1
|
Yachuan W, Zhang L, Halimov A, Fu M, Tu J, Liu H, Zhang S, Nie X, Liu J. A triarylboron-based fluorescent probe with activatable photosensitivity for imaging mitoDNA. Talanta 2025; 294:128196. [PMID: 40300470 DOI: 10.1016/j.talanta.2025.128196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/01/2025]
Abstract
The accurate differentiation between tumor cells and normal cells in a rapid, sensitive, and quantitative manner is essential for ensuring effective cancer diagnosis and treatment. In this study, two triaryboron (TAB)-based fluorescent probes, namely TAB-6-B and TAB-4-B, were synthesized by introducing multiple cationic pyridine groups onto TAB structures, and these probes were subsequently employed for the selective imaging of mitochondrial DNA (mitoDNA). Both probes exhibited significant fluorescence enhancement effects in response to DNA, albeit with varying degrees of enhancement and blue shift. TAB-4-B exhibited a higher selectivity toward DNA than TAB-6-B, with longer DNA strands leading to a stronger fluorescence intensity after binding to TAB-4-B. The photosensitivity of TAB-4-B was significantly enhanced when combined with DNA. Moreover, since DNA can be oxidized by reactive oxygen species, the photosensitivity of TAB-4-B can be exploited to induce DNA damage. It was also found that TAB-4-B exhibited a significantly stronger fluorescence signal in tumor cells than in normal cells, thereby facilitating the distinction between tumor and normal cells. Furthermore, it was confirmed that TAB-4-B could locate the mitochondria and induce tumor cell apoptosis under low-intensity visible light irradiation (1.2 mW/cm2). These results indicate the potential of TAB-4-B for use in applications ranging from cancer diagnosis to guiding tumor photodynamic therapy.
Collapse
Affiliation(s)
- Wang Yachuan
- School of Pharmacy and School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan, 637100, China
| | - Liang Zhang
- Pharmacy Department, Langzhong People's Hospital, Sichuan, 637400, China
| | - Akbar Halimov
- Physical-Technical Institute, Uzbekistan Academy of Sciences, 100084, Tashkent, Uzbekistan; Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingkai Fu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Tu
- School of Pharmacy and School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan, 637100, China
| | - Hui Liu
- School of Pharmacy and School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan, 637100, China
| | - Shilu Zhang
- School of Pharmacy and School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan, 637100, China.
| | - Xufeng Nie
- School of Pharmacy and School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan, 637100, China.
| | - Jun Liu
- School of Pharmacy and School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan, 637100, China.
| |
Collapse
|
2
|
Yoshihara R, Shimakura Y, Kitamura S, Satoh K, Sato M, Aono T, Akiyama Y, Hatakeyama S, Tanaka S. A mutation in DNA polymerase γ harbors a shortened lifespan and high sensitivity to mutagens in the filamentous fungus Neurospora crassa. Genetics 2025; 229:iyae201. [PMID: 39611774 DOI: 10.1093/genetics/iyae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
Hyphal elongation is the vegetative growth of filamentous fungi, and many species continuously elongate their hyphal tips over long periods. The details of the mechanisms for maintaining continuous growth are not yet clear. A novel short lifespan mutant of N. crassa that ceases hyphal elongation early was screened and analyzed to better understand the mechanisms for maintaining hyphal elongation in filamentous fungi. The mutant strain also exhibited high sensitivity to mutagens such as hydroxyurea and ultraviolet radiation. Based on these observations, we named the novel mutant "mutagen sensitive and short lifespan 1 (ms1)." The mutation responsible for the short lifespan and mutagen sensitivity in the ms1 strain was identified in DNA polymerase γ (mip-1:NCU00276). This mutation changed the amino acid at position 814 in the polymerase domain from leucine to arginine (MIP-1 L814R). A dosage analysis by next-generation sequencing reads suggested that mitochondrial DNA (mtDNA) sequences are decreased nonuniformly throughout the genome of the ms1 strain. This observation was confirmed by quantitative PCR for 3 representative loci and restriction fragment length polymorphisms in purified mtDNA. Direct repeat-mediated deletions, which had been reported previously, were not detected in the mitochondrial genome by our whole-genome sequencing analysis. These results imply the presence of novel mechanisms to induce the nonuniform decrease in the mitochondrial genome by DNA polymerase γ mutation. Some potential reasons for the nonuniform distribution of the mitochondrial genome are discussed in relation to the molecular functions of DNA polymerase γ.
