1
|
Zhang L, Hodgins L, Sakib S, Verbeem A, Mahmood A, Perez-Romero C, Marmion RA, Dostatni N, Fradin C. Both the transcriptional activator, Bcd, and repressor, Cic, form small mobile oligomeric clusters. Biophys J 2025; 124:980-995. [PMID: 39164967 PMCID: PMC11947476 DOI: 10.1016/j.bpj.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024] Open
Abstract
Transcription factors play an essential role in pattern formation during early embryo development, generating a strikingly fast and precise transcriptional response that results in sharp gene expression boundaries. To characterize the steps leading up to transcription, we performed a side-by-side comparison of the nuclear dynamics of two morphogens, a transcriptional activator, Bicoid (Bcd), and a transcriptional repressor, Capicua (Cic), both involved in body patterning along the anterior-posterior axis of the early Drosophila embryo. We used a combination of fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single-particle tracking to access a wide range of dynamical timescales. Despite their opposite effects on gene transcription, we find that Bcd and Cic have very similar nuclear dynamics, characterized by the coexistence of a freely diffusing monomer population with a number of oligomeric clusters, which range from low stoichiometry and high mobility clusters to larger, DNA-bound hubs. Our observations are consistent with the inclusion of both Bcd and Cic into transcriptional hubs or condensates, while putting constraints on the mechanism by which these form. These results fit in with the recent proposal that many transcription factors might share a common search strategy for target gene regulatory regions that makes use of their large unstructured regions, and may eventually help explain how the transcriptional response they elicit can be at the same time so fast and so precise.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Lydia Hodgins
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Shariful Sakib
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexander Verbeem
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Ahmad Mahmood
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Carmina Perez-Romero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Robert A Marmion
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Nathalie Dostatni
- Institut Curie, PSL University, CNRS, Sorbonne University, Nuclear Dynamics, Paris, France
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Cardona AH, Peixoto MM, Borjigin T, Gregor T. Bridging spatial and temporal scales of developmental gene regulation. ARXIV 2025:arXiv:2501.16799v1. [PMID: 39975433 PMCID: PMC11838700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The development of multicellular organisms relies on the precise coordination of molecular events across multiple spatial and temporal scales. Understanding how information flows from molecular interactions to cellular processes and tissue organization during development is crucial for explaining the remarkable reproducibility of complex organisms. This review explores how chromatin-encoded information is transduced from localized transcriptional events to global gene expression patterns, highlighting the challenge of bridging these scales. We discuss recent experimental findings and theoretical frameworks, emphasizing polymer physics as a tool for describing the relationship between chromatin structure and dynamics across scales. By integrating these perspectives, we aim to clarify how gene regulation is coordinated across levels of biological organization and suggest strategies for future experimental approaches.
Collapse
Affiliation(s)
- Andrés H. Cardona
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Márcia Mesquita Peixoto
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Tohn Borjigin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Munshi R, Ling J, Ryabichko S, Wieschaus EF, Gregor T. Transcription factor clusters as information transfer agents. SCIENCE ADVANCES 2025; 11:eadp3251. [PMID: 39742495 DOI: 10.1126/sciadv.adp3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
Deciphering how genes interpret information from transcription factor (TF) concentrations within the cell nucleus remains a fundamental question in gene regulation. Recent advancements have revealed the heterogeneous distribution of TF molecules, posing challenges to precisely decoding concentration signals. Using high-resolution single-cell imaging of the fluorescently tagged TF Bicoid in living Drosophila embryos, we show that Bicoid accumulation in submicrometer clusters preserves the spatial information of the maternal Bicoid gradient. These clusters provide precise spatial cues through intensity, size, and frequency. We further discover that Bicoid target genes colocalize with these clusters in an enhancer-binding affinity-dependent manner. Our modeling suggests that clustering offers a faster sensing mechanism for global nuclear concentrations than freely diffusing TF molecules detected by simple enhancers.
Collapse
Affiliation(s)
- Rahul Munshi
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jia Ling
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sergey Ryabichko
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric F Wieschaus
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology and Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
4
|
Degen EA, Croslyn C, Mangan NM, Blythe SA. Bicoid-nucleosome competition sets a concentration threshold for transcription constrained by genome replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627802. [PMID: 39713295 PMCID: PMC11661180 DOI: 10.1101/2024.12.10.627802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription factors (TFs) regulate gene expression despite constraints from chromatin structure and the cell cycle. Here we examine the concentration-dependent regulation of hunchback by the Bicoid morphogen through a combination of quantitative imaging, mathematical modeling and epigenomics in Drosophila embryos. By live imaging of MS2 reporters, we find that, following mitosis, the timing of transcriptional activation driven by the hunchback P2 (hb P2) enhancer directly reflects Bicoid concentration. We build a stochastic model that can explain in vivo onset time distributions by accounting for both the competition between Bicoid and nucleosomes at hb P2 and a negative influence of DNA replication on transcriptional elongation. Experimental modulation of nucleosome stability alters onset time distributions and the posterior boundary of hunchback expression. We conclude that TF-nucleosome competition is the molecular mechanism whereby the Bicoid morphogen gradient specifies the posterior boundary of hunchback expression.
