1
|
Eisfeldt J, Ameur A, Lenner F, Ten Berk de Boer E, Ek M, Wincent J, Vaz R, Ottosson J, Jonson T, Ivarsson S, Thunström S, Topa A, Stenberg S, Rohlin A, Sandestig A, Nordling M, Palmebäck P, Burstedt M, Nordin F, Stattin EL, Sobol M, Baliakas P, Bondeson ML, Höijer I, Saether KB, Lovmar L, Ehrencrona H, Melin M, Feuk L, Lindstrand A. A national long-read sequencing study on chromosomal rearrangements uncovers hidden complexities. Genome Res 2024; 34:1774-1784. [PMID: 39472022 DOI: 10.1101/gr.279510.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Clinical genetic laboratories often require a comprehensive analysis of chromosomal rearrangements/structural variants (SVs), from large events like translocations and inversions to supernumerary ring/marker chromosomes and small deletions or duplications. Understanding the complexity of these events and their clinical consequences requires pinpointing breakpoint junctions and resolving the derivative chromosome structure. This task often surpasses the capabilities of short-read sequencing technologies. In contrast, long-read sequencing techniques present a compelling alternative for clinical diagnostics. Here, Genomic Medicine Sweden-Rare Diseases has explored the utility of HiFi Revio long-read genome sequencing (lrGS) for digital karyotyping of SVs nationwide. The 16 samples from 13 families were collected from all Swedish healthcare regions. Prior investigations had identified 16 SVs, ranging from simple to complex rearrangements, including inversions, translocations, and copy number variants. We have established a national pipeline and a shared variant database for variant calling and filtering. Using lrGS, 14 of the 16 known SVs are detected. Of these, 13 are mapped at nucleotide resolution, and one complex rearrangement is only visible by read depth. Two Chromosome 21 rearrangements, one mosaic, remain undetected. Average read lengths are 8.3-18.8 kb with coverage exceeding 20× for all samples. De novo assembly results in a limited number of phased contigs per individual (N50 6-86 Mb), enabling direct characterization of the chromosomal rearrangements. In a national pilot study, we demonstrate the utility of HiFi Revio lrGS for analyzing chromosomal rearrangements. Based on our results, we propose a 5-year plan to expand lrGS use for rare disease diagnostics in Sweden.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Felix Lenner
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Esmee Ten Berk de Boer
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jesper Ottosson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Tord Jonson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Sofie Ivarsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Sofia Thunström
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Alexandra Topa
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Simon Stenberg
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna Sandestig
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
| | - Margareta Nordling
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Pia Palmebäck
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
| | - Magnus Burstedt
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, 901 87 Umeå, Sweden
| | - Frida Nordin
- Department of Pharmacology and Clinical Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Malin Melin
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
2
|
Cheng D, Ibrahim H, Luo K, Gu Y, Xie P, Xiao Y, Cai J, Wu X, Lin G, Tan Y, Hu L. Characterization of cryptic complex chromosome rearrangements in balanced chromosomal rearrangement carriers and their PGT-SR clinical outcome assessments. Sci Rep 2024; 14:20705. [PMID: 39237551 PMCID: PMC11377696 DOI: 10.1038/s41598-024-70566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Several reports have presented that balanced chromosomal rearrangements (BCRs) carriers with normal phenotypes may be carriers of complex rearrangements. However, the incidence and PGT clinical outcomes of cryptic complex chromosome rearrangements (CCCRs) in individuals with BCRs is remain unknown. We recruited a cohort of 1,264 individuals with BCR carriers from 2016 to 2021 at the Reproductive and Genetic Hospital of CITIC Xiangya. Peripheral blood was collected for karyotyping and genomic DNA extraction and the PGT-SR clinical outcomes of CCCRs carriers were analyzed and compared with those of BCR carriers. Our findings revealed that 3.6% (45/1,264) of BCR carriers had CCCRs, involving 3-25 breakpoints on 1-3 chromosomes. Furthermore, when mate-pair sequencing was employed, 63.3% (19/30) of CCCR carriers were found to have chromosome rearrangements that were different from those identified by the MicroSeq technique. And the transferable embryo rate of CCCR carriers with 3 chromosomes was significantly lower than that of CCCR carriers with only 1-2 chromosomes. In this research, we revealed that some of the BCR carriers were actually CCCR carriers, and the prognosis of PGT in CCCR carriers with one or two chromosomes is better than that of CCCR carriers with three chromosomes.
Collapse
Affiliation(s)
- Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China
| | - Hebatallah Ibrahim
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Keli Luo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Yifan Gu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Pingyuan Xie
- Hunan Normal University School of Medicine, Changsha, 410013, China
- Hunan Guangxiu Hospital, Changsha, 410013, Hunan, China
| | - Yanqin Xiao
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Jingpeng Cai
- Hunan Guangxiu Hospital, Changsha, 410013, Hunan, China
| | - Xianhong Wu
- Hunan Guangxiu Hospital, Changsha, 410013, Hunan, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Yueqiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China.
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China.
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China.
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Schuy J, Sæther KB, Lisfeld J, Ek M, Grochowski CM, Lun MY, Hastie A, Rudolph S, Fuchs S, Neveling K, Hempel M, Hoischen A, Pettersson M, Carvalho CM, Eisfeldt J, Lindstrand A. A combination of long- and short-read genomics reveals frequent p-arm breakpoints within chromosome 21 complex genomic rearrangements. GENETICS IN MEDICINE OPEN 2024; 2:101863. [PMID: 39669604 PMCID: PMC11613786 DOI: 10.1016/j.gimo.2024.101863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 12/14/2024]
Abstract
Purpose Although chromosome 21 is the smallest human chromosome, it is highly relevant in the pathogenicity of both cancer and congenital diseases, including Alzheimer disease and trisomy 21 (Down syndrome). In addition, cases with rare structural variants (SVs) of chromosome 21 have been reported. These events vary in size and include large chromosomal events, such as ring chromosomes and small partial aneuploidies. The p-arm of the acrocentric chromosome 21 was devoid of reference genomic sequence in GRCh37 and GRCh38, which hampered our ability to solve genomic rearrangements and find the mechanism of formation of disease-causing SVs. We hypothesize that conserved satellite structures and segmental duplications located on the p-arm play an important role in the formation of complex SVs involving chromosome 21. Methods Three cases with complex chromosome 21 rearrangements were studied with a combination of short-read and long-read genome sequencing, as well as optical genome mapping. The data were aligned to the T2T-CHM13 assembly. Results We were able to resolve all 3 complex chromosome 21 rearrangements in which 15, 8, and 26 breakpoints were identified, respectively. By comparing the identified SV breakpoints, we were able to pinpoint a region between 21p13 and 21p12 that appears to be frequently involved in chromosome 21 rearrangements. Importantly, we observed acrocentric satellite DNA at several breakpoint junctions suggesting an important role for those elements in the formation of complex SVs. Conclusion Taken together, our results provide further insights into the architecture and underlying mechanisms of complex rearrangements on acrocentric chromosomes.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bilgrav Sæther
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Ek
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Ming Yin Lun
- Pacific Northwest Research Institute, Seattle, WA
| | | | - Susanne Rudolph
- Gemeinschaftspraxis für Humangenetik und Genetische Labore, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kornelia Neveling
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Ten Berk de Boer E, Ameur A, Bunikis I, Ek M, Stattin EL, Feuk L, Eisfeldt J, Lindstrand A. Long-read sequencing and optical mapping generates near T2T assemblies that resolves a centromeric translocation. Sci Rep 2024; 14:9000. [PMID: 38637641 PMCID: PMC11026446 DOI: 10.1038/s41598-024-59683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/13/2024] [Indexed: 04/20/2024] Open
Abstract
Long-read genome sequencing (lrGS) is a promising method in genetic diagnostics. Here we investigate the potential of lrGS to detect a disease-associated chromosomal translocation between 17p13 and the 19 centromere. We constructed two sets of phased and non-phased de novo assemblies; (i) based on lrGS only and (ii) hybrid assemblies combining lrGS with optical mapping using lrGS reads with a median coverage of 34X. Variant calling detected both structural variants (SVs) and small variants and the accuracy of the small variant calling was compared with those called with short-read genome sequencing (srGS). The de novo and hybrid assemblies had high quality and contiguity with N50 of 62.85 Mb, enabling a near telomere to telomere assembly with less than a 100 contigs per haplotype. Notably, we successfully identified the centromeric breakpoint of the translocation. A concordance of 92% was observed when comparing small variant calling between srGS and lrGS. In summary, our findings underscore the remarkable potential of lrGS as a comprehensive and accurate solution for the analysis of SVs and small variants. Thus, lrGS could replace a large battery of genetic tests that were used for the diagnosis of a single symptomatic translocation carrier, highlighting the potential of lrGS in the realm of digital karyotyping.