Collapse
Affiliation(s)
- Ryouhei Yoshihara
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Yuzuki Shimakura
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Satoshi Kitamura
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki 370-1292, Japan
| | - Katsuya Satoh
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki 370-1292, Japan
| | - Manami Sato
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Taketo Aono
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Yu Akiyama
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Shin Hatakeyama
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Shuuitsu Tanaka
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| |
Collapse
|
3
|
El Fissi N, Rosenberger FA, Chang K, Wilhalm A, Barton-Owen T, Hansen FM, Golder Z, Alsina D, Wedell A, Mann M, Chinnery PF, Freyer C, Wredenberg A. Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster. Nat Commun 2024; 15:10719. [PMID: 39715749 PMCID: PMC11666730 DOI: 10.1038/s41467-024-55559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγexo-) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγexo- flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγexo- larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.
Collapse
Affiliation(s)
- Najla El Fissi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Florian A Rosenberger
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Kai Chang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Alissa Wilhalm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Tom Barton-Owen
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Fynn M Hansen
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Zoe Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - David Alsina
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
- Faculty of Health Sciences, NNF Centre for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
4
|
Li Y, Thomas GWC, Richards S, Waterhouse RM, Zhou X, Pfrender ME. Rapid evolution of mitochondrion-related genes in haplodiploid arthropods. BMC Biol 2024; 22:229. [PMID: 39390511 PMCID: PMC11465517 DOI: 10.1186/s12915-024-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Mitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes. RESULTS We show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants. CONCLUSIONS Our results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans.
Collapse
Affiliation(s)
- Yiyuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Current Address: Informatics Group, Harvard University, Cambridge, MA, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, Notre Dame, IN, USA
| |
Collapse
|
5
|
Kutzer MAM, Cornish B, Jamieson M, Zawistowska O, Monteith KM, Vale PF. Mitochondrial background can explain variable costs of immune deployment. J Evol Biol 2024; 37:1125-1133. [PMID: 39145390 DOI: 10.1093/jeb/voae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Organismal health and survival depend on the ability to mount an effective immune response against infection. Yet immune defence may be energy-demanding, resulting in fitness costs if investment in immune function deprives other physiological processes of resources. While evidence of costly immunity resulting in reduced longevity and reproduction is common, the role of energy-producing mitochondria on the magnitude of these costs is unknown. Here, we employed Drosophila melanogaster cybrid lines, where several mitochondrial genotypes (mitotypes) were introgressed onto a single nuclear genetic background, to explicitly test the role of mitochondrial variation on the costs of immune stimulation. We exposed female flies carrying one of nine distinct mitotypes to either a benign, heat-killed bacterial pathogen (stimulating immune deployment while avoiding pathology) or to a sterile control and measured lifespan, fecundity, and locomotor activity. We observed mitotype-specific costs of immune stimulation and identified a positive genetic correlation in immune-stimulated flies between lifespan and the proportion of time cybrids spent moving while alive. Our results suggests that costs of immunity are highly variable depending on the mitochondrial genome, adding to a growing body of work highlighting the important role of mitochondrial variation in host-pathogen interactions.
Collapse
Affiliation(s)
- Megan A M Kutzer
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Beth Cornish
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Jamieson
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olga Zawistowska
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy M Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Sprason C, Tucker T, Clancy D. MtDNA deletions and aging. FRONTIERS IN AGING 2024; 5:1359638. [PMID: 38425363 PMCID: PMC10902006 DOI: 10.3389/fragi.2024.1359638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Aging is the major risk factor in most of the leading causes of mortality worldwide, yet its fundamental causes mostly remain unclear. One of the clear hallmarks of aging is mitochondrial dysfunction. Mitochondria are best known for their roles in cellular energy generation, but they are also critical biosynthetic and signaling organelles. They also undergo multiple changes with organismal age, including increased genetic errors in their independent, circular genome. A key group of studies looking at mice with increased mtDNA mutations showed that premature aging phenotypes correlated with increased deletions but not point mutations. This generated an interest in mitochondrial deletions as a potential fundamental cause of aging. However, subsequent studies in different models have yielded diverse results. This review summarizes the research on mitochondrial deletions in various organisms to understand their possible roles in causing aging while identifying the key complications in quantifying deletions across all models.
