct or unsampled lineages ("ghost introgression"). Cycads are an ideal plant for studying the influence of ghost introgression because of their common interspecific gene flow and past high extinction rate. Here, we utilized reference-based ddRADseq to clarify the role of ghost introgression in the evolution of a previously identified sympatric cryptic lineage in Cycas revoluta. After re-evaluating the evolutionary independency of cryptic lineages, the group-wise diverged single-nucleotide polymorphisms among sympatric and allopatric lineages were compared and functionally annotated. Next, we employed an approximate Bayesian computation method for hypothesis testing to clarify the cryptic lineage evolution and ghost introgression effect. SNPs with the genomic signatures of ghost introgression were further annotated. Our results reconfirmed the evolutionary independency of cryptic lineage among C. revoluta and demonstrated that ghost introgression to the noncryptic lineage facilitated their divergence. Gene function related to heat stress and disease resistance implied ecological adaptation of the main extant populations of C. revoluta.
Collapse
Affiliation(s)
- Jui‐Tse Chang
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Koh Nakamura
- Botanic Garden, Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
| | - Chien‐Ti Chao
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Min‐Xin Luo
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Pei‐Chun Liao
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
23
|
Dai X, Bian P, Hu D, Luo F, Huang Y, Jiao S, Wang X, Gong M, Li R, Cai Y, Wen J, Yang Q, Deng W, Nanaei HA, Wang Y, Wang F, Zhang Z, Rosen BD, Heller R, Jiang Y. A Chinese indicine pangenome reveals a wealth of novel structural variants introgressed from other Bos species. Genome Res 2023; 33:1284-1298. [PMID: 37714713 PMCID: PMC10547261 DOI: 10.1101/gr.277481.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/30/2023] [Indexed: 09/17/2023]
Abstract
Chinese indicine cattle harbor a much higher genetic diversity compared with other domestic cattle, but their genome architecture remains uninvestigated. Using PacBio HiFi sequencing data from 10 Chinese indicine cattle across southern China, we assembled 20 high-quality partially phased genomes and integrated them into a multiassembly graph containing 148.5 Mb (5.6%) of novel sequence. We identified 156,009 high-confidence nonredundant structural variants (SVs) and 206 SV hotspots spanning ∼195 Mb of gene-rich sequence. We detected 34,249 archaic introgressed fragments in Chinese indicine cattle covering 1.93 Gb (73.3%) of the genome. We inferred an average of 3.8%, 3.2%, 1.4%, and 0.5% of introgressed sequence originating, respectively, from banteng-like, kouprey-like, gayal-like, and gaur-like Bos species, as well as 0.6% of unknown origin. Introgression from multiple donors might have contributed to the genetic diversity of Chinese indicine cattle. Altogether, this study highlights the contribution of interspecies introgression to the genomic architecture of an important livestock population and shows how exotic genomic elements can contribute to the genetic variation available for selection.
Collapse
Affiliation(s)
- Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dexiang Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Funong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaohua Jiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qimeng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran 1983969412, Iran
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China;
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Chevy ET, Huerta-Sánchez E, Ramachandran S. Integrating sex-bias into studies of archaic introgression on chromosome X. PLoS Genet 2023; 19:e1010399. [PMID: 37578977 PMCID: PMC10449224 DOI: 10.1371/journal.pgen.1010399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 08/24/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
Evidence of interbreeding between archaic hominins and humans comes from methods that infer the locations of segments of archaic haplotypes, or 'archaic coverage' using the genomes of people living today. As more estimates of archaic coverage have emerged, it has become clear that most of this coverage is found on the autosomes- very little is retained on chromosome X. Here, we summarize published estimates of archaic coverage on autosomes and chromosome X from extant human samples. We find on average 7 times more archaic coverage on autosomes than chromosome X, and identify broad continental patterns in this ratio: greatest in European samples, and least in South Asian samples. We also perform extensive simulation studies to investigate how the amount of archaic coverage, lengths of coverage, and rates of purging of archaic coverage are affected by sex-bias caused by an unequal sex ratio within the archaic introgressors. Our results generally confirm that, with increasing male sex-bias, less archaic coverage is retained on chromosome X. Ours is the first study to explicitly model such sex-bias and its potential role in creating the dearth of archaic coverage on chromosome X.