Collapse
Affiliation(s)
- Esmee Ten Berk de Boer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65, Solna, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36, Uppsala, Sweden
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36, Uppsala, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65, Solna, Sweden.
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
5
|
Budurlean L, Tukaramrao DB, Zhang L, Dovat S, Broach J. Integrating Optical Genome Mapping and Whole Genome Sequencing in Somatic Structural Variant Detection. J Pers Med 2024; 14:291. [PMID: 38541033 PMCID: PMC10971281 DOI: 10.3390/jpm14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Structural variants drive tumorigenesis by disrupting normal gene function through insertions, inversions, translocations, and copy number changes, including deletions and duplications. Detecting structural variants is crucial for revealing their roles in tumor development, clinical outcomes, and personalized therapy. Presently, most studies rely on short-read data from next-generation sequencing that aligns back to a reference genome to determine if and, if so, where a structural variant occurs. However, structural variant discovery by short-read sequencing is challenging, primarily because of the difficulty in mapping regions of repetitive sequences. Optical genome mapping (OGM) is a recent technology used for imaging and assembling long DNA strands to detect structural variations. To capture the structural variant landscape more thoroughly in the human genome, we developed an integrated pipeline that combines Bionano OGM and Illumina whole-genome sequencing and applied it to samples from 29 pediatric B-ALL patients. The addition of OGM allowed us to identify 511 deletions, 506 insertions, 93 duplications/gains, and 145 translocations that were otherwise missed in the short-read data. Moreover, we identified several novel gene fusions, the expression of which was confirmed by RNA sequencing. Our results highlight the benefit of integrating OGM and short-read detection methods to obtain a comprehensive analysis of genetic variation that can aid in clinical diagnosis, provide new therapeutic targets, and improve personalized medicine in cancers driven by structural variation.
Collapse
Affiliation(s)
- Laura Budurlean
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Lijun Zhang
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sinisa Dovat
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Pediatrics, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - James Broach
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Wu Y, Liao C, Xie Y, Wang L. Prenatal Diagnosis of a de novo 2q14.3-q22.1 Deletion with Complex Chromosomal Rearrangement. Mol Syndromol 2024; 15:71-76. [PMID: 38357262 PMCID: PMC10862312 DOI: 10.1159/000531769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/27/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Chromosomal aberrations due to complex chromosomal rearrangements (CCRs) can cause abnormal phenotypes if accompanied by microdeletions or microduplications near the breakpoint, or gene breaks. Case Presentation We report a prenatal diagnostic case of 2q14.3-q22.1 deletion with ultrasound suggestive of absent nasal bone accompanied by CCRs involving 6 chromosomes. Cytogenetic analysis revealed a karyotype of 46,XY,der(1)t(1;2)(p13.3;p11.2),der(2)t(1;2)inv(2)(q12q14.2)del(2)(q14.3q22.1),t(12;16)(q21.2;q12.1),t(13;21)(q32;q22.1). Chromosomal microarray analysis identified a 14.90 Mb deletion on 2q14.3q22.1. The copy number variant was de novo, as determined by karyotype analysis of the parents' peripheral blood G-banding. Conclusion The region contains haploinsufficient genes that can cause different phenotypes, mainly associated with neurodevelopmental and autism spectrum disorders. However, the genotype-phenotype correlation is limited in prenatal evaluation. Therefore, the combined use of multiple diagnostic techniques has an important role in the assessment of CCRs and genetic counseling.
Collapse
Affiliation(s)
- Yong Wu
- Prenatal Diagnosis Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuanning Liao
- Prenatal Diagnosis Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yamei Xie
- Prenatal Diagnosis Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxi Wang
- Prenatal Diagnosis Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Hao N, Lou H, Li M, Zhang H, Chang J, Qi Q, Zhou X, Bai J, Guo J, Wang Y, Zhang Y, Jiang Y. Analysis of complex chromosomal rearrangement involving chromosome 6 via the integration of optical genomic mapping and molecular cytogenetic methodologies. J Hum Genet 2024; 69:3-11. [PMID: 37821671 DOI: 10.1038/s10038-023-01197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Complex chromosomal rearrangements (CCRs) can result in spontaneous abortions, infertility, and malformations in newborns. In this study, we explored a familial CCR involving chromosome 6 by combining optical genomic mapping (OGM) and molecular cytogenetic methodologies. Within this family, the father and the paternal grandfather were both asymptomatic carriers of an identical balanced CCR, while the two offspring with an unbalanced paternal-origin CCR and two microdeletions presented with clinical manifestation. The first affected child, a 5-year-old boy, exhibited neurodevelopmental delay, while the second, a fetus, presented with hydrops fetalis. SNP-genotype analysis revealed a recombination event during gamete formation in the father that may have contributed to the deletion in his offspring. Meanwhile, the couple's haplotypes will facilitate the selection of normal gametes in the setting of assisted reproduction. Our study demonstrated the potential of OGM in identifying CCRs and its ability to work with current methodologies to refine precise breakpoints and construct accurate haplotypes for couples with a CCR.
Collapse
Affiliation(s)
- Na Hao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Mengmeng Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanzhe Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiazhen Chang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingwei Qi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiya Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | - Yaru Wang
- Ecobono (Beijing) Biotech Co., Ltd, Beijing, China
| | - Yanli Zhang
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, China
| | - Yulin Jiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Shi S, Huang P, Yan R, Li R. Identification of complex and cryptic chromosomal rearrangements by optical genome mapping. Mol Cytogenet 2023; 16:5. [PMID: 37101225 PMCID: PMC10134526 DOI: 10.1186/s13039-023-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Optical genome mapping (OGM) has developed into a highly promising method for detecting structural variants (SVs) in human genomes. Complex chromosomal rearrangements (CCRs) and cryptic translocations are rare events that are considered difficult to detect by routine cytogenetic methods. In this study, OGM was applied to delineate the precise chromosomal rearrangements in three cases with uncertain or unconfirmed CCRs detected by conventional karyotyping and one case with a cryptic translocation suggested by fetal chromosomal microarray analysis (CMA). RESULTS In the three cases with CCRs, OGM not only confirmed or revised the original karyotyping results but also refined the precise chromosomal structures. In the case with a suspected translocation not detected by karyotyping, OGM efficiently identified the cryptic translocation and defined the genomic breakpoints with relatively high accuracy. CONCLUSIONS Our study confirmed OGM as a robust alternative approach to karyotyping for the detection of chromosomal structural rearrangements, including CCRs and cryptic translocations.
Collapse
Affiliation(s)
- Shanshan Shi
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, People's Republic of China
| | - Peizhi Huang
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruiling Yan
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, People's Republic of China.
| | - Ruiman Li
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
9
|
Gao H, Xu H, Wang C, Cui L, Huang X, Li W, Yue Z, Tian S, Zhao X, Xue T, Xing T, Li J, Wang Y, Zhang R, Li Z, Wang T. Optical Genome Mapping for Comprehensive Assessment of Chromosomal Aberrations and Discovery of New Fusion Genes in Pediatric B-Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 15:35. [PMID: 36612032 PMCID: PMC9817688 DOI: 10.3390/cancers15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess the potential added value of Optical Genomic Mapping (OGM) for identifying chromosomal aberrations. METHODS We utilized Optical Genomic Mapping (OGM) to determine chromosomal aberrations in 46 children with B-cell Acute lymphoblastic leukemia ALL (B-ALL) and compared the results of OGM with conventional technologies. Partial detection results were verified by WGS and PCR. RESULTS OGM showed a good concordance with conventional cytogenetic techniques in identifying the reproducible and pathologically significant genomic SVs. Two new fusion genes (LMNB1::PPP2R2B and TMEM272::KDM4B) were identified by OGM and verified by WGS and RT-PCR for the first time. OGM has a greater ability to detect complex chromosomal aberrations, refine complicated karyotypes, and identify more SVs. Several novel fusion genes and single-gene alterations, associated with definite or potential pathologic significance that had not been detected by traditional methods, were also identified. CONCLUSION OGM addresses some of the limitations associated with conventional cytogenomic testing. This all-in-one process allows the detection of most major genomic risk markers in one test, which may have important meanings for the development of leukemia pathogenesis and targeted drugs.
Collapse
Affiliation(s)
- Huixia Gao
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chanjuan Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Lei Cui
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Xiaotong Huang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Weijing Li
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Zhixia Yue
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Shuo Tian
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Xiaoxi Zhao
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Tianlin Xue
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Tianyu Xing
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Jun Li
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Ying Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Ruidong Zhang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Zhigang Li
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Tianyou Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| |
Collapse
|
10
|
Eisfeldt J, Rezayee F, Pettersson M, Lagerstedt K, Malmgren H, Falk A, Grigelioniene G, Lindstrand A. Multi-omics analysis reveals multiple mechanisms causing Prader-Willi like syndrome in a family with a X;15 translocation. Hum Mutat 2022; 43:1567-1575. [PMID: 35842787 PMCID: PMC9796698 DOI: 10.1002/humu.24440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Prader-Willi syndrome (PWS; MIM# 176270) is a neurodevelopmental disorder caused by the loss of expression of paternally imprinted genes within the PWS region located on 15q11.2. It is usually caused by either maternal uniparental disomy of chromosome 15 (UPD15) or 15q11.2 recurrent deletion(s). Here, we report a healthy carrier of a balanced X;15 translocation and her two daughters, both with the karyotype 45,X,der(X)t(X;15)(p22;q11.2),-15. Both daughters display symptoms consistent with haploinsufficiency of the SHOX gene and PWS. We explored the architecture of the derivative chromosomes and investigated effects on gene expression in patient-derived neural cells. First, a multiplex ligation-dependent probe amplification methylation assay was used to determine the methylation status of the PWS-region revealing maternal UPD15 in daughter 2, explaining her clinical symptoms. Next, short read whole genome sequencing and 10X genomics linked read sequencing was used to pinpoint the exact breakpoints of the translocation. Finally, we performed transcriptome sequencing on neuroepithelial stem cells from the mother and from daughter 1 and observed biallelic expression of genes in the PWS region (including SNRPN) in daughter 1. In summary, our multi-omics analysis highlights two different PWS mechanisms in one family and provide an example of how structural variation can affect imprinting through long-range interactions.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and SurgeryKarolinska InstitutetSolnaSweden,Department of Clinical GeneticsKarolinska University HospitalStockholmSweden,Science for Life LaboratoryKarolinska Institutet Science ParkSolnaSweden
| | - Fatemah Rezayee
- Department of Molecular Medicine and SurgeryKarolinska InstitutetSolnaSweden,Department of Clinical GeneticsKarolinska University HospitalStockholmSweden
| | - Maria Pettersson
- Department of Molecular Medicine and SurgeryKarolinska InstitutetSolnaSweden,Department of Clinical GeneticsKarolinska University HospitalStockholmSweden
| | - Kristina Lagerstedt
- Department of Molecular Medicine and SurgeryKarolinska InstitutetSolnaSweden,Department of Clinical GeneticsKarolinska University HospitalStockholmSweden
| | - Helena Malmgren
- Department of Molecular Medicine and SurgeryKarolinska InstitutetSolnaSweden,Department of Clinical GeneticsKarolinska University HospitalStockholmSweden
| | - Anna Falk
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and SurgeryKarolinska InstitutetSolnaSweden,Department of Clinical GeneticsKarolinska University HospitalStockholmSweden
| | - Anna Lindstrand
- Department of Molecular Medicine and SurgeryKarolinska InstitutetSolnaSweden,Department of Clinical GeneticsKarolinska University HospitalStockholmSweden
| |
Collapse
|
11
|
Schuy J, Grochowski CM, Carvalho CMB, Lindstrand A. Complex genomic rearrangements: an underestimated cause of rare diseases. Trends Genet 2022; 38:1134-1146. [PMID: 35820967 PMCID: PMC9851044 DOI: 10.1016/j.tig.2022.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 01/24/2023]
Abstract
Complex genomic rearrangements (CGRs) are known contributors to disease but are often missed during routine genetic screening. Identifying CGRs requires (i) identifying copy number variants (CNVs) concurrently with inversions, (ii) phasing multiple breakpoint junctions incis, as well as (iii) detecting and resolving structural variants (SVs) within repeats. We demonstrate how combining cytogenetics and new sequencing methodologies is being successfully applied to gain insights into the genomic architecture of CGRs. In addition, we review CGR patterns and molecular features revealed by studying constitutional genomic disorders. These data offer invaluable lessons to individuals interested in investigating CGRs, evaluating their clinical relevance and frequency, as well as assessing their impact(s) on rare genetic diseases.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Pacific Northwest Research Institute, Seattle, WA, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Wang C, Dai J, Qin N, Fan J, Ma H, Chen C, An M, Zhang J, Yan C, Gu Y, Xie Y, He Y, Jiang Y, Zhu M, Song C, Jiang T, Liu J, Zhou J, Wang N, Hua T, Liang S, Wang L, Xu J, Yin R, Chen L, Xu L, Jin G, Lin D, Hu Z, Shen H. Analyses of rare predisposing variants of lung cancer in 6,004 whole genomes in Chinese. Cancer Cell 2022; 40:1223-1239.e6. [PMID: 36113475 DOI: 10.1016/j.ccell.2022.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
We present the largest whole-genome sequencing (WGS) study of non-small cell lung cancer (NSCLC) to date among 6,004 individuals of Chinese ancestry, coupled with 23,049 individuals genotyped by SNP array. We construct a high-quality haplotype reference panel for imputation and identify 20 common and low-frequency loci (minor allele frequency [MAF] ≥ 0.5%), including five loci that have never been reported before. For rare loss-of-function (LoF) variants (MAF < 0.5%), we identify BRCA2 and 18 other cancer predisposition genes that affect 5.29% of individuals with NSCLC, and 98.91% (181 of 183) of LoF variants have not been linked previously to NSCLC risk. Promoter variants of BRCA2 also have a substantial effect on NSCLC risk, and their prevalence is comparable with BRCA2 LoF variants. The associations are validated in an independent case-control study including 4,410 individuals and a prospective cohort study including 23,826 individuals. Our findings not only provide a high-quality reference panel for future array-based association studies but depict the whole picture of rare pathogenic variants for NSCLC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Juncheng Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Na Qin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jingyi Fan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Congcong Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingxing An
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiwang Yan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yayun Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanlin He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ci Song
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jia Liu
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jun Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Nanxi Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Hua
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuang Liang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lu Wang
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jing Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Guangfu Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
13
|
Eisfeldt J, Schuy J, Stattin EL, Kvarnung M, Falk A, Feuk L, Lindstrand A. Multi-Omic Investigations of a 17-19 Translocation Links MINK1 Disruption to Autism, Epilepsy and Osteoporosis. Int J Mol Sci 2022; 23:ijms23169392. [PMID: 36012658 PMCID: PMC9408972 DOI: 10.3390/ijms23169392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes and, in symptomatic carriers, pinpoint the disease-causing mechanisms. Here, we report an individual with autism, epilepsy and osteoporosis and a de novo balanced reciprocal translocation: t(17;19) (p13;p11). The genomic DNA was analyzed by short-, linked- and long-read genome sequencing, as well as optical mapping. Transcriptional consequences were assessed by transcriptome sequencing of patient-specific neuroepithelial stem cells derived from induced pluripotent stem cells (iPSC). The translocation breakpoints were only detected by long-read sequencing, the first on 17p13, located between exon 1 and exon 2 of MINK1 (Misshapen-like kinase 1), and the second in the chromosome 19 centromere. Functional validation in induced neural cells showed that MINK1 expression was reduced by >50% in the patient’s cells compared to healthy control cells. Furthermore, pathway analysis revealed an enrichment of changed neural pathways in the patient’s cells. Altogether, our multi-omics experiments highlight MINK1 as a candidate monogenic disease gene and show the advantages of long-read genome sequencing in capturing centromeric translocations.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Jakob Schuy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence: ; Tel.: +46-70-543-6593
| |
Collapse
|
14
|
Li D, Strong A, Hou C, Downes H, Pritchard AB, Mazzeo P, Zackai EH, Conlin LK, Hakonarson H. Interstitial deletion 4p15.32p16.1 and complex chromoplexy in a female proband with severe neurodevelopmental delay, growth failure and dysmorphism. Mol Cytogenet 2022; 15:33. [PMID: 35932041 PMCID: PMC9354344 DOI: 10.1186/s13039-022-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Complex chromosomal rearrangements involve the restructuring of genetic material within a single chromosome or across multiple chromosomes. These events can cause serious human disease by disrupting coding DNA and gene regulatory elements via deletions, duplications, and structural rearrangements. Here we describe a 5-year-old female with severe developmental delay, dysmorphic features, multi-suture craniosynostosis, and growth failure found to have a complex series of balanced intra- and inter-chromosomal rearrangements involving chromosomes 4, 11, 13, and X. Initial clinical studies were performed by karyotype, chromosomal microarray, and FISH with research-based short-read genome sequencing coupled with sanger sequencing to precisely map her breakpoints to the base pair resolution to understand the molecular basis of her phenotype. Genome analysis revealed two pathogenic deletions at 4p16.1-p15.32 and 4q31.1, accounting for her developmental delay and dysmorphism. We identified over 60 breakpoints, many with blunt ends and limited homology, supporting a role for non-homologous end joining in restructuring and resolution of the seminal chromoplexy event. We propose that the complexity of our patient’s genomic rearrangements with a high number of breakpoints causes dysregulation of gene expression by three-dimensional chromatin interactions or topologically associating domains leading to growth failure and craniosynostosis. Our work supports an important role for genome sequencing in understanding the molecular basis of complex chromosomal rearrangements in human disease.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Abramson Research Building, Suite 1016I, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA. .,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Alanna Strong
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Abramson Research Building, Suite 1016I, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Abramson Research Building, Suite 1016I, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA
| | - Helen Downes
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Abramson Research Building, Suite 1016I, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA
| | - Amanda Barone Pritchard
- Division of Pediatric Genetics, Metabolism and Genomic Medicine, Department of Pediatrics, University of Michigan Health, Ann Arbor, MI, USA
| | - Pamela Mazzeo
- Division of General Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine H Zackai
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Abramson Research Building, Suite 1016I, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
15
|
Linked-read whole-genome sequencing resolves common and private structural variants in multiple myeloma. Blood Adv 2022; 6:5009-5023. [PMID: 35675515 PMCID: PMC9631623 DOI: 10.1182/bloodadvances.2021006720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023] Open
Abstract
Linked-read WGS can be performed without DNA purification and allows for resolution of the diverse structural variants found in MM. Linked-read WGS can, as a standalone assay, provide comprehensive genetics in myeloma and other diseases with complex genomes.
Multiple myeloma (MM) is an incurable and aggressive plasma cell malignancy characterized by a complex karyotype with multiple structural variants (SVs) and copy-number variations (CNVs). Linked-read whole-genome sequencing (lrWGS) allows for refined detection and reconstruction of SVs by providing long-range genetic information from standard short-read sequencing. This makes lrWGS an attractive solution for capturing the full genomic complexity of MM. Here we show that high-quality lrWGS data can be generated from low numbers of cells subjected to fluorescence-activated cell sorting (FACS) without DNA purification. Using this protocol, we analyzed MM cells after FACS from 37 patients with MM using lrWGS. We found high concordance between lrWGS and fluorescence in situ hybridization (FISH) for the detection of recurrent translocations and CNVs. Outside of the regions investigated by FISH, we identified >150 additional SVs and CNVs across the cohort. Analysis of the lrWGS data allowed for resolution of the structure of diverse SVs affecting the MYC and t(11;14) loci, causing the duplication of genes and gene regulatory elements. In addition, we identified private SVs causing the dysregulation of genes recurrently involved in translocations with the IGH locus and show that these can alter the molecular classification of MM. Overall, we conclude that lrWGS allows for the detection of aberrations critical for MM prognostics and provides a feasible route for providing comprehensive genetics. Implementing lrWGS could provide more accurate clinical prognostics, facilitate genomic medicine initiatives, and greatly improve the stratification of patients included in clinical trials.
Collapse
|
16
|
Lühmann JL, Stelter M, Wolter M, Kater J, Lentes J, Bergmann AK, Schieck M, Göhring G, Möricke A, Cario G, Žaliová M, Schrappe M, Schlegelberger B, Stanulla M, Steinemann D. The Clinical Utility of Optical Genome Mapping for the Assessment of Genomic Aberrations in Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13174388. [PMID: 34503197 PMCID: PMC8431583 DOI: 10.3390/cancers13174388] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The stratification of childhood ALL is currently based on various diagnostic assays. This study investigates the feasibility of Optical Genome Mapping (OGM) to determine the genetic risk profile of ALL using fresh and frozen blood cells in an all-in-one approach. Acute lymphoblastic leukemia samples with data available from SNP-array/array-CGH, RNA-Seq, MLPA, karyotyping and FISH were compared to results obtained by OGM. We show that OGM has the potential to simplify the diagnostic workflow and to identify new structural variants helpful for classifying patients into treatment groups. Abstract Acute lymphoblastic leukemia (ALL) is the most prevalent type of cancer occurring in children. ALL is characterized by structural and numeric genomic aberrations that strongly correlate with prognosis and clinical outcome. Usually, a combination of cyto- and molecular genetic methods (karyotyping, array-CGH, FISH, RT-PCR, RNA-Seq) is needed to identify all aberrations relevant for risk stratification. We investigated the feasibility of optical genome mapping (OGM), a DNA-based method, to detect these aberrations in an all-in-one approach. As proof of principle, twelve pediatric ALL samples were analyzed by OGM, and results were validated by comparing OGM data to results obtained from routine diagnostics. All genomic aberrations including translocations (e.g., dic(9;12)), aneuploidies (e.g., high hyperdiploidy) and copy number variations (e.g., IKZF1, PAX5) known from other techniques were also detected by OGM. Moreover, OGM was superior to well-established techniques for resolution of the more complex structure of a translocation t(12;21) and had a higher sensitivity for detection of copy number alterations. Importantly, a new and unknown gene fusion of JAK2 and NPAT due to a translocation t(9;11) was detected. We demonstrate the feasibility of OGM to detect well-established as well as new putative prognostic markers in an all-in-one approach in ALL. We hope that these limited results will be confirmed with testing of more samples in the future.
Collapse
Affiliation(s)
- Jonathan Lukas Lühmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Marie Stelter
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Marie Wolter
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Josephine Kater
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Anke Katharina Bergmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Maximilian Schieck
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Anja Möricke
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Gunnar Cario
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Markéta Žaliová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, CZ-15006 Prague, Czech Republic;
| | - Martin Schrappe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany;
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
- Correspondence:
| |
Collapse
|
17
|
Savara J, Novosád T, Gajdoš P, Kriegová E. Comparison of structural variants detected by optical mapping with long-read next-generation sequencing. Bioinformatics 2021; 37:3398-3404. [PMID: 33983367 DOI: 10.1093/bioinformatics/btab359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
MOTIVATION Recent studies have shown the potential of using long-read whole-genome sequencing (WGS) approaches and optical mapping (OM) for the detection of clinically relevant structural variants (SVs) in cancer research. Three main long-read WGS platforms are currently in use: Pacific Biosciences (PacBio), Oxford Nanopore Technologies (ONT) and 10x Genomics. Recently, whole-genome OM technology (Bionano Genomics) has been introduced into human diagnostics. Questions remain about the accuracy of these long-read sequencing platforms, how comparable/interchangeable they are when searching for SVs and to what extent they can be replaced or supplemented by OM. Moreover, no tool can effectively compare SVs obtained by OM and WGS. RESULTS This study compared optical maps of the breast cancer cell line SKBR3 with AnnotSV outputs from WGS platforms. For this purpose, a software tool with comparative and filtering features was developed. The majority of SVs up to a 50 kbp distance variance threshold found by OM were confirmed by all WGS platforms, and 99% of translocations and 80% of deletions found by OM were confirmed by both PacBio and ONT, with ∼70% being confirmed by 10x Genomics in combination with PacBio and/or ONT. Interestingly, long deletions (>100 kbp) were detected only by 10x Genomics. Regarding insertions, ∼72% was confirmed by PacBio and ONT, but none by 10x Genomics. Inversions and duplications detected by OM were not detected by WGS. Moreover, the tool enabled the confirmation of SVs that overlapped in the same gene(s) and was applied to the filtering of disease-associated SVs. AVAILABILITY https://github.com/novosadt/om-annotsv-svc.
Collapse
Affiliation(s)
- Jakub Savara
- Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University in Olomouc and University Hospital Olomouc, 779 00, Olomouc, Czech Republic
| | - Tomáš Novosád
- Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
| | - Petr Gajdoš
- Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic
| | - Eva Kriegová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University in Olomouc and University Hospital Olomouc, 779 00, Olomouc, Czech Republic
| |
Collapse
|
18
|
Göktay M, Fulgione A, Hancock AM. A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes. Mol Biol Evol 2021; 38:1498-1511. [PMID: 33247723 PMCID: PMC8042739 DOI: 10.1093/molbev/msaa309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a "core" genome underlying basic cellular processes and a "flexible" genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
Collapse
Affiliation(s)
- Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
19
|
Zhou J, Yang Z, Sun J, Liu L, Zhou X, Liu F, Xing Y, Cui S, Xiong S, Liu X, Yang Y, Wei X, Zou G, Wang Z, Wei X, Wang Y, Zhang Y, Yan S, Wu F, Zeng F, Wang J, Duan T, Peng Z, Sun L. Whole Genome Sequencing in the Evaluation of Fetal Structural Anomalies: A Parallel Test with Chromosomal Microarray Plus Whole Exome Sequencing. Genes (Basel) 2021; 12:genes12030376. [PMID: 33800913 PMCID: PMC7999180 DOI: 10.3390/genes12030376] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
Whole genome sequencing (WGS) is a powerful tool for postnatal genetic diagnosis, but relevant clinical studies in the field of prenatal diagnosis are limited. The present study aimed to prospectively evaluate the utility of WGS compared with chromosomal microarray (CMA) and whole exome sequencing (WES) in the prenatal diagnosis of fetal structural anomalies. We performed trio WGS (≈40-fold) in parallel with CMA in 111 fetuses with structural or growth anomalies, and sequentially performed WES when CMA was negative (CMA plus WES). In comparison, WGS not only detected all pathogenic genetic variants in 22 diagnosed cases identified by CMA plus WES, yielding a diagnostic rate of 19.8% (22/110), but also provided additional and clinically significant information, including a case of balanced translocations and a case of intrauterine infection, which might not be detectable by CMA or WES. WGS also required less DNA (100 ng) as input and could provide a rapid turnaround time (TAT, 18 ± 6 days) compared with that (31 ± 8 days) of the CMA plus WES. Our results showed that WGS provided more comprehensive and precise genetic information with a rapid TAT and less DNA required than CMA plus WES, which enables it as an alternative prenatal diagnosis test for fetal structural anomalies.
Collapse
Affiliation(s)
- Jia Zhou
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Ziying Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Jun Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Lipei Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Xinyao Zhou
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Fengxia Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Ya Xing
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Shuge Cui
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Shiyi Xiong
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Xiaoyu Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Yingjun Yang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Xiuxiu Wei
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Gang Zou
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Zhonghua Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Xing Wei
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Yaoshen Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Yun Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Saiying Yan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Fengyu Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Fanwei Zeng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Department of Biology, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China;
| | - Tao Duan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Correspondence: (Z.P.); (L.S.)
| | - Luming Sun
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
- Correspondence: (Z.P.); (L.S.)
| |
Collapse
|
20
|
Silipigni R, Milani D, Tolva G, Monfrini E, Giacobbe A, Marchisio PG, Guerneri S. Complex genomic alterations and intellectual disability: an interpretative challenge. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:113-124. [PMID: 33140510 DOI: 10.1111/jir.12797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Complex chromosomal rearrangements (CCRs) are structural rearrangements involving more than three chromosomes or having more than two breaks; approximately 70% are not associated with any clinical phenotype. Here, we describe a CCR segregating in a two-generation family. METHOD A 4-year-old male was evaluated for developmental delay, mild intellectual disability and epicanthus. Karyotype, fluorescence in situ hybridisation (FISH) analysis and array comparative genomic hybridisation (aCGH) analysis were performed on the patient and of all family members. RESULT Array CGH analysis of the proband detected two non-contiguous genomic gains of chromosome 2 at bands q32.3q33.2 and bands q36.1q36.3. Both karyotype and FISH analysis revealed a recombinant chromosome 2 with a direct insertion of regions q32.3q33.2 and q36.1q36.3 into region q12. Both of these regions were also present in their original location. Karyotype and FISH analysis of the father revealed a de novo direct insertion of regions q32.3q33.2 and q36.1q36.3 into region q12. Moreover, a de novo balanced translocation involving the q arm of the same chromosome 2 and the p arm of chromosome 10 was observed in the father of the proband. The single nucleotide polymorphism (SNP) array analysis and haplotype reconstruction confirmed the paternal origin of the duplications. Karyotype, FISH analysis and array CGH analysis of other family members were all normal. CONCLUSION This report underlines the importance of using different methods to correctly evaluate the origin and the structure of CCRs in order to provide an appropriate management of the patients and a good estimation of the reproductive risk of the family.
Collapse
Affiliation(s)
- R Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Tolva
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - E Monfrini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - A Giacobbe
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P G Marchisio
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Guerneri
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Eisfeldt J, Pettersson M, Petri A, Nilsson D, Feuk L, Lindstrand A. Hybrid sequencing resolves two germline ultra-complex chromosomal rearrangements consisting of 137 breakpoint junctions in a single carrier. Hum Genet 2020; 140:775-790. [PMID: 33315133 PMCID: PMC8052244 DOI: 10.1007/s00439-020-02242-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Chromoanagenesis is a genomic event responsible for the formation of complex structural chromosomal rearrangements (CCRs). Germline chromoanagenesis is rare and the majority of reported cases are associated with an affected phenotype. Here, we report a healthy female carrying two de novo CCRs involving chromosomes 4, 19, 21 and X and chromosomes 7 and 11, respectively, with a total of 137 breakpoint junctions (BPJs). We characterized the CCRs using a hybrid-sequencing approach, combining short-read sequencing, nanopore sequencing, and optical mapping. The results were validated using multiple cytogenetic methods, including fluorescence in situ hybridization, spectral karyotyping, and Sanger sequencing. We identified 137 BPJs, which to our knowledge is the highest number of reported breakpoint junctions in germline chromoanagenesis. We also performed a statistical assessment of the positioning of the breakpoints, revealing a significant enrichment of BPJ-affecting genes (96 intragenic BPJs, 26 genes, p < 0.0001), indicating that the CCRs formed during active transcription of these genes. In addition, we find that the DNA fragments are unevenly and non-randomly distributed across the derivative chromosomes indicating a multistep process of scattering and re-joining of DNA fragments. In summary, we report a new maximum number of BPJs (137) in germline chromoanagenesis. We also show that a hybrid sequencing approach is necessary for the correct characterization of complex CCRs. Through in-depth statistical assessment, it was found that the CCRs most likely was formed through an event resembling chromoplexy—a catastrophic event caused by erroneous transcription factor binding.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Petri
- Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Lars Feuk
- Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden. .,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
22
|
Integrative analysis of structural variations using short-reads and linked-reads yields highly specific and sensitive predictions. PLoS Comput Biol 2020; 16:e1008397. [PMID: 33226985 PMCID: PMC7721175 DOI: 10.1371/journal.pcbi.1008397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/07/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022] Open
Abstract
Genetic diseases are driven by aberrations of the human genome. Identification of such aberrations including structural variations (SVs) is key to our understanding. Conventional short-reads whole genome sequencing (cWGS) can identify SVs to base-pair resolution, but utilizes only short-range information and suffers from high false discovery rate (FDR). Linked-reads sequencing (10XWGS) utilizes long-range information by linkage of short-reads originating from the same large DNA molecule. This can mitigate alignment-based artefacts especially in repetitive regions and should enable better prediction of SVs. However, an unbiased evaluation of this technology is not available. In this study, we performed a comprehensive analysis of different types and sizes of SVs predicted by both the technologies and validated with an independent PCR based approach. The SVs commonly identified by both the technologies were highly specific, while validation rate dropped for uncommon events. A particularly high FDR was observed for SVs only found by 10XWGS. To improve FDR and sensitivity, statistical models for both the technologies were trained. Using our approach, we characterized SVs from the MCF7 cell line and a primary breast cancer tumor with high precision. This approach improves SV prediction and can therefore help in understanding the underlying genetics in various diseases. Cancer and many other diseases are often driven by structural rearrangements in the patients. Their precise identification is necessary to understand evolution and cure for the disease. In this study, we have compared two sequencing technologies for the identification of structural variations i.e. Illumina’s short-reads and 10X Genomics linked-reads sequencing. Short-reads sequencing is already known to have high false discovery rate for structural variations, while, an unbiased performance evaluation of linked-reads sequencing is missing. Hence, we evaluate the performance of these two technologies using computational and PCR based methodologies. Moreover, we also present a statistical approach to increase their performance, supporting better detection of structural variations and thus further research into disease biology.
Collapse
|
23
|
Pettersson M, Grochowski CM, Wincent J, Eisfeldt J, Breman AM, Cheung SW, Krepischi ACV, Rosenberg C, Lupski JR, Ottosson J, Lovmar L, Gacic J, Lundberg ES, Nilsson D, Carvalho CMB, Lindstrand A. Cytogenetically visible inversions are formed by multiple molecular mechanisms. Hum Mutat 2020; 41:1979-1998. [PMID: 32906200 PMCID: PMC7702065 DOI: 10.1002/humu.24106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
Cytogenetically detected inversions are generally assumed to be copy number and phenotypically neutral events. While nonallelic homologous recombination is thought to play a major role, recent data suggest the involvement of other molecular mechanisms in inversion formation. Using a combination of short-read whole-genome sequencing (WGS), 10X Genomics Chromium WGS, droplet digital polymerase chain reaction and array comparative genomic hybridization we investigated the genomic structure of 18 large unique cytogenetically detected chromosomal inversions and achieved nucleotide resolution of at least one chromosomal inversion junction for 13/18 (72%). Surprisingly, we observed that seemingly copy number neutral inversions can be accompanied by a copy-number gain of up to 350 kb and local genomic complexities (3/18, 17%). In the resolved inversions, the mutational signatures are consistent with nonhomologous end-joining (8/13, 62%) or microhomology-mediated break-induced replication (5/13, 38%). Our study indicates that short-read 30x coverage WGS can detect a substantial fraction of chromosomal inversions. Moreover, replication-based mechanisms are responsible for approximately 38% of those events leading to a significant proportion of inversions that are actually accompanied by additional copy-number variation potentially contributing to the overall phenotypic presentation of those patients.
Collapse
Affiliation(s)
- Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Amy M Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sau W Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Jesper Ottosson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jelena Gacic
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Elisabeth S Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Pacific Northwest Research Institute, Seattle, Washington, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Mitsuhashi S, Ohori S, Katoh K, Frith MC, Matsumoto N. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Genome Med 2020; 12:67. [PMID: 32731881 PMCID: PMC7393826 DOI: 10.1186/s13073-020-00762-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Many genetic/genomic disorders are caused by genomic rearrangements. Standard methods can often characterize these variations only partly, e.g., copy number changes or breakpoints. It is important to fully understand the order and orientation of rearranged fragments, with precise breakpoints, to know the pathogenicity of the rearrangements. METHODS We performed whole-genome-coverage nanopore sequencing of long DNA reads from four patients with chromosomal translocations. We identified rearrangements relative to a reference human genome, subtracted rearrangements shared by any of 33 control individuals, and determined the order and orientation of rearranged fragments, with our newly developed analysis pipeline. RESULTS We describe the full characterization of complex chromosomal rearrangements, by filtering out genomic rearrangements seen in controls without the same disease, reducing the number of loci per patient from a few thousand to a few dozen. Breakpoint detection was very accurate; we usually see ~ 0 ± 1 base difference from Sanger sequencing-confirmed breakpoints. For one patient with two reciprocal chromosomal translocations, we find that the translocation points have complex rearrangements of multiple DNA fragments involving 5 chromosomes, which we could order and orient by an automatic algorithm, thereby fully reconstructing the rearrangement. A rearrangement is more than the sum of its parts: some properties, such as sequence loss, can be inferred only after reconstructing the whole rearrangement. In this patient, the rearrangements were evidently caused by shattering of the chromosomes into multiple fragments, which rejoined in a different order and orientation with loss of some fragments. CONCLUSIONS We developed an effective analytic pipeline to find chromosomal aberration in congenital diseases by filtering benign changes, only from long read sequencing. Our algorithm for reconstruction of complex rearrangements is useful to interpret rearrangements with many breakpoints, e.g., chromothripsis. Our approach promises to fully characterize many congenital germline rearrangements, provided they do not involve poorly understood loci such as centromeric repeats.
Collapse
Affiliation(s)
- Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazutaka Katoh
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
25
|
Olszewska M, Stokowy T, Pollock N, Huleyuk N, Georgiadis A, Yatsenko S, Zastavna D, Yatsenko AN, Kurpisz M. Familial Infertility (Azoospermia and Cryptozoospermia) in Two Brothers-Carriers of t(1;7) Complex Chromosomal Rearrangement (CCR): Molecular Cytogenetic Analysis. Int J Mol Sci 2020; 21:E4559. [PMID: 32604929 PMCID: PMC7349667 DOI: 10.3390/ijms21124559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022] Open
Abstract
Structural aberrations involving more than two breakpoints on two or more chromosomes are known as complex chromosomal rearrangements (CCRs). They can reduce fertility through gametogenesis arrest developed due to disrupted chromosomal pairing in the pachytene stage. We present a familial case of two infertile brothers (with azoospermia and cryptozoospermia) and their mother, carriers of an exceptional type of CCR involving chromosomes 1 and 7 and three breakpoints. The aim was to identify whether meiotic disruption was caused by CCR and/or genomic mutations. Additionally, we performed a literature survey for male CCR carriers with reproductive failures. The characterization of the CCR chromosomes and potential genomic aberrations was performed using: G-banding using trypsin and Giemsa staining (GTG banding), fluorescent in situ hybridization (FISH) (including multicolor FISH (mFISH) and bacterial artificial chromosome (BAC)-FISH), and genome-wide array comparative genomic hybridization (aCGH). The CCR description was established as: der(1)(1qter->1q42.3::1p21->1q42.3::7p14.3->7pter), der(7)(1pter->1p2 1::7p14.3->7qter). aCGH revealed three rare genes variants: ASMT, GARNL3, and SESTD1, which were ruled out due to unlikely biological functions. The aCGH analysis of three breakpoint CCR regions did not reveal copy number variations (CNVs) with biologically plausible genes. Synaptonemal complex evaluation (brother-1; spermatocytes II/oligobiopsy; the silver staining technique) showed incomplete conjugation of the chromosomes. Associations between CCR and the sex chromosomes (by FISH) were not found. A meiotic segregation pattern (brother-2; ejaculated spermatozoa; FISH) revealed 29.21% genetically normal/balanced spermatozoa. The aCGH analysis could not detect smaller intergenic CNVs of few kb or smaller (indels of single exons or few nucleotides). Since chromosomal aberrations frequently do not affect the phenotype of the carrier, in contrast to the negative influence on spermatogenesis, there is an obvious need for genomic sequencing to investigate the point mutations that may be responsible for the differences between the azoospermic and cryptozoospermic phenotypes observed in a family. Progeny from the same parents provide a unique opportunity to discover a novel genomic background of male infertility.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland;
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Postboks 7804, 5020 Bergen, Norway;
| | - Nijole Pollock
- Department of OBGYN and Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.P.); (A.G.); (S.Y.); (A.N.Y.)
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine; (N.H.); (D.Z.)
| | - Andrew Georgiadis
- Department of OBGYN and Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.P.); (A.G.); (S.Y.); (A.N.Y.)
| | - Svetlana Yatsenko
- Department of OBGYN and Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.P.); (A.G.); (S.Y.); (A.N.Y.)
| | - Danuta Zastavna
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine; (N.H.); (D.Z.)
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powst. Warszawy 6, 35-959 Rzeszow, Poland
| | - Alexander N. Yatsenko
- Department of OBGYN and Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.P.); (A.G.); (S.Y.); (A.N.Y.)
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland;
| |
Collapse
|
26
|
Cleal K, Baird DM. Catastrophic Endgames: Emerging Mechanisms of Telomere-Driven Genomic Instability. Trends Genet 2020; 36:347-359. [PMID: 32294415 DOI: 10.1016/j.tig.2020.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
When cells progress to malignancy, they must overcome a final telomere-mediated proliferative lifespan barrier called replicative crisis. Crisis is characterized by extensive telomere fusion that drives widespread genomic instability, mitotic arrest, hyperactivation of autophagy, and cell death. Recently, it has become apparent that that the resolution of dicentric chromosomes, which arise from telomere fusions during crisis, can initiate a sequence of events that leads to chromothripsis, a form of extreme genomic catastrophe. Chromothripsis is characterized by localized genomic regions containing tens to thousands of rearrangements and it is becoming increasingly apparent that chromothripsis occurs widely across tumor types and has a clinical impact. Here we discuss how telomere dysfunction can initiate genomic complexity and the emerging mechanisms of chromothripsis.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
27
|
Abstract
Identifying structural variation (SV) is essential for genome interpretation but has been historically difficult due to limitations inherent to available genome technologies. Detection methods that use ensemble algorithms and emerging sequencing technologies have enabled the discovery of thousands of SVs, uncovering information about their ubiquity, relationship to disease and possible effects on biological mechanisms. Given the variability in SV type and size, along with unique detection biases of emerging genomic platforms, multiplatform discovery is necessary to resolve the full spectrum of variation. Here, we review modern approaches for investigating SVs and proffer that, moving forwards, studies integrating biological information with detection will be necessary to comprehensively understand the impact of SV in the human genome.
Collapse
Affiliation(s)
- Steve S Ho
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Nazaryan-Petersen L, Bjerregaard VA, Nielsen FC, Tommerup N, Tümer Z. Chromothripsis and DNA Repair Disorders. J Clin Med 2020; 9:jcm9030613. [PMID: 32106411 PMCID: PMC7141117 DOI: 10.3390/jcm9030613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Chromothripsis is a mutational mechanism leading to complex and relatively clustered chromosomal rearrangements, resulting in diverse phenotypic outcomes depending on the involved genomic landscapes. It may occur both in the germ and the somatic cells, resulting in congenital and developmental disorders and cancer, respectively. Asymptomatic individuals may be carriers of chromotriptic rearrangements and experience recurrent reproductive failures when two or more chromosomes are involved. Several mechanisms are postulated to underlie chromothripsis. The most attractive hypothesis involves chromosome pulverization in micronuclei, followed by the incorrect reassembly of fragments through DNA repair to explain the clustered nature of the observed complex rearrangements. Moreover, exogenous or endogenous DNA damage induction and dicentric bridge formation may be involved. Chromosome instability is commonly observed in the cells of patients with DNA repair disorders, such as ataxia telangiectasia, Nijmegen breakage syndrome, and Bloom syndrome. In addition, germline variations of TP53 have been associated with chromothripsis in sonic hedgehog medulloblastoma and acute myeloid leukemia. In the present review, we focus on the underlying mechanisms of chromothripsis and the involvement of defective DNA repair genes, resulting in chromosome instability and chromothripsis-like rearrangements.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (L.N.-P.); (N.T.)
- Center for Genomic Medicine, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Victoria Alexandra Bjerregaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | | | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (L.N.-P.); (N.T.)
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-292-048-55
| |
Collapse
|
29
|
Refined detection and phasing of structural aberrations in pediatric acute lymphoblastic leukemia by linked-read whole-genome sequencing. Sci Rep 2020; 10:2512. [PMID: 32054878 PMCID: PMC7018692 DOI: 10.1038/s41598-020-59214-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Structural chromosomal rearrangements that can lead to in-frame gene-fusions are a leading source of information for diagnosis, risk stratification, and prognosis in pediatric acute lymphoblastic leukemia (ALL). Traditional methods such as karyotyping and FISH struggle to accurately identify and phase such large-scale chromosomal aberrations in ALL genomes. We therefore evaluated linked-read WGS for detecting chromosomal rearrangements in primary samples of from 12 patients diagnosed with ALL. We assessed the effect of input DNA quality on phased haplotype block size and the detectability of copy number aberrations and structural variants in the ALL genomes. We found that biobanked DNA isolated by standard column-based extraction methods was sufficient to detect chromosomal rearrangements even at low 10x sequencing coverage. Linked-read WGS enabled precise, allele-specific, digital karyotyping at a base-pair resolution for a wide range of structural variants including complex rearrangements and aneuploidy assessment. With use of haplotype information from the linked-reads, we also identified previously unknown structural variants, such as a compound heterozygous deletion of ERG in a patient with the DUX4-IGH fusion gene. We conclude that linked-read WGS allows detection of important pathogenic variants in ALL genomes at a resolution beyond that of traditional karyotyping and FISH.
Collapse
|
30
|
Jenko Bizjan B, Katsila T, Tesovnik T, Šket R, Debeljak M, Matsoukas MT, Kovač J. Challenges in identifying large germline structural variants for clinical use by long read sequencing. Comput Struct Biotechnol J 2019; 18:83-92. [PMID: 32099591 PMCID: PMC7026727 DOI: 10.1016/j.csbj.2019.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Genomic structural variations, previously considered rare events, are widely recognized as a major source of inter-individual variability and hence, a major hurdle in optimum patient stratification and disease management. Herein, we focus on large complex germline structural variations and present challenges towards target treatment via the synergy of state-of-the-art approaches and information technology tools. A complex structural variation detection remains challenging, as there is no gold standard for identifying such genomic variations with long reads, especially when the chromosomal rearrangement in question is a few Mb in length. A clinical case with a large complex chromosomal rearrangement serves as a paradigm. We feel that functional validation and data interpretation are of outmost importance for information growth to be translated into knowledge growth and hence, new working practices are highlighted.
Collapse
Affiliation(s)
- Barbara Jenko Bizjan
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Centre, Athens, Greece
| | - Tine Tesovnik
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Robert Šket
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | | | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| |
Collapse
|
31
|
Müller V, Dvirnas A, Andersson J, Singh V, Kk S, Johansson P, Ebenstein Y, Ambjörnsson T, Westerlund F. Enzyme-free optical DNA mapping of the human genome using competitive binding. Nucleic Acids Res 2019; 47:e89. [PMID: 31165870 PMCID: PMC6735870 DOI: 10.1093/nar/gkz489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 01/24/2023] Open
Abstract
Optical DNA mapping (ODM) allows visualization of long-range sequence information along single DNA molecules. The data can for example be used for detecting long range structural variations, for aiding DNA sequence assembly of complex genomes and for mapping epigenetic marks and DNA damage across the genome. ODM traditionally utilizes sequence specific marks based on nicking enzymes, combined with a DNA stain, YOYO-1, for detection of the DNA contour. Here we use a competitive binding approach, based on YOYO-1 and netropsin, which highlights the contour of the DNA molecules, while simultaneously creating a continuous sequence specific pattern, based on the AT/GC variation along the detected molecule. We demonstrate and validate competitive-binding-based ODM using bacterial artificial chromosomes (BACs) derived from the human genome and then turn to DNA extracted from white blood cells. We generalize our findings with in-silico simulations that show that we can map a vast majority of the human genome. Finally, we demonstrate the possibility of combining competitive binding with enzymatic labeling by mapping DNA damage sites induced by the cytotoxic drug etoposide to the human genome. Overall, we demonstrate that competitive-binding-based ODM has the potential to be used both as a standalone assay for studies of the human genome, as well as in combination with enzymatic approaches, some of which are already commercialized.
Collapse
Affiliation(s)
- Vilhelm Müller
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Albertas Dvirnas
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - John Andersson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Vandana Singh
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sriram Kk
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Pegah Johansson
- Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
32
|
Lindstrand A, Eisfeldt J, Pettersson M, Carvalho CMB, Kvarnung M, Grigelioniene G, Anderlid BM, Bjerin O, Gustavsson P, Hammarsjö A, Georgii-Hemming P, Iwarsson E, Johansson-Soller M, Lagerstedt-Robinson K, Lieden A, Magnusson M, Martin M, Malmgren H, Nordenskjöld M, Norling A, Sahlin E, Stranneheim H, Tham E, Wincent J, Ygberg S, Wedell A, Wirta V, Nordgren A, Lundin J, Nilsson D. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med 2019; 11:68. [PMID: 31694722 PMCID: PMC6836550 DOI: 10.1186/s13073-019-0675-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background Since different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test. Methods We analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n = 68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n = 156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure. Results First, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850 kb (min 500 bp, max 155 Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (> 10 kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data. Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively. Conclusion The overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
Collapse
Affiliation(s)
- Anna Lindstrand
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pettersson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Kvarnung
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olof Bjerin
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Erik Iwarsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Johansson-Soller
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Lieden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Måns Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcel Martin
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ameli Norling
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josephine Wincent
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Ygberg
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Lundin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Nilsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Liu Z, Zhu L, Roberts R, Tong W. Toward Clinical Implementation of Next-Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We? Trends Genet 2019; 35:852-867. [PMID: 31623871 DOI: 10.1016/j.tig.2019.08.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have changed the landscape of genetic testing in rare diseases. However, the rapid evolution of NGS technologies has outpaced its clinical adoption. Here, we re-evaluate the critical steps in the clinical application of NGS-based genetic testing from an informatics perspective. We suggest a 'fit-for-purpose' triage of current NGS technologies. We also point out potential shortcomings in the clinical management of genetic variants and offer ideas for potential improvement. We specifically emphasize the importance of ensuring the accuracy and reproducibility of NGS-based genetic testing in the context of rare disease diagnosis. We highlight the role of artificial intelligence (AI) in enhancing understanding and prioritization of variance in the clinical setting and propose deep learning frameworks for further investigation.
Collapse
Affiliation(s)
- Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Liyuan Zhu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ruth Roberts
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK; University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|