Collapse
Affiliation(s)
- Eleanor A Degen
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston Illinois 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Corinne Croslyn
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston Illinois 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Marković A, Briscoe J, Page KM. Dynamics of positional information in the vertebrate neural tube. J R Soc Interface 2024; 21:20240414. [PMID: 39657793 PMCID: PMC11631457 DOI: 10.1098/rsif.2024.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
In developing embryos, cells acquire distinct identities depending on their position in a tissue. Secreted signalling molecules, known as morphogens, act as long-range cues to provide the spatial information that controls these cell fate decisions. In several tissues, both the level and the duration of morphogen signalling appear to be important for determining cell fates. This is the case in the forming vertebrate nervous system where antiparallel morphogen gradients pattern the dorsal-ventral axis by partitioning the tissue into sharply delineated domains of molecularly distinct neural progenitors. How information in the gradients is decoded to generate precisely positioned boundaries of gene expression remains an open question. Here, we adopt tools from information theory to quantify the positional information in the neural tube and investigate how temporal changes in signalling could influence positional precision. The results reveal that the use of signalling dynamics, as well as the signalling level, substantially increases the precision possible for the estimation of position from morphogen gradients. This analysis links the dynamics of opposing morphogen gradients with precise pattern formation and provides an explanation for why time is used to impart positional information.
Collapse
Affiliation(s)
- Anđela Marković
- Department of Mathematics, University College London, LondonWC1E 6BT, UK
| | | | - Karen M. Page
- Department of Mathematics, University College London, LondonWC1E 6BT, UK
- Institute of Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
Fountas C, Lenstra TL. Better together: how cooperativity influences transcriptional bursting. Curr Opin Genet Dev 2024; 89:102274. [PMID: 39500079 DOI: 10.1016/j.gde.2024.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/27/2024]
Abstract
Transcriptional bursting refers to the stochastic transition of a promoter between transcriptionally active and inactive states. This dynamic process is highly regulated by the dynamics of transcription factor binding to DNA, their interactions with coactivators, and the 3D interactions between promoters, condensates, and enhancers. In this mini-review, we discuss recent insights into the kinetics of transcription factors and cofactors in both simple and complex regulatory environments to understand their impact on transcriptional bursting. We examine the novel concept of transcription factor exchange and relate it to different cooperativity models. Finally, we discuss recent live-cell imaging studies on the regulation of transcriptional bursting by enhancers and transcriptional condensates.
Collapse
Affiliation(s)
- Charis Fountas
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Munshi R, Ling J, Ryabichko S, Wieschaus EF, Gregor T. Transcription factor clusters as information transfer agents. ARXIV 2024:arXiv:2403.02943v3. [PMID: 38495568 PMCID: PMC10942473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Deciphering how genes interpret information from the concentration of transcription factors (TFs) within the cell nucleus remains a fundamental question in gene regulation. Recent advancements have unveiled the heterogeneous distribution of TF molecules in the nucleus, posing challenges to the precise decoding of concentration signals. To explore this phenomenon, we employ high-resolution single-cell imaging of a fluorescently tagged TF protein, Bicoid, in living fly embryos. We show that accumulation of Bicoid in submicron clusters preserves the spatial information of the maternal Bicoid gradient, and that cluster intensity, size, and frequency offer remarkably precise spatial cues. We further discover that various known gene targets of Bicoid activation colocalize with clusters and that for the target gene Hunchback, this colocalization is dependent on its enhancer binding affinity. Modeling information transfer through these clusters suggests that clustering offers a more rapid sensing mechanism for global nuclear concentrations than freely diffusing TF molecules detected by simple enhancers.
Collapse
|
8
|
Whitney PH, Lionnet T. The method in the madness: Transcriptional control from stochastic action at the single-molecule scale. Curr Opin Struct Biol 2024; 87:102873. [PMID: 38954990 PMCID: PMC11373363 DOI: 10.1016/j.sbi.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Cell states result from the ordered activation of gene expression by transcription factors. Transcription factors face opposing design constraints: they need to be dynamic to trigger rapid cell state transitions, but also stable enough to maintain terminal cell identities indefinitely. Recent progress in live-cell single-molecule microscopy has helped define the biophysical principles underlying this paradox. Beyond transcription factor activity, single-molecule experiments have revealed that at nearly every level of transcription regulation, control emerges from multiple short-lived stochastic interactions, rather than deterministic, stable interactions typical of other biochemical pathways. This architecture generates consistent outcomes that can be rapidly choreographed. Here, we highlight recent results that demonstrate how order in transcription regulation emerges from the apparent molecular-scale chaos and discuss remaining conceptual challenges.
Collapse
Affiliation(s)
- Peter H Whitney
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| |
Collapse
|
9
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Meeussen JVW, Lenstra TL. Time will tell: comparing timescales to gain insight into transcriptional bursting. Trends Genet 2024; 40:160-174. [PMID: 38216391 PMCID: PMC10860890 DOI: 10.1016/j.tig.2023.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Recent imaging studies have captured the dynamics of regulatory events of transcription inside living cells. These events include transcription factor (TF) DNA binding, chromatin remodeling and modification, enhancer-promoter (E-P) proximity, cluster formation, and preinitiation complex (PIC) assembly. Together, these molecular events culminate in stochastic bursts of RNA synthesis, but their kinetic relationship remains largely unclear. In this review, we compare the timescales of upstream regulatory steps (input) with the kinetics of transcriptional bursting (output) to generate mechanistic models of transcription dynamics in single cells. We highlight open questions and potential technical advances to guide future endeavors toward a quantitative and kinetic understanding of transcription regulation.
Collapse
Affiliation(s)
- Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, The Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, The Netherlands.
| |
Collapse
|
11
|
Ali A, Stukenberg PT. Aurora kinases: Generators of spatial control during mitosis. Front Cell Dev Biol 2023; 11:1139367. [PMID: 36994100 PMCID: PMC10040841 DOI: 10.3389/fcell.2023.1139367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
Cell division events require regulatory systems to ensure that events happen in a distinct order. The classic view of temporal control of the cell cycle posits that cells order events by linking them to changes in Cyclin Dependent Kinase (CDK) activities. However, a new paradigm is emerging from studies of anaphase where chromatids separate at the central metaphase plate and then move to opposite poles of the cell. These studies suggest that distinct events are ordered depending upon the location of each chromosome along its journey from the central metaphase plate to the elongated spindle poles. This system is dependent upon a gradient of Aurora B kinase activity that emerges during anaphase and acts as a spatial beacon to control numerous anaphase/telophase events and cytokinesis. Recent studies also suggest that Aurora A kinase activity specifies proximity of chromosomes or proteins to spindle poles during prometaphase. Together these studies argue that a key role for Aurora kinases is to provide spatial information that controls events depending upon the location of chromosomes or proteins along the mitotic spindle.
Collapse
Affiliation(s)
| | - P. Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Chou CT. Using transcription-based detectors to emulate the behavior of sequential probability ratio-based concentration detectors. Phys Rev E 2022; 106:054403. [PMID: 36559424 DOI: 10.1103/physreve.106.054403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022]
Abstract
The sequential probability ratio test (SPRT) from statistics is known to have the least mean decision time compared to other sequential or fixed-time tests for given error rates. In some circumstances, cells need to make decisions accurately and quickly, therefore it has been suggested that the SPRT may be used to understand the speed-accuracy tradeoff in cellular decision-making. It is generally thought that in order for cells to make use of the SPRT, it is necessary to find biochemical circuits that can compute the log-likelihood ratio needed for the SPRT. However, this paper takes a different approach. We recognize that the high-level behavior of the SPRT is defined by its positive detection or hit rate, and the computation of the log-likelihood ratio is just one way to realize this behavior. In this paper, we will present a method in which a transcription-based detector is used to emulate the hit rate of the SPRT without computing the exact log-likelihood ratio. We consider the problem of using a promoter with multiple binding sites to accurately and quickly detect whether the concentration of a transcription factor is above a target level. We show that it is possible to find binding and unbinding rates of the transcription factor to the promoter's binding sites so that the probability that the amount of mRNA produced will be higher than a threshold is approximately equal to the hit rate of the SPRT detector. Moreover, we show that the average time that this transcription-based detector needs to make a positive detection is less than or equal to that of the SPRT for a wide range of concentrations. We remark that the last statement does not contradict Wald's optimality result because our transcription-based detector uses an open-ended test.
Collapse
Affiliation(s)
- Chun Tung Chou
- School of Computer Science and Engineering, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
13
|
Nam KM, Martinez-Corral R, Gunawardena J. The linear framework: using graph theory to reveal the algebra and thermodynamics of biomolecular systems. Interface Focus 2022; 12:20220013. [PMID: 35860006 PMCID: PMC9184966 DOI: 10.1098/rsfs.2022.0013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
The linear framework uses finite, directed graphs with labelled edges to model biomolecular systems. Graph vertices represent biochemical species or molecular states, edges represent reactions or transitions and labels represent rates. The graph yields a linear dynamics for molecular concentrations or state probabilities, with the graph Laplacian as the operator, and the labels encode the nonlinear interactions between system and environment. The labels can be specified by vertices of other graphs or by conservation laws or, when the environment consists of thermodynamic reservoirs, they may be constants. In the latter case, the graphs correspond to infinitesimal generators of Markov processes. The key advantage of the framework has been that steady states are determined as rational algebraic functions of the labels by the Matrix-Tree theorems of graph theory. When the system is at thermodynamic equilibrium, this prescription recovers equilibrium statistical mechanics but it continues to hold for non-equilibrium steady states. The framework goes beyond other graph-based approaches in treating the graph as a mathematical object, for which general theorems can be formulated that accommodate biomolecular complexity. It has been particularly effective at analysing enzyme-catalysed modification systems and input-output responses.