Collapse
Affiliation(s)
- Elizabeth T. Chevy
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Emilia Huerta-Sánchez
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America
| | - Sohini Ramachandran
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America
- Data Science Initiative, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
25
|
Groh J, Coop G. The temporal and genomic scale of selection following hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542345. [PMID: 37337589 PMCID: PMC10276902 DOI: 10.1101/2023.05.25.542345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the dynamics underlying these patterns within hybrid populations have been lacking. Here, we develop methods based on the Wavelet Transform to understand the spatial genomic scale of local ancestry variation and its association with recombination rates. We present theory and use simulations to show how wavelet-based decompositions of ancestry variance along the genome and the correlation between ancestry and recombination reflect the joint effects of recombination, genetic drift, and genome-wide selection against introgressed alleles. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of local ancestry variation at varying spatial genomic scales through time. Using wavelet approaches to identify the genomic scale of variance in ancestry and its correlates, we show that these methods can detect temporally localized effects of drift and selection. We apply these methods to previously published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio), and to inferred Neanderthal introgression in modern humans. Across systems, we find that upwards of 20% of the variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. We also see signals of selection at fine genomic scales and much longer time scales. However, we show that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available, and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey Groh
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| | - Graham Coop
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| |
Collapse
|
26
|
Rong S, Neil CR, Welch A, Duan C, Maguire S, Meremikwu IC, Meyerson M, Evans BJ, Fairbrother WG. Large-scale functional screen identifies genetic variants with splicing effects in modern and archaic humans. Proc Natl Acad Sci U S A 2023; 120:e2218308120. [PMID: 37192163 PMCID: PMC10214146 DOI: 10.1073/pnas.2218308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.
Collapse
Affiliation(s)
- Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI02912
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Christopher R. Neil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Chaorui Duan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Samantha Maguire
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Ijeoma C. Meremikwu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Malcolm Meyerson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Ben J. Evans
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - William G. Fairbrother
- Center for Computational Molecular Biology, Brown University, Providence, RI02912
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
- Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI02912
| |
Collapse
|
27
|
Witt KE, Funk A, Añorve-Garibay V, Fang LL, Huerta-Sánchez E. The Impact of Modern Admixture on Archaic Human Ancestry in Human Populations. Genome Biol Evol 2023; 15:evad066. [PMID: 37103242 PMCID: PMC10194819 DOI: 10.1093/gbe/evad066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Admixture, the genetic merging of parental populations resulting in mixed ancestry, has occurred frequently throughout the course of human history. Numerous admixture events have occurred between human populations across the world, which have shaped genetic ancestry in modern humans. For example, populations in the Americas are often mosaics of different ancestries due to recent admixture events as part of European colonization. Admixed individuals also often have introgressed DNA from Neanderthals and Denisovans that may have come from multiple ancestral populations, which may affect how archaic ancestry is distributed across an admixed genome. In this study, we analyzed admixed populations from the Americas to assess whether the proportion and location of admixed segments due to recent admixture impact an individual's archaic ancestry. We identified a positive correlation between non-African ancestry and archaic alleles, as well as a slight increase of Denisovan alleles in Indigenous American segments relative to European segments in admixed genomes. We also identify several genes as candidates for adaptive introgression, based on archaic alleles present at high frequency in admixed American populations but low frequency in East Asian populations. These results provide insights into how recent admixture events between modern humans redistributed archaic ancestry in admixed genomes.
Collapse
Affiliation(s)
- Kelsey E Witt
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Alyssa Funk
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
- Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, Rhode Island
| | - Valeria Añorve-Garibay
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
- Licenciatura en Ciencias Genómicas, Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Lesly Lopez Fang
- Department of Life & Environmental Sciences, University of California, Merced, California, United States of America
| | - Emilia Huerta-Sánchez
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| |
Collapse
|
28
|
Skov L, Coll Macià M, Lucotte EA, Cavassim MIA, Castellano D, Schierup MH, Munch K. Extraordinary selection on the human X chromosome associated with archaic admixture. CELL GENOMICS 2023; 3:100274. [PMID: 36950386 PMCID: PMC10025451 DOI: 10.1016/j.xgen.2023.100274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 03/04/2023]
Abstract
The X chromosome in non-African humans shows less diversity and less Neanderthal introgression than expected from neutral evolution. Analyzing 162 human male X chromosomes worldwide, we identified fourteen chromosomal regions where nearly identical haplotypes spanning several hundred kilobases are found at high frequencies in non-Africans. Genetic drift alone cannot explain the existence of these haplotypes, which must have been associated with strong positive selection in partial selective sweeps. Moreover, the swept haplotypes are entirely devoid of archaic ancestry as opposed to the non-swept haplotypes in the same genomic regions. The ancient Ust'-Ishim male dated at 45,000 before the present (BP) also carries the swept haplotypes, implying that selection on the haplotypes must have occurred between 45,000 and 55,000 years ago. Finally, we find that the chromosomal positions of sweeps overlap previously reported hotspots of selective sweeps in great ape evolution, suggesting a mechanism of selection unique to X chromosomes.
Collapse
Affiliation(s)
- Laurits Skov
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-5800, USA
| | - Moisès Coll Macià
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
| | - Elise Anne Lucotte
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - David Castellano
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
- Corresponding author
| |
Collapse
|
29
|
Tricou T, Tannier E, de Vienne DM. Ghost lineages can invalidate or even reverse findings regarding gene flow. PLoS Biol 2022; 20:e3001776. [PMID: 36103518 PMCID: PMC9473628 DOI: 10.1371/journal.pbio.3001776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introgression, endosymbiosis, and gene transfer, i.e., horizontal gene flow (HGF), are primordial sources of innovation in all domains of life. Our knowledge on HGF relies on detection methods that exploit some of its signatures left on extant genomes. One of them is the effect of HGF on branch lengths of constructed phylogenies. This signature has been formalized in statistical tests for HGF detection and used for example to detect massive adaptive gene flows in malaria vectors or to order evolutionary events involved in eukaryogenesis. However, these studies rely on the assumption that ghost lineages (all unsampled extant and extinct taxa) have little influence. We demonstrate here with simulations and data reanalysis that when considering the more realistic condition that unsampled taxa are legion compared to sampled ones, the conclusion of these studies become unfounded or even reversed. This illustrates the necessity to recognize the existence of ghosts in evolutionary studies.
