1
|
Khalil A, Supek F. DiffInvex identifies evolutionary shifts in driver gene repertoires during tumorigenesis and chemotherapy. Nat Commun 2025; 16:4209. [PMID: 40360478 PMCID: PMC12075687 DOI: 10.1038/s41467-025-59397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Somatic cells can transform into tumors due to mutations, and the tumors further evolve towards increased aggressiveness and therapy resistance. We develop DiffInvex, a framework for identifying changes in selection acting on individual genes in somatic genomes, drawing on an empirical mutation rate baseline derived from non-coding DNA that accounts for shifts in neutral mutagenesis during cancer evolution. We apply DiffInvex to >11,000 somatic whole-genome sequences from ~30 cancer types or healthy tissues, identifying genes where point mutations are under conditional positive or negative selection during exposure to specific chemotherapeutics, suggesting drug resistance mechanisms occurring via point mutation. DiffInvex identifies 11 genes exhibiting treatment-associated selection for different classes of chemotherapies, linking selected mutations in PIK3CA, APC, MAP2K4, SMAD4, STK11 and MAP3K1 with drug exposure. Various gene-chemotherapy associations are further supported by differential functional impact of mutations pre- versus post-therapy, and are also replicated in independent studies. In addition to nominating drug resistance genes, we contrast the genomes of healthy versus cancerous cells of matched human tissues. We identify noncancerous expansion-specific drivers, including NOTCH1 and ARID1A. DiffInvex can also be applied to diverse analyses in cancer evolution to identify changes in driver gene repertoires across time or space.
Collapse
Affiliation(s)
- Ahmed Khalil
- Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Pepe D, Janssens X, Timcheva K, Marrón-Liñares GM, Verbelen B, Konstantakos V, De Groote D, De Bie J, Verhasselt A, Dewaele B, Godderis A, Cools C, Franco-Tolsau M, Royaert J, Verbeeck J, Kampen KR, Subramanian K, Cabrerizo Granados D, Menschaert G, De Keersmaecker K. Reannotation of cancer mutations based on expressed RNA transcripts reveals functional non-coding mutations in melanoma. Am J Hum Genet 2025:S0002-9297(25)00146-6. [PMID: 40359938 DOI: 10.1016/j.ajhg.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The role of synonymous mutations in cancer pathogenesis is currently underexplored. We developed a method to detect significant clusters of synonymous and missense mutations in public cancer genomics data. In melanoma, we show that 22% (11/50) of these mutation clusters are misannotated as coding mutations because the reference transcripts used for their annotation are not expressed. Instead, these mutations are actually non-coding. This, for instance, applies to the mutation clusters targeting known cancer genes kinetochore localized astrin (SPAG5) binding protein (KNSTRN) and BCL2-like 12 (BCL2L12), each affecting 4%-5% of melanoma tumors. For the latter, we show that these mutations are functional non-coding mutations that target the shared promoter region of interferon regulatory factor 3 (IRF3) and BCL2L12. This results in downregulation of IRF3, BCL2L12, and tumor protein p53 (TP53) expression in a CRISPR-Cas9 primary melanocyte model and in melanoma tumors. In individuals with melanoma, these mutations were also associated with a worse response to immunotherapy. Finally, we propose a simple automated method to more accurately annotate cancer mutations based on expressed transcripts. This work shows the importance of integrating DNA- and RNA-sequencing data to properly annotate mutations and identifies a number of previously overlooked and wrongly annotated functional non-coding mutations in melanoma.
Collapse
Affiliation(s)
- Daniele Pepe
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xander Janssens
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kalina Timcheva
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Grecia M Marrón-Liñares
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Benno Verbelen
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Vasileios Konstantakos
- Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium; VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Dylan De Groote
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Barbara Dewaele
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Charlotte Cools
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Mireia Franco-Tolsau
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jonathan Royaert
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jelle Verbeeck
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim R Kampen
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium; Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Karthik Subramanian
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - David Cabrerizo Granados
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Gerben Menschaert
- OHMX.bio NV, Evergem, Belgium; Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
3
|
Heilbrun EE, Tseitline D, Wasserman H, Kirshenbaum A, Cohen Y, Gordan R, Adar S. The epigenetic landscape shapes smoking-induced mutagenesis by modulating DNA damage susceptibility and repair efficiency. Nucleic Acids Res 2025; 53:gkaf048. [PMID: 39933696 PMCID: PMC11811737 DOI: 10.1093/nar/gkaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer sequencing efforts have uncovered mutational signatures that are attributed to exposure to the cigarette smoke carcinogen benzo[a]pyrene. Benzo[a]pyrene metabolizes in cells to benzo[a]pyrene diol epoxide (BPDE) and reacts with guanine nucleotides to form bulky BPDE adducts. These DNA adducts block transcription and replication, compromising cell function and survival, and are repaired in human cells by the nucleotide excision repair pathway. Here, we applied high-resolution genomic assays to measure BPDE-induced damage formation and mutagenesis in human cells. We integrated the new damage and mutagenesis data with previous repair, DNA methylation, RNA expression, DNA replication, and chromatin component measurements in the same cell lines, along with lung cancer mutagenesis data. BPDE damage formation is significantly enhanced by DNA methylation and in accessible chromatin regions, including transcribed and early-replicating regions. Binding of transcription factors is associated primarily with reduced, but also enhanced damage formation, depending on the factor. While DNA methylation does not appear to influence repair efficiency, this repair was significantly elevated in accessible chromatin regions, which accumulated fewer mutations. Thus, when damage and repair drive mutagenesis in opposing directions, the final mutational patterns appear to be dictated by the efficiency of repair rather than the frequency of underlying damages.
Collapse
Affiliation(s)
- Elisheva E Heilbrun
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Tseitline
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Wasserman
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, United States
| | - Ayala Kirshenbaum
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yuval Cohen
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Raluca Gordan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, United States
- Department of Computer Science, Duke University, Durham, NC 27708, United States
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
4
|
Guneri-Sozeri PY, Adebali O. Transcription factors, nucleotide excision repair, and cancer: A review of molecular interplay. Int J Biochem Cell Biol 2025; 179:106724. [PMID: 39672502 DOI: 10.1016/j.biocel.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Bulky DNA adducts are mostly formed by external factors such as UV irradiation, smoking or treatment with DNA crosslinking agents. If such DNA adducts are not removed by nucleotide excision repair, they can lead to formation of driver mutations that contribute to cancer formation. Transcription factors (TFs) may critically affect both DNA adduct formation and repair efficiency at the binding site to DNA. For example, "hotspot" mutations in melanoma coincide with UV-induced accumulated cyclobutane pyrimidine dimer (CPD) adducts and/or inhibited repair at the binding sites of some TFs. Similarly, anticancer treatment with DNA cross-linkers may additionally generate DNA adducts leading to secondary mutations and the formation of malignant subclones. In addition, some TFs are overexpressed in response to UV irradiation or chemotherapeutic treatment, activating oncogenic and anti-oncogenic pathways independently of nucleotide excision repair itself. This review focuses on the interplay between TFs and nucleotide excision repair during cancer development and progression.
Collapse
Affiliation(s)
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Türkiye.
| |
Collapse
|
5
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
6
|
Elliott K, Singh VK, Bäckerholm A, Ögren L, Lindberg M, Soczek KM, Hoberg E, Luijts T, Van den Eynden J, Falkenberg M, Doudna J, Ståhlberg A, Larsson E. Mechanistic basis of atypical TERT promoter mutations. Nat Commun 2024; 15:9965. [PMID: 39557834 PMCID: PMC11574208 DOI: 10.1038/s41467-024-54158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Non-coding mutations in the TERT promoter (TERTp), typically at one of two bases -124 and -146 bp upstream of the start codon, are among the most prevalent driver mutations in human cancer. Several additional recurrent TERTp mutations have been reported but their functions and origins remain largely unexplained. Here, we show that atypical TERTp mutations arise secondary to canonical TERTp mutations in a two-step process. Canonical TERTp mutations create de novo binding sites for ETS family transcription factors that induce favourable conditions for DNA damage formation by UV light, thus creating a hotspot effect but only after a first mutational hit. In agreement, atypical TERTp mutations co-occur with canonical driver mutations in large cancer cohorts and arise subclonally specifically on the TERTp driver mutant chromosome homolog of melanoma cells treated with UV light in vitro. Our study gives an in-depth view of TERTp mutations in cancer and provides a mechanistic explanation for atypical TERTp mutations.
Collapse
Affiliation(s)
- Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vinod Kumar Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alan Bäckerholm
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Ögren
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Lindberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom Luijts
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Anders Ståhlberg
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Menon V, García-Ruiz A, Neveu S, Cartmel B, Ferrucci LM, Palmatier M, Ko C, Tsai KY, Nakamura M, Kim SR, Girardi M, Kornacker K, Brash DE. Pervasive Induction of Regulatory Mutation Microclones in Sun-exposed Skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612526. [PMID: 39345638 PMCID: PMC11429607 DOI: 10.1101/2024.09.12.612526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Carcinogen-induced mutations are thought near-random, with rare cancer-driver mutations underlying clonal expansion. Using high-fidelity Duplex Sequencing to reach a mutation frequency sensitivity of 4×10 -9 per nt, we report that sun exposure creates pervasive mutations at sites with ∼100-fold UV-sensitivity in RNA-processing gene promoters - cyclobutane pyrimidine dimer (CPD) hyperhotspots - and these mutations have a mini-driver clonal expansion phenotype. Numerically, human skin harbored 10-fold more genuine mutations than previously reported, with neonatal skin containing 90,000 per cell; UV signature mutations increased 8,000-fold in sun-exposed skin, averaging 3×10 -5 per nt. Clonal expansion by neutral drift or passenger formation was nil. Tumor suppressor gene hotspots reached variant allele frequency 0.1-10% via 30-3,000 fold clonal expansion, in occasional biopsies. CPD hyperhotspots reached those frequencies in every biopsy, with modest clonal expansion. In vitro, tumor hotspot mutations arose occasionally over weeks of chronic low-dose exposure, whereas CPD hyperhotspot mutations arose in days at 1000-fold higher frequencies, growing exponentially. UV targeted mini-drivers in every skin cell.
Collapse
|
8
|
Yao YM, Miodownik I, O’Hagan MP, Jbara M, Afek A. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Transcription 2024; 15:114-138. [PMID: 39033307 PMCID: PMC11810102 DOI: 10.1080/21541264.2024.2379161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
Collapse
Affiliation(s)
- Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irina Miodownik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael P. O’Hagan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Mas-Ponte D, Supek F. Mutation rate heterogeneity at the sub-gene scale due to local DNA hypomethylation. Nucleic Acids Res 2024; 52:4393-4408. [PMID: 38587182 PMCID: PMC11077091 DOI: 10.1093/nar/gkae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Local mutation rates in human are highly heterogeneous, with known variability at the scale of megabase-sized chromosomal domains, and, on the other extreme, at the scale of oligonucleotides. The intermediate, kilobase-scale heterogeneity in mutation risk is less well characterized. Here, by analyzing thousands of somatic genomes, we studied mutation risk gradients along gene bodies, representing a genomic scale spanning roughly 1-10 kb, hypothesizing that different mutational mechanisms are differently distributed across gene segments. The main heterogeneity concerns several kilobases at the transcription start site and further downstream into 5' ends of gene bodies; these are commonly hypomutated with several mutational signatures, most prominently the ubiquitous C > T changes at CpG dinucleotides. The width and shape of this mutational coldspot at 5' gene ends is variable across genes, and corresponds to variable interval of lowered DNA methylation depending on gene activity level and regulation. Such hypomutated loci, at 5' gene ends or elsewhere, correspond to DNA hypomethylation that can associate with various landmarks, including intragenic enhancers, Polycomb-marked regions, or chromatin loop anchor points. Tissue-specific DNA hypomethylation begets tissue-specific local hypomutation. Of note, direction of mutation risk is inverted for AID/APOBEC3 cytosine deaminase activity, whose signatures are enriched in hypomethylated regions.
Collapse
Affiliation(s)
- David Mas-Ponte
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
10
|
Wilson HE, Wyrick JJ. Genome-wide impact of cytosine methylation and DNA sequence context on UV-induced CPD formation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:14-24. [PMID: 37554110 PMCID: PMC10853481 DOI: 10.1002/em.22569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
Exposure to ultraviolet (UV) light is the primary etiological agent for skin cancers because UV damages cellular DNA. The most frequent form of UV damage is the cyclobutane pyrimidine dimer (CPD), which consists of covalent linkages between neighboring pyrimidine bases in DNA. In human cells, the 5' position of cytosine bases in CG dinucleotides is frequently methylated, and methylated cytosines in the TP53 tumor suppressor are often sites of mutation hotspots in skin cancers. It has been argued that this is because cytosine methylation promotes UV-induced CPD formation; however, the effects of cytosine methylation on CPD formation are controversial, with conflicting results from previous studies. Here, we use a genome-wide method known as CPD-seq to map UVB- and UVC-induced CPDs across the yeast genome in the presence or absence in vitro methylation by the CpG methyltransferase M.SssI. Our data indicate that cytosine methylation increases UVB-induced CPD formation nearly 2-fold relative to unmethylated DNA, but the magnitude of induction depends on the flanking sequence context. Sequence contexts with a 5' guanine base (e.g., GCCG and GTCG) show the strongest induction due to cytosine methylation, potentially because these sequence contexts are less efficient at forming CPD lesions in the absence of methylation. We show that cytosine methylation also modulates UVC-induced CPD formation, albeit to a lesser extent than UVB. These findings can potentially reconcile previous studies, and define the impact of cytosine methylation on UV damage across a eukaryotic genome.
Collapse
Affiliation(s)
- Hannah E. Wilson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Duan M, Song S, Wasserman H, Lee PH, Liu KJ, Gordân R, He Y, Mao P. High UV damage and low repair, but not cytosine deamination, stimulate mutation hotspots at ETS binding sites in melanoma. Proc Natl Acad Sci U S A 2024; 121:e2310854121. [PMID: 38241433 PMCID: PMC10823218 DOI: 10.1073/pnas.2310854121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024] Open
Abstract
Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5' side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genes RPL13A and RPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| | - Shenghan Song
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM87131
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM87131
| | - Hana Wasserman
- Program in Computational Biology and Bioinformatics, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC27708
| | - Po-Hsuen Lee
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| | - Ke Jian Liu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY11794-7263
| | - Raluca Gordân
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC27708
- Department of Computer Science, Duke University, Durham, NC27708
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC27708
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM87131
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM87131
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
12
|
Arnedo-Pac C, Muiños F, Gonzalez-Perez A, Lopez-Bigas N. Hotspot propensity across mutational processes. Mol Syst Biol 2024; 20:6-27. [PMID: 38177930 PMCID: PMC10883281 DOI: 10.1038/s44320-023-00001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80-100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.
Collapse
Affiliation(s)
- Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
13
|
Cohen Y, Adar S. Novel insights into bulky DNA damage formation and nucleotide excision repair from high-resolution genomics. DNA Repair (Amst) 2023; 130:103549. [PMID: 37566959 DOI: 10.1016/j.dnarep.2023.103549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
DNA damages compromise cell function and fate. Cells of all organisms activate a global DNA damage response that includes a signaling stress response, activation of checkpoints, and recruitment of repair enzymes. Especially deleterious are bulky, helix-distorting damages that block transcription and replication. Due to their miscoding nature, these damages lead to mutations and cancer. In human cells, bulky DNA damages are repaired by nucleotide excision repair (NER). To date, the basic mechanism of NER in naked DNA is well defined. Still, there is a fundamental gap in our understanding of how repair is orchestrated despite the packaging of DNA in chromatin, and how it is coordinated with active transcription and replication. The last decade has brought forth huge advances in our ability to detect and assay bulky DNA damages and their repair at single nucleotide resolution across the human genome. Here we review recent findings on the effect of chromatin and DNA-binding proteins on the formation of bulky DNA damages, and novel insights on NER, provided by the recent application of genomic methods.
Collapse
Affiliation(s)
- Yuval Cohen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
14
|
Liu C, Wang Z, Wang J, Liu C, Wang M, Ngo V, Wang W. Predicting regional somatic mutation rates using DNA motifs. PLoS Comput Biol 2023; 19:e1011536. [PMID: 37782656 PMCID: PMC10569533 DOI: 10.1371/journal.pcbi.1011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/12/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
How the locus-specificity of epigenetic modifications is regulated remains an unanswered question. A contributing mechanism is that epigenetic enzymes are recruited to specific loci by DNA binding factors recognizing particular sequence motifs (referred to as epi-motifs). Using these motifs to predict biological outputs depending on local epigenetic state such as somatic mutation rates would confirm their functionality. Here, we used DNA motifs including known TF motifs and epi-motifs as a surrogate of epigenetic signals to predict somatic mutation rates in 13 cancers at an average 23kbp resolution. We implemented an interpretable neural network model, called contextual regression, to successfully learn the universal relationship between mutations and DNA motifs, and uncovered motifs that are most impactful on the regional mutation rates such as TP53 and epi-motifs associated with H3K9me3. Furthermore, we identified genomic regions with significantly higher mutation rates than the expected values in each individual tumor and demonstrated that such cancer-related regions can accurately predict cancer types. Interestingly, we found that the same mutation signatures often have different contributions to cancer-related and cancer-independent regions, and we also identified the motifs with the most contribution to each mutation signature.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jun Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Chengyu Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Vu Ngo
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
15
|
Smerdon MJ, Wyrick JJ, Delaney S. A half century of exploring DNA excision repair in chromatin. J Biol Chem 2023; 299:105118. [PMID: 37527775 PMCID: PMC10498010 DOI: 10.1016/j.jbc.2023.105118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
DNA in eukaryotic cells is packaged into the compact and dynamic structure of chromatin. This packaging is a double-edged sword for DNA repair and genomic stability. Chromatin restricts the access of repair proteins to DNA lesions embedded in nucleosomes and higher order chromatin structures. However, chromatin also serves as a signaling platform in which post-translational modifications of histones and other chromatin-bound proteins promote lesion recognition and repair. Similarly, chromatin modulates the formation of DNA damage, promoting or suppressing lesion formation depending on the chromatin context. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potentially mutagenic and carcinogenic lesions in DNA. Here, we survey many of the landmark findings on DNA damage and repair in chromatin over the last 50 years (i.e., since the beginning of this field), focusing on excision repair, the first repair mechanism studied in the chromatin landscape. For example, we highlight how the impact of chromatin on these processes explains the distinct patterns of somatic mutations observed in cancer genomes.
Collapse
Affiliation(s)
- Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - John J Wyrick
- Genetics and Cell Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
16
|
Poulsgaard GA, Sørensen SG, Juul RI, Nielsen MM, Pedersen JS. Sequence dependencies and mutation rates of localized mutational processes in cancer. Genome Med 2023; 15:63. [PMID: 37592287 PMCID: PMC10436389 DOI: 10.1186/s13073-023-01217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Cancer mutations accumulate through replication errors and DNA damage coupled with incomplete repair. Individual mutational processes often show nucleotide sequence and functional region preferences. As a result, some sequence contexts mutate at much higher rates than others, with additional variation found between functional regions. Mutational hotspots, with recurrent mutations across cancer samples, represent genomic positions with elevated mutation rates, often caused by highly localized mutational processes. METHODS We count the 11-mer genomic sequences across the genome, and using the PCAWG set of 2583 pan-cancer whole genomes, we associate 11-mers with mutational signatures, hotspots of single nucleotide variants, and specific genomic regions. We evaluate the mutation rates of individual and combined sets of 11-mers and derive mutational sequence motifs. RESULTS We show that hotspots generally identify highly mutable sequence contexts. Using these, we show that some mutational signatures are enriched in hotspot sequence contexts, corresponding to well-defined sequence preferences for the underlying localized mutational processes. This includes signature 17b (of unknown etiology) and signatures 62 (POLE deficiency), 7a (UV), and 72 (linked to lymphomas). In some cases, the mutation rate and sequence preference increase further when focusing on certain genomic regions, such as signature 62 in transcribed regions, where the mutation rate is increased up to 9-folds over cancer type and mutational signature average. CONCLUSIONS We summarize our findings in a catalog of localized mutational processes, their sequence preferences, and their estimated mutation rates.
Collapse
Affiliation(s)
- Gustav Alexander Poulsgaard
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Simon Grund Sørensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Randi Istrup Juul
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Morten Muhlig Nielsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jakob Skou Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Bioinformatics Research Centre (BiRC), Aarhus University, University City 81, Building 1872, 3Rd Floor, 8000, Aarhus C, Denmark.
| |
Collapse
|
17
|
Menon V, Brash DE. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can". MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108471. [PMID: 37716438 PMCID: PMC10843083 DOI: 10.1016/j.mrrev.2023.108471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Mutations, the irreversible changes in an organism's DNA sequence, are present in tissues at a variant allele frequency (VAF) ranging from ∼10-8 per bp for a founder mutation to ∼10-3 for a histologically normal tissue sample containing several independent clones - compared to 1%- 50% for a heterozygous tumor mutation or a polymorphism. The rarity of these events poses a challenge for accurate clinical diagnosis and prognosis, toxicology, and discovering new disease etiologies. Standard Next-Generation Sequencing (NGS) technologies report VAFs as low as 0.5% per nt, but reliably observing rarer precursor events requires additional sophistication to measure ultralow-frequency mutations. We detail the challenge; define terms used to characterize the results, which vary between laboratories and sometimes conflict between biologists and bioinformaticists; and describe recent innovations to improve standard NGS methodologies including: single-strand consensus sequence methods such as Safe-SeqS and SiMSen-Seq; tandem-strand consensus sequence methods such as o2n-Seq and SMM-Seq; and ultrasensitive parent-strand consensus sequence methods such as DuplexSeq, PacBio HiFi, SinoDuplex, OPUSeq, EcoSeq, BotSeqS, Hawk-Seq, NanoSeq, SaferSeq, and CODEC. Practical applications are also noted. Several methods quantify VAF down to 10-5 at a nt and mutation frequency (MF) in a target region down to 10-7 per nt. By expanding to > 1 Mb of sites never observed twice, thus forgoing VAF, other methods quantify MF < 10-9 per nt or < 15 errors per haploid genome. Clonal expansion cannot be directly distinguished from independent mutations by sequencing, so it is essential for a paper to report whether its MF counted only different mutations - the minimum independent-mutation frequency MFminI - or all mutations observed including recurrences - the larger maximum independent-mutation frequency MFmaxI which may reflect clonal expansion. Ultrasensitive methods reveal that, without their use, even mutations with VAF 0.5-1% are usually spurious.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA.
| |
Collapse
|
18
|
Elliott K, Singh VK, Boström M, Larsson E. Base-resolution UV footprinting by sequencing reveals distinctive damage signatures for DNA-binding proteins. Nat Commun 2023; 14:2701. [PMID: 37169761 PMCID: PMC10175305 DOI: 10.1038/s41467-023-38266-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Decades ago, it was shown that proteins binding to DNA can quantitatively alter the formation of DNA damage by UV light. This established the principle of UV footprinting for non-intrusive study of protein-DNA contacts in living cells, albeit at limited scale and precision. Here, we perform deep base-resolution quantification of the principal UV damage lesion, the cyclobutane pyrimidine dimer (CPD), at select human promoter regions using targeted CPD sequencing. Several transcription factors exhibited distinctive and repeatable damage signatures indicative of site occupancy, involving strong (up to 17-fold) position-specific elevations and reductions in CPD formation frequency relative to naked DNA. Positive damage modulation at some ETS transcription factor binding sites coincided at base level with melanoma somatic mutation hotspots. Our work provides proof of concept for the study of protein-DNA interactions at individual loci using light and sequencing, and reveals widespread and potent modulation of UV damage in regulatory regions.
Collapse
Affiliation(s)
- Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Vinod Kumar Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Martin Boström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
19
|
Selvam K, Sivapragasam S, Poon GMK, Wyrick JJ. Detecting recurrent passenger mutations in melanoma by targeted UV damage sequencing. Nat Commun 2023; 14:2702. [PMID: 37169747 PMCID: PMC10175485 DOI: 10.1038/s41467-023-38265-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Sequencing of melanomas has identified hundreds of recurrent mutations in both coding and non-coding DNA. These include a number of well-characterized oncogenic driver mutations, such as coding mutations in the BRAF and NRAS oncogenes, and non-coding mutations in the promoter of telomerase reverse transcriptase (TERT). However, the molecular etiology and significance of most of these mutations is unknown. Here, we use a new method known as CPD-capture-seq to map UV-induced cyclobutane pyrimidine dimers (CPDs) with high sequencing depth and single nucleotide resolution at sites of recurrent mutations in melanoma. Our data reveal that many previously identified drivers and other recurrent mutations in melanoma occur at CPD hotspots in UV-irradiated melanocytes, often associated with an overlapping binding site of an E26 transformation-specific (ETS) transcription factor. In contrast, recurrent mutations in the promoters of a number of known or suspected cancer genes are not associated with elevated CPD levels. Our data indicate that a subset of recurrent protein-coding mutations are also likely caused by ETS-induced CPD hotspots. This analysis indicates that ETS proteins profoundly shape the mutation landscape of melanoma and reveals a method for distinguishing potential driver mutations from passenger mutations whose recurrence is due to elevated UV damage.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Gregory M K Poon
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
20
|
Mielko Z, Zhang Y, Sahay H, Liu Y, Schaich MA, Schnable B, Morrison AM, Burdinski D, Adar S, Pufall M, Van Houten B, Gordân R, Afek A. UV irradiation remodels the specificity landscape of transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2217422120. [PMID: 36888663 PMCID: PMC10089200 DOI: 10.1073/pnas.2217422120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Somatic mutations are highly enriched at transcription factor (TF) binding sites, with the strongest trend being observed for ultraviolet light (UV)-induced mutations in melanomas. One of the main mechanisms proposed for this hypermutation pattern is the inefficient repair of UV lesions within TF-binding sites, caused by competition between TFs bound to these lesions and the DNA repair proteins that must recognize the lesions to initiate repair. However, TF binding to UV-irradiated DNA is poorly characterized, and it is unclear whether TFs maintain specificity for their DNA sites after UV exposure. We developed UV-Bind, a high-throughput approach to investigate the impact of UV irradiation on protein-DNA binding specificity. We applied UV-Bind to ten TFs from eight structural families, and found that UV lesions significantly altered the DNA-binding preferences of all the TFs tested. The main effect was a decrease in binding specificity, but the precise effects and their magnitude differ across factors. Importantly, we found that despite the overall reduction in DNA-binding specificity in the presence of UV lesions, TFs can still compete with repair proteins for lesion recognition, in a manner consistent with their specificity for UV-irradiated DNA. In addition, for a subset of TFs, we identified a surprising but reproducible effect at certain nonconsensus DNA sequences, where UV irradiation leads to a high increase in the level of TF binding. These changes in DNA-binding specificity after UV irradiation, at both consensus and nonconsensus sites, have important implications for the regulatory and mutagenic roles of TFs in the cell.
Collapse
Affiliation(s)
- Zachery Mielko
- Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27708
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Department of Computer Science, Duke University, Durham, NC 27708
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708
| | - Harshit Sahay
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
| | - Yiling Liu
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
| | - Matthew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
| | - Brittani Schnable
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Abigail M Morrison
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Debbie Burdinski
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Miles Pufall
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
| | - Bennett Van Houten
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA 15213
| | - Raluca Gordân
- Department of Computer Science, Duke University, Durham, NC 27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
21
|
Bohm KA, Morledge-Hampton B, Stevison S, Mao P, Roberts SA, Wyrick JJ. Genome-wide maps of rare and atypical UV photoproducts reveal distinct patterns of damage formation and mutagenesis in yeast chromatin. Proc Natl Acad Sci U S A 2023; 120:e2216907120. [PMID: 36853943 PMCID: PMC10013872 DOI: 10.1073/pnas.2216907120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Ultraviolet (UV) light induces different classes of mutagenic photoproducts in DNA, namely cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and atypical thymine-adenine photoproducts (TA-PPs). CPD formation is modulated by nucleosomes and transcription factors (TFs), which has important ramifications for Ultraviolet (UV) mutagenesis. How chromatin affects the formation of 6-4PPs and TA-PPs is unclear. Here, we use UV damage endonuclease-sequencing (UVDE-seq) to map these UV photoproducts across the yeast genome. Our results indicate that nucleosomes, the fundamental building block of chromatin, have opposing effects on photoproduct formation. Nucleosomes induce CPDs and 6-4PPs at outward rotational settings in nucleosomal DNA but suppress TA-PPs at these settings. Our data also indicate that DNA binding by different classes of yeast TFs causes lesion-specific hotspots of 6-4PPs or TA-PPs. For example, DNA binding by the TF Rap1 generally suppresses CPD and 6-4PP formation but induces a TA-PP hotspot. Finally, we show that 6-4PP formation is strongly induced at the binding sites of TATA-binding protein (TBP), which is correlated with higher mutation rates in UV-exposed yeast. These results indicate that the formation of 6-4PPs and TA-PPs is modulated by chromatin differently than CPDs and that this may have important implications for UV mutagenesis.
Collapse
Affiliation(s)
- Kaitlynne A. Bohm
- School of Molecular Biosciences, Washington State University, Pullman, WA99164
| | | | - Scott Stevison
- School of Molecular Biosciences, Washington State University, Pullman, WA99164
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM87131
| | - Steven A. Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA99164
- Center for Reproductive Biology, Washington State University, Pullman, WA99164
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA99164
| |
Collapse
|
22
|
Carrasco Pro S, Hook H, Bray D, Berenzy D, Moyer D, Yin M, Labadorf AT, Tewhey R, Siggers T, Fuxman Bass JI. Widespread perturbation of ETS factor binding sites in cancer. Nat Commun 2023; 14:913. [PMID: 36808133 PMCID: PMC9938127 DOI: 10.1038/s41467-023-36535-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Although >90% of somatic mutations reside in non-coding regions, few have been reported as cancer drivers. To predict driver non-coding variants (NCVs), we present a transcription factor (TF)-aware burden test based on a model of coherent TF function in promoters. We apply this test to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and predict 2555 driver NCVs in the promoters of 813 genes across 20 cancer types. These genes are enriched in cancer-related gene ontologies, essential genes, and genes associated with cancer prognosis. We find that 765 candidate driver NCVs alter transcriptional activity, 510 lead to differential binding of TF-cofactor regulatory complexes, and that they primarily impact the binding of ETS factors. Finally, we show that different NCVs within a promoter often affect transcriptional activity through shared mechanisms. Our integrated computational and experimental approach shows that cancer NCVs are widespread and that ETS factors are commonly disrupted.
Collapse
Affiliation(s)
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - David Bray
- Bioinformatics Program, Boston University, Boston, MA, USA
| | | | - Devlin Moyer
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Meimei Yin
- Department of Biology, Boston University, Boston, MA, USA
| | - Adam Thomas Labadorf
- Bioinformatics Hub, Boston University, Boston, MA, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
| | | | - Trevor Siggers
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Juan Ignacio Fuxman Bass
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
23
|
Bohm KA, Wyrick JJ. Damage mapping techniques and the light they have shed on canonical and atypical UV photoproducts. Front Genet 2023; 13:1102593. [PMID: 36704334 PMCID: PMC9871259 DOI: 10.3389/fgene.2022.1102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Ultraviolet (UV) light is a pervasive threat to the DNA of terrestrial organisms. UV light induces helix-distorting DNA lesions, primarily cyclobutane pyrimidine dimers (CPDs) that form between neighboring pyrimidine bases. Unrepaired CPD lesions cause cytosine-to-thymine (C>T) substitutions in dipyrimidine sequences, which is the predominant mutation class in skin cancer genomes. However, many driver mutations in melanoma (e.g., in the BRAF and NRAS oncogenes) do not fit this UV mutation signature. Recent studies have brought to light the intriguing hypothesis that these driver mutations may be induced by infrequent or atypical UV photoproducts, including pyrimidine 6-4 pyrimidone photoproducts (6-4PP) and thymine-adenine (TA) photoproducts. Here, we review innovative methods for mapping both canonical and atypical UV-induced photoproducts across the genome.
Collapse
Affiliation(s)
- Kaitlynne A. Bohm
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
24
|
Boström M, Larsson E. Somatic mutation distribution across tumour cohorts provides a signal for positive selection in cancer. Nat Commun 2022; 13:7023. [PMID: 36396655 PMCID: PMC9671924 DOI: 10.1038/s41467-022-34746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer gene discovery is reliant on distinguishing driver mutations from a multitude of passenger mutations in tumour genomes. While driver genes may be revealed based on excess mutation recurrence or clustering, there is a need for orthogonal principles. Here, we take advantage of the fact that non-cancer genes, containing only passenger mutations under neutral selection, exhibit a likelihood of mutagenesis in a given tumour determined by the tumour's mutational signature and burden. This relationship can be disrupted by positive selection, leading to a difference in the distribution of mutated cases across a cohort for driver and passenger genes. We apply this principle to detect cancer drivers independently of recurrence in large pan-cancer cohorts, and show that our method (SEISMIC) performs comparably to traditional approaches and can provide resistance to known confounding mutational phenomena. Being based on a different principle, the approach provides a much-needed complement to existing methods for detecting signals of selection.
Collapse
Affiliation(s)
- Martin Boström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
25
|
Garcia-Ruiz A, Kornacker K, Brash DE. Cyclobutane Pyrimidine Dimer Hyperhotspots as Sensitive Indicators of Keratinocyte UV Exposure †. Photochem Photobiol 2022; 98:987-997. [PMID: 35944237 PMCID: PMC9802031 DOI: 10.1111/php.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/03/2023]
Abstract
The dominant DNA damage generated by UV exposure is the cyclobutane pyrimidine dimer (CPD), which alters skin cell physiology and induces cell death and mutation. Genome-wide nucleotide-resolution analysis of CPDs in melanocytes and fibroblasts has identified "CPD hyperhotspots", pyrimidine-pyrimidine sites hundreds of fold more susceptible to the generation of CPDs than the genomic average. Identifying hyperhotspots in keratinocytes could enable measuring individual past UV exposure in small skin samples and predicting future skin cancer risk. We therefore exposed neonatal human epidermal keratinocytes to narrowband UVB and quantified CPDs using the adductSeq high-throughput DNA sequencing method. Keratinocytes contained thousands of CPD hyperhotspots, with a UVB-sensitivity up to 550 fold greater than the genomic average. As with melanocytes, the most sensitive sites were located in promoter regions at ETS-family transcription factor binding sequence motifs, near RNA processing genes. Moreover, they lay at sequence motifs bound to ETS1 in CpG islands. These genes were specifically upregulated in skin and the CPD hyperhotspots were mutated in a fraction of keratinocyte cancers. Crucially for their biological importance and practical application, CPD hyperhotspot locations and UV-sensitivity ranking demonstrated high reproducibility across experiments and across skin donors. CPD hyperhotspots are therefore sensitive indicators of UV exposure.
Collapse
Affiliation(s)
- Alejandro Garcia-Ruiz
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
| | | | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| |
Collapse
|
26
|
Cheng X, Blumenthal RM. Mediating and maintaining methylation while minimizing mutation: Recent advances on mammalian DNA methyltransferases. Curr Opin Struct Biol 2022; 75:102433. [PMID: 35914495 PMCID: PMC9620438 DOI: 10.1016/j.sbi.2022.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Mammalian genomes are methylated on carbon-5 of many cytosines, mostly in CpG dinucleotides. Methylation patterns are maintained during mitosis via DNMT1, and regulatory factors involved in processes that include histone modifications. Methylation in a sequence longer than CpG can influence the binding of sequence-specific transcription factors, thus affecting gene expression. 5-Methylcytosine deamination results in C-to-T transition. While some mutations are beneficial, most are not; so boosting C-to-T transitions can be dangerous. Given the role of DNMT3A in establishing de novo DNA methylation during development, it is this CpG methylation and deamination that provide the major mutagenic impetus in the DNMT3A gene itself, including the R882H dominant-negative substitution associated with two diseases: germline mutations in DNMT3A overgrowth syndrome, and somatic mutations in clonal hematopoiesis that can initiate acute myeloid leukemia. We discuss recent developments in therapeutics targeting DNMT1, the role of noncatalytic isoform DNMT3B3 in regulating de novo methylation by DNMT3A, and structural characterization of DNMT3A in various configurations.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
27
|
Luijts T, Elliott K, Siaw JT, Van de Velde J, Beyls E, Claeys A, Lammens T, Larsson E, Willaert W, Vral A, Van den Eynden J. A clinically annotated post-mortem approach to study multi-organ somatic mutational clonality in normal tissues. Sci Rep 2022; 12:10322. [PMID: 35725896 PMCID: PMC9209481 DOI: 10.1038/s41598-022-14240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Recent research on normal human tissues identified omnipresent clones of cells, driven by somatic mutations known to be responsible for carcinogenesis (e.g., in TP53 or NOTCH1). These new insights are fundamentally changing current tumor evolution models, with broad oncological implications. Most studies are based on surgical remnant tissues, which are not available for many organs and rarely in a pan-organ setting (multiple organs from the same individual). Here, we describe an approach based on clinically annotated post-mortem tissues, derived from whole-body donors that are routinely used for educational purposes at human anatomy units. We validated this post-mortem approach using UV-exposed and unexposed epidermal skin tissues and confirm the presence of positively selected NOTCH1/2-, TP53- and FAT1-driven clones. No selection signals were detected in a set of immune genes or housekeeping genes. Additionally, we provide the first evidence for smoking-induced clonal changes in oral epithelia, likely underlying the origin of head and neck carcinogenesis. In conclusion, the whole-body donor-based approach provides a nearly unlimited healthy tissue resource to study mutational clonality and gain fundamental mutagenic insights in the presumed earliest stages of tumor evolution.
Collapse
Affiliation(s)
- Tom Luijts
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joachim Tetteh Siaw
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joris Van de Velde
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Elien Beyls
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Arne Claeys
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wouter Willaert
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
28
|
Yang J, Gupta E, Horton JR, Blumenthal RM, Zhang X, Cheng X. Differential ETS1 binding to T:G mismatches within a CpG dinucleotide contributes to C-to-T somatic mutation rate of the IDH2 hotspot at codon Arg140. DNA Repair (Amst) 2022; 113:103306. [PMID: 35255310 PMCID: PMC9411267 DOI: 10.1016/j.dnarep.2022.103306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
Cytosine to thymine (C>T) somatic mutation is highly enriched in certain types of cancer, and most commonly occurs via deamination of a 5-methylcytosine (5mC) to thymine, in the context of a CpG dinucleotide. In theory, deamination should occur at equal rates to both 5mC nucleotides on opposite strands. In most cases, the resulting T:G or G:T mismatch can be repaired by thymine DNA glycosylase activities. However, while some hotspot-associated CpG mutations have approximately equal numbers of mutations that resulted either from C>T or G>A in a CpG dinucleotide, many showed strand bias, being skewed toward C>T of the first base pair or G>A of the second base pair. Using the IDH2 Arg140 codon as a case study, we show that the two possible T:G mismatches at the codon-specific CpG site have differing effects on transcription factor ETS1 binding affinity, differentially affecting access of a repair enzyme (MBD4) to the deamination-caused T:G mismatch. Our study thus provides a plausible mechanism for exclusion of repair enzymes by the differential binding of transcription factors affecting the rate at which the antecedent opposite-strand mutations occur.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Esha Gupta
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Duan M, Sivapragasam S, Antony JS, Ulibarri J, Hinz JM, Poon GMK, Wyrick JJ, Mao P. High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors. eLife 2022; 11:73943. [PMID: 35289750 PMCID: PMC8970589 DOI: 10.7554/elife.73943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), and characterized alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data show that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs ARS binding factor 1 (Abf1) and rDNA enhancer binding protein 1 (Reb1), but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. Repair of ultraviolet (UV) damage by nucleotide excision repair (NER) was also inhibited by TF binding. Interestingly, TF binding inhibits a larger DNA region for NER relative to BER. The observed effects are caused by the TF–DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jacob S Antony
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jenna Ulibarri
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| |
Collapse
|
30
|
Stark B, Poon GM, Wyrick JJ. Molecular mechanism of UV damage modulation in nucleosomes. Comput Struct Biotechnol J 2022; 20:5393-5400. [PMID: 36212527 PMCID: PMC9529667 DOI: 10.1016/j.csbj.2022.08.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Exposure to ultraviolet (UV) light causes the formation of mutagenic cyclobutane pyrimidine dimers (CPDs) in cellular DNA. Previous studies have revealed that CPD formation in nucleosomes, the building blocks of chromatin, shows a striking ∼10 base pair (bp) periodic pattern. CPD formation is suppressed at positions where the DNA minor groove faces toward the histone octamer (minor-in) and elevated CPD formation at positions where the minor groove faces away from the histone octamer (minor-out). However, the molecular mechanism underlying this nucleosome photofootprint is unclear. Here, we analyzed ∼180 high-resolution nucleosome structures to characterize whether differences in DNA mobility or conformation are responsible for the CPD modulation in nucleosomes. Our results indicate that differences in DNA mobility cannot explain CPD modulation in nucleosome. Instead, we find that the sharp DNA bending around the histone octamer results in DNA conformations with structural parameters more susceptible to UV damage formation at minor-out positions and more resistant to CPD formation at minor-in positions. This analysis reveals the molecular mechanism responsible for periodic modulation of CPD formation and UV mutagenesis in nucleosomal DNA.
Collapse
|
31
|
Zhao X, Hu AC, Wang S, Wang X. Calling small variants using universality with Bayes-factor-adjusted odds ratios. Brief Bioinform 2021; 23:6427501. [PMID: 34791010 DOI: 10.1093/bib/bbab458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 11/12/2022] Open
Abstract
The application of next-generation sequencing in research and particularly in clinical routine requires highly accurate variant calling. Here we describe UVC, a method for calling small variants of germline or somatic origin. By unifying opposite assumptions with sublation, we discovered the following two empirical laws to improve variant calling: allele fraction at high sequencing depth is inversely proportional to the cubic root of variant-calling error rate, and odds ratios adjusted with Bayes factors can model various sequencing biases. UVC outperformed other variant callers on the GIAB germline truth sets, 192 scenarios of in silico mixtures simulating 192 combinations of tumor/normal sequencing depths and tumor/normal purities, the GIAB somatic truth sets derived from physical mixture, and the SEQC2 somatic reference sets derived from the breast-cancer cell-line HCC1395. UVC achieved 100% concordance with the manual review conducted by multiple independent researchers on a Qiagen 71-gene-panel dataset derived from 16 patients with colon adenoma. UVC outperformed other unique molecular identifier (UMI)-aware variant callers on the datasets used for publishing these variant callers. Performance was measured with sensitivity-specificity trade off for called variants. The improved variant calls generated by UVC from previously published UMI-based sequencing data provided additional insight about DNA damage repair. UVC is open-sourced under the BSD 3-Clause license at https://github.com/genetronhealth/uvc and quay.io/genetronhealth/gcc-6-3-0-uvc-0-6-0-441a694.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Genetron Health (Beijing) Co. Ltd, Beijing 102208, China
| | - Allison C Hu
- Genetron Health (Beijing) Co. Ltd, Beijing 102208, China
| | - Sizhen Wang
- Genetron Health (Beijing) Co. Ltd, Beijing 102208, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
32
|
Sivapragasam S, Stark B, Albrecht AV, Bohm KA, Mao P, Emehiser RG, Roberts SA, Hrdlicka PJ, Poon GMK, Wyrick JJ. CTCF binding modulates UV damage formation to promote mutation hot spots in melanoma. EMBO J 2021; 40:e107795. [PMID: 34487363 DOI: 10.15252/embj.2021107795] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.
Collapse
Affiliation(s)
- Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Bastian Stark
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | | | - Kaitlynne A Bohm
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.,Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | | | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | | | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
33
|
Abstract
Tumour formation involves random mutagenic events and positive evolutionary selection acting on a subset of such events, referred to as driver mutations. A decade of careful surveying of tumour DNA using exome-based analyses has revealed a multitude of protein-coding somatic driver mutations, some of which are clinically actionable. Today, a transition towards whole-genome analysis is well under way, technically enabling the discovery of potential driver mutations occurring outside protein-coding sequences. Mutations are abundant in this vast non-coding space, which is more than 50 times larger than the coding exome, but reliable identification of selection signals in non-coding DNA remains a challenge. In this Review, we discuss recent findings in the field, where the emerging landscape is one in which non-coding driver mutations appear to be relatively infrequent. Nevertheless, we highlight several notable discoveries. We consider possible reasons for the relative absence of non-coding driver events, as well as the difficulties associated with detecting signals of positive selection in non-coding DNA.
Collapse
Affiliation(s)
- Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
34
|
Jin SG, Pettinga D, Johnson J, Li P, Pfeifer GP. The major mechanism of melanoma mutations is based on deamination of cytosine in pyrimidine dimers as determined by circle damage sequencing. SCIENCE ADVANCES 2021; 7:eabi6508. [PMID: 34330711 PMCID: PMC8324051 DOI: 10.1126/sciadv.abi6508] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
Sunlight-associated melanomas carry a unique C-to-T mutation signature. UVB radiation induces cyclobutane pyrimidine dimers (CPDs) as the major form of DNA damage, but the mechanism of how CPDs cause mutations is unclear. To map CPDs at single-base resolution genome wide, we developed the circle damage sequencing (circle-damage-seq) method. In human cells, CPDs form preferentially in a tetranucleotide sequence context (5'-Py-T<>Py-T/A), but this alone does not explain the tumor mutation patterns. To test whether mutations arise at CPDs by cytosine deamination, we specifically mapped UVB-induced cytosine-deaminated CPDs. Transcription start sites (TSSs) were protected from CPDs and deaminated CPDs, but both lesions were enriched immediately upstream of the TSS, suggesting a mutation-promoting role of bound transcription factors. Most importantly, the genomic dinucleotide and trinucleotide sequence specificity of deaminated CPDs matched the prominent mutation signature of melanomas. Our data identify the cytosine-deaminated CPD as the leading premutagenic lesion responsible for mutations in melanomas.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dean Pettinga
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peipei Li
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
35
|
Perez BS, Wong KM, Schwartz EK, Herrera RE, King DA, García-Nieto PE, Morrison AJ. Genome-wide profiles of UV lesion susceptibility, repair, and mutagenic potential in melanoma. Mutat Res 2021; 823:111758. [PMID: 34333390 PMCID: PMC8671223 DOI: 10.1016/j.mrfmmm.2021.111758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Exposure to the ultraviolet (UV) radiation in sunlight creates DNA lesions, which if left unrepaired can induce mutations and contribute to skin cancer. The two most common UV-induced DNA lesions are the cis-syn cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), both of which can initiate mutations. Interestingly, mutation frequency across the genomes of many cancers is heterogenous with significant increases in heterochromatin. Corresponding increases in UV lesion susceptibility and decreases in repair are observed in heterochromatin versus euchromatin. However, the individual contributions of CPDs and 6-4PPs to mutagenesis have not been systematically examined in specific genomic and epigenomic contexts. In this study, we compared genome-wide maps of 6-4PP and CPD lesion abundances in primary cells and conducted comprehensive analyses to determine the genetic and epigenetic features associated with susceptibility. Overall, we found a high degree of similarity between 6-4PP and CPD formation, with an enrichment of both in heterochromatin regions. However, when examining the relative levels of the two UV lesions, we found that bivalent and Polycomb-repressed chromatin states were uniquely more susceptible to 6-4PPs. Interestingly, when comparing UV susceptibility and repair with melanoma mutation frequency in these regions, disparate patterns were observed in that susceptibility was not always inversely associated with repair and mutation frequency. Functional enrichment analysis hint at mechanisms of negative selection for these regions that are essential for cell viability, immune function and induce cell death when mutated. Ultimately, these results reveal both the similarities and differences between UV-induced lesions that contribute to melanoma.
Collapse
Affiliation(s)
- Brian S Perez
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ka Man Wong
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Erin K Schwartz
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Devin A King
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
36
|
Yu D, Horton JR, Yang J, Hajian T, Vedadi M, Sagum CA, Bedford MT, Blumenthal RM, Zhang X, Cheng X. Human MettL3-MettL14 RNA adenine methyltransferase complex is active on double-stranded DNA containing lesions. Nucleic Acids Res 2021; 49:11629-11642. [PMID: 34086966 PMCID: PMC8599731 DOI: 10.1093/nar/gkab460] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer – a major lesion of UV radiation-induced products – or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 – two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.
Collapse
Affiliation(s)
- Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
37
|
Leung WY, Murray V. The influence of DNA methylation on the sequence specificity of UVB- and UVC-induced DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112225. [PMID: 34090037 DOI: 10.1016/j.jphotobiol.2021.112225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Ultraviolet light (UV) is one of the most common DNA damaging agents in the human environment. This paper examined the influence of DNA methylation on the level of UVB- and UVC-induced DNA damage. A purified DNA sequence containing CpG dinucleotides was methylated with a CpG methylase. We employed the linear amplification technique and the end-labelling approach followed by capillary electrophoresis with laser-induced fluorescence to investigate the sequence specificity of UV-induced DNA damage. The linear amplification technique mainly detects cyclobutane pyrimidine dimer (CPD) adducts, while the end-labelling approach mainly detects 6-4 photoproduct (6-4PP) lesions. The levels of CPD and 6-4PP adducts detected in methylated/unmethylated labelled sequences were analysed. The comparison showed that 5-methyl-cytosine significantly reduced the level of both CPD and 6-4PP adducts after UVB (308 nm) and UVC (254 nm) irradiation compared with the non-methylated counterpart.
Collapse
Affiliation(s)
- Wai Y Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
38
|
Yang J, Horton JR, Akdemir KC, Li J, Huang Y, Kumar J, Blumenthal RM, Zhang X, Cheng X. Preferential CEBP binding to T:G mismatches and increased C-to-T human somatic mutations. Nucleic Acids Res 2021; 49:5084-5094. [PMID: 33877329 PMCID: PMC8136768 DOI: 10.1093/nar/gkab276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPβ binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPβ binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir C Akdemir
- Departments of Genomic Medicine and Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Janani Kumar
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Lu C, Gutierrez-Bayona NE, Taylor JS. The effect of flanking bases on direct and triplet sensitized cyclobutane pyrimidine dimer formation in DNA depends on the dipyrimidine, wavelength and the photosensitizer. Nucleic Acids Res 2021; 49:4266-4280. [PMID: 33849058 PMCID: PMC8096240 DOI: 10.1093/nar/gkab214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclobutane pyrimidine dimers (CPDs) are the major products of DNA produced by direct absorption of UV light, and result in C to T mutations linked to human skin cancers. Most recently a new pathway to CPDs in melanocytes has been discovered that has been proposed to arise from a chemisensitized pathway involving a triplet sensitizer that increases mutagenesis by increasing the percentage of C-containing CPDs. To investigate how triplet sensitization may differ from direct UV irradiation, CPD formation was quantified in a 129-mer DNA designed to contain all 64 possible NYYN sequences. CPD formation with UVB light varied about 2-fold between dipyrimidines and 12-fold with flanking sequence and was most frequent at YYYR and least frequent for GYYN sites in accord with a charge transfer quenching mechanism. In contrast, photosensitized CPD formation greatly favored TT over C-containing sites, more so for norfloxacin (NFX) than acetone, in accord with their differing triplet energies. While the sequence dependence for photosensitized TT CPD formation was similar to UVB light, there were significant differences, especially between NFX and acetone that could be largely explained by the ability of NFX to intercalate into DNA.
Collapse
Affiliation(s)
- Chen Lu
- Department of Chemistry, Washington University, One Brookings Dr., St. Louis, MO 63130, USA
| | | | - John-Stephen Taylor
- Department of Chemistry, Washington University, One Brookings Dr., St. Louis, MO 63130, USA
| |
Collapse
|
40
|
Duan M, Speer RM, Ulibarri J, Liu KJ, Mao P. Transcription-coupled nucleotide excision repair: New insights revealed by genomic approaches. DNA Repair (Amst) 2021; 103:103126. [PMID: 33894524 DOI: 10.1016/j.dnarep.2021.103126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
Elongation of RNA polymerase II (Pol II) is affected by many factors including DNA damage. Bulky damage, such as lesions caused by ultraviolet (UV) radiation, arrests Pol II and inhibits gene transcription, and may lead to genome instability and cell death. Cells activate transcription-coupled nucleotide excision repair (TC-NER) to remove Pol II-impeding damage and allow transcription resumption. TC-NER initiation in humans is mediated by Cockayne syndrome group B (CSB) protein, which binds to the stalled Pol II and promotes assembly of the repair machinery. Given the complex nature of the TC-NER pathway and its unique function at the interface between transcription and repair, new approaches are required to gain in-depth understanding of the mechanism. Advances in genomic approaches provide an important opportunity to investigate how TC-NER is initiated upon damage-induced Pol II stalling and what factors are involved in this process. In this Review, we discuss new mechanisms of TC-NER revealed by genome-wide DNA damage mapping and new TC-NER factors identified by high-throughput screening. As TC-NER conducts strand-specific repair of mutagenic damage, we also discuss how this repair pathway causes mutational strand asymmetry in the cancer genome.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jenna Ulibarri
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
41
|
A streamlined solution for processing, elucidating and quality control of cyclobutane pyrimidine dimer sequencing data. Nat Protoc 2021; 16:2190-2212. [PMID: 33731963 DOI: 10.1038/s41596-021-00496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/06/2021] [Indexed: 01/13/2023]
Abstract
UV radiation may lead to melanoma and nonmelanoma skin cancers by causing helix-distorting DNA damage such as cyclobutane pyrimidine dimers (CPDs). These DNA lesions, if located in important genes and not repaired promptly, are mutagenic and may eventually result in carcinogenesis. Examining CPD formation and repair processes across the genome can shed light on the mutagenesis mechanisms associated with UV damage in relevant cancers. We recently developed CPD-Seq, a high-throughput and single-nucleotide resolution sequencing technique that can specifically capture UV-induced CPD lesions across the genome. This novel technique has been increasingly used in studies of UV damage and can be adapted to sequence other clinically relevant DNA lesions. Although the library preparation protocol has been established, a systematic protocol to analyze CPD-Seq data has not been described yet. To streamline the various general or specific analysis steps, we developed a protocol named CPDSeqer to assist researchers with CPD-Seq data processing. CPDSeqer can accommodate both a single- and multiple-sample experimental design, and it allows both genome-wide analyses and regional scrutiny (such as of suspected UV damage hotspots). The runtime of CPDSeqer scales with raw data size and takes roughly 4 h per sample with the possibility of acceleration by parallel computing. Various guiding graphics are generated to help diagnose the performance of the experiment and inform regional enrichment of CPD formation. UV damage comparison analyses are set forth in three analysis scenarios, and the resulting HTML pages report damage directional trends and statistical significance. CPDSeqer can be accessed at https://github.com/shengqh/cpdseqer .
Collapse
|
42
|
Heilbrun EE, Merav M, Adar S. Exons and introns exhibit transcriptional strand asymmetry of dinucleotide distribution, damage formation and DNA repair. NAR Genom Bioinform 2021; 3:lqab020. [PMID: 33817640 PMCID: PMC8002178 DOI: 10.1093/nargab/lqab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Recent cancer sequencing efforts have uncovered asymmetry in DNA damage induced mutagenesis between the transcribed and non-transcribed strands of genes. Here, we investigate the major type of damage induced by ultraviolet (UV) radiation, the cyclobutane pyrimidine dimers (CPDs), which are formed primarily in TT dinucleotides. We reveal that a transcriptional asymmetry already exists at the level of TT dinucleotide frequency and therefore also in CPD damage formation. This asymmetry is conserved in vertebrates and invertebrates and is completely reversed between introns and exons. We show the asymmetry in introns is linked to the transcription process itself, and is also found in enhancer elements. In contrast, the asymmetry in exons is not correlated to transcription, and is associated with codon usage preferences. Reanalysis of nucleotide excision repair, normalizing repair to the underlying TT frequencies, we show repair of CPDs is more efficient in exons compared to introns, contributing to the maintenance and integrity of coding regions. Our results highlight the importance of considering the primary sequence of the DNA in determining DNA damage sensitivity and mutagenic potential.
Collapse
Affiliation(s)
- Elisheva E Heilbrun
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel
| | - May Merav
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel
| |
Collapse
|
43
|
Frigola J, Sabarinathan R, Gonzalez-Perez A, Lopez-Bigas N. Variable interplay of UV-induced DNA damage and repair at transcription factor binding sites. Nucleic Acids Res 2021; 49:891-901. [PMID: 33347579 PMCID: PMC7826277 DOI: 10.1093/nar/gkaa1219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
An abnormally high rate of UV-light related mutations appears at transcription factor binding sites (TFBS) across melanomas. The binding of transcription factors (TFs) to the DNA impairs the repair of UV-induced lesions and certain TFs have been shown to increase the rate of generation of these lesions at their binding sites. However, the precise contribution of these two elements to the increase in mutation rate at TFBS in these malignant cells is not understood. Here, exploiting nucleotide-resolution data, we computed the rate of formation and repair of UV-lesions within the binding sites of TFs of different families. We observed, at certain dipyrimidine positions within the binding site of TFs in the Tryptophan Cluster family, an increased rate of formation of UV-induced lesions, corroborating previous studies. Nevertheless, across most families of TFs, the observed increased mutation rate within the entire DNA region covered by the protein results from the decreased repair efficiency. While the rate of mutations across all TFBS does not agree with the amount of UV-induced lesions observed immediately after UV exposure, it strongly agrees with that observed after 48 h. This corroborates the determinant role of the impaired repair in the observed increase of mutation rate.
Collapse
Affiliation(s)
- Joan Frigola
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.,Thoracictumors and head and neck cancer group, Vall d'Hebron Institute of Oncology. Natzaret, 115-117, 08035, Barcelona, Spain
| | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.,Research Program on Biomedical Informatics, Universitat Pompeu Fabra,Barcelona, Catalonia, Spain
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.,Research Program on Biomedical Informatics, Universitat Pompeu Fabra,Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
44
|
Jiang Y, Li W, Lindsey-Boltz LA, Yang Y, Li Y, Sancar A. Super hotspots and super coldspots in the repair of UV-induced DNA damage in the human genome. J Biol Chem 2021; 296:100581. [PMID: 33771559 PMCID: PMC8081918 DOI: 10.1016/j.jbc.2021.100581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The formation of UV-induced DNA damage and its repair are influenced by many factors that modulate lesion formation and the accessibility of repair machinery. However, it remains unknown which genomic sites are prioritized for immediate repair after UV damage induction, and whether these prioritized sites overlap with hotspots of UV damage. We identified the super hotspots subject to the earliest repair for (6-4) pyrimidine-pyrimidone photoproduct by using the eXcision Repair-sequencing (XR-seq) method. We further identified super coldspots for (6-4) pyrimidine-pyrimidone photoproduct repair and super hotspots for cyclobutane pyrimidine dimer repair by analyzing available XR-seq time-course data. By integrating datasets of XR-seq, Damage-seq, adductSeq, and cyclobutane pyrimidine dimer-seq, we show that neither repair super hotspots nor repair super coldspots overlap hotspots of UV damage. Furthermore, we demonstrate that repair super hotspots are significantly enriched in frequently interacting regions and superenhancers. Finally, we report our discovery of an enrichment of cytosine in repair super hotspots and super coldspots. These findings suggest that local DNA features together with large-scale chromatin features contribute to the orders of magnitude variability in the rates of UV damage repair.
Collapse
Affiliation(s)
- Yuchao Jiang
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Wentao Li
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yuchen Yang
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Computer Science, College of Arts and Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
45
|
Dragani TA. Difficulties in establishing a causal link between chemical exposures and cancer cannot be overcome by court assessments. Hum Exp Toxicol 2020; 39:1095-1107. [PMID: 32153198 DOI: 10.1177/0960327120911426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Scientific data are often used in lawsuits to prove, or dismiss, causation by a claimed factor of a claimed disease. Recent media reports of million-dollar compensations awarded to some cancer patients who had been exposed to certain chemical substances motivated me to examine how solid the causal links really were. Here, I discuss the limitations of epidemiological research on cancer causation and highlight how new knowledge of cancer genetics makes it unrealistic to expect that cancer causation can be clearly demonstrated. I then present two exposure-cancer cases, namely talcum powder-ovarian cancer and glyphosate-non-Hodgkin lymphoma, that led to civil lawsuits decided, in the United States, in favor of the claimants. Both these cancers have several risk factors, among which the claimed exposure presents only a minor, if any, increased risk. Through these cases, I explain why the use of epidemiological data is inappropriate to define causal associations in complex diseases like cancer. I close by suggesting a fairer approach, called proportional liability, to resolving future cancer litigation cases.
Collapse
Affiliation(s)
- T A Dragani
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
46
|
Rodríguez-Martínez M, Boissiére T, Noe Gonzalez M, Litchfield K, Mitter R, Walker J, Kjœr S, Ismail M, Downward J, Swanton C, Svejstrup JQ. Evidence That STK19 Is Not an NRAS-dependent Melanoma Driver. Cell 2020; 181:1395-1405.e11. [PMID: 32531245 PMCID: PMC7298618 DOI: 10.1016/j.cell.2020.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
STK19 was proposed to be a cancer driver, and recent work by Yin et al. (2019) in Cell suggested that the frequently recurring STK19 D89N substitution represents a gain-of-function change, allowing increased phosphorylation of NRAS to enhance melanocyte transformation. Here we show that the STK19 gene has been incorrectly annotated, and that the expressed protein is 110 amino acids shorter than indicated by current databases. The "cancer driving" STK19 D89N substitution is thus outside the coding region. We also fail to detect evidence of the mutation affecting STK19 expression; instead, it is a UV signature mutation, found in the promoter of other genes as well. Furthermore, STK19 is exclusively nuclear and chromatin-associated, while no evidence for it being a kinase was found. The data in this Matters Arising article raise fundamental questions about the recently proposed role for STK19 in melanoma progression via a function as an NRAS kinase, suggested by Yin et al. (2019) in Cell. See also the response by Yin et al. (2020), published in this issue.
Collapse
Affiliation(s)
- Marta Rodríguez-Martínez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Thierry Boissiére
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Svend Kjœr
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mohamed Ismail
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
47
|
Lee JW, Ratnakumar K, Hung KF, Rokunohe D, Kawasumi M. Deciphering UV-induced DNA Damage Responses to Prevent and Treat Skin Cancer. Photochem Photobiol 2020; 96:478-499. [PMID: 32119110 DOI: 10.1111/php.13245] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.
Collapse
Affiliation(s)
- Jihoon W Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kajan Ratnakumar
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kai-Feng Hung
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Daiki Rokunohe
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
48
|
Abstract
Ultraviolet (UV) irradiation causes various types of DNA damage, which leads to specific mutations and the emergence of skin cancer in humans, often decades after initial exposure. Different UV wavelengths cause the formation of prominent UV-induced DNA lesions. Most of these lesions are removed by the nucleotide excision repair pathway, which is defective in rare genetic skin disorders referred to as xeroderma pigmentosum. A major role in inducing sunlight-dependent skin cancer mutations is assigned to the cyclobutane pyrimidine dimers (CPDs). In this review, we discuss the mechanisms of UV damage induction, the genomic distribution of this damage, relevant DNA repair mechanisms, the proposed mechanisms of how UV-induced CPDs bring about DNA replication-dependent mutagenicity in mammalian cells, and the strong signature of UV damage and mutagenesis found in skin cancer genomes.
Collapse
|
49
|
Gonzalez-Perez A, Sabarinathan R, Lopez-Bigas N. Local Determinants of the Mutational Landscape of the Human Genome. Cell 2020; 177:101-114. [PMID: 30901533 DOI: 10.1016/j.cell.2019.02.051] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Abstract
Large-scale chromatin features, such as replication time and accessibility influence the rate of somatic and germline mutations at the megabase scale. This article reviews how local chromatin structures -e.g., DNA wrapped around nucleosomes, transcription factors bound to DNA- affect the mutation rate at a local scale. It dissects how the interaction of some mutagenic agents and/or DNA repair systems with these local structures influence the generation of mutations. We discuss how this local mutation rate variability affects our understanding of the evolution of the genomic sequence, and the study of the evolution of organisms and tumors.
Collapse
Affiliation(s)
- Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
50
|
Premi S, Han L, Mehta S, Knight J, Zhao D, Palmatier MA, Kornacker K, Brash DE. Genomic sites hypersensitive to ultraviolet radiation. Proc Natl Acad Sci U S A 2019; 116:24196-24205. [PMID: 31723047 PMCID: PMC6883822 DOI: 10.1073/pnas.1907860116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at A2-15TTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Lynn Han
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Sameet Mehta
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - James Knight
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Meg A Palmatier
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Karl Kornacker
- Karl Kornacker & Associates, LLC, Worthington, OH 43085;
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040;
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|