Collapse
Affiliation(s)
| | | | - David Clancy
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
7
|
Jacobs HT. A century of mitochondrial research, 1922-2022. Enzymes 2023; 54:37-70. [PMID: 37945177 DOI: 10.1016/bs.enz.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Sanchez-Contreras M, Sweetwyne MT, Tsantilas KA, Whitson JA, Campbell MD, Kohrn BF, Kim HJ, Hipp MJ, Fredrickson J, Nguyen MM, Hurley JB, Marcinek DJ, Rabinovitch PS, Kennedy SR. The multi-tissue landscape of somatic mtDNA mutations indicates tissue-specific accumulation and removal in aging. eLife 2023; 12:e83395. [PMID: 36799304 PMCID: PMC10072880 DOI: 10.7554/elife.83395] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Accumulation of somatic mutations in the mitochondrial genome (mtDNA) has long been proposed as a possible mechanism of mitochondrial and tissue dysfunction that occurs during aging. A thorough characterization of age-associated mtDNA somatic mutations has been hampered by the limited ability to detect low-frequency mutations. Here, we used Duplex Sequencing on eight tissues of an aged mouse cohort to detect >89,000 independent somatic mtDNA mutations and show significant tissue-specific increases during aging across all tissues examined which did not correlate with mitochondrial content and tissue function. G→A/C→T substitutions, indicative of replication errors and/or cytidine deamination, were the predominant mutation type across all tissues and increased with age, whereas G→T/C→A substitutions, indicative of oxidative damage, were the second most common mutation type, but did not increase with age regardless of tissue. We also show that clonal expansions of mtDNA mutations with age is tissue- and mutation type-dependent. Unexpectedly, mutations associated with oxidative damage rarely formed clones in any tissue and were significantly reduced in the hearts and kidneys of aged mice treated at late age with elamipretide or nicotinamide mononucleotide. Thus, the lack of accumulation of oxidative damage-linked mutations with age suggests a life-long dynamic clearance of either the oxidative lesions or mtDNA genomes harboring oxidative damage.
Collapse
Affiliation(s)
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | | | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | | | - Brenden F Kohrn
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Hyeon Jeong Kim
- Department of Biology, University of WashingtonSeattleUnited States
| | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - James B Hurley
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - David J Marcinek
- Department of Radiology, University of WashingtonSeattleUnited States
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| |
Collapse
|
9
|
Brischigliaro M, Fernandez-Vizarra E, Viscomi C. Mitochondrial Neurodegeneration: Lessons from Drosophila melanogaster Models. Biomolecules 2023; 13:378. [PMID: 36830747 PMCID: PMC9953451 DOI: 10.3390/biom13020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernandez-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Centre for the Study of Neurodegeneration (CESNE), University of Padova, 35131 Padova, Italy
| |
Collapse
|
10
|
Coleman C, Martin I. Unraveling Parkinson's Disease Neurodegeneration: Does Aging Hold the Clues? JOURNAL OF PARKINSON'S DISEASE 2022; 12:2321-2338. [PMID: 36278358 PMCID: PMC9837701 DOI: 10.3233/jpd-223363] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is the greatest risk factor for Parkinson's disease (PD), suggesting that mechanisms driving the aging process promote PD neurodegeneration. Several lines of evidence support a role for aging in PD. First, hallmarks of brain aging such as mitochondrial dysfunction and oxidative stress, loss of protein homeostasis, and neuroinflammation are centrally implicated in PD development. Second, mutations that cause monogenic PD are present from conception, yet typically only cause disease following a period of aging. Third, lifespan-extending genetic, dietary, or pharmacological interventions frequently attenuate PD-related neurodegeneration. These observations support a central role for aging in disease development and suggest that new discoveries in the biology of aging could be leveraged to elucidate novel mechanisms of PD pathophysiology. A recent rapid growth in our understanding of conserved molecular pathways that govern model organism lifespan and healthspan has highlighted a key role for metabolism and nutrient sensing pathways. Uncovering how metabolic pathways involving NAD+ consumption, insulin, and mTOR signaling link to the development of PD is underway and implicates metabolism in disease etiology. Here, we assess areas of convergence between nervous system aging and PD, evaluate the link between metabolism, aging, and PD and address the potential of metabolic interventions to slow or halt the onset of PD-related neurodegeneration drawing on evidence from cellular and animal models.