Collapse
Affiliation(s)
- Théo Tricou
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, F-69622 Villeurbanne, France
| | - Eric Tannier
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, F-69622 Villeurbanne, France
- INRIA Grenoble Rhône-Alpes, F-38334 Montbonnot, France
| | - Damien M. de Vienne
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, F-69622 Villeurbanne, France
| |
Collapse
|
30
|
Brucato N, André M, Hudjashov G, Mondal M, Cox MP, Leavesley M, Ricaut FX. Chronology of natural selection in Oceanian genomes. iScience 2022; 25:104583. [PMID: 35880026 PMCID: PMC9308150 DOI: 10.1016/j.isci.2022.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
As human populations left Asia to first settle in Oceania around 50,000 years ago, they entered a territory ecologically separated from the Old World for millions of years. We analyzed genomic data of 239 modern Oceanian individuals to detect and date signals of selection specific to this region. Combining both relative and absolute dating approaches, we identified a strong selection pattern between 52,000 and 54,000 years ago in the genomes of descendants of the first settlers of Sahul. This strikingly corresponds to the dates of initial settlement as inferred from archaeological evidence. Loci under selection during this period, some showing enrichment in Denisovan ancestry, overlap genes involved in the immune response and diet, especially based on plants. Pathogens and natural resources, especially from endemic plants, therefore appear to have acted as strong selective pressures on the genomes of the first settlers of Sahul.
Collapse
Affiliation(s)
- Nicolas Brucato
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
| | - Mathilde André
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Georgi Hudjashov
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu, 51010 Tartumaa, Estonia
| | - Murray P. Cox
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, National Capital District 134, Papua New Guinea
- College of Arts, Society and Education, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
| | - François-Xavier Ricaut
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 cedex 9 Toulouse, France
| |
Collapse
|
31
|
Witt KE, Villanea F, Loughran E, Zhang X, Huerta-Sanchez E. Apportioning archaic variants among modern populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200411. [PMID: 35430882 PMCID: PMC9014186 DOI: 10.1098/rstb.2020.0411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The apportionment of human genetic diversity within and between populations has been measured to understand human relatedness and demographic history. Likewise, the distribution of archaic ancestry in modern populations can be leveraged to better understand the interaction between our species and its archaic relatives. Resolving the interactions between modern and archaic human populations can be difficult, as archaic variants in modern populations have been shaped by genetic drift, bottlenecks and gene flow. Here, we investigate the distribution of archaic variation in Eurasian populations. We find that archaic ancestry coverage at the individual- and population-level present distinct patterns in modern human populations: South Asians have nearly twice the number of population-unique archaic alleles compared with Europeans or East Asians, indicating that these populations experienced differing demographic and archaic admixture events. We confirm previous observations that East Asian individuals have more Neanderthal ancestry than European individuals, but surprisingly, when we compare the number of single nucleotide polymorphisms with archaic alleles found across a population, Europeans have more Neanderthal ancestry than East Asians. We compare these results to simulated models and conclude that these patterns are consistent with multiple admixture events between modern humans and Neanderthals. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
Collapse
Affiliation(s)
- Kelsey E. Witt
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Fernando Villanea
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | - Elle Loughran
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
| | - Xinjun Zhang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Emilia Huerta-Sanchez
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
32
|
Weasel L. How Neanderthals became White: The introgression of race into contemporary human evolutionary genomics. Am Nat 2022; 200:129-139. [DOI: 10.1086/720130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Natri HM, Hudjashov G, Jacobs G, Kusuma P, Saag L, Darusallam CC, Metspalu M, Sudoyo H, Cox MP, Gallego Romero I, Banovich NE. Genetic architecture of gene regulation in Indonesian populations identifies QTLs associated with global and local ancestries. Am J Hum Genet 2022; 109:50-65. [PMID: 34919805 PMCID: PMC8764200 DOI: 10.1016/j.ajhg.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Lack of diversity in human genomics limits our understanding of the genetic underpinnings of complex traits, hinders precision medicine, and contributes to health disparities. To map genetic effects on gene regulation in the underrepresented Indonesian population, we have integrated genotype, gene expression, and CpG methylation data from 115 participants across three island populations that capture the major sources of genomic diversity in the region. In a comparison with European datasets, we identify eQTLs shared between Indonesia and Europe as well as population-specific eQTLs that exhibit differences in allele frequencies and/or overall expression levels between populations. By combining local ancestry and archaic introgression inference with eQTLs and methylQTLs, we identify regulatory loci driven by modern Papuan ancestry as well as introgressed Denisovan and Neanderthal variation. GWAS colocalization connects QTLs detected here to hematological traits, and further comparison with European datasets reflects the poor overall transferability of GWAS statistics across diverse populations. Our findings illustrate how population-specific genetic architecture, local ancestry, and archaic introgression drive variation in gene regulation across genetically distinct and in admixed populations and highlight the need for performing association studies on non-European populations.