Collapse
Affiliation(s)
- Kee-Myoung Nam
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Fernandes G, Tran H, Andrieu M, Diaw Y, Perez Romero C, Fradin C, Coppey M, Walczak AM, Dostatni N. Synthetic reconstruction of the hunchback promoter specifies the role of Bicoid, Zelda and Hunchback in the dynamics of its transcription. eLife 2022; 11:74509. [PMID: 35363606 PMCID: PMC8975551 DOI: 10.7554/elife.74509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
For over 40 years, the Bicoid-hunchback (Bcd-hb) system in the fruit fly embryo has been used as a model to study how positional information in morphogen concentration gradients is robustly translated into step-like responses. A body of quantitative comparisons between theory and experiment have since questioned the initial paradigm that the sharp hb transcription pattern emerges solely from diffusive biochemical interactions between the Bicoid transcription factor and the gene promoter region. Several alternative mechanisms have been proposed, such as additional sources of positional information, positive feedback from Hb proteins or out-of-equilibrium transcription activation. By using the MS2-MCP RNA-tagging system and analysing in real time, the transcription dynamics of synthetic reporters for Bicoid and/or its two partners Zelda and Hunchback, we show that all the early hb expression pattern features and temporal dynamics are compatible with an equilibrium model with a short decay length Bicoid activity gradient as a sole source of positional information. Meanwhile, Bicoid’s partners speed-up the process by different means: Zelda lowers the Bicoid concentration threshold required for transcriptional activation while Hunchback reduces burstiness and increases the polymerase firing rate.
Collapse
Affiliation(s)
- Gonçalo Fernandes
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
| | - Huy Tran
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France.,Laboratoire de Physique de l'École Normale Supérieure, CNRS, Université PSL, Sorbonne Université and Université de Paris, Paris, France
| | - Maxime Andrieu
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
| | - Youssoupha Diaw
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
| | - Carmina Perez Romero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Cécile Fradin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Mathieu Coppey
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'École Normale Supérieure, CNRS, Université PSL, Sorbonne Université and Université de Paris, Paris, France
| | - Nathalie Dostatni
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
| |
Collapse
|
15
|
Song Y, Hyeon C. Cost-precision trade-off relation determines the optimal morphogen gradient for accurate biological pattern formation. eLife 2021; 10:70034. [PMID: 34402427 PMCID: PMC8457829 DOI: 10.7554/elife.70034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Spatial boundaries formed during animal development originate from the pre-patterning of tissues by signaling molecules, called morphogens. The accuracy of boundary location is limited by the fluctuations of morphogen concentration that thresholds the expression level of target gene. Producing more morphogen molecules, which gives rise to smaller relative fluctuations, would better serve to shape more precise target boundaries; however, it incurs more thermodynamic cost. In the classical diffusion-depletion model of morphogen profile formation, the morphogen molecules synthesized from a local source display an exponentially decaying concentration profile with a characteristic length λ. Our theory suggests that in order to attain a precise profile with the minimal cost, λ should be roughly half the distance to the target boundary position from the source. Remarkably, we find that the profiles of morphogens that pattern the Drosophila embryo and wing imaginal disk are formed with nearly optimal λ. Our finding underscores the cost-effectiveness of precise morphogen profile formation in Drosophila development.
Collapse
Affiliation(s)
- Yonghyun Song
- Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul, Republic of Korea
| |
Collapse
|
16
|
The early Drosophila embryo as a model system for quantitative biology. Cells Dev 2021; 168:203722. [PMID: 34298230 DOI: 10.1016/j.cdev.2021.203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
With the rise of new tools, from controlled genetic manipulations and optogenetics to improved microscopy, it is now possible to make clear, quantitative and reproducible measurements of biological processes. The humble fruit fly Drosophila melanogaster, with its ease of genetic manipulation combined with excellent imaging accessibility, has become a major model system for performing quantitative in vivo measurements. Such measurements are driving a new wave of interest from physicists and engineers, who are developing a range of testable dynamic models of active systems to understand fundamental biological processes. The reproducibility of the early Drosophila embryo has been crucial for understanding how biological systems are robust to unavoidable noise during development. Insights from quantitative in vivo experiments in the Drosophila embryo are having an impact on our understanding of critical biological processes, such as how cells make decisions and how complex tissue shape emerges. Here, to highlight the power of using Drosophila embryogenesis for quantitative biology, I focus on three main areas: (1) formation and robustness of morphogen gradients; (2) how gene regulatory networks ensure precise boundary formation; and (3) how mechanical interactions drive packing and tissue folding. I further discuss how such data has driven advances in modelling.
Collapse
|
17
|
Liu J, Hansen D, Eck E, Kim YJ, Turner M, Alamos S, Garcia HG. Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage. PLoS Comput Biol 2021; 17:e1008999. [PMID: 34003867 PMCID: PMC8162642 DOI: 10.1371/journal.pcbi.1008999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/28/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022] Open
Abstract
The eukaryotic transcription cycle consists of three main steps: initiation, elongation, and cleavage of the nascent RNA transcript. Although each of these steps can be regulated as well as coupled with each other, their in vivo dissection has remained challenging because available experimental readouts lack sufficient spatiotemporal resolution to separate the contributions from each of these steps. Here, we describe a novel application of Bayesian inference techniques to simultaneously infer the effective parameters of the transcription cycle in real time and at the single-cell level using a two-color MS2/PP7 reporter gene and the developing fruit fly embryo as a case study. Our method enables detailed investigations into cell-to-cell variability in transcription-cycle parameters as well as single-cell correlations between these parameters. These measurements, combined with theoretical modeling, suggest a substantial variability in the elongation rate of individual RNA polymerase molecules. We further illustrate the power of this technique by uncovering a novel mechanistic connection between RNA polymerase density and nascent RNA cleavage efficiency. Thus, our approach makes it possible to shed light on the regulatory mechanisms in play during each step of the transcription cycle in individual, living cells at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Jonathan Liu
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
| | - Donald Hansen
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Elizabeth Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Yang Joon Kim
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Meghan Turner
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Hernan G. Garcia
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, United States of America
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California, United States of America
| |
Collapse
|
18
|
Hoppe C, Ashe HL. Live imaging and quantitation of nascent transcription using the MS2/MCP system in the Drosophila embryo. STAR Protoc 2021; 2:100379. [PMID: 33778778 PMCID: PMC7982776 DOI: 10.1016/j.xpro.2021.100379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Visualizing transcription live in Drosophila is providing important new insights into the spatiotemporal regulation of transcription. Here, we describe a protocol to visualize and quantitate transcription from gene loci that are tagged with MS2 stem-loop sequences in the Drosophila embryo. MS2 stem-loop sequences are recognized by a coat protein fused to a fluorescent protein and visualized with microscopy. We also describe an analysis pipeline to extract and subsequently quantify transcription dynamics. For complete details on the use and execution of this protocol, please refer to Hoppe et al. (2020).
Collapse
Affiliation(s)
- Caroline Hoppe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Exelby K, Herrera-Delgado E, Perez LG, Perez-Carrasco R, Sagner A, Metzis V, Sollich P, Briscoe J. Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks. Development 2021; 148:dev197566. [PMID: 33547135 PMCID: PMC7929933 DOI: 10.1242/dev.197566] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022]
Abstract
During development, gene regulatory networks allocate cell fates by partitioning tissues into spatially organised domains of gene expression. How the sharp boundaries that delineate these gene expression patterns arise, despite the stochasticity associated with gene regulation, is poorly understood. We show, in the vertebrate neural tube, using perturbations of coding and regulatory regions, that the structure of the regulatory network contributes to boundary precision. This is achieved, not by reducing noise in individual genes, but by the configuration of the network modulating the ability of stochastic fluctuations to initiate gene expression changes. We use a computational screen to identify network properties that influence boundary precision, revealing two dynamical mechanisms by which small gene circuits attenuate the effect of noise in order to increase patterning precision. These results highlight design principles of gene regulatory networks that produce precise patterns of gene expression.
Collapse
Affiliation(s)
- Katherine Exelby
- Developmental Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Edgar Herrera-Delgado
- Developmental Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Mathematics, King's College London, Strand, London WC2R 2LS, UK
- Genetics and Developmental Biology Unit, Institut Curie, 26 Rue d'Ulm, Paris 75005, France
| | - Lorena Garcia Perez
- Developmental Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Andreas Sagner
- Developmental Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Vicki Metzis
- Developmental Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Faculty of Medicine, Institute of Clinical Sciences, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Peter Sollich
- Department of Mathematics, King's College London, Strand, London WC2R 2LS, UK
- Faculty of Physics, Institute for Theoretical Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - James Briscoe
- Developmental Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
20
|
Irizarry J, Stathopoulos A. Dynamic patterning by morphogens illuminated by cis-regulatory studies. Development 2021; 148:148/2/dev196113. [PMID: 33472851 DOI: 10.1242/dev.196113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphogen concentration changes in space as well as over time during development. However, how these dynamics are interpreted by cells to specify fate is not well understood. Here, we focus on two morphogens: the maternal transcription factors Bicoid and Dorsal, which directly regulate target genes to pattern Drosophila embryos. The actions of these factors at enhancers has been thoroughly dissected and provides a rich platform for understanding direct input by morphogens and their changing roles over time. Importantly, Bicoid and Dorsal do not work alone; we also discuss additional inputs that work with morphogens to control spatiotemporal gene expression in embryos.
Collapse
Affiliation(s)
- Jihyun Irizarry
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Abstract
Determining whether and how a gene is transcribed are two of the central processes of life. The conceptual basis for understanding such gene regulation arose from pioneering biophysical studies in eubacteria. However, eukaryotic genomes exhibit vastly greater complexity, which raises questions not addressed by this bacterial paradigm. First, how is information integrated from many widely separated binding sites to determine how a gene is transcribed? Second, does the presence of multiple energy-expending mechanisms, which are absent from eubacterial genomes, indicate that eukaryotes are capable of improved forms of genetic information processing? An updated biophysical foundation is needed to answer such questions. We describe the linear framework, a graph-based approach to Markov processes, and show that it can accommodate many previous studies in the field. Under the assumption of thermodynamic equilibrium, we introduce a language of higher-order cooperativities and show how it can rigorously quantify gene regulatory properties suggested by experiment. We point out that fundamental limits to information processing arise at thermodynamic equilibrium and can only be bypassed through energy expenditure. Finally, we outline some of the mathematical challenges that must be overcome to construct an improved biophysical understanding of gene regulation.
Collapse
Affiliation(s)
- Felix Wong
- Institute for Medical Engineering & Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
22
|
Desponds J, Vergassola M, Walczak AM. A mechanism for hunchback promoters to readout morphogenetic positional information in less than a minute. eLife 2020; 9:49758. [PMID: 32723476 PMCID: PMC7428309 DOI: 10.7554/elife.49758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cell fate decisions in the fly embryo are rapid: hunchback genes decide in minutes whether nuclei follow the anterior/posterior developmental blueprint by reading out positional information in the Bicoid morphogen. This developmental system is a prototype of regulatory decision processes that combine speed and accuracy. Traditional arguments based on fixed-time sampling of Bicoid concentration indicate that an accurate readout is impossible within the experimental times. This raises the general issue of how speed-accuracy tradeoffs are achieved. Here, we compare fixed-time to on-the-fly decisions, based on comparing the likelihoods of anterior/posterior locations. We found that these more efficient schemes complete reliable cell fate decisions within the short embryological timescales. We discuss the influence of promoter architectures on decision times and error rates, present concrete examples that rapidly readout the morphogen, and predictions for new experiments. Lastly, we suggest a simple mechanism for RNA production and degradation that approximates the log-likelihood function.
Collapse
Affiliation(s)
- Jonathan Desponds
- Physics Department, University of California, San Diego, La Jolla, United States
| | - Massimo Vergassola
- Physics Department, University of California, San Diego, La Jolla, United States
| | - Aleksandra M Walczak
- Laboratoire de Physique, Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
Koromila T, Gao F, Iwasaki Y, He P, Pachter L, Gergen JP, Stathopoulos A. Odd-paired is a pioneer-like factor that coordinates with Zelda to control gene expression in embryos. eLife 2020; 9:e59610. [PMID: 32701060 PMCID: PMC7417190 DOI: 10.7554/elife.59610] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/22/2020] [Indexed: 01/29/2023] Open
Abstract
Pioneer factors such as Zelda (Zld) help initiate zygotic transcription in Drosophila early embryos, but whether other factors support this dynamic process is unclear. Odd-paired (Opa), a zinc-finger transcription factor expressed at cellularization, controls the transition of genes from pair-rule to segmental patterns along the anterior-posterior axis. Finding that Opa also regulates expression through enhancer sog_Distal along the dorso-ventral axis, we hypothesized Opa's role is more general. Chromatin-immunoprecipitation (ChIP-seq) confirmed its in vivo binding to sog_Distal but also identified widespread binding throughout the genome, comparable to Zld. Furthermore, chromatin assays (ATAC-seq) demonstrate that Opa, like Zld, influences chromatin accessibility genome-wide at cellularization, suggesting both are pioneer factors with common as well as distinct targets. Lastly, embryos lacking opa exhibit widespread, late patterning defects spanning both axes. Collectively, these data suggest Opa is a general timing factor and likely late-acting pioneer factor that drives a secondary wave of zygotic gene expression.
Collapse
Affiliation(s)
- Theodora Koromila
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Fan Gao
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Yasuno Iwasaki
- Stony Brook University, Department of Biochemistry and Cell Biology and Center for Developmental GeneticsStony BrookUnited States
| | - Peng He
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Lior Pachter
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - J Peter Gergen
- Stony Brook University, Department of Biochemistry and Cell Biology and Center for Developmental GeneticsStony BrookUnited States
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|
24
|
Yang Z, Zhu H, Kong K, Wu X, Chen J, Li P, Jiang J, Zhao J, Cui B, Liu F. The dynamic transmission of positional information in stau- mutants during Drosophila embryogenesis. eLife 2020; 9:e54276. [PMID: 32511091 PMCID: PMC7332292 DOI: 10.7554/elife.54276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/06/2020] [Indexed: 01/04/2023] Open
Abstract
It has been suggested that Staufen (Stau) is key in controlling the variability of the posterior boundary of the Hb anterior domain (xHb). However, the mechanism that underlies this control is elusive. Here, we quantified the dynamic 3D expression of segmentation genes in Drosophila embryos. With improved control of measurement errors, we show that the xHb of stau- mutants reproducibly moves posteriorly by 10% of the embryo length (EL) to the wild type (WT) position in the nuclear cycle (nc) 14, and that its variability over short time windows is comparable to that of the WT. Moreover, for stau- mutants, the upstream Bicoid (Bcd) gradients show equivalent relative intensity noise to that of the WT in nc12-nc14, and the downstream Even-skipped (Eve) and cephalic furrow (CF) show the same positional errors as these factors in WT. Our results indicate that threshold-dependent activation and self-organized filtering are not mutually exclusive and could both be implemented in early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
- China National Center for Biotechnology DevelopmentBeijingChina
| | - Hongcun Zhu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Kakit Kong
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Xiaoxuan Wu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jiayi Chen
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Peiyao Li
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jialong Jiang
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jinchao Zhao
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Bofei Cui
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| |
Collapse
|
25
|
Tran H, Walczak AM, Dostatni N. Constraints and limitations on the transcriptional response downstream of the Bicoid morphogen gradient. Curr Top Dev Biol 2020; 137:119-142. [PMID: 32143741 DOI: 10.1016/bs.ctdb.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The regulation of the hunchback promoter expression by the maternal Bicoid gradient has been studied as a model system in development for many years. Yet, at the level of quantitative agreement between data and theoretical models, even the first step of this regulation, transcription, continues to be challenging. This situation is slowly progressing, thanks to quantitative live-imaging techniques coupled to advanced statistical data analysis and modeling. Here, we outline the current state of our knowledge of this apparently "simple" step, highlighting the newly appreciated role of bursty transcription dynamics and its regulation.
Collapse
Affiliation(s)
- Huy Tran
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France; Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Laboratoire de Physique, Paris, France
| | - Aleksandra M Walczak
- Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Laboratoire de Physique, Paris, France.
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France.
| |
Collapse
|
26
|
Lammers NC, Galstyan V, Reimer A, Medin SA, Wiggins CH, Garcia HG. Multimodal transcriptional control of pattern formation in embryonic development. Proc Natl Acad Sci U S A 2020; 117:836-847. [PMID: 31882445 PMCID: PMC6969519 DOI: 10.1073/pnas.1912500117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Predicting how interactions between transcription factors and regulatory DNA sequence dictate rates of transcription and, ultimately, drive developmental outcomes remains an open challenge in physical biology. Using stripe 2 of the even-skipped gene in Drosophila embryos as a case study, we dissect the regulatory forces underpinning a key step along the developmental decision-making cascade: the generation of cytoplasmic mRNA patterns via the control of transcription in individual cells. Using live imaging and computational approaches, we found that the transcriptional burst frequency is modulated across the stripe to control the mRNA production rate. However, we discovered that bursting alone cannot quantitatively recapitulate the formation of the stripe and that control of the window of time over which each nucleus transcribes even-skipped plays a critical role in stripe formation. Theoretical modeling revealed that these regulatory strategies (bursting and the time window) respond in different ways to input transcription factor concentrations, suggesting that the stripe is shaped by the interplay of 2 distinct underlying molecular processes.
Collapse
Affiliation(s)
| | - Vahe Galstyan
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, CA 91126
- Department of Physics, Columbia University, New York, NY 10027
| | - Armando Reimer
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | - Sean A Medin
- Department of Physics, University of California, Berkeley, CA 94720
| | - Chris H Wiggins
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027;
- Data Science Institute, Columbia University, New York, NY 10027
- Department of Systems Biology, Columbia University, New York, NY 10027
- Department of Statistics, Columbia University, New York, NY 10027
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California, Berkeley, CA 94720;
- Department of Physics, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA 94720
| |
Collapse
|
27
|
Abstract
Spatially distributed signaling molecules, known as morphogens, provide spatial information during development. A host of different morphogens have now been identified, from subcellular gradients through to morphogens that act across a whole embryo. These gradients form over a wide-range of timescales, from seconds to hours, and their time windows for interpretation are also highly variable; the processes of morphogen gradient formation and interpretation are highly dynamic. The morphogen Bicoid (Bcd), present in the early Drosophila embryo, is essential for setting up the future Drosophila body segments. Due to its accessibility for both genetic perturbations and imaging, this system has provided key insights into how precise patterning can occur within a highly dynamic system. Here, we review the temporal scales of Bcd gradient formation and interpretation. In particular, we discuss the quantitative evidence for different models of Bcd gradient formation, outline the time windows for Bcd interpretation, and describe how Bcd temporally adapts its own ability to be interpreted. The utilization of temporal information in morphogen readout may provide crucial inputs to ensure precise spatial patterning, particularly in rapidly developing systems.
Collapse
|
28
|
Alberman G, Gagez JM, Miné-Hattab J. [When science and music meet]. Med Sci (Paris) 2019; 35:881-885. [PMID: 31845880 DOI: 10.1051/medsci/2019169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Musique et sciences ont souvent été liées dans l’histoire de la musique. Cependant, rares sont les compositeurs qui ont eu l’occasion d’interagir avec un scientifique pour s’imprégner de son travail et l’utiliser comme source d’inspiration. Le projet Muse-IC se propose de donner cette opportunité à des compositeurs d’aujourd’hui, en leur commandant une œuvre inspirée par une découverte scientifique récente. À la suite d’un double appel réalisé auprès de chercheurs et de compositeurs, des compositeurs se sont immergés dans l’univers scientifique de chercheurs afin de repousser les limites de leur démarche créative. Entre 2017 et 2019, six compositeurs ont écrit une pièce inspirée de la découverte d’un chercheur avec lequel ils ont interagit directement. L’aboutissement de ce projet a donné lieu à une conférence-concert à la salle Cortot, à Paris, une occasion unique de sensibiliser le public à l’importance de la recherche fondamentale au travers d’une rencontre originale entre compositeurs, musiciens et chercheurs.
Collapse
Affiliation(s)
| | | | - Judith Miné-Hattab
- Institut Curie-PSL Research University, CNRS, Sorbonne Université, UMR3664, 26 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
29
|
Abstract
In order to respond to environmental signals, cells often use small molecular circuits to transmit information about their surroundings. Recently, motivated by specific examples in signaling and gene regulation, a body of work has focused on the properties of circuits that function out of equilibrium and dissipate energy. We briefly review the probabilistic measures of information and dissipation and use simple models to discuss and illustrate trade-offs between information and dissipation in biological circuits. We find that circuits with non-steady state initial conditions can transmit more information at small readout delays than steady state circuits. The dissipative cost of this additional information proves marginal compared to the steady state dissipation. Feedback does not significantly increase the transmitted information for out of steady state circuits but does decrease dissipative costs. Lastly, we discuss the case of bursty gene regulatory circuits that, even in the fast switching limit, function out of equilibrium.
Collapse
|
30
|
Mora T, Nemenman I. Physical Limit to Concentration Sensing in a Changing Environment. PHYSICAL REVIEW LETTERS 2019; 123:198101. [PMID: 31765216 DOI: 10.1103/physrevlett.123.198101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Cells adapt to changing environments by sensing ligand concentrations using specific receptors. The accuracy of sensing is ultimately limited by the finite number of ligand molecules bound by receptors. Previously derived physical limits to sensing accuracy largely have assumed that the concentration was constant and ignored its temporal fluctuations. We formulate the problem of concentration sensing in a strongly fluctuating environment as a nonlinear field-theoretic problem, for which we find an excellent approximate Gaussian solution. We derive a new physical bound on the relative error in concentration c which scales as δc/c∼(Dacτ)^{-1/4} with ligand diffusivity D, receptor cross section a, and characteristic fluctuation timescale τ, in stark contrast to the usual Berg and Purcell bound δc/c∼(DacT)^{-1/2} for a perfect receptor sensing concentration during time T. We show how the bound can be achieved by a biochemical network downstream of the receptor that adapts the kinetics of signaling as a function of the square root of the sensed concentration.
Collapse
Affiliation(s)
- Thierry Mora
- Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne University, Université de Paris, 24 rue Lhomond, 75005 Paris, France
| | - Ilya Nemenman
- Department of Physics, Department of Biology, and Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
31
|
Yamada S, Whitney PH, Huang SK, Eck EC, Garcia HG, Rushlow CA. The Drosophila Pioneer Factor Zelda Modulates the Nuclear Microenvironment of a Dorsal Target Enhancer to Potentiate Transcriptional Output. Curr Biol 2019; 29:1387-1393.e5. [PMID: 30982648 DOI: 10.1016/j.cub.2019.03.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022]
Abstract
Connecting the developmental patterning of tissues to the mechanistic control of RNA polymerase II remains a long-term goal of developmental biology. Many key elements have been identified in the establishment of spatial-temporal control of transcription in the early Drosophila embryo, a model system for transcriptional regulation. The dorsal-ventral axis of the Drosophila embryo is determined by the graded distribution of Dorsal (Dl), a homolog of the nuclear factor κB (NF-κB) family of transcriptional activators found in humans [1, 2]. A second maternally deposited factor, Zelda (Zld), is uniformly distributed in the embryo and is thought to act as a pioneer factor, increasing enhancer accessibility for transcription factors, such as Dl [3-9]. Here, we utilized the MS2 live imaging system to evaluate the expression of the Dl target gene short gastrulation (sog) to better understand how a pioneer factor affects the kinetic parameters of transcription. Our experiments indicate that Zld modifies probability of activation, the timing of this activation, and the rate at which transcription occurs. Our results further show that this effective rate increase is due to an increased accumulation of Dl at the site of transcription, suggesting that transcription factor "hubs" induced by Zld [10] functionally regulate transcription.
Collapse
Affiliation(s)
- Shigehiro Yamada
- Department of Biology, New York University, New York, NY 10003, USA
| | - Peter H Whitney
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shao-Kuei Huang
- Department of Biology, New York University, New York, NY 10003, USA
| | - Elizabeth C Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA; Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
32
|
Abstract
With its rapid development, ease of collection, and the presence of a unique layer of nuclei located close to the surface, the Drosophila syncytial embryo is ideally suited to study the establishment of gene expression patterns during development. Recent improvements in RNA labeling technologies and confocal microscopy allow for visualizing gene activation and quantifying transcriptional dynamics in living Drosophila embryos. Here we review the available tools for mRNA fluorescent labeling and detection in live embryos and precisely describe the overall procedure, from design to mounting and confocal imaging.
Collapse
Affiliation(s)
- Carola Fernandez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, Cedex 5, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, Cedex 5, France.
| |
Collapse
|
33
|
Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat Commun 2018; 9:5194. [PMID: 30518940 PMCID: PMC6281682 DOI: 10.1038/s41467-018-07613-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Pioneer transcription factors can engage nucleosomal DNA, which leads to local chromatin remodeling and to the establishment of transcriptional competence. However, the impact of enhancer priming by pioneer factors on the temporal control of gene expression and on mitotic memory remains unclear. Here we employ quantitative live imaging methods and mathematical modeling to test the effect of the pioneer factor Zelda on transcriptional dynamics and memory in Drosophila embryos. We demonstrate that increasing the number of Zelda binding sites accelerates the kinetics of nuclei transcriptional activation regardless of their transcriptional past. Despite its known pioneering activities, we show that Zelda does not remain detectably associated with mitotic chromosomes and is neither necessary nor sufficient to foster memory. We further reveal that Zelda forms sub-nuclear dynamic hubs where Zelda binding events are transient. We propose that Zelda facilitates transcriptional activation by accumulating in microenvironments where it could accelerate the duration of multiple pre-initiation steps.
Collapse
|