Collapse
Affiliation(s)
- Colin Coleman
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA
| | - Ian Martin
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA,Correspondence to: Ian Martin, Jungers Center for Neurosciences Research, Department of Neurology - Mail Code L623, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Tel.: +1 503 494 9140; E-mail:
| |
Collapse
|
11
|
Chiaratti MR, Chinnery PF. Modulating mitochondrial DNA mutations: factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol Res 2022; 185:106466. [PMID: 36174964 DOI: 10.1016/j.phrs.2022.106466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Until recently it was thought that most humans only harbor one type of mitochondrial DNA (mtDNA), however, deep sequencing and single-cell analysis has shown the converse - that mixed populations of mtDNA (heteroplasmy) are the norm. This is important because heteroplasmy levels can change dramatically during transmission in the female germ line, leading to high levels causing severe mitochondrial diseases. There is also emerging evidence that low level mtDNA mutations contribute to common late onset diseases such as neurodegenerative disorders and cardiometabolic diseases because the inherited mutation levels can change within developing organs and non-dividing cells over time. Initial predictions suggested that the segregation of mtDNA heteroplasmy was largely stochastic, with an equal tendency for levels to increase or decrease. However, transgenic animal work and single-cell analysis have shown this not to be the case during germ-line transmission and in somatic tissues during life. Mutation levels in specific mtDNA regions can increase or decrease in different contexts and the underlying molecular mechanisms are starting to be unraveled. In this review we provide a synthesis of recent literature on the mechanisms of selection for and against mtDNA variants. We identify the most pertinent gaps in our understanding and suggest ways these could be addressed using state of the art techniques.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
12
|
Ozaki M, Le TD, Inoue YH. Downregulating Mitochondrial DNA Polymerase γ in the Muscle Stimulated Autophagy, Apoptosis, and Muscle Aging-Related Phenotypes in Drosophila Adults. Biomolecules 2022; 12:biom12081105. [PMID: 36008999 PMCID: PMC9405705 DOI: 10.3390/biom12081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species, generated as by-products of mitochondrial electron transport, can induce damage to mitochondrial DNA (mtDNA) and proteins. Here, we investigated whether the moderate accumulation of mtDNA damage in adult muscles resulted in accelerated aging-related phenotypes in Drosophila. DNA polymerase γ (Polγ) is the sole mitochondrial DNA polymerase. The muscle-specific silencing of the genes encoding the polymerase subunits resulted in the partial accumulation of mtDNA with oxidative damage and a reduction in the mtDNA copy number. This subsequently resulted in the production of abnormal mitochondria with reduced membrane potential and, consequently, a partially reduced ATP quantity in the adult muscle. Immunostaining indicated a moderate increase in autophagy and mitophagy in adults with RNA interference of Polγ (PolγRNAi) muscle cells with abnormal mitochondria. In adult muscles showing continuous silencing of Polγ, malformation of both myofibrils and mitochondria was frequently observed. This was associated with the partially enhanced activation of pro-apoptotic caspases in the muscle. Adults with muscle-specific PolγRNAi exhibited a shortened lifespan, accelerated age-dependent impairment of locomotor activity, and disturbed circadian rhythms. Our findings in this Drosophila model contribute to understanding how the accumulation of mtDNA damage results in impaired mitochondrial activity and how this contributes to muscle aging.
Collapse
|
13
|
Leuthner T, Benzing L, Kohrn B, Bergemann C, Hipp M, Hershberger K, Mello D, Sokolskyi T, Stevenson K, Merutka I, Seay S, Gregory S, Kennedy S, Meyer J. Resistance of mitochondrial DNA to cadmium and Aflatoxin B1 damage-induced germline mutation accumulation in C. elegans. Nucleic Acids Res 2022; 50:8626-8642. [PMID: 35947695 PMCID: PMC9410910 DOI: 10.1093/nar/gkac666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura Benzing
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Danielle F Mello
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Tymofii Sokolskyi
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kevin Stevenson
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Ilaria R Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Sarah A Seay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA,Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Joel N Meyer
- To whom correspondence should be addressed. Tel: +1 919 613 8109;
| |
Collapse
|
14
|
Abstract
Unknown processes promote the accumulation of mitochondrial DNA (mtDNA) mutations during aging. Accumulation of defective mitochondrial genomes is thought to promote the progression of heteroplasmic mitochondrial diseases and degenerative changes with natural aging. We used a heteroplasmic Drosophila model to test 1) whether purifying selection acts to limit the abundance of deleterious mutations during development and aging, 2) whether quality control pathways contribute to purifying selection, 3) whether activation of quality control can mitigate accumulation of deleterious mutations, and 4) whether improved quality control improves health span. We show that purifying selection operates during development and growth but is ineffective during aging. Genetic manipulations suggest that a quality control process known to enforce purifying selection during oogenesis also suppresses accumulation of a deleterious mutation during growth and development. Flies with nuclear genotypes that enhance purifying selection sustained higher genome quality, retained more vigorous climbing activity, and lost fewer dopaminergic neurons. A pharmacological agent thought to enhance quality control produced similar benefits. Importantly, similar pharmacological treatment of aged mice reversed age-associated accumulation of a deleterious mtDNA mutation. Our findings reveal dynamic maintenance of mitochondrial genome fitness and reduction in the effectiveness of purifying selection during life. Importantly, we describe interventions that mitigate and even reverse age-associated genome degeneration in flies and in mice. Furthermore, mitigation of genome degeneration improved well-being in a Drosophila model of heteroplasmic mitochondrial disease.
Collapse
|
15
|
Lang M, Grünewald A, Pramstaller PP, Hicks AA, Pichler I. A genome on shaky ground: exploring the impact of mitochondrial DNA integrity on Parkinson's disease by highlighting the use of cybrid models. Cell Mol Life Sci 2022; 79:283. [PMID: 35513611 PMCID: PMC9072496 DOI: 10.1007/s00018-022-04304-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria play important roles in the regulation of key cellular processes, including energy metabolism, oxidative stress response, and signaling towards cell death or survival, and are distinguished by carrying their own genome (mtDNA). Mitochondrial dysfunction has emerged as a prominent cellular mechanism involved in neurodegeneration, including Parkinson’s disease (PD), a neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons and the occurrence of proteinaceous Lewy body inclusions. The contribution of mtDNA variants to PD pathogenesis has long been debated and is still not clearly answered. Cytoplasmic hybrid (cybrid) cell models provided evidence for a contribution of mtDNA variants to the PD phenotype. However, conclusive evidence of mtDNA mutations as genetic cause of PD is still lacking. Several models have shown a role of somatic, rather than inherited mtDNA variants in the impairment of mitochondrial function and neurodegeneration. Accordingly, several nuclear genes driving inherited forms of PD are linked to mtDNA quality control mechanisms, and idiopathic as well as familial PD tissues present increased mtDNA damage. In this review, we highlight the use of cybrids in this PD research field and summarize various aspects of how and to what extent mtDNA variants may contribute to the etiology of PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
16
|
Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet 2022; 23:199-214. [PMID: 34857922 DOI: 10.1038/s41576-021-00432-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.
Collapse
Affiliation(s)
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Abstract
Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Leuthner TC, Meyer JN. Mitochondrial DNA Mutagenesis: Feature of and Biomarker for Environmental Exposures and Aging. Curr Environ Health Rep 2021; 8:294-308. [PMID: 34761353 PMCID: PMC8826492 DOI: 10.1007/s40572-021-00329-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Mitochondrial dysfunction is a hallmark of aging. Mitochondrial genome (mtDNA) instability contributes to mitochondrial dysfunction, and mtDNA mutagenesis may contribute to aging. However, the origin of mtDNA mutations remains somewhat controversial. The goals of this review are to introduce and review recent literature on mtDNA mutagenesis and aging, address recent animal and epidemiological evidence for the effects of chemicals on mtDNA damage and mutagenesis, propose hypotheses regarding the contribution of environmental toxicant exposure to mtDNA mutagenesis in the context of aging, and suggest future directions and approaches for environmental health researchers. RECENT FINDINGS Stressors such as pollutants, pharmaceuticals, and ultraviolet radiation can damage the mitochondrial genome or disrupt mtDNA replication, repair, and organelle homeostatic processes, potentially influencing the rate of accumulation of mtDNA mutations. Accelerated mtDNA mutagenesis could contribute to aging, diseases of aging, and sensitize individuals with pathogenic mtDNA variants to stressors. We propose three potential mechanisms of toxicant-induced effects on mtDNA mutagenesis over lifespan: (1) increased de novo mtDNA mutations, (2) altered frequencies of mtDNA mutations, or (3) both. There are remarkably few studies that have investigated the impact of environmental chemical exposures on mtDNA instability and mutagenesis, and even fewer in the context of aging. More studies are warranted because people are exposed to tens of thousands of chemicals, and are living longer. Finally, we suggest that toxicant-induced mtDNA damage and mutational signatures may be a sensitive biomarker for some exposures.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA
| | - Joel N Meyer
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA.
| |
Collapse
|
19
|
Sanchez-Contreras M, Sweetwyne MT, Kohrn BF, Tsantilas KA, Hipp MJ, Schmidt EK, Fredrickson J, Whitson JA, Campbell MD, Rabinovitch PS, Marcinek DJ, Kennedy SR. A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA. Nucleic Acids Res 2021; 49:11103-11118. [PMID: 34614167 PMCID: PMC8565317 DOI: 10.1093/nar/gkab901] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth K Schmidt
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Waneka G, Svendsen JM, Havird JC, Sloan DB. Mitochondrial mutations in Caenorhabditis elegans show signatures of oxidative damage and an AT-bias. Genetics 2021; 219:6346985. [PMID: 34849888 DOI: 10.1093/genetics/iyab116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 01/25/2023] Open
Abstract
Rapid mutation rates are typical of mitochondrial genomes (mtDNAs) in animals, but it is not clear why. The difficulty of obtaining measurements of mtDNA mutation that are not biased by natural selection has stymied efforts to distinguish between competing hypotheses about the causes of high mtDNA mutation rates. Several studies which have measured mtDNA mutations in nematodes have yielded small datasets with conflicting conclusions about the relative abundance of different substitution classes (i.e., the mutation spectrum). We therefore leveraged Duplex Sequencing, a high-fidelity DNA sequencing technique, to characterize de novo mtDNA mutations in Caenorhabditis elegans. This approach detected nearly an order of magnitude more mtDNA mutations than documented in any previous nematode mutation study. Despite an existing extreme AT bias in the C. elegans mtDNA (75.6% AT), we found that a significant majority of mutations increase genomic AT content. Compared to some prior studies in nematodes and other animals, the mutation spectrum reported here contains an abundance of CG→AT transversions, supporting the hypothesis that oxidative damage may be a driver of mtDNA mutations in nematodes. Furthermore, we found an excess of G→T and C→T changes on the coding DNA strand relative to the template strand, consistent with increased exposure to oxidative damage. Analysis of the distribution of mutations across the mtDNA revealed significant variation among protein-coding genes and as well as among neighboring nucleotides. This high-resolution view of mitochondrial mutations in C. elegans highlights the value of this system for understanding relationships among oxidative damage, replication error, and mtDNA mutation.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| | - Joshua M Svendsen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| |
Collapse
|
21
|
Abstract
Maintaining mitochondrial health is essential for the survival and function of eukaryotic organisms. Misfunctioning mitochondria activate stress-responsive pathways to restore mitochondrial network homeostasis, remove damaged or toxic proteins, and eliminate damaged organelles via selective autophagy of mitochondria, a process termed mitophagy. Failure of these quality control pathways is implicated in the pathogenesis of Parkinson's disease and other neurodegenerative diseases. Impairment of mitochondrial quality control has been demonstrated to activate innate immune pathways, including inflammasome-mediated signaling and the antiviral cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)-regulated interferon response. Immune system malfunction is a common hallmark in many neurodegenerative diseases; however, whether inflammation suppresses or exacerbates disease pathology is still unclear. The goal of this review is to provide a historical overview of the field, describe mechanisms of mitochondrial quality control, and highlight recent advances on the emerging role of mitochondria in innate immunity and inflammation.
Collapse
Affiliation(s)
- Andrew T Moehlman
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
22
|
Ji J, Day A. Construction of a highly error-prone DNA polymerase for developing organelle mutation systems. Nucleic Acids Res 2020; 48:11868-11879. [PMID: 33135056 PMCID: PMC7708058 DOI: 10.1093/nar/gkaa929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
A novel family of DNA polymerases replicates organelle genomes in a wide distribution of taxa encompassing plants and protozoans. Making error-prone mutator versions of gamma DNA polymerases revolutionised our understanding of animal mitochondrial genomes but similar advances have not been made for the organelle DNA polymerases present in plant mitochondria and chloroplasts. We tested the fidelities of error prone tobacco organelle DNA polymerases using a novel positive selection method involving replication of the phage lambda cI repressor gene. Unlike gamma DNA polymerases, ablation of 3'-5' exonuclease function resulted in a modest 5-8-fold error rate increase. Combining exonuclease deficiency with a polymerisation domain substitution raised the organelle DNA polymerase error rate by 140-fold relative to the wild type enzyme. This high error rate compares favourably with error-rates of mutator versions of animal gamma DNA polymerases. The error prone organelle DNA polymerase introduced mutations at multiple locations ranging from two to seven sites in half of the mutant cI genes studied. Single base substitutions predominated including frequent A:A (template: dNMP) mispairings. High error rate and semi-dominance to the wild type enzyme in vitro make the error prone organelle DNA polymerase suitable for elevating mutation rates in chloroplasts and mitochondria.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Binding Sites
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Cloning, Molecular
- DNA Polymerase gamma/chemistry
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/metabolism
- DNA Replication
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Mitochondria/genetics
- Mitochondria/metabolism
- Models, Molecular
- Mutation
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Polymorphism, Single Nucleotide
- Porins/chemistry
- Porins/genetics
- Porins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Selection, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Nicotiana/classification
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Junwei Ji
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Anil Day
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
23
|
Pareek G, Pallanck LJ. Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression. PLoS Genet 2020; 16:e1009118. [PMID: 33075064 PMCID: PMC7595625 DOI: 10.1371/journal.pgen.1009118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/29/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
The m-AAA proteases play a critical role in the proteostasis of inner mitochondrial membrane proteins, and mutations in the genes encoding these proteases cause severe incurable neurological diseases. To further explore the biological role of the m-AAA proteases and the pathological consequences of their deficiency, we used a genetic approach in the fruit fly Drosophila melanogaster to inactivate the ATPase family gene 3-like 2 (AFG3L2) gene, which encodes a critical component of the m-AAA proteases. We found that null alleles of Drosophila AFG3L2 die early in development, but partial inactivation of AFG3L2 using RNAi allowed survival to the late pupal and adult stages of development. Flies with partial inactivation of AFG3L2 exhibited behavioral defects, neurodegeneration, accumulation of unfolded mitochondrial proteins, and diminished respiratory chain (RC) activity. Further work revealed that the reduced RC activity was primarily a consequence of severely diminished mitochondrial transcription and translation. These defects were accompanied by activation of the mitochondrial unfolded protein response (mito-UPR) and autophagy. Overexpression of mito-UPR components partially rescued the AFG3L2-deficient phenotypes, indicating that protein aggregation partly accounts for the defects of AFG3L2-deficient animals. Our work suggests that strategies designed to activate mitochondrial stress pathways and mitochondrial gene expression could be therapeutic in the diseases caused by mutations in AFG3L2.
Collapse
Affiliation(s)
- Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, United States of America
- * E-mail:
| |
Collapse
|
24
|
Salminen TS, Vale PF. Drosophila as a Model System to Investigate the Effects of Mitochondrial Variation on Innate Immunity. Front Immunol 2020; 11:521. [PMID: 32269576 PMCID: PMC7109263 DOI: 10.3389/fimmu.2020.00521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding why the response to infection varies between individuals remains one of the major challenges in immunology and infection biology. A substantial proportion of this heterogeneity can be explained by individual genetic differences which result in variable immune responses, and there are many examples of polymorphisms in nuclear-encoded genes that alter immunocompetence. However, how immunity is affected by genetic polymorphism in an additional genome, inherited maternally inside mitochondria (mtDNA), has been relatively understudied. Mitochondria are increasingly recognized as important mediators of innate immune responses, not only because they are the main source of energy required for costly immune responses, but also because by-products of mitochondrial metabolism, such as reactive oxygen species (ROS), may have direct microbicidal action. Yet, it is currently unclear how naturally occurring variation in mtDNA contributes to heterogeneity in infection outcomes. In this review article, we describe potential sources of variation in mitochondrial function that may arise due to mutations in vital nuclear and mitochondrial components of energy production or due to a disruption in mito-nuclear crosstalk. We then highlight how these changes in mitochondrial function can impact immune responses, focusing on their effects on ATP- and ROS-generating pathways, as well as immune signaling. Finally, we outline how being a powerful and genetically tractable model of infection, immunity and mitochondrial genetics makes the fruit fly Drosophila melanogaster ideally suited to dissect mitochondrial effects on innate immune responses to infection.
Collapse
Affiliation(s)
- Tiina S. Salminen
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F. Vale
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Marygold SJ, Attrill H, Speretta E, Warner K, Magrane M, Berloco M, Cotterill S, McVey M, Rong Y, Yamaguchi M. The DNA polymerases of Drosophila melanogaster. Fly (Austin) 2020; 14:49-61. [PMID: 31933406 PMCID: PMC7714529 DOI: 10.1080/19336934.2019.1710076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/08/2022] Open
Abstract
DNA synthesis during replication or repair is a fundamental cellular process that is catalyzed by a set of evolutionary conserved polymerases. Despite a large body of research, the DNA polymerases of Drosophila melanogaster have not yet been systematically reviewed, leading to inconsistencies in their nomenclature, shortcomings in their functional (Gene Ontology, GO) annotations and an under-appreciation of the extent of their characterization. Here, we describe the complete set of DNA polymerases in D. melanogaster, applying nomenclature already in widespread use in other species, and improving their functional annotation. A total of 19 genes encode the proteins comprising three replicative polymerases (alpha-primase, delta, epsilon), five translesion/repair polymerases (zeta, eta, iota, Rev1, theta) and the mitochondrial polymerase (gamma). We also provide an overview of the biochemical and genetic characterization of these factors in D. melanogaster. This work, together with the incorporation of the improved nomenclature and GO annotation into key biological databases, including FlyBase and UniProtKB, will greatly facilitate access to information about these important proteins.
Collapse
Affiliation(s)
- Steven J. Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Helen Attrill
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elena Speretta
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Kate Warner
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Michele Magrane
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University London, London, UK
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA
| | - Yikang Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
26
|
Youle RJ. Mitochondria-Striking a balance between host and endosymbiont. Science 2019; 365:365/6454/eaaw9855. [PMID: 31416937 DOI: 10.1126/science.aaw9855] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are organelles with their own genome that arose from α-proteobacteria living within single-celled Archaea more than a billion years ago. This step of endosymbiosis offered tremendous opportunities for energy production and metabolism and allowed the evolution of fungi, plants, and animals. However, less appreciated are the downsides of this endosymbiosis. Coordinating gene expression between the mitochondrial genomes and the nuclear genome is imprecise and can lead to proteotoxic stress. The clonal reproduction of mitochondrial DNA requires workarounds to avoid mutational meltdown. In metazoans that developed innate immune pathways to thwart bacterial and viral infections, mitochondrial components can cross-react with pathogen sensors and invoke inflammation. Here, I focus on the numerous and elegant quality control processes that compensate for or mitigate these challenges of endosymbiosis.
Collapse
Affiliation(s)
- Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Andreazza S, Samstag CL, Sanchez-Martinez A, Fernandez-Vizarra E, Gomez-Duran A, Lee JJ, Tufi R, Hipp MJ, Schmidt EK, Nicholls TJ, Gammage PA, Chinnery PF, Minczuk M, Pallanck LJ, Kennedy SR, Whitworth AJ. Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nat Commun 2019; 10:3280. [PMID: 31337756 PMCID: PMC6650417 DOI: 10.1038/s41467-019-10857-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Somatic mutations in the mitochondrial genome (mtDNA) have been linked to multiple disease conditions and to ageing itself. In Drosophila, knock-in of a proofreading deficient mtDNA polymerase (POLG) generates high levels of somatic point mutations and also small indels, but surprisingly limited impact on organismal longevity or fitness. Here we describe a new mtDNA mutator model based on a mitochondrially-targeted cytidine deaminase, APOBEC1. mito-APOBEC1 acts as a potent mutagen which exclusively induces C:G>T:A transitions with no indels or mtDNA depletion. In these flies, the presence of multiple non-synonymous substitutions, even at modest heteroplasmy, disrupts mitochondrial function and dramatically impacts organismal fitness. A detailed analysis of the mutation profile in the POLG and mito-APOBEC1 models reveals that mutation type (quality) rather than quantity is a critical factor in impacting organismal fitness. The specificity for transition mutations and the severe phenotypes make mito-APOBEC1 an excellent mtDNA mutator model for ageing research.
Collapse
Affiliation(s)
- Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Colby L Samstag
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Erika Fernandez-Vizarra
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Aurora Gomez-Duran
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Roberta Tufi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Michael J Hipp
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | | | - Thomas J Nicholls
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Payam A Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Leo J Pallanck
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
28
|
Abstract
Cell-to-cell heterogeneity drives a range of (patho)physiologically important phenomena, such as cell fate and chemotherapeutic resistance. The role of metabolism, and particularly of mitochondria, is increasingly being recognized as an important explanatory factor in cell-to-cell heterogeneity. Most eukaryotic cells possess a population of mitochondria, in the sense that mitochondrial DNA (mtDNA) is held in multiple copies per cell, where the sequence of each molecule can vary. Hence, intra-cellular mitochondrial heterogeneity is possible, which can induce inter-cellular mitochondrial heterogeneity, and may drive aspects of cellular noise. In this review, we discuss sources of mitochondrial heterogeneity (variations between mitochondria in the same cell, and mitochondrial variations between supposedly identical cells) from both genetic and non-genetic perspectives, and mitochondrial genotype-phenotype links. We discuss the apparent homeostasis of mtDNA copy number, the observation of pervasive intra-cellular mtDNA mutation (which is termed "microheteroplasmy"), and developments in the understanding of inter-cellular mtDNA mutation ("macroheteroplasmy"). We point to the relationship between mitochondrial supercomplexes, cristal structure, pH, and cardiolipin as a potential amplifier of the mitochondrial genotype-phenotype link. We also discuss mitochondrial membrane potential and networks as sources of mitochondrial heterogeneity, and their influence upon the mitochondrial genome. Finally, we revisit the idea of mitochondrial complementation as a means of dampening mitochondrial genotype-phenotype links in light of recent experimental developments. The diverse sources of mitochondrial heterogeneity, as well as their increasingly recognized role in contributing to cellular heterogeneity, highlights the need for future single-cell mitochondrial measurements in the context of cellular noise studies.
Collapse
Affiliation(s)
- Juvid Aryaman
- Department of Mathematics, Imperial College London, London, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Iain G. Johnston
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| | - Nick S. Jones
- Department of Mathematics, Imperial College London, London, United Kingdom
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| |
Collapse
|