Collapse
Affiliation(s)
- Heini M Natri
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Georgi Hudjashov
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Guy Jacobs
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge CB2 1QH, UK; Complexity Institute, Nanyang Technological University, Singapore, 637460
| | - Pradiptajati Kusuma
- Complexity Institute, Nanyang Technological University, Singapore, 637460; Laboratory of Genome Diversity and Disease, Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia
| | - Lauri Saag
- Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Chelzie Crenna Darusallam
- Laboratory of Genome Diversity and Disease, Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Herawati Sudoyo
- Laboratory of Genome Diversity and Disease, Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Irene Gallego Romero
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Stem Cell Systems, University of Melbourne, Parkville, VIC 3010, Australia
| | | |
Collapse
|
34
|
Louis M, Galimberti M, Archer F, Berrow S, Brownlow A, Fallon R, Nykänen M, O'Brien J, Roberston KM, Rosel PE, Simon-Bouhet B, Wegmann D, Fontaine MC, Foote AD, Gaggiotti OE. Selection on ancestral genetic variation fuels repeated ecotype formation in bottlenose dolphins. SCIENCE ADVANCES 2021; 7:eabg1245. [PMID: 34705499 PMCID: PMC8550227 DOI: 10.1126/sciadv.abg1245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Studying repeated adaptation can provide insights into the mechanisms allowing species to adapt to novel environments. Here, we investigate repeated evolution driven by habitat specialization in the common bottlenose dolphin. Parapatric pelagic and coastal ecotypes of common bottlenose dolphins have repeatedly formed across the oceans. Analyzing whole genomes of 57 individuals, we find that ecotype evolution involved a complex reticulated evolutionary history. We find parallel linked selection acted upon ancient alleles in geographically distant coastal populations, which were present as standing genetic variation in the pelagic populations. Candidate loci evolving under parallel linked selection were found in ancient tracts, suggesting recurrent bouts of selection through time. Therefore, despite the constraints of small effective population size and long generation time on the efficacy of selection, repeated adaptation in long-lived social species can be driven by a combination of ecological opportunities and selection acting on ancestral standing genetic variation.
Collapse
Affiliation(s)
- Marie Louis
- Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews KY16 8LB, Scotland, UK
- Centre d'Etudes Biologiques de Chize, La Rochelle Université, 17000 La Rochelle, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, Netherlands
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350 Copenhagen, Denmark
| | - Marco Galimberti
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Frederick Archer
- National Marine Fisheries Service, Southwest Fisheries Science Center, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
- Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Simon Berrow
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Galway-Mayo Institute of Technology, Dublin Road, H91 T8NW Galway, Ireland
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ramon Fallon
- School of Medicine, University of St Andrews, North Haugh, St Andrews, Fife KY16 9TF, Scotland, UK
| | | | - Joanne O'Brien
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Galway-Mayo Institute of Technology, Dublin Road, H91 T8NW Galway, Ireland
| | - Kelly M Roberston
- National Marine Fisheries Service, Southwest Fisheries Science Center, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
| | - Patricia E Rosel
- National Marine Fisheries Service, Southeast Fisheries Science Center, NOAA, 646 Cajundome Boulevard, Lafayette, LA 70506, USA
| | - Benoit Simon-Bouhet
- Centre d'Etudes Biologiques de Chize, La Rochelle Université, 17000 La Rochelle, France
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, Netherlands
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Andrew D Foote
- Molecular Ecology and Evolution Bangor, Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, UK
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, Trondheim 7012, Norway
| | - Oscar E Gaggiotti
- Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews KY16 8LB, Scotland, UK
| |
Collapse
|
35
|
Refining models of archaic admixture in Eurasia with ArchaicSeeker 2.0. Nat Commun 2021; 12:6232. [PMID: 34716342 PMCID: PMC8556419 DOI: 10.1038/s41467-021-26503-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/06/2021] [Indexed: 12/30/2022] Open
Abstract
We developed a method, ArchaicSeeker 2.0, to identify introgressed hominin sequences and model multiple-wave admixture. The new method enabled us to discern two waves of introgression from both Denisovan-like and Neanderthal-like hominins in present-day Eurasian populations and an ancient Siberian individual. We estimated that an early Denisovan-like introgression occurred in Eurasia around 118.8-94.0 thousand years ago (kya). In contrast, we detected only one single episode of Denisovan-like admixture in indigenous peoples eastern to the Wallace-Line. Modeling ancient admixtures suggested an early dispersal of modern humans throughout Asia before the Toba volcanic super-eruption 74 kya, predating the initial peopling of Asia as proposed by the traditional Out-of-Africa model. Survived archaic sequences are involved in various phenotypes including immune and body mass (e.g., ZNF169), cardiovascular and lung function (e.g., HHAT), UV response and carbohydrate metabolism (e.g., HYAL1/HYAL2/HYAL3), while "archaic deserts" are enriched with genes associated with skin development and keratinization.
