1
|
Kim C, Molina R, Lee M, Garay-Alvarez A, Yang J, Qian Y, Birhanu BT, Hesek D, Hermoso JA, Chang M, Mobashery S. Reactions of SleC, Its Structure and Inhibition in Mitigation of Spore Germination in Clostridioides difficile. J Am Chem Soc 2025; 147:5060-5070. [PMID: 39883867 DOI: 10.1021/jacs.4c14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Spore germination in Clostridioides difficile is initiated by a cascade of activities of several proteins that culminates in the activation of SleC, a cell-wall-processing enzyme. We report herein the details of the enzymatic activities of SleC by the use of synthetic peptidoglycan fragments and of spore sacculi. The reactions include the formation of 1,6-anhydromuramate─a hallmark of lytic transglycosylase activity─as well as a muramate hydrolytic product, both of which proceed through the same transient oxocarbenium species. Furthermore, we report the first X-ray structure of zymogenic prepro-SleC at 2.1 Å resolution. Additionally, the structure provides insights into the YabG and CspB cleavage sites necessary for the activation of the zymogen. The active site of SleC presents relevant differences in contrast to SpoIID, a homologous lytic transglycosylase involved in the sporulation Clostridioides species, explaining the ability of SleC to turn over the spore sacculus, a prerequisite for the germination event. A screening of an in-house library of compounds led to the discovery of an oxadiazole that binds to the mature (activated) form of SleC, whereby it shuts down the ability of spores to germinate in the presence of germinants. This is consistent with the SleC activity as an end-point for the germination cascade. The mechanistic knowledge and the inhibitor hold the promise in addressing an unmet medical need in intervention of recurrent infections by C. difficile.
Collapse
Affiliation(s)
- Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alba Garay-Alvarez
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Biruk T Birhanu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Vinay G, Seppen J, Setlow P, Brul S. Bile acids as germinants for Clostridioides difficile spores, evidence of adaptation to the gut? FEMS Microbiol Rev 2025; 49:fuaf005. [PMID: 39924167 DOI: 10.1093/femsre/fuaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 12/16/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025] Open
Abstract
Bacterial spores formed upon metabolic stress have minimal metabolic activity and can remain dormant for years. Nevertheless, they can sense the environment and germinate quickly upon exposure to various germinants. Germinated spores can then outgrow into vegetative cells. Germination of spores of some anaerobes, especially Clostridioides difficile, is triggered by cholic acid and taurocholic acid. Elevated levels of these bile acids are thought to correlate with a perturbed gut microbiome, which cannot efficiently convert primary bile acids into secondary bile acids. That bile acids are germination-triggers suggests these bacteria have a life cycle taking place partially in the mammalian digestive tract where bile acids are plentiful; notably bile acids can be made by all vertebrates. Thus, spores survive in the environment until taken up by a host where they encounter an environment suitable for germination and then proliferate in the largely anaerobic large intestine; some ultimately sporulate there, regenerating environmentally resistant spores in the C. difficile life cycle. This review summarizes current literature on the effects of bile acids and their metabolites on spore germination in the gut and evidence that adaptation to bile acids as germinants is a consequence of a life cycle both inside and outside the digestive tract.
Collapse
Affiliation(s)
- Gianni Vinay
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, United States
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
3
|
Beebe MA, Paredes-Sabja D, Kociolek LK, Rodríguez C, Sorg JA. Phenotypic analysis of various Clostridioides difficile ribotypes reveals consistency among core processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632434. [PMID: 39829883 PMCID: PMC11741275 DOI: 10.1101/2025.01.10.632434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Clostridioides difficile infections (CDI) cause almost 300,000 hospitalizations per year of which ~15-30% are the result of recurring infections. The prevalence and persistence of CDI in hospital settings has resulted in an extensive collection of C. difficile clinical isolates and their classification, typically by ribotype. While much of the current literature focuses on one or two prominent ribotypes (e.g., RT027), recent years have seen several other ribotypes dominate the clinical landscape (e.g., RT106 and RT078). Some ribotypes are associated with severe disease and / or increased recurrence rates, but why are certain ribotypes more prominent or harmful than others remains unknown. Because C. difficile has a large, open pan-genome, this observed relationship between ribotype and clinical outcome could be a result of the genetic diversity of C. difficile. Thus, we hypothesize that core biological processes of C. difficile are conserved across ribotypes / clades. We tested this hypothesis by observing the growth kinetics, sporulation, germination, bile acid sensitivity, bile salt hydrolase activity, and surface motility of fifteen strains belonging to various ribotypes spanning each known C. difficile clade. In viewing these phenotypes across each strain, we see that core phenotypes (growth, germination, sporulation, and resistance to bile salt toxicity) are remarkably consistent across clades / ribotypes. This suggests that variations observed in the clinical setting may be due to unidentified factors in the accessory genome or due to unknown host-factors. Importance C. difficile infections impact thousands of individuals every year many of whom experience recurring infections. Clinical studies have reported an unexplained correlation between some clades / ribotypes of C. difficile and disease severity / recurrence. Here, we demonstrate that C. difficile strains across the major clades / ribotypes are consistent in their core phenotypes. This suggests that such phenotypes are not responsible for variations in disease severity / recurrence and are ideal targets for the development of therapeutics meant to treat C. difficile related infections.
Collapse
Affiliation(s)
- Merilyn A. Beebe
- Department of Biology, Texas A&M University, College Station, TX 77845
| | | | - Larry K. Kociolek
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845
| |
Collapse
|
4
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney MW, Sidebottom AM, Fortier LC, Shen A, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent strain. Cell Host Microbe 2025; 33:59-70.e4. [PMID: 39610252 PMCID: PMC11731898 DOI: 10.1016/j.chom.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Clostridioides difficile is a leading cause of healthcare infections. Gut dysbiosis promotes C. difficile infection (CDI) and CDIs promote gut dysbiosis, leading to frequent CDI recurrence. Although therapies preventing recurrent CDI have been developed, including live biotherapeutic products, existing therapies are costly and do not prevent primary infections. Here, we show that an avirulent C. difficile isolate, ST1-75, protects mice from developing colitis induced by a virulent R20291 strain when coinfected at a 1:1 ratio. In metabolic analyses, avirulent ST1-75 depletes amino acids more rapidly than virulent R20291 and supplementation with amino acids ablates this competitive advantage, indicating that ST1-75 limits the growth of virulent R20291 through amino acid depletion. Overall, our study identifies inter-strain nutrient depletion as a potentially exploitable mechanism to reduce the incidence of CDI and reveals that the ST1-75 strain may be a biotherapeutic agent that can prevent CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sophie S Son
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Ouyang Z, Zhao H, Zhao M, Yang Y, Zhao J. Type IV pili are involved in phenotypes associated with Clostridioides difficile pathogenesis. Crit Rev Microbiol 2024; 50:1011-1019. [PMID: 37452617 DOI: 10.1080/1040841x.2023.2235002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, rod-shaped, obligate anaerobe that is the leading cause of antibiotic-associated diarrhea. Type IV pili (T4P) are elongated appendages on the surface of C. difficile that are polymerized from many pilin proteins. T4P play an important role in C. difficile adherence and particularly in its persistence in the host intestine. Recent studies have shown that T4P promote C. difficile aggregation, surface motility, and biofilm formation, which may enhance its pathogenicity. Additionally, the second messenger cyclic diguanylate increases pilA1 transcript abundance, indirectly promoting T4P-mediated aggregation, surface motility, and biofilm formation of C. difficile. This review summarizes recent advances in C. difficile T4P research and the physiological activities of T4P in the context of C. difficile pathogenesis.
Collapse
Affiliation(s)
- Zirou Ouyang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Hanlin Zhao
- Department of Medical Laboratory, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Min Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Yaxuan Yang
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
6
|
Osborne MS, Brehm JN, Olivença C, Cochran AM, Serrano M, Henriques AO, Sorg JA. The Impact of YabG Mutations on Clostridioides difficile Spore Germination and Processing of Spore Substrates. Mol Microbiol 2024; 122:534-548. [PMID: 39258427 PMCID: PMC12016784 DOI: 10.1111/mmi.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
YabG is a sporulation-specific protease that is conserved among sporulating bacteria. Clostridioides difficile YabG processes the cortex destined proteins preproSleC into proSleC and CspBA to CspB and CspA. YabG also affects synthesis of spore coat/exosporium proteins CotA and CdeM. In prior work that identified CspA as the co-germinant receptor, mutations in yabG were found which altered the co-germinants required to initiate spore germination. To understand how these mutations in the yabG locus contribute to C. difficile spore germination, we introduced these mutations into an isogenic background. Spores derived from C. difficile yabGC207A (a catalytically inactive allele), C. difficile yabGA46D, C. difficile yabGG37E, and C. difficile yabGP153L strains germinated in response to taurocholic acid alone. Recombinantly expressed and purified preproSleC incubated with E. coli lysate expressing wild type YabG resulted in the removal of the presequence from preproSleC. Interestingly, only YabGA46D showed any activity toward purified preproSleC. Mutation of the YabG processing site in preproSleC (R119A) led to YabG shifting its processing to R115 or R112. Finally, changes in yabG expression under the mutant promoters were analyzed using a SNAP-tag and revealed expression differences at early and late stages of sporulation. Overall, our results support and expand upon the hypothesis that YabG is important for germination and spore assembly and, upon mutation of the processing site, can shift where it cleaves substrates.
Collapse
Affiliation(s)
- Morgan S. Osborne
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alicia M. Cochran
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
7
|
Sum R, Lim SJM, Sundaresan A, Samanta S, Swaminathan M, Low W, Ayyappan M, Lim TW, Choo MD, Huang GJ, Cheong I. Clostridium septicum manifests a bile salt germinant response mediated by Clostridioides difficile csp gene orthologs. Commun Biol 2024; 7:947. [PMID: 39103440 PMCID: PMC11300598 DOI: 10.1038/s42003-024-06617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Clostridium septicum infections are highly predictive of certain malignancies in human patients. To initiate infections, C. septicum spores must first germinate and regain vegetative growth. Yet, what triggers the germination of C. septicum spores is still unknown. Here, we observe that C. septicum germinates in response to specific bile salts. Putative bile salt recognition genes are identified in C. septicum based on their similarity in sequence and organization to bile salt-responsive csp genes in Clostridioides difficile. Inactivating two of these csp orthologs (cspC-82 and cspC-1718) results in mutant spores that no longer germinate in the presence of their respective cognate bile salts. Additionally, inactivating the putative cspBA or sleC genes in C. septicum abrogates the germination response to all bile salt germinants, suggesting that both act at a convergent point downstream of cspC-82 and cspC-1718. Molecular dynamics simulations show that both CspC-82 and CspC-1718 bear a strong structural congruence with C. difficile's CspC. The existence of functional bile salt germination sensors in C. septicum may be relevant to the association between infection and malignancy.
Collapse
Affiliation(s)
- Rongji Sum
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sylvester Jian Ming Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ajitha Sundaresan
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | - Wayne Low
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Madhumitha Ayyappan
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Ting Wei Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Marvin Dragon Choo
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | | | - Ian Cheong
- Temasek Life Sciences Laboratory, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Osborne MS, Brehm JN, Olivença C, Cochran AM, Serrano M, Henriques AO, Sorg JA. The impact of YabG mutations on C. difficile spore germination and processing of spore substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598338. [PMID: 38915615 PMCID: PMC11195116 DOI: 10.1101/2024.06.10.598338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
YabG is a sporulation-specific protease that is conserved among sporulating bacteria. C. difficile YabG processes cortex destined proteins preproSleC into proSleC and CspBA to CspB and CspA. YabG also affects synthesis of spore coat/exosporium proteins CotA and CdeM. In prior work that identified CspA as the co-germinant receptor, mutations in yabG were found which altered the co-germinants required to initiate spore germination. To understand how these mutations in the yabG locus contribute to C. difficile spore germination, we introduced these mutations into an isogenic background. Spores derived from C. difficile yabG C207A (catalytically inactive), C. difficile yabG A46D, C. difficile yabG G37E, and C. difficile yabG P153L strains germinated in response to TA alone. Recombinantly expressed and purified preproSleC incubated with E. coli lysate expressing wild type YabG resulted in the removal of the pre sequence from preproSleC. Interestingly, only YabGA46D showed any activity towards purified preproSleC. Mutation of the YabG processing site in preproSleC (R119A) led to YabG shifting its processing to R115 or R112. Finally, changes in yabG expression under the mutant promoters were analyzed using a SNAP-tag and revealed expression differences at early and late stages of sporulation. Overall, our results support and expand upon the hypothesis that YabG is important for germination and spore assembly and, upon mutation of the processing site, can shift where it cleaves substrates.
Collapse
Affiliation(s)
- Morgan S. Osborne
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alicia M. Cochran
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
9
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney M, Sidebottom AM, Shen A, Fortier LC, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent C. difficile strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592814. [PMID: 38766138 PMCID: PMC11100753 DOI: 10.1101/2024.05.06.592814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Clostridioides difficile (C. difficile) strains belonging to the epidemic BI/NAP1/027 (RT027) group have been associated with increased transmissibility and disease severity. In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75, that is avirulent in mice despite densely colonizing the colon. Here, we show that coinfecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain. Although avirulence of ST1-75 is due to a mutation in the cdtR gene, which encodes a response regulator that modulates the production of all three C. difficile toxins, the ability of ST1-75 to protect against acute colitis is not directly attributable to the cdtR mutation. Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of in vivo nutrient depletion as a mechanism providing strain-specific, virulence-independent competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Sophie S. Son
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Michael Mullowney
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Ribis JW, Melo L, Shrestha S, Giacalone D, Rodriguez EE, Shen A, Rohlfing A. Single-spore germination analyses reveal that calcium released during Clostridioides difficile germination functions in a feedforward loop. mSphere 2023; 8:e0000523. [PMID: 37338207 PMCID: PMC10449524 DOI: 10.1128/msphere.00005-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/21/2023] [Indexed: 06/21/2023] Open
Abstract
Clostridioides difficile infections begin when its metabolically dormant spores germinate in response to sensing bile acid germinants alongside amino acid and divalent cation co-germinants in the small intestine. While bile acid germinants are essential for C. difficile spore germination, it is currently unclear whether both co-germinant signals are required. One model proposes that divalent cations, particularly Ca2+, are essential for inducing germination, while another proposes that either co-germinant class can induce germination. The former model is based on the finding that spores defective in releasing large stores of internal Ca2+ in the form of calcium dipicolinic acid (CaDPA) cannot germinate when germination is induced with bile acid germinant and amino acid co-germinant alone. However, since the reduced optical density of CaDPA-less spores makes it difficult to accurately measure their germination, we developed a novel automated, time-lapse microscopy-based germination assay to analyze CaDPA mutant germination at the single-spore level. Using this assay, we found that CaDPA mutant spores germinate in the presence of amino acid co-germinant and bile acid germinant. Higher levels of amino acid co-germinants are nevertheless required to induce CaDPA mutant spores to germinate relative to WT spores because CaDPA released by WT spores during germination can function in a feedforward loop to potentiate the germination of other spores within the population. Collectively, these data indicate that Ca2+ is not essential for inducing C. difficile spore germination because amino acid and Ca2+ co-germinant signals are sensed by parallel signaling pathways. IMPORTANCE Clostridioides difficile spore germination is essential for this major nosocomial pathogen to initiate infection. C. difficile spores germinate in response to sensing bile acid germinant signals alongside co-germinant signals. There are two classes of co-germinant signals: Ca2+ and amino acids. Prior work suggested that Ca2+ is essential for C. difficile spore germination based on bulk population analyses of germinating CaDPA mutant spores. Since these assays rely on optical density to measure spore germination and the optical density of CaDPA mutant spores is reduced relative to WT spores, this bulk assay is limited in its capacity to analyze germination. To overcome this limitation, we developed an automated image analysis pipeline to monitor C. difficile spore germination using time-lapse microscopy. With this analysis pipeline, we demonstrate that, although Ca2+ is dispensable for inducing C. difficile spore germination, CaDPA can function in a feedforward loop to potentiate the germination of neighboring spores.
Collapse
Affiliation(s)
- John W. Ribis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Luana Melo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shailab Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David Giacalone
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Amy Rohlfing
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Yip C, Phan JR, Abel-Santos E. Mechanism of germination inhibition of Clostridioides difficile spores by an aniline substituted cholate derivative (CaPA). J Antibiot (Tokyo) 2023; 76:335-345. [PMID: 37016015 PMCID: PMC10406169 DOI: 10.1038/s41429-023-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/06/2023]
Abstract
Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea and has been declared an urgent threat by the CDC. C. difficile forms dormant and resistant spores that serve as infectious vehicles for CDI. To cause disease, C. difficile spores recognize taurocholate and glycine to trigger the germination process. In contrast to other sporulating bacteria, C. difficile spores are postulated to use a protease complex, CspABC, to recognize its germinants. Since spore germination is required for infection, we have developed anti-germination approaches for CDI prophylaxis. Previously, the bile salt analog CaPA (an aniline-substituted cholic acid) was shown to block spore germination and protect rodents from CDI caused by multiple C. difficile strains and isolates. In this study, we found that CaPA is an alternative substrate inhibitor of C. difficile spore germination. By competing with taurocholate for binding, CaPA delays C. difficile spore germination and reduces spore viability, thus diminishing the number of outgrowing vegetative bacteria. We hypothesize that the reduction of toxin-producing bacterial burden explains CaPA's protective activity against murine CDI. Previous data combined with our results suggests that CaPA binds tightly to C. difficile spores in a CspC-dependent manner and irreversibly traps spores in an alternative, time-delayed, and low yield germination pathway. Our results are also consistent with kinetic data suggesting the existence of at least two distinct bile salt binding sites in C. difficile spores.
Collapse
Affiliation(s)
- Christopher Yip
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jacqueline R Phan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
12
|
Janardhanan J, Kim C, Qian Y, Yang J, Meisel J, Ding D, Speri E, Schroeder V, Wolter W, Oliver A, Mobashery S, Chang M. A dual-action antibiotic that kills Clostridioides difficile vegetative cells and inhibits spore germination. Proc Natl Acad Sci U S A 2023; 120:e2304110120. [PMID: 37155891 PMCID: PMC10193928 DOI: 10.1073/pnas.2304110120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [Antibiotic Resistance Threats in the United States, 2019 (2019), www.cdc.gov/DrugResistance/Biggest-Threats.html]. The high recurrence rate and the inability of antibiotics to treat such infections mandate discovery of new therapeutics. A major challenge with CDI is the production of spores, leading to multiple recurrences of infection in 25% of patients [C. P. Kelly, J. T. LaMont, N. Engl. J. Med. 359, 1932-1940 (2008)], with potentially lethal consequence. Herein, we describe the discovery of an oxadiazole as a bactericidal anti-C. difficile agent that inhibits both cell-wall peptidoglycan biosynthesis and spore germination. We document that the oxadiazole binds to the lytic transglycosylase SleC and the pseudoprotease CspC for prevention of spore germination. SleC degrades the cortex peptidoglycan, a critical step in the initiation of spore germination. CspC senses germinants and cogerminants. Binding to SleC is with higher affinity than that to CspC. Prevention of spore germination breaks the nefarious cycles of CDI recurrence in the face of the antibiotic challenge, which is a primary cause of therapeutic failure. The oxadiazole exhibits efficacy in a mouse model of recurrent CDI and holds promise in clinical treatment of CDI.
Collapse
Affiliation(s)
- Jeshina Janardhanan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jayda E. Meisel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Derong Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Enrico Speri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Valerie A. Schroeder
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - William R. Wolter
- Freimann Life Sciences Center, University of Notre Dame, Notre Dame, IN46556
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
13
|
Liggins M, Ramírez Ramírez N, Abel-Santos E. Comparison of sporulation and germination conditions for Clostridium perfringens type A and G strains. Front Microbiol 2023; 14:1143399. [PMID: 37228374 PMCID: PMC10203408 DOI: 10.3389/fmicb.2023.1143399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Clostridium perfringens is a spore forming, anaerobic, Gram-positive bacterium that causes a range of diseases in humans and animals. C. perfringens forms spores, structures that are derived from the vegetative cell under conditions of nutrient deprivation and that allows survival under harsh environmental conditions. To return to vegetative growth, C. perfringens spores must germinate when conditions are favorable. Previous work in analyzing C. perfringens spore germination has produced strain-specific results. Hence, we analyzed the requirements for spore formation and germination in seven different C. perfringens strains. Our data showed that C. perfringens sporulation conditions are strain-specific, but germination responses are homogenous in all strains tested. C. perfringens spores can germinate using two distinct pathways. The first germination pathway (the amino acid-only pathway or AA) requires L-alanine, L-phenylalanine, and sodium ions (Na+) as co-germinants. L-arginine is not a required germinant but potentiates germination. The AA pathway is inhibited by aromatic amino acids and potassium ions (K+). Bicarbonate (HCO3-), on the other hand, bypasses potassium-mediated inhibition of C. perfringens spore germination through the AA pathway. The second germination pathway (the bile salt / amino acid pathway or BA) is more promiscuous and is activated by several bile salts and amino acids. In contrast to the AA pathway, the BA pathway is insensitive to Na+, although it can be activated by either K+ or HCO3-. We hypothesize that some C. perfringens strains may have evolved these two distinct germination pathways to ensure spore response to different host environments.
Collapse
Affiliation(s)
- Marc Liggins
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Norma Ramírez Ramírez
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
14
|
Etifa P, Rodríguez C, Harmanus C, Sanders IMJG, Sidorov IA, Mohammed OA, Savage E, Timms AR, Freeman J, Smits WK, Wilcox MH, Baines SD. Non-Toxigenic Clostridioides difficile Strain E4 (NTCD-E4) Prevents Establishment of Primary C. difficile Infection by Epidemic PCR Ribotype 027 in an In Vitro Human Gut Model. Antibiotics (Basel) 2023; 12:435. [PMID: 36978302 PMCID: PMC10044524 DOI: 10.3390/antibiotics12030435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant healthcare burden. Non-toxigenic C. difficile (NTCD) strains have shown a benefit in preventing porcine enteritis and in human recurrent CDI. In this study, we evaluated the efficacy of metronidazole-resistant NTCD-E4 in preventing CDI facilitated by a range of antimicrobials in an in vitro human gut model. NTCD-E4 spores (at a dose of 107) were instilled 7 days before a clinical ribotype (RT) 027 (at the same dose) strain (210). In separate experiments, four different antimicrobials were used to perturb gut microbiotas; bacterial populations and cytotoxin production were determined using viable counting and Vero cell cytotoxicity, respectively. RT027 and NTCD-E4 proliferated in the in vitro model when inoculated singly, with RT027 demonstrating high-level cytotoxin (3-5-log10-relative units) production. In experiments where the gut model was pre-inoculated with NTCD-E4, RT027 was remained quiescent and failed to produce cytotoxins. NTCD-E4 showed mutations in hsmA and a gene homologous to CD196-1331, previously linked to medium-dependent metronidazole resistance, but lacked other metronidazole resistance determinants. This study showed that RT027 was unable to elicit simulated infection in the presence of NTCD-E4 following stimulation by four different antimicrobials. These data complement animal and clinical studies in suggesting NTCD offer prophylactic potential in the management of human CDI.
Collapse
Affiliation(s)
- Perezimor Etifa
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Reading RG6 6DZ, UK
| | - César Rodríguez
- Facultad de Microbiología & CIET, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
| | - Céline Harmanus
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ingrid M. J. G. Sanders
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Igor A. Sidorov
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Olufunmilayo A. Mohammed
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Emily Savage
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Andrew R. Timms
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jane Freeman
- Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Wiep Klaas Smits
- Leiden University Medical Center, Department of Medical Microbiology, Albinusdreef, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark H. Wilcox
- Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Simon D. Baines
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
15
|
Razim A, Górska S, Gamian A. Non-Toxin-Based Clostridioides difficile Vaccination Approaches. Pathogens 2023; 12:235. [PMID: 36839507 PMCID: PMC9966970 DOI: 10.3390/pathogens12020235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile (CD) is a Gram-positive, anaerobic bacterium that infects mainly hospitalized and elderly people who have been treated with long-term antibiotic therapy leading to dysbiosis. The deteriorating demographic structure and the increase in the number of antibiotics used indicate that the problem of CD infections (CDI) will continue to increase. Thus far, there is no vaccine against CD on the market. Unfortunately, clinical trials conducted using the CD toxin-based antigens did not show sufficiently high efficacy, because they did not prevent colonization and transmission between patients. It seems that the vaccine should also include antigens found in the bacterium itself or its spores in order not only to fight the effects of toxins but also to prevent the colonization of the patient. This literature review summarizes the latest advances in research into vaccine antigens that do not contain CD toxins.
Collapse
Affiliation(s)
- Agnieszka Razim
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | | | | |
Collapse
|
16
|
Soldavini Pelichotti PC, Cejas D, Fernández-Caniggia L, Trejo FM, Pérez PF. Characterization of a Clostridioides difficile ST-293 isolate from a recurrent infection in Argentina. Rev Argent Microbiol 2023:S0325-7541(22)00102-X. [PMID: 36599754 DOI: 10.1016/j.ram.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 09/27/2022] [Indexed: 01/03/2023] Open
Abstract
Clostridioides difficile is an opportunistic spore-forming pathogen responsible for antibiotic-associated diarrhea in humans. C. difficile produces two main toxins: TcdA and TcdB as well as a third toxin named binary toxin (CDT) that is also involved in virulence. The present study aimed at characterizing the C. difficile isolate ALCD3 involved in a relapse episode of nosocomial infection. Molecular characterization showed that isolate ALCD3 belongs to toxinotype 0/v and the MLST analysis demonstrated allelic profile adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 and tpi:1 which corresponds to ST293 (MLST clade: 1). During growth, isolate ALCD3 showed an early increase in the sporulation ratio as well as maximal values of heat resistant forms after 2 days of incubation. Both sporulation kinetics and production of heat resistant forms were faster for isolate ALCD3 than for the reference strain VPI 10463. Germination in the presence of the natural germinant taurocholate was faster for isolate ALCD3 than for strain VPI 10463, which indicates that isolate ALCD3 starts cortex hydrolysis earlier than strain VPI 10463. Furthermore, the co-germinant glycine, induces rapid release of dipicolinic acid (DPA) in isolate ALCD3. These findings indicate that isolate ALCD3 is particularly efficient in both sporulation and germination. The present work represents the first report of the circulation of C. difficile ST293 in Argentina. The ability of isolate ALCD3 to produce toxins and its high sporulation/germination capacity are key features compatible with a microorganism with high dissemination potential and the possibility of inducing recurrent infections.
Collapse
Affiliation(s)
- P Cecilia Soldavini Pelichotti
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata B1900AJI, Argentina
| | - Daniela Cejas
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Liliana Fernández-Caniggia
- Laboratorio de Microbiología, Hospital Alemán, Av. Pueyrredón 1640, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando M Trejo
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina
| | - Pablo F Pérez
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata B1900AJI, Argentina.
| |
Collapse
|
17
|
DeColli AA, Koolik IM, Seminara AB, Hatzios SK. A propeptide-based biosensor for the selective detection of Vibrio cholerae using an environment-sensitive fluorophore. Cell Chem Biol 2022; 29:1505-1516.e7. [DOI: 10.1016/j.chembiol.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
|
18
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Abstract
Clostridioides difficile spores are the infective form for this endospore-forming organism. The vegetative cells are intolerant to oxygen and poor competitors with a healthy gut microbiota. Therefore, in order for C. difficile to establish infection, the spores have to germinate in an environment that supports vegetative growth. To initiate germination, C. difficile uses Csp-type germinant receptors that consist of the CspC and CspA pseudoproteases as the bile acid and cogerminant receptors, respectively. CspB is a subtilisin-like protease that cleaves the inhibitory propeptide from the pro-SleC cortex lytic enzyme, thereby activating it and initiating cortex degradation. Though several locations have been proposed for where these proteins reside within the spore (i.e., spore coat, outer spore membrane, cortex, and inner spore membrane), these have been based, mostly, on hypotheses or prior data in Clostridium perfringens. In this study, we visualized the germination and outgrowth process using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and used immunogold labeling to visualize key germination regulators. These analyses localize these key regulators to the spore cortex region for the first time. IMPORTANCE Germination by C. difficile spores is the first step in the establishment of potentially life-threatening C. difficile infection (CDI). A deeper understanding of the mechanism by which spores germinate may provide insight for how to either prevent spore germination into a disease-causing vegetative form or trigger germination prematurely when the spore is either in the outside environment or in a host environment that does not support the establishment of colonization/disease.
Collapse
|
20
|
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J Bacteriol 2022; 204:e0007922. [PMID: 35638784 DOI: 10.1128/jb.00079-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.
Collapse
|
21
|
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int J Mol Sci 2022; 23:ijms23063405. [PMID: 35328823 PMCID: PMC8953710 DOI: 10.3390/ijms23063405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host’s immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores’ use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.
Collapse
|
22
|
Baloh M, Sorg JA. Clostridioides difficile spore germination: initiation to DPA release. Curr Opin Microbiol 2022; 65:101-107. [PMID: 34808546 PMCID: PMC8792321 DOI: 10.1016/j.mib.2021.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Germination by Clostridioides difficile spores is an essential step in pathogenesis. Spores are metabolically dormant forms of bacteria that resist severe conditions. Work over the last 10 years has elucidated that C. difficile spores germinate thorough a novel pathway. This review summarizes our understanding of C. difficile spore germination and the factors involved in germinant recognition, cortex degradation and DPA release.
Collapse
Affiliation(s)
- Marko Baloh
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77843,Corresponding author: ph: 979-845-6299,
| |
Collapse
|
23
|
Su T, Chen W, Wang D, Cui Y, Ni Q, Jiang C, Dong D, Peng Y. Complete Genome Sequencing and Comparative Phenotypic Analysis Reveal the Discrepancy Between Clostridioides difficile ST81 and ST37 Isolates. Front Microbiol 2021; 12:776892. [PMID: 34992586 PMCID: PMC8725731 DOI: 10.3389/fmicb.2021.776892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Toxin A-negative, toxin B-positive Clostridioides difficile strains, which primarily include the ST81 and ST37 genotypes, are predominant in C. difficile infections leading to antibiotic-associated diarrhea in China. Recently, ST81 has been reported as the most prevalent genotype rather than ST37, although the genetic and functional characteristics of the two genotypes remain ambiguous. In this study, we conducted comprehensive comparative analysis of these two genotypes through complete genome sequencing and phenotypic profiling. The whole genome sequencing revealed that the ST81 and ST37 isolates were closely related genetically with similar gene compositions, and high rate of the core genome shared. The integrative and conjugative elements identified in ST81 were similar to those in ST37, albeit with more diverse and insertion regions. By characterizing the phenotypes related to colonization or survival in the host, we found that the ST81 isolates exhibited robust colonization ability and survival both in vitro and in vivo, enhanced spore production, and slightly increased motility, which may be attributable to the discrepancy in non-synonymous single-nucleotide polymorphisms in the relevant functional genes. Furthermore, the ST81 isolates displayed a significantly higher rate of resistance to fluoroquinolones compared with the ST37 isolates (94.12% vs. 62.5%) and mostly carried the amino acid substitution Asp426Val in GyrB. In summary, the results of our study indicate that ST81 isolates exhibit enhanced ability to transmit between hosts and survive in harsh environments, providing key genetic insights for further epidemiological investigations and surveillance of C. difficile infection.
Collapse
Affiliation(s)
- Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Danfeng Dong,
| | - Yibing Peng
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Yibing Peng,
| |
Collapse
|
24
|
Sharma SK, Yip C, Simon MP, Phan J, Abel-Santos E, Firestine SM. Studies on the Importance of the 7α-, and 12α- hydroxyl groups of N-Aryl-3α,7α,12α-trihydroxy-5β-cholan-24-amides on their Antigermination Activity Against a Hypervirulent Strain of Clostridioides (Clostridium) difficile. Bioorg Med Chem 2021; 52:116503. [PMID: 34837818 DOI: 10.1016/j.bmc.2021.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Chenodeoxycholic acid (CDCA) is a natural germination inhibitor for C. difficile spores. In our previous study (J. Med. Chem., 2018, 61, 6759-6778), we identified N-phenyl-3α,7α,12α-trihydroxy-5β-cholan-24-amide as an inhibitor of C. difficile strain R20291 with an IC50 of 1.8 μM. Studies of bile salts on spore germination have shown that chenodeoxycholate, ursodeoxycholate and lithocholate are more potent inhibitors of germination compared to cholate. Given this, we created amide analogs of chenodeoxycholic, deoxycholic, lithocholic and ursodeoxycholic acids using amines identified from our previous studies. We found that chenodeoxy- and deoxycholate derivatives were active with potencies equivalent to those for cholanamides. This indicates that only 2 out of the 3 hydroxyl groups are needed for activity and that the alpha stereochemistry at position 7 is required for inhibition of spore germination.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Pharmaceutical sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, United States
| | - Christopher Yip
- Department of Chemistry and Biochemistry, University of Nevada at Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV, 89154, United States
| | - Matthew P Simon
- Department of Pharmaceutical sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, United States
| | - Jacqueline Phan
- Department of Chemistry and Biochemistry, University of Nevada at Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV, 89154, United States
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada at Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV, 89154, United States
| | - Steven M Firestine
- Department of Pharmaceutical sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, United States.
| |
Collapse
|
25
|
Artzi L, Alon A, Brock KP, Green AG, Tam A, Ramírez-Guadiana FH, Marks D, Kruse A, Rudner DZ. Dormant spores sense amino acids through the B subunits of their germination receptors. Nat Commun 2021; 12:6842. [PMID: 34824238 PMCID: PMC8617281 DOI: 10.1038/s41467-021-27235-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/01/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria from the orders Bacillales and Clostridiales differentiate into stress-resistant spores that can remain dormant for years, yet rapidly germinate upon nutrient sensing. How spores monitor nutrients is poorly understood but in most cases requires putative membrane receptors. The prototypical receptor from Bacillus subtilis consists of three proteins (GerAA, GerAB, GerAC) required for germination in response to L-alanine. GerAB belongs to the Amino Acid-Polyamine-Organocation superfamily of transporters. Using evolutionary co-variation analysis, we provide evidence that GerAB adopts a structure similar to an L-alanine transporter from this superfamily. We show that mutations in gerAB predicted to disrupt the ligand-binding pocket impair germination, while mutations predicted to function in L-alanine recognition enable spores to respond to L-leucine or L-serine. Finally, substitutions of bulkier residues at these positions cause constitutive germination. These data suggest that GerAB is the L-alanine sensor and that B subunits in this broadly conserved family function in nutrient detection.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Anna G Green
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Amy Tam
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | | | - Debora Marks
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Andrew Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
An aniline-substituted bile salt analog protects both mice and hamsters from multiple Clostridioides difficile strains. Antimicrob Agents Chemother 2021; 66:e0143521. [PMID: 34780262 DOI: 10.1128/aac.01435-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea. The emergence of hypervirulent C. difficile strains has led to increases in both hospital- and community-acquired CDI. Furthermore, CDI relapse from hypervirulent strains can reach up to 25%. Thus, standard treatments are rendered less effective, making new methods of prevention and treatment more critical. Previously, the bile salt analog CamSA was shown to inhibit spore germination in vitro and protect mice and hamsters from C. difficile strain 630. Here, we show that CamSA was less active at preventing spore germination of other C. difficile ribotypes, including the hypervirulent strain R20291. Strain-specific in vitro germination activity of CamSA correlated with its ability to prevent CDI in mice. Additional bile salt analogs were screened for in vitro germination inhibition activity against strain R20291, and the most active compounds were tested against other strains. An aniline-substituted bile salt analog, (CaPA), was found to be a better anti-germinant than CamSA against eight different C. difficile strains. In addition, CaPA was capable of reducing, delaying, or preventing murine CDI signs in all strains tested. CaPA-treated mice showed no obvious toxicity and showed minor effects on their gut microbiome. CaPA's efficacy was further confirmed by its ability to prevent CDI in hamsters infected with strain 630. These data suggest that C. difficile spores respond to germination inhibitors in a strain-dependent manner. However, careful screening can identify anti-germinants with broad CDI prophylaxis activity.
Collapse
|
27
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
28
|
Faden H. Review and Commentary on the Importance of Bile Acids in the Life Cycle of Clostridioides difficile in Children and Adults. J Pediatric Infect Dis Soc 2021; 10:659-664. [PMID: 33626138 DOI: 10.1093/jpids/piaa150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Clostridioides difficile, a spore-forming anaerobe, resides in the intestine. The life cycle of C. difficile illustrates an interdependent relationship between bile acids, commensal microbiota, and C. difficile. Primary bile acids are critical for the germination of C. difficile spores in the small intestine, while secondary bile acids serve as a counterbalance to inhibit the growth of the organism in the colon. Many commensal bacteria especially Clostridium spp. are responsible for transforming primary bile acids into secondary bile acids. Antibiotics eliminate bacteria that convert primary bile acids into secondary bile acids and, thus, allow C. difficile to flourish and cause diarrhea. In children younger than 2 years of age, who normally only produce primary bile acids, colonization with toxin-producing C. difficile is exceedingly common. The reason for the absence of C. difficile diarrhea in the children remains unexplained.
Collapse
Affiliation(s)
- Howard Faden
- Department of Pediatrics, Division of Infectious Diseases, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
29
|
Abstract
Clostridioides difficile is a leading cause of health care-associated infections worldwide. These infections are transmitted by C. difficile′s metabolically dormant, aerotolerant spore form. Functional spore formation depends on the assembly of two protective layers, a thick layer of modified peptidoglycan known as the cortex layer and a multilayered proteinaceous meshwork known as the coat. We previously identified two spore morphogenetic proteins, SpoIVA and SipL, that are essential for recruiting coat proteins to the developing forespore and making functional spores. While SpoIVA and SipL directly interact, the identities of the proteins they recruit to the forespore remained unknown. Here, we used mass spectrometry-based affinity proteomics to identify proteins that interact with the SpoIVA-SipL complex. These analyses identified the Peptostreptococcaceae family-specific, sporulation-induced bitopic membrane protein CD3457 (renamed SpoVQ) as a protein that interacts with SipL and SpoIVA. Loss of SpoVQ decreased heat-resistant spore formation by ∼5-fold and reduced cortex thickness ∼2-fold; the thinner cortex layer of ΔspoVQ spores correlated with higher levels of spontaneous germination (i.e., in the absence of germinant). Notably, loss of SpoVQ in either spoIVA or sipL mutants prevented cortex synthesis altogether and greatly impaired the localization of a SipL-mCherry fusion protein around the forespore. Thus, SpoVQ is a novel regulator of C. difficile cortex synthesis that appears to link cortex and coat formation. The identification of SpoVQ as a spore morphogenetic protein further highlights how Peptostreptococcaceae family-specific mechanisms control spore formation in C. difficile. IMPORTANCE The Centers for Disease Control has designated Clostridioides difficile as an urgent threat because of its intrinsic antibiotic resistance. C. difficile persists in the presence of antibiotics in part because it makes metabolically dormant spores. While recent work has shown that preventing the formation of infectious spores can reduce C. difficile disease recurrence, more selective antisporulation therapies are needed. The identification of spore morphogenetic factors specific to C. difficile would facilitate the development of such therapies. In this study, we identified SpoVQ (CD3457) as a spore morphogenetic protein specific to the Peptostreptococcaceae family that regulates the formation of C. difficile’s protective spore cortex layer. SpoVQ acts in concert with the known spore coat morphogenetic factors, SpoIVA and SipL, to link formation of the protective coat and cortex layers. These data reveal a novel pathway that could be targeted to prevent the formation of infectious C. difficile spores.
Collapse
|
30
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Lawler AJ, Lambert PA, Worthington T. A Revised Understanding of Clostridioides difficile Spore Germination. Trends Microbiol 2020; 28:744-752. [DOI: 10.1016/j.tim.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
|
32
|
Clostridioides difficile para-Cresol Production Is Induced by the Precursor para-Hydroxyphenylacetate. J Bacteriol 2020; 202:JB.00282-20. [PMID: 32631945 PMCID: PMC7925072 DOI: 10.1128/jb.00282-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is an etiological agent for antibiotic-associated diarrheal disease. C. difficile produces a phenolic compound, para-cresol, which selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. C. difficile decarboxylates para-hydroxyphenylacetate (p-HPA) to produce p-cresol by the action of the HpdBCA decarboxylase encoded by the hpdