1
|
Jacq M, Caccamo PD, Brun YV. Functional specialization of the subdomains of a bactofilin driving stalk morphogenesis in Asticcacaulis biprosthecum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628611. [PMID: 39763834 PMCID: PMC11702518 DOI: 10.1101/2024.12.16.628611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed. In Asticcacaulis biprosthecum, the bactofilin BacA serves as a topological organizer of stalk synthesis, localizing to the stalk base and coordinating the synthesis of these long, thin extensions of the cell envelope. The easily distinguishable phenotypes of wild-type A. biprosthecum stalks and ΔbacA "pseudostalks" make this an ideal system for investigating how mutations in BacA affect its functions in morphogenesis. Here, we redefine the core domain of A. biprosthecum BacA using various bioinformatics and biochemical approaches to precisely delimit the N- and C- terminal domains. We then show that loss of these terminal domains leads to cells with severe morphological abnormalities, typically presenting a pseudostalk phenotype. BacA mutants lacking the N- and C- terminal domains also exhibit localization defects, implying that the terminal domains of BacA may be involved in its subcellular positioning, whether through membrane interactions through the N-terminal domain or through interactions with the stalk-specific morphological regulator SpmX through the C-terminal domain. We further show that point mutations that render BacA defective for polymerization lead to stalk synthesis defects. Overall, our study suggests that BacA's polymerization, membrane association, and interactions with other morphological factors all play a crucial role in the protein's function as a morphogenic regulator. The specialization and modularity of the terminal domains may underlie the remarkable functional versatility of the bactofilins in different species.
Collapse
Affiliation(s)
- Maxime Jacq
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
| | - Paul D. Caccamo
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
- Department of Biology, Indiana University, 1001 E. 3 St, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Daitch AK, Smith EL, Goley ED. OpgH is an essential regulator of Caulobacter morphology. mBio 2024; 15:e0144324. [PMID: 39145657 PMCID: PMC11389396 DOI: 10.1128/mbio.01443-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
Bacterial growth and division rely on intricate regulation of morphogenetic complexes to remodel the cell envelope without compromising envelope integrity. Significant progress has been made in recent years towards understanding the regulation of cell wall metabolic enzymes. However, other cell envelope components play a role in morphogenesis as well. A primary factor required to protect envelope integrity in low osmolarity environments is OpgH, the synthase of osmoregulated periplasmic glucans (OPGs). Here, we demonstrate that OpgH is essential in the α-proteobacterium Caulobacter crescentus. Unexpectedly, depletion of OpgH or attempted complementation with a catalytically dead OpgH variant results in striking asymmetric bulging and cell lysis. These shape defects are accompanied by reduced cell wall synthesis and mislocalization of morphogenetic complexes. Interestingly, overactivation of the CenKR two-component system that has been implicated in cell envelope stress homeostasis in α-proteobacteria phenocopies the morphogenetic defects associated with OpgH depletion. Each of these perturbations leads to an increase in the levels of the elongasome protein, MreB, and decreases in the levels of divisome proteins FtsZ and MipZ as well as OpgH, itself. Constitutive production of OpgH during CenKR overactivation prevents cell bulging, but cells still exhibit morphogenetic defects. We propose that OPG depletion activates CenKR, leading to changes in the expression of cell envelope-related genes, but that OPGs also exert CenKR-independent effects on morphogenesis. Our data establish a surprising function for an OpgH homolog in morphogenesis and reveal an essential role of OpgH in maintaining cell morphology in Caulobacter.IMPORTANCEBacteria must synthesize and fortify the cell envelope in a tightly regulated manner to orchestrate growth and adaptation. Osmoregulated periplasmic glucans (OPGs) are important, but poorly understood, constituents of Gram-negative cell envelopes that contribute to envelope integrity and protect against osmotic stress. Here, we determined that the OPG synthase OpgH plays a surprising, essential role in morphogenesis in Caulobacter crescentus. Loss of OpgH causes asymmetric cell bulging and lysis via misregulation of the localization and activity of morphogenetic complexes. Overactivation of the CenKR two-component system involved in envelope homeostasis phenocopies OpgH depletion, suggesting that depletion of OpgH activates CenKR. Because cell envelope integrity is critical for bacterial survival, understanding how OpgH activity contributes to morphogenesis and maintenance of envelope integrity could aid in the development of antibiotic therapies.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika L Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Ng TW, Ojkic N, Serbanescu D, Banerjee S. Differential growth regulates asymmetric size partitioning in Caulobacter crescentus. Life Sci Alliance 2024; 7:e202402591. [PMID: 38806218 PMCID: PMC11134071 DOI: 10.26508/lsa.202402591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Cell size regulation has been extensively studied in symmetrically dividing cells, but the mechanisms underlying the control of size asymmetry in asymmetrically dividing bacteria remain elusive. Here, we examine the control of asymmetric division in Caulobacter crescentus, a bacterium that produces daughter cells with distinct fates and morphologies upon division. Through comprehensive analysis of multi-generational growth and shape data, we uncover a tightly regulated cell size partitioning mechanism. We find that errors in division site positioning are promptly corrected early in the division cycle through differential growth. Our analysis reveals a negative feedback between the size of daughter cell compartments and their growth rates, wherein the larger compartment grows slower to achieve a homeostatic size partitioning ratio at division. To explain these observations, we propose a mechanistic model of differential growth, in which equal amounts of growth regulators are partitioned into daughter cell compartments of unequal sizes and maintained over time via size-independent synthesis.
Collapse
Affiliation(s)
- Tin Wai Ng
- Department of Physics and Astronomy, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Nikola Ojkic
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Diana Serbanescu
- Department of Physics and Astronomy, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | |
Collapse
|
4
|
Billini M, Hoffmann T, Kühn J, Bremer E, Thanbichler M. The cytoplasmic phosphate level has a central regulatory role in the phosphate starvation response of Caulobacter crescentus. Commun Biol 2024; 7:772. [PMID: 38926609 PMCID: PMC11208175 DOI: 10.1038/s42003-024-06469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
In bacteria, the availability of environmental inorganic phosphate is typically sensed by the conserved PhoR-PhoB two-component signal transduction pathway, which uses the flux through the PstSCAB phosphate transporter as a readout of the extracellular phosphate level to control phosphate-responsive genes. While the sensing of environmental phosphate is well-investigated, the regulatory effects of cytoplasmic phosphate are unclear. Here, we disentangle the physiological and transcriptional responses of Caulobacter crescentus to changes in the environmental and cytoplasmic phosphate levels by uncoupling phosphate uptake from the activity of the PstSCAB system, using an additional, heterologously produced phosphate transporter. This approach reveals a two-pronged response of C. crescentus to phosphate limitation, in which PhoR-PhoB signaling mostly facilitates the utilization of alternative phosphate sources, whereas the cytoplasmic phosphate level controls the morphological and physiological adaptation of cells to growth under global phosphate limitation. These findings open the door to a comprehensive understanding of phosphate signaling in bacteria.
Collapse
Affiliation(s)
- Maria Billini
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Tamara Hoffmann
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Juliane Kühn
- Department of Biology, University of Marburg, 35043, Marburg, Germany
| | - Erhard Bremer
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043, Marburg, Germany.
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
5
|
Herdman M, Isbilir B, von Kügelgen A, Schulze U, Wainman A, Bharat TAM. Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus. Nat Commun 2024; 15:3355. [PMID: 38637514 PMCID: PMC11026435 DOI: 10.1038/s41467-024-47529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline arrays that constitute a major component of the cell envelope in many prokaryotic species. In this study, we investigated S-layer biogenesis in the bacterial model organism Caulobacter crescentus. Fluorescence microscopy revealed localised incorporation of new S-layer at the poles and mid-cell, consistent with regions of cell growth in the cell cycle. Light microscopy and electron cryotomography investigations of drug-treated bacteria revealed that localised S-layer insertion is retained when cell division is inhibited, but is disrupted upon dysregulation of MreB or lipopolysaccharide. We further uncovered that S-layer biogenesis follows new peptidoglycan synthesis and localises to regions of high cell wall turnover. Finally, correlated cryo-light microscopy and electron cryotomographic analysis of regions of S-layer insertion showed the presence of discontinuities in the hexagonal S-layer lattice, contrasting with other S-layers completed by defined symmetric defects. Our findings present insights into how C. crescentus cells form an ordered S-layer on their surface in coordination with the biogenesis of other cell envelope components.
Collapse
Affiliation(s)
- Matthew Herdman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Buse Isbilir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ulrike Schulze
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
6
|
Hallgren J, Jonas K. Nutritional control of bacterial DNA replication. Curr Opin Microbiol 2024; 77:102403. [PMID: 38035509 DOI: 10.1016/j.mib.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
All cells must ensure precise regulation of DNA replication initiation in coordination with growth rate and in response to nutrient availability. According to a long-standing model, DNA replication initiation is tightly coupled to cell mass increase in bacteria. Despite controversies regarding this model, recent studies have provided additional support of this idea. The exact molecular mechanisms linking cell growth with DNA replication under different nutrient conditions remain elusive. However, recent studies in Caulobacter crescentus and Escherichia coli have provided insights into the regulation of DNA replication initiation in response to starvation. These mechanisms include the starvation-dependent regulation of DnaA abundance as well as mechanisms involving the small signaling molecule (p)ppGpp. In this review, we discuss these mechanisms in the context of previous findings. We highlight species-dependent similarities and differences and consider the precise growth conditions, in which the different mechanisms are active.
Collapse
Affiliation(s)
- Joel Hallgren
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Kristina Jonas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Hallgren J, Koonce K, Felletti M, Mortier J, Turco E, Jonas K. Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus. PLoS Genet 2023; 19:e1010882. [PMID: 38011258 PMCID: PMC10723716 DOI: 10.1371/journal.pgen.1010882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Upon nutrient depletion, bacteria stop proliferating and undergo physiological and morphological changes to ensure their survival. Yet, how these processes are coordinated in response to distinct starvation conditions is poorly understood. Here we compare the cellular responses of Caulobacter crescentus to carbon (C), nitrogen (N) and phosphorus (P) starvation conditions. We find that DNA replication initiation and abundance of the replication initiator DnaA are, under all three starvation conditions, regulated by a common mechanism involving the inhibition of DnaA translation. By contrast, cell differentiation from a motile swarmer cell to a sessile stalked cell is regulated differently under the three starvation conditions. During C and N starvation, production of the signaling molecules (p)ppGpp is required to arrest cell development in the motile swarmer stage. By contrast, our data suggest that low (p)ppGpp levels under P starvation allow P-starved swarmer cells to differentiate into sessile stalked cells. Further, we show that limited DnaA availability, and consequently absence of DNA replication initiation, is the main reason that prevents P-starved stalked cells from completing the cell cycle. Together, our findings demonstrate that C. crescentus decouples cell differentiation from DNA replication initiation under certain starvation conditions, two otherwise intimately coupled processes. We hypothesize that arresting the developmental program either as motile swarmer cells or as sessile stalked cells improves the chances of survival of C. crescentus during the different starvation conditions.
Collapse
Affiliation(s)
- Joel Hallgren
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kira Koonce
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michele Felletti
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Julien Mortier
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eloisa Turco
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Izquierdo-Martinez A, Billini M, Miguel-Ruano V, Hernández-Tamayo R, Richter P, Biboy J, Batuecas MT, Glatter T, Vollmer W, Graumann PL, Hermoso JA, Thanbichler M. DipM controls multiple autolysins and mediates a regulatory feedback loop promoting cell constriction in Caulobacter crescentus. Nat Commun 2023; 14:4095. [PMID: 37433794 DOI: 10.1038/s41467-023-39783-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Proteins with a catalytically inactive LytM-type endopeptidase domain are important regulators of cell wall-degrading enzymes in bacteria. Here, we study their representative DipM, a factor promoting cell division in Caulobacter crescentus. We show that the LytM domain of DipM interacts with multiple autolysins, including the soluble lytic transglycosylases SdpA and SdpB, the amidase AmiC and the putative carboxypeptidase CrbA, and stimulates the activities of SdpA and AmiC. Its crystal structure reveals a conserved groove, which is predicted to represent the docking site for autolysins by modeling studies. Mutations in this groove indeed abolish the function of DipM in vivo and its interaction with AmiC and SdpA in vitro. Notably, DipM and its targets SdpA and SdpB stimulate each other's recruitment to midcell, establishing a self-reinforcing cycle that gradually increases autolytic activity as cytokinesis progresses. DipM thus coordinates different peptidoglycan-remodeling pathways to ensure proper cell constriction and daughter cell separation.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria Billini
- Department of Biology, University of Marburg, Marburg, Germany
| | - Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Pia Richter
- Department of Biology, University of Marburg, Marburg, Germany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - María T Batuecas
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Peter L Graumann
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
9
|
Richter P, Melzer B, Müller FD. Interacting bactofilins impact cell shape of the MreB-less multicellular Rhodomicrobium vannielii. PLoS Genet 2023; 19:e1010788. [PMID: 37256900 DOI: 10.1371/journal.pgen.1010788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Most non-spherical bacteria rely on the actin-like MreB cytoskeleton to control synthesis of a cell-shaping and primarily rod-like cell wall. Diverging from simple rod shape generally requires accessory cytoskeletal elements, which locally interfere with the MreB-guided cell wall synthesis. Conserved and widespread representatives of this accessory cytoskeleton are bactofilins that polymerize into static, non-polar bundles of filaments. Intriguingly, many species of the Actinobacteria and Rhizobiales manage to grow rod-like without MreB by tip extension, yet some of them still possess bactofilin genes, whose function in cell morphogenesis is unknown. An intricate representative of these tip-growing bacteria is Rhodomicrobium vannielii; a member of the hitherto genetically not tractable and poorly studied Hyphomicrobiaceae within the MreB-less Rhizobiales order. R. vannielii displays complex asymmetric cell shapes and differentiation patterns including filamentous hyphae to produce offspring and to build dendritic multicellular arrays. Here, we introduce techniques to genetically access R. vannielii, and we elucidate the role of bactofilins in its sophisticated morphogenesis. By targeted mutagenesis and fluorescence microscopy, protein interaction studies and peptidoglycan incorporation analysis we show that the R. vannielii bactofilins are associated with the hyphal growth zones and that one of them is essential to form proper hyphae. Another paralog is suggested to represent a novel hybrid and co-polymerizing bactofilin. Notably, we present R. vannielii as a powerful new model to understand prokaryotic cell development and control of multipolar cell growth in the absence of the conserved cytoskeletal element, MreB.
Collapse
Affiliation(s)
- Pia Richter
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
- Faculty of Biology, University of Marburg, Marburg, Germany
| | - Brigitte Melzer
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
| | - Frank D Müller
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Barrows JM, Goley ED. Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology. J Bacteriol 2023; 205:e0038422. [PMID: 36715542 PMCID: PMC9945503 DOI: 10.1128/jb.00384-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
First isolated and classified in the 1960s, Caulobacter crescentus has been instrumental in the study of bacterial cell biology and differentiation. C. crescentus is a Gram-negative alphaproteobacterium that exhibits a dimorphic life cycle composed of two distinct cell types: a motile swarmer cell and a nonmotile, division-competent stalked cell. Progression through the cell cycle is accentuated by tightly controlled biogenesis of appendages, morphological transitions, and distinct localization of developmental regulators. These features as well as the ability to synchronize populations of cells and follow their progression make C. crescentus an ideal model for answering questions relevant to how development and differentiation are achieved at the single-cell level. This review will explore the discovery and development of C. crescentus as a model organism before diving into several key features and discoveries that have made it such a powerful organism to study. Finally, we will summarize a few of the ongoing areas of research that are leveraging knowledge gained over the last century with C. crescentus to highlight its continuing role at the forefront of cell and developmental biology.
Collapse
Affiliation(s)
- Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Quintero-Yanes A, Mayard A, Hallez R. The two-component system ChvGI maintains cell envelope homeostasis in Caulobacter crescentus. PLoS Genet 2022; 18:e1010465. [PMID: 36480504 PMCID: PMC9731502 DOI: 10.1371/journal.pgen.1010465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/09/2022] [Indexed: 12/13/2022] Open
Abstract
Two-component systems (TCS) are often used by bacteria to rapidly assess and respond to environmental changes. The ChvG/ChvI (ChvGI) TCS conserved in α-proteobacteria is known for regulating expression of genes related to exopolysaccharide production, virulence and growth. The sensor kinase ChvG autophosphorylates upon yet unknown signals and phosphorylates the response regulator ChvI to regulate transcription. Recent studies in Caulobacter crescentus showed that chv mutants are sensitive to vancomycin treatment and fail to grow in synthetic minimal media. In this work, we identified the osmotic imbalance as the main cause of growth impairment in synthetic minimal media. We also determined the ChvI regulon and found that ChvI regulates cell envelope architecture by controlling outer membrane, peptidoglycan assembly/recycling and inner membrane proteins. In addition, we found that ChvI phosphorylation is also activated upon antibiotic treatment with vancomycin. We also challenged chv mutants with other cell envelope related stress and found that treatment with antibiotics targeting transpeptidation of peptidoglycan during cell elongation impairs growth of the mutant. Finally, we observed that the sensor kinase ChvG relocates from a patchy-spotty distribution to distinctive foci after transition from complex to synthetic minimal media. Interestingly, this pattern of (re)location has been described for proteins involved in cell growth control and peptidoglycan synthesis upon osmotic shock. Overall, our data support that the ChvGI TCS is mainly used to monitor and respond to osmotic imbalances and damages in the peptidoglycan layer to maintain cell envelope homeostasis.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
- WELBIO, University of Namur, Namur, Belgium
- * E-mail:
| |
Collapse
|
12
|
Sichel SR, Bratton BP, Salama NR. Distinct regions of H. pylori's bactofilin CcmA regulate protein-protein interactions to control helical cell shape. eLife 2022; 11:e80111. [PMID: 36073778 PMCID: PMC9507126 DOI: 10.7554/elife.80111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
The helical shape of Helicobacter pylori cells promotes robust stomach colonization; however, how the helical shape of H. pylori cells is determined is unresolved. Previous work identified helical-cell-shape-promoting protein complexes containing a peptidoglycan-hydrolase (Csd1), a peptidoglycan precursor synthesis enzyme (MurF), a non-enzymatic homolog of Csd1 (Csd2), non-enzymatic transmembrane proteins (Csd5 and Csd7), and a bactofilin (CcmA). Bactofilins are highly conserved, spontaneously polymerizing cytoskeletal bacterial proteins. We sought to understand CcmA's function in generating the helical shape of H. pylori cells. Using CcmA deletion analysis, in vitro polymerization, and in vivo co-immunoprecipitation experiments, we identified that the bactofilin domain and N-terminal region of CcmA are required for helical cell shape and the bactofilin domain of CcmA is sufficient for polymerization and interactions with Csd5 and Csd7. We also found that CcmA's N-terminal region inhibits interaction with Csd7. Deleting the N-terminal region of CcmA increases CcmA-Csd7 interactions and destabilizes the peptidoglycan-hydrolase Csd1. Using super-resolution microscopy, we found that Csd5 recruits CcmA to the cell envelope and promotes CcmA enrichment at the major helical axis. Thus, CcmA helps organize cell-shape-determining proteins and peptidoglycan synthesis machinery to coordinate cell wall modification and synthesis, promoting the curvature required to build a helical cell.
Collapse
Affiliation(s)
- Sophie R Sichel
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- Molecular Medicine and Mechanisms of Disease Graduate Program, University of WashingtonSeattleUnited States
| | - Benjamin P Bratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology and InflammationNashvilleUnited States
| | - Nina R Salama
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
13
|
van Teeseling MCF. Elongation at Midcell in Preparation of Cell Division Requires FtsZ, but Not MreB nor PBP2 in Caulobacter crescentus. Front Microbiol 2021; 12:732031. [PMID: 34512611 PMCID: PMC8429850 DOI: 10.3389/fmicb.2021.732031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 02/04/2023] Open
Abstract
Controlled growth of the cell wall is a key prerequisite for bacterial cell division. The existing view of the canonical rod-shaped bacterial cell dictates that newborn cells first elongate throughout their side walls using the elongasome protein complex, and subsequently use the divisome to coordinate constriction of the dividing daughter cells. Interestingly, another growth phase has been observed in between elongasome-mediated elongation and constriction, during which the cell elongates from the midcell outward. This growth phase, that has been observed in Escherichia coli and Caulobacter crescentus, remains severely understudied and its mechanisms remain elusive. One pressing open question is which role the elongasome key-component MreB plays in this respect. This study quantitatively investigates this growth phase in C. crescentus and focuses on the role of both divisome and elongasome components. This growth phase is found to initiate well after MreB localizes at midcell, although it does not require its presence at this subcellular location nor the action of key elongasome components. Instead, the divisome component FtsZ seems to be required for elongation at midcell. This study thus shines more light on this growth phase in an important model organism and paves the road to more in-depth studies.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Junior Research Group Prokaryotic Cell Biology, Department Microbial Interactions, Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany.,Department of Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
14
|
Figueroa-Cuilan WM, Randich AM, Dunn CM, Santiago-Collazo G, Yowell A, Brown PJB. Diversification of LytM Protein Functions in Polar Elongation and Cell Division of Agrobacterium tumefaciens. Front Microbiol 2021; 12:729307. [PMID: 34489918 PMCID: PMC8416486 DOI: 10.3389/fmicb.2021.729307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022] Open
Abstract
LytM-domain containing proteins are LAS peptidases (lysostaphin-type enzymes, D-Ala-D-Ala metallopeptidases, and sonic hedgehog) and are known to play diverse roles throughout the bacterial cell cycle through direct or indirect hydrolysis of the bacterial cell wall. A subset of the LytM factors are catalytically inactive but regulate the activity of other cell wall hydrolases and are classically described as cell separation factors NlpD and EnvC. Here, we explore the function of four LytM factors in the alphaproteobacterial plant pathogen Agrobacterium tumefaciens. An LmdC ortholog (Atu1832) and a MepM ortholog (Atu4178) are predicted to be catalytically active. While Atu1832 does not have an obvious function in cell growth or division, Atu4178 is essential for polar growth and likely functions as a space-making endopeptidase that cleaves amide bonds in the peptidoglycan cell wall during elongation. The remaining LytM factors are degenerate EnvC and NlpD orthologs. Absence of these proteins results in striking phenotypes indicative of misregulation of cell division and growth pole establishment. The deletion of an amidase, AmiC, closely phenocopies the deletion of envC suggesting that EnvC might regulate AmiC activity. The NlpD ortholog DipM is unprecedently essential for viability and depletion results in the misregulation of early stages of cell division, contrasting with the canonical view of DipM as a cell separation factor. Finally, we make the surprising observation that absence of AmiC relieves the toxicity induced by dipM overexpression. Together, these results suggest EnvC and DipM may function as regulatory hubs with multiple partners to promote proper cell division and establishment of polarity.
Collapse
Affiliation(s)
| | - Amelia M. Randich
- Department of Biology, University of Scranton, Scranton, PA, United States
| | - Caroline M. Dunn
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Gustavo Santiago-Collazo
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Molecular Pathogenesis and Therapeutics Graduate Program, University of Missouri, Columbia, MO, United States
| | - Andrew Yowell
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
CrvA and CrvB form a curvature-inducing module sufficient to induce cell-shape complexity in Gram-negative bacteria. Nat Microbiol 2021; 6:910-920. [PMID: 34183815 PMCID: PMC8764749 DOI: 10.1038/s41564-021-00924-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/21/2021] [Indexed: 01/03/2023]
Abstract
Bacterial species have diverse cell shapes that enable motility, colonization, and virulence. The cell wall defines bacterial shape and is primarily built by two cytoskeleton-guided synthesis machines, the elongasome and the divisome. However, the mechanisms producing complex shapes, like the curved-rod shape of Vibrio cholerae, are incompletely defined. Previous studies have reported that species-specific regulation of cytoskeleton-guided machines enables formation of complex bacterial shapes such as cell curvature and cellular appendages. In contrast, we report that CrvA and CrvB are sufficient to induce complex cell shape autonomously of the cytoskeleton in V. cholerae. The autonomy of the CrvAB module also enables it to induce curvature in the Gram-negative species Escherichia coli, Pseudomonas aeruginosa, Caulobacter crescentus, and Agrobacterium tumefaciens. Using inducible gene expression, quantitative microscopy, and biochemistry we show that CrvA and CrvB circumvent the need for patterning via cytoskeletal elements by regulating each other to form an asymmetrically-localized, periplasmic structure that directly binds to the cell wall. The assembly and disassembly of this periplasmic structure enables dynamic changes in cell shape. Bioinformatics indicate that CrvA and CrvB may have diverged from a single ancestral hybrid protein. Using fusion experiments in V. cholerae, we find that a synthetic CrvA/B hybrid protein is sufficient to induce curvature on its own, but that expression of two distinct proteins, CrvA and CrvB, promotes more rapid curvature induction. We conclude that morphological complexity can arise independently of cell shape specification by the core cytoskeleton-guided synthesis machines.
Collapse
|
16
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
17
|
Self-association of MreC as a regulatory signal in bacterial cell wall elongation. Nat Commun 2021; 12:2987. [PMID: 34016967 PMCID: PMC8137920 DOI: 10.1038/s41467-021-22957-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/18/2021] [Indexed: 02/03/2023] Open
Abstract
The elongasome, or Rod system, is a protein complex that controls cell wall formation in rod-shaped bacteria. MreC is a membrane-associated elongasome component that co-localizes with the cytoskeletal element MreB and regulates the activity of cell wall biosynthesis enzymes, in a process that may be dependent on MreC self-association. Here, we use electron cryo-microscopy and X-ray crystallography to determine the structure of a self-associated form of MreC from Pseudomonas aeruginosa in atomic detail. MreC monomers interact in head-to-tail fashion. Longitudinal and lateral interfaces are essential for oligomerization in vitro, and a phylogenetic analysis of proteobacterial MreC sequences indicates the prevalence of the identified interfaces. Our results are consistent with a model where MreC's ability to alternate between self-association and interaction with the cell wall biosynthesis machinery plays a key role in the regulation of elongasome activity.
Collapse
|
18
|
The Chaperonin GroESL Facilitates Caulobacter crescentus Cell Division by Supporting the Functions of the Z-Ring Regulators FtsA and FzlA. mBio 2021; 12:mBio.03564-20. [PMID: 33947758 PMCID: PMC8262945 DOI: 10.1128/mbio.03564-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The highly conserved chaperonin GroESL performs a crucial role in protein folding; however, the essential cellular pathways that rely on this chaperone are underexplored. Loss of GroESL leads to severe septation defects in diverse bacteria, suggesting the folding function of GroESL may be integrated with the bacterial cell cycle at the point of cell division. Here, we describe new connections between GroESL and the bacterial cell cycle using the model organism Caulobacter crescentus. Using a proteomics approach, we identify candidate GroESL client proteins that become insoluble or are degraded specifically when GroESL folding is insufficient, revealing several essential proteins that participate in cell division and peptidoglycan biosynthesis. We demonstrate that other cell cycle events, such as DNA replication and chromosome segregation, are able to continue when GroESL folding is insufficient. We further find that deficiency of two FtsZ-interacting proteins, the bacterial actin homologue FtsA and the constriction regulator FzlA, mediate the GroESL-dependent block in cell division. Our data show that sufficient GroESL is required to maintain normal dynamics of the FtsZ scaffold and divisome functionality in C. crescentus. In addition to supporting divisome function, we show that GroESL is required to maintain the flow of peptidoglycan precursors into the growing cell wall. Linking a chaperone to cell division may be a conserved way to coordinate environmental and internal cues that signal when it is safe to divide.
Collapse
|
19
|
Pazos M, Vollmer W. Regulation and function of class A Penicillin-binding proteins. Curr Opin Microbiol 2021; 60:80-87. [PMID: 33611146 DOI: 10.1016/j.mib.2021.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023]
Abstract
Most bacteria surround their cell membrane with a peptidoglycan sacculus that counteracts the turgor and maintains the shape of the cell. Class A PBPs are bi-functional glycosyltransferase-transpeptidases that polymerize glycan chains and cross-link peptides. They have a major contribution to the total peptidoglycan synthesized during cell growth and cell division. In recent years it became apparent that class A PBPs participate in multiple protein? protein interactions and that some of these regulate their activities. In this opinion article, we review and discuss the role of class A PBPs in peptidoglycan growth and repair. We hypothesize that class A PBP function is essential in walled bacteria unless they have (a) SEDS protein(s) capable of replacing their function.
Collapse
Affiliation(s)
- Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
20
|
A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proc Natl Acad Sci U S A 2020; 117:32086-32097. [PMID: 33257551 DOI: 10.1073/pnas.2014659117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Magnetotactic bacteria maneuver within the geomagnetic field by means of intracellular magnetic organelles, magnetosomes, which are aligned into a chain and positioned at midcell by a dedicated magnetosome-specific cytoskeleton, the "magnetoskeleton." However, how magnetosome chain organization and resulting magnetotaxis is linked to cell shape has remained elusive. Here, we describe the cytoskeletal determinant CcfM (curvature-inducing coiled-coil filament interacting with the magnetoskeleton), which links the magnetoskeleton to cell morphology regulation in Magnetospirillum gryphiswaldense Membrane-anchored CcfM localizes in a filamentous pattern along regions of inner positive-cell curvature by its coiled-coil motifs, and independent of the magnetoskeleton. CcfM overexpression causes additional circumferential localization patterns, associated with a dramatic increase in cell curvature, and magnetosome chain mislocalization or complete chain disruption. In contrast, deletion of ccfM results in decreased cell curvature, impaired cell division, and predominant formation of shorter, doubled chains of magnetosomes. Pleiotropic effects of CcfM on magnetosome chain organization and cell morphology are supported by the finding that CcfM interacts with the magnetoskeleton-related MamY and the actin-like MamK via distinct motifs, and with the cell shape-related cytoskeleton via MreB. We further demonstrate that CcfM promotes motility and magnetic alignment in structured environments, and thus likely confers a selective advantage in natural habitats of magnetotactic bacteria, such as aquatic sediments. Overall, we unravel the function of a prokaryotic cytoskeletal constituent that is widespread in magnetic and nonmagnetic spirilla-shaped Alphaproteobacteria.
Collapse
|
21
|
Abstract
Work identifying how stalk morphogenesis in a species of Alphaproteobacteria is controlled unveils an interesting mechanism that other bacteria may utilize to generate the variety of bacterial cell morphologies found across the bacterial domain.
Collapse
Affiliation(s)
- Sophie R Sichel
- Fred Hutchinson Cancer Research Center, Division of Human Biology, Seattle, WA 98109, USA; Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Nina R Salama
- Fred Hutchinson Cancer Research Center, Division of Human Biology, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Daitch AK, Goley ED. Uncovering Unappreciated Activities and Niche Functions of Bacterial Cell Wall Enzymes. Curr Biol 2020; 30:R1170-R1175. [PMID: 33022262 PMCID: PMC7930900 DOI: 10.1016/j.cub.2020.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A peptidoglycan (PG) cell wall is an essential component of nearly all bacteria, providing protection against turgor pressure. Metabolism of this PG meshwork must be spatially and temporally regulated in order to support cell growth and division. Despite being an active area of research for decades, we have only recently identified the primary PG synthesis complexes that function during cell elongation (RodA-PBP2) and cell division (FtsW-FtsI), and we are still uncovering the importance of the other seemingly redundant cell wall enzymes. In this minireview, we highlight the discovery of the monofunctional glycosyltransferases RodA and FtsW and describe how these findings have prompted a re-evaluation of the auxiliary role of the bifunctional class A penicillin-binding proteins (aPBPs) as well as the L,D-transpeptidases (LDTs). Specifically, recent work indicates that the aPBPs and LDTs function independently of the primary morphogenetic complexes to support growth, provide protection from stresses, mediate morphogenesis, and/or allow adaptation to different growth conditions. These paradigm-shifting studies have reframed our understanding of bacterial cell wall metabolism, which will only become more refined as emerging technology allows us to tackle the remaining questions surrounding PG biosynthesis.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA.
| |
Collapse
|
23
|
Caccamo PD, Jacq M, VanNieuwenhze MS, Brun YV. A Division of Labor in the Recruitment and Topological Organization of a Bacterial Morphogenic Complex. Curr Biol 2020; 30:3908-3922.e4. [PMID: 32795444 DOI: 10.1016/j.cub.2020.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
Bacteria come in an array of shapes and sizes, but the mechanisms underlying diverse morphologies are poorly understood. The peptidoglycan (PG) cell wall is the primary determinant of cell shape. At the molecular level, morphological variation often results from the regulation of enzymes involved in cell elongation and division. These enzymes are spatially controlled by cytoskeletal scaffolding proteins, which both recruit and organize the PG synthesis complex. How then do cells define alternative morphogenic processes that are distinct from cell elongation and division? To address this, we have turned to the specific morphotype of Alphaproteobacterial stalks. Stalk synthesis is a specialized form of zonal growth, which requires PG synthesis in a spatially constrained zone to extend a thin cylindrical projection of the cell envelope. The morphogen SpmX defines the site of stalk PG synthesis, but SpmX is a PG hydrolase. How then does a non-cytoskeletal protein, SpmX, define and constrain PG synthesis to form stalks? Here, we report that SpmX and the bactofilin BacA act in concert to regulate stalk synthesis in Asticcacaulis biprosthecum. We show that SpmX recruits BacA to the site of stalk synthesis. BacA then serves as a stalk-specific topological organizer for PG synthesis activity, including its recruiter SpmX, at the base of the stalk. In the absence of BacA, cells produce "pseudostalks" that are the result of unconstrained PG synthesis. Therefore, the protein responsible for recruitment of a morphogenic PG remodeling complex, SpmX, is distinct from the protein that topologically organizes the complex, BacA.
Collapse
Affiliation(s)
- Paul D Caccamo
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
| | - Maxime Jacq
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centreville, Montréal, Canada
| | - Michael S VanNieuwenhze
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Drive, Indiana University, Bloomington, IN 47405, USA; Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Yves V Brun
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centreville, Montréal, Canada.
| |
Collapse
|
24
|
Abstract
Bacteria surround their cell membrane with a net-like peptidoglycan layer, called sacculus, to protect the cell from bursting and maintain its cell shape. Sacculus growth during elongation and cell division is mediated by dynamic and transient multiprotein complexes, the elongasome and divisome, respectively. In this Review we present our current understanding of how peptidoglycan synthases are regulated by multiple and specific interactions with cell morphogenesis proteins that are linked to a dynamic cytoskeletal protein, either the actin-like MreB or the tubulin-like FtsZ. Several peptidoglycan synthases and hydrolases require activation by outer-membrane-anchored lipoproteins. We also discuss how bacteria achieve robust cell wall growth under different conditions and stresses by maintaining multiple peptidoglycan enzymes and regulators as well as different peptidoglycan growth mechanisms, and we present the emerging role of LD-transpeptidases in peptidoglycan remodelling.
Collapse
|
25
|
Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus. J Bacteriol 2020; 202:JB.00468-19. [PMID: 31767777 DOI: 10.1128/jb.00468-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/17/2019] [Indexed: 12/28/2022] Open
Abstract
Bacteria have a variety of mechanisms for adapting to environmental perturbations. Changes in oxygen availability result in a switch between aerobic and anaerobic respiration, whereas iron limitation may lead to siderophore secretion. In addition to metabolic adaptations, many organisms respond by altering their cell shape. Caulobacter crescentus, when grown under phosphate-limiting conditions, dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanistic details of stalk synthesis are not well characterized. We used a chemical mutagenesis approach to isolate and characterize stalk-deficient mutants, one of which had two mutations in the phosphomannose isomerase gene (manA) that were necessary and sufficient to inhibit stalk elongation. Transcription of the pho regulon was unaffected in the manA mutant; therefore, ManA plays a unique regulatory role in stalk synthesis. The mutant ManA had reduced enzymatic activity, resulting in a 5-fold increase in the intracellular fructose 6-phosphate/mannose 6-phosphate ratio. This metabolic imbalance impaired the synthesis of cellular envelope components derived from mannose 6-phosphate, namely, lipopolysaccharide O-antigen and exopolysaccharide. Furthermore, the manA mutations prevented C. crescentus cells from efficiently entering stationary phase. Deletion of the stationary-phase response regulator gene spdR inhibited stalk elongation in wild-type cells, while overproduction of the alarmone ppGpp, which triggers growth arrest and stationary-phase entry, increased stalk length in the manA mutant strain. These results demonstrate that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation.IMPORTANCE Metabolic control of bacterial cell shape is an important mechanism for adapting to environmental perturbations. Caulobacter crescentus dramatically elongates its polar stalk appendage in response to phosphate starvation. To investigate the mechanism of this morphological adaptation, we isolated stalk-deficient mutants, one of which had mutations in the phosphomannose isomerase gene (manA) that blocked stalk elongation, despite normal activation of the phosphate starvation response. The mutant ManA resulted in an imbalance in sugar-phosphate concentrations, which had effects on the synthesis of cellular envelope components and entry into stationary phase. Due to the interconnectivity of metabolic pathways, our findings may suggest more generally that the modulation of bacterial cell shape involves the regulation of growth phase and the synthesis of cellular building blocks.
Collapse
|
26
|
Abstract
Many bacteria drastically change their cell size and morphology in response to changing environmental conditions. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus and related species transform into filamentous cells in response to conditions that commonly occur in their natural habitat as a result of algal blooms during the warm summer months. These filamentous cells may be better able to scavenge nutrients when they grow in biofilms and to escape from protist predation during planktonic growth. Our findings suggest that seasonal changes and variations in the microbial composition of the natural habitat can have profound impact on the cell biology of individual organisms. Furthermore, our work highlights that bacteria exist in morphological and physiological states in nature that can strongly differ from those commonly studied in the laboratory. All living cells are characterized by certain cell shapes and sizes. Many bacteria can change these properties depending on the growth conditions. The underlying mechanisms and the ecological relevance of changing cell shape and size remain unclear in most cases. One bacterium that undergoes extensive shape-shifting in response to changing growth conditions is the freshwater bacterium Caulobacter crescentus. When incubated for an extended time in stationary phase, a subpopulation of C. crescentus forms viable filamentous cells with a helical shape. Here, we demonstrated that this stationary-phase-induced filamentation results from downregulation of most critical cell cycle regulators and a consequent block of DNA replication and cell division while cell growth and metabolism continue. Our data indicate that this response is triggered by a combination of three stresses caused by prolonged growth in complex medium, namely, the depletion of phosphate, alkaline pH, and an excess of ammonium. We found that these conditions are experienced in the summer months during algal blooms near the surface in freshwater lakes, a natural habitat of C. crescentus, suggesting that filamentous growth is a common response of C. crescentus to its environment. Finally, we demonstrate that when grown in a biofilm, the filamentous cells can reach beyond the surface of the biofilm and potentially access nutrients or release progeny. Altogether, our work highlights the ability of bacteria to alter their morphology and suggests how this behavior might enable adaptation to changing environments.
Collapse
|