Collapse
|
36
|
Iasi LNM, Ringbauer H, Peter BM. An Extended Admixture Pulse Model Reveals the Limitations to Human-Neandertal Introgression Dating. Mol Biol Evol 2021; 38:5156-5174. [PMID: 34254144 PMCID: PMC8557420 DOI: 10.1093/molbev/msab210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neandertal DNA makes up 2-3% of the genomes of all non-African individuals. The patterns of Neandertal ancestry in modern humans have been used to estimate that this is the result of gene flow that occurred during the expansion of modern humans into Eurasia, but the precise dates of this event remain largely unknown. Here, we introduce an extended admixture pulse model that allows joint estimation of the timing and duration of gene flow. This model leads to simple expressions for both the admixture segment distribution and the decay curve of ancestry linkage disequilibrium, and we show that these two statistics are closely related. In simulations, we find that estimates of the mean time of admixture are largely robust to details in gene flow models, but that the duration of the gene flow can only be recovered if gene flow is very recent and the exact recombination map is known. These results imply that gene flow from Neandertals into modern humans could have happened over hundreds of generations. Ancient genomes from the time around the admixture event are thus likely required to resolve the question when, where, and for how long humans and Neandertals interacted.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evloutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin M Peter
- Department of Evloutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
37
|
Li Y, Wu DD. Finding unknown species in the genomes of extant species. J Genet Genomics 2021; 48:867-871. [PMID: 34509382 DOI: 10.1016/j.jgg.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022]
Abstract
Although many species have gone extinct, their genetic components might exist in extant species because of ancient hybridization. Via advances in genome sequencing and development of modern population genetics, one can find the legacy of unknown or extinct species in the context of available genomes from extant species. Such discovery can be used as a strategy to search for hidden species or fossils in conservation biology and archeology, gain novel insight into complex evolutionary history, and provide the new sources of genetic variation for breeding and trait improvement in agriculture.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan and School of Life Science & School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
38
|
Different historical generation intervals in human populations inferred from Neanderthal fragment lengths and mutation signatures. Nat Commun 2021; 12:5317. [PMID: 34493715 PMCID: PMC8423828 DOI: 10.1038/s41467-021-25524-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
After the main Out-of-Africa event, humans interbred with Neanderthals leaving 1–2% of Neanderthal DNA scattered in small fragments in all non-African genomes today. Here we investigate what can be learned about human demographic processes from the size distribution of these fragments. We observe differences in fragment length across Eurasia with 12% longer fragments in East Asians than West Eurasians. Comparisons between extant populations with ancient samples show that these differences are caused by different rates of decay in length by recombination since the Neanderthal admixture. In concordance, we observe a strong correlation between the average fragment length and the mutation accumulation, similar to what is expected by changing the ages at reproduction as estimated from trio studies. Altogether, our results suggest differences in the generation interval across Eurasia, by up 10–20%, over the past 40,000 years. We use sex-specific mutation signatures to infer whether these changes were driven by shifts in either male or female age at reproduction, or both. We also find that previously reported variation in the mutational spectrum may be largely explained by changes to the generation interval. We conclude that Neanderthal fragment lengths provide unique insight into differences among human populations over recent history. Historical interbreeding between Neanderthals and humans should leave signatures of historical demographics in modern human genomes. Analysing the size distribution of Neanderthal fragments in non-African genomes suggests consistent differences in the generation interval across Eurasia, and that this could explain mutational spectrum variation.
Collapse
|
39
|
Ahlquist KD, Bañuelos MM, Funk A, Lai J, Rong S, Villanea FA, Witt KE. Our Tangled Family Tree: New Genomic Methods Offer Insight into the Legacy of Archaic Admixture. Genome Biol Evol 2021; 13:evab115. [PMID: 34028527 PMCID: PMC8480178 DOI: 10.1093/gbe/evab115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022] Open
Abstract
The archaic ancestry present in the human genome has captured the imagination of both scientists and the wider public in recent years. This excitement is the result of new studies pushing the envelope of what we can learn from the archaic genetic information that has survived for over 50,000 years in the human genome. Here, we review the most recent ten years of literature on the topic of archaic introgression, including the current state of knowledge on Neanderthal and Denisovan introgression, as well as introgression from other as-yet unidentified archaic populations. We focus this review on four topics: 1) a reimagining of human demographic history, including evidence for multiple admixture events between modern humans, Neanderthals, Denisovans, and other archaic populations; 2) state-of-the-art methods for detecting archaic ancestry in population-level genomic data; 3) how these novel methods can detect archaic introgression in modern African populations; and 4) the functional consequences of archaic gene variants, including how those variants were co-opted into novel function in modern human populations. The goal of this review is to provide a simple-to-access reference for the relevant methods and novel data, which has changed our understanding of the relationship between our species and its siblings. This body of literature reveals the large degree to which the genetic legacy of these extinct hominins has been integrated into the human populations of today.
Collapse
Affiliation(s)
- K D Ahlquist
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mayra M Bañuelos
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Alyssa Funk
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jiaying Lai
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Brown Center for Biomedical Informatics, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Fernando A Villanea
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Anthropology, University of Colorado Boulder, Colorado, USA
| | - Kelsey E Witt
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
40
|
Widespread Denisovan ancestry in Island Southeast Asia but no evidence of substantial super-archaic hominin admixture. Nat Ecol Evol 2021; 5:616-624. [PMID: 33753899 DOI: 10.1038/s41559-021-01408-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The hominin fossil record of Island Southeast Asia (ISEA) indicates that at least two endemic 'super-archaic' species-Homo luzonensis and H. floresiensis-were present around the time anatomically modern humans arrived in the region >50,000 years ago. Intriguingly, contemporary human populations across ISEA carry distinct genomic traces of ancient interbreeding events with Denisovans-a separate hominin lineage that currently lacks a fossil record in ISEA. To query this apparent disparity between fossil and genetic evidence, we performed a comprehensive search for super-archaic introgression in >400 modern human genomes, including >200 from ISEA. Our results corroborate widespread Denisovan ancestry in ISEA populations, but fail to detect any substantial super-archaic admixture signals compatible with the endemic fossil record of ISEA. We discuss the implications of our findings for the understanding of hominin history in ISEA, including future research directions that might help to unlock more details about the prehistory of the enigmatic Denisovans.
Collapse
|
41
|
Wang MS, Wang S, Li Y, Jhala Y, Thakur M, Otecko NO, Si JF, Chen HM, Shapiro B, Nielsen R, Zhang YP, Wu DD. Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids. Mol Biol Evol 2021; 37:2616-2629. [PMID: 32384152 DOI: 10.1093/molbev/msaa113] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic introgression not only provides material for adaptive evolution but also confounds our understanding of evolutionary history. This is particularly true for canids, a species complex in which genome sequencing and analysis has revealed a complex history of admixture and introgression. Here, we sequence 19 new whole genomes from high-altitude Tibetan and Himalayan wolves and dogs and combine these into a larger data set of 166 whole canid genomes. Using these data, we explore the evolutionary history and adaptation of these and other canid lineages. We find that Tibetan and Himalayan wolves are closely related to each other, and that ∼39% of their nuclear genome is derived from an as-yet-unrecognized wolf-like lineage that is deeply diverged from living Holarctic wolves and dogs. The EPAS1 haplotype, which is present at high frequencies in Tibetan dog breeds and wolves and confers an adaptive advantage to animals living at high altitudes, was probably derived from this ancient lineage. Our study underscores the complexity of canid evolution and demonstrates how admixture and introgression can shape the evolutionary trajectories of species.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China
| | | | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jing-Fang Si
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hong-Man Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California Berkeley, Berkeley, CA.,Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
42
|
Reinscheid RK, Mafessoni F, Lüttjohann A, Jüngling K, Pape HC, Schulz S. Neandertal introgression and accumulation of hypomorphic mutations in the neuropeptide S (NPS) system promote attenuated functionality. Peptides 2021; 138:170506. [PMID: 33556445 DOI: 10.1016/j.peptides.2021.170506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
The neuropeptide S (NPS) system plays an important role in fear and fear memory processing but has also been associated with allergic and inflammatory diseases. Genes for NPS and its receptor NPSR1 are found in all tetrapods. Compared to non-human primates, several non-synonymous single-nucleotide polymorphisms (SNPs) occur in both human genes that collectively result in functional attenuation, suggesting adaptive mechanisms in a human context. To investigate historic and geographic origins of these hypomorphic mutations and explore genetic signs of selection, we analyzed ancient genomes and worldwide genotype frequencies of four prototypic SNPs in the NPS system. Neandertal and Denisovan genomes contain exclusively ancestral alleles for NPSR1 while all derived alleles occur in ancient genomes of anatomically modern humans, indicating that they arose in modern Homo sapiens. Worldwide genotype frequencies for three hypomorphic NPSR1 SNPs show significant regional homogeneity but follow a gradient towards increasing derived allele frequencies that supports an out-of-Africa scenario. Increased density of high-frequency polymorphisms around the three NPSR1 loci suggests weak or possibly balancing selection. A hypomorphic mutation in the NPS precursor, however, was detected at high frequency in Eurasian Neandertal genomes and shows genetic signatures indicating that it was introgressed into the human gene pool, particularly in Southern Europe, by interbreeding with Neandertals. We discuss potential evolutionary scenarios including behavior and immune-based natural selection.
Collapse
Affiliation(s)
- Rainer K Reinscheid
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany; Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany.
| | | | - Annika Lüttjohann
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
43
|
Ayoola AO, Zhang BL, Meisel RP, Nneji LM, Shao Y, Morenikeji OB, Adeola AC, Ng’ang’a SI, Ogunjemite BG, Okeyoyin AO, Roos C, Wu DD. Population Genomics Reveals Incipient Speciation, Introgression, and Adaptation in the African Mona Monkey (Cercopithecus mona). Mol Biol Evol 2021; 38:876-890. [PMID: 32986826 PMCID: PMC7947840 DOI: 10.1093/molbev/msaa248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Guenons (tribe Cercopithecini) are the most widely distributed nonhuman primate in the tropical forest belt of Africa and show considerable phenotypic, taxonomic, and ecological diversity. However, genomic information for most species within this group is still lacking. Here, we present a high-quality de novo genome (total 2.90 Gb, contig N50 equal to 22.7 Mb) of the mona monkey (Cercopithecus mona), together with genome resequencing data of 13 individuals sampled across Nigeria. Our results showed differentiation between populations from East and West of the Niger River ∼84 ka and potential ancient introgression in the East population from other mona group species. The PTPRK, FRAS1, BNC2, and EDN3 genes related to pigmentation displayed signals of introgression in the East population. Genomic scans suggest that immunity genes such as AKT3 and IL13 (possibly involved in simian immunodeficiency virus defense), and G6PD, a gene involved in malaria resistance, are under positive natural selection. Our study gives insights into differentiation, natural selection, and introgression in guenons.
Collapse
Affiliation(s)
- Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Olanrewaju B Morenikeji
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY
- Department of Biology, Hamilton College, Clinton, NY
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Said I Ng’ang’a
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Babafemi G Ogunjemite
- Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Nigeria
| | - Agboola O Okeyoyin
- National Park Service Headquarters, Federal Capital Territory, Abuja, Nigeria
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
44
|
Million-year-old DNA sheds light on the genomic history of mammoths. Nature 2021; 591:265-269. [PMID: 33597750 PMCID: PMC7116897 DOI: 10.1038/s41586-021-03224-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/11/2021] [Indexed: 11/17/2022]
Abstract
Temporal genomic data hold great potential for studying evolutionary processes, including speciation. However, sampling across speciation events would in many cases require genomic time series that stretch well into the Early Pleistocene (>1 million years). Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far is from a 560-780 ka old horse specimen2. Here we report the recovery of genome-wide data from three Early and Middle Pleistocene mammoth specimens, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these gave rise to the woolly mammoth, whereas the other represents a previously unrecognised lineage that was ancestral to the first mammoths to colonise North America. Our analyses reveal that the North American Columbian mammoth traces its ancestry to a Middle Pleistocene hybridisation between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were present already a million years ago. These findings highlight the potential of deep time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.
Collapse
|
45
|
Shchur V, Svedberg J, Medina P, Corbett-Detig R, Nielsen R. On the Distribution of Tract Lengths During Adaptive Introgression. G3 (BETHESDA, MD.) 2020; 10:3663-3673. [PMID: 32763953 PMCID: PMC7534438 DOI: 10.1534/g3.120.401616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 11/26/2022]
Abstract
Admixture is increasingly being recognized as an important factor in evolutionary genetics. The distribution of genomic admixture tracts, and the resulting effects on admixture linkage disequilibrium, can be used to date the timing of admixture between species or populations. However, the theory used for such prediction assumes selective neutrality despite the fact that many famous examples of admixture involve natural selection acting for or against admixture. In this paper, we investigate the effects of positive selection on the distribution of tract lengths. We develop a theoretical framework that relies on approximating the trajectory of the selected allele using a logistic function. By numerically calculating the expected allele trajectory, we also show that the approach can be extended to cases where the logistic approximation is poor due to the effects of genetic drift. Using simulations, we show that the model is highly accurate under most scenarios. We use the model to show that positive selection on average will tend to increase the admixture tract length. However, perhaps counter-intuitively, conditional on the allele frequency at the time of sampling, positive selection will actually produce shorter expected tract lengths. We discuss the consequences of our results in interpreting the timing of the introgression of EPAS1 from Denisovans into the ancestors of Tibetans.
Collapse
Affiliation(s)
- Vladimir Shchur
- Department of Integrative Biology and Department of Statistics, UC Berkeley, Berkeley, CA
- National Research University Higher School of Economics, Russian Federation
| | - Jesper Svedberg
- Department of Biomolecular Engineering and Genomics Institute, UC Santa Cruz, California 95064
| | - Paloma Medina
- Department of Biomolecular Engineering and Genomics Institute, UC Santa Cruz, California 95064
| | - Russell Corbett-Detig
- National Research University Higher School of Economics, Russian Federation
- Department of Biomolecular Engineering and Genomics Institute, UC Santa Cruz, California 95064
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, UC Berkeley, Berkeley, CA
- National Research University Higher School of Economics, Russian Federation
- Center for GeoGenetics, Globe Institute, University of Copenhagen, 2100 Denmark
| |
Collapse
|
46
|
Mughal MR, Koch H, Huang J, Chiaromonte F, DeGiorgio M. Learning the properties of adaptive regions with functional data analysis. PLoS Genet 2020; 16:e1008896. [PMID: 32853200 PMCID: PMC7480868 DOI: 10.1371/journal.pgen.1008896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/09/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Identifying regions of positive selection in genomic data remains a challenge in population genetics. Most current approaches rely on comparing values of summary statistics calculated in windows. We present an approach termed SURFDAWave, which translates measures of genetic diversity calculated in genomic windows to functional data. By transforming our discrete data points to be outputs of continuous functions defined over genomic space, we are able to learn the features of these functions that signify selection. This enables us to confidently identify complex modes of natural selection, including adaptive introgression. We are also able to predict important selection parameters that are responsible for shaping the inferred selection events. By applying our model to human population-genomic data, we recapitulate previously identified regions of selective sweeps, such as OCA2 in Europeans, and predict that its beneficial mutation reached a frequency of 0.02 before it swept 1,802 generations ago, a time when humans were relatively new to Europe. In addition, we identify BNC2 in Europeans as a target of adaptive introgression, and predict that it harbors a beneficial mutation that arose in an archaic human population that split from modern humans within the hypothesized modern human-Neanderthal divergence range.
Collapse
Affiliation(s)
- Mehreen R. Mughal
- Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillary Koch
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jinguo Huang
- Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca Chiaromonte
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, United States of America
| |
Collapse
|
47
|
Mafessoni F, Grote S, de Filippo C, Slon V, Kolobova KA, Viola B, Markin SV, Chintalapati M, Peyrégne S, Skov L, Skoglund P, Krivoshapkin AI, Derevianko AP, Meyer M, Kelso J, Peter B, Prüfer K, Pääbo S. A high-coverage Neandertal genome from Chagyrskaya Cave. Proc Natl Acad Sci U S A 2020; 117:15132-15136. [PMID: 32546518 PMCID: PMC7334501 DOI: 10.1073/pnas.2004944117] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We sequenced the genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, to 27-fold genomic coverage. We show that this Neandertal was a female and that she was more related to Neandertals in western Eurasia [Prüfer et al., Science 358, 655-658 (2017); Hajdinjak et al., Nature 555, 652-656 (2018)] than to Neandertals who lived earlier in Denisova Cave [Prüfer et al., Nature 505, 43-49 (2014)], which is located about 100 km away. About 12.9% of the Chagyrskaya genome is spanned by homozygous regions that are between 2.5 and 10 centiMorgans (cM) long. This is consistent with the fact that Siberian Neandertals lived in relatively isolated populations of less than 60 individuals. In contrast, a Neandertal from Europe, a Denisovan from the Altai Mountains, and ancient modern humans seem to have lived in populations of larger sizes. The availability of three Neandertal genomes of high quality allows a view of genetic features that were unique to Neandertals and that are likely to have been at high frequency among them. We find that genes highly expressed in the striatum in the basal ganglia of the brain carry more amino-acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that the striatum may have evolved unique functions in Neandertals.
Collapse
Affiliation(s)
- Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Steffi Grote
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Kseniya A Kolobova
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
| | - Sergey V Markin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Manjusha Chintalapati
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Stephane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Laurits Skov
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Andrey I Krivoshapkin
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Benjamin Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany;
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Onna-son, 904-0495 Okinawa, Japan
| |
Collapse
|
48
|
Sankararaman S. Methods for detecting introgressed archaic sequences. Curr Opin Genet Dev 2020; 62:85-90. [PMID: 32717667 PMCID: PMC7484293 DOI: 10.1016/j.gde.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022]
Abstract
Analysis of genome sequences from archaic and modern humans have revealed multiple episodes of admixture between highly-diverged population groups. Statistical methods that attempt to localize DNA segments introduced by these events offer a powerful tool to investigate recent human evolution. We review recent advances in methods for detecting introgressed sequences.
Collapse
Affiliation(s)
- Sriram Sankararaman
- Department of Computer Science, University of California, Los Angeles, CA 90095, United States; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; Department of Computational Medicine, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
49
|
Jacobs A, Therkildsen NO. Excavating ghost footprints and tangled trees from modern genomes. Mol Ecol 2020; 28:3287-3290. [PMID: 31379095 DOI: 10.1111/mec.15141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/29/2022]
Abstract
Due to pervasive gene flow and admixture, simple bifurcating trees often do not provide an accurate representation of relationships among diverging lineages, but limited resolution in the available genomic data and the spatial distribution of samples has hindered detailed insights regarding the evolutionary and demographic history of many species and populations. In this issue of Molecular Ecology, Foote et al. (2019) combine a powerful sampling design with novel analytical methods adopted from human genetics to describe previously unrecognized patterns of recurrent vicariance and admixture among lineages in the globally distributed killer whale (Orcinus orca). Based on sequence data from modern samples alone, they discover clear signatures of ancient admixture with a now extinct "ghost" lineage, providing one of the first accounts of archaic introgression in a nonhominid species. Coupling a cost-effective sequencing strategy with novel analytical approaches, their paper provides a roadmap for advancing inference of evolutionary history in other nonmodel species, promising exciting times ahead for our field.
Collapse
Affiliation(s)
- Arne Jacobs
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
50
|
Skov L, Coll Macià M, Sveinbjörnsson G, Mafessoni F, Lucotte EA, Einarsdóttir MS, Jonsson H, Halldorsson B, Gudbjartsson DF, Helgason A, Schierup MH, Stefansson K. The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature 2020; 582:78-83. [DOI: 10.1038/s41586-020-2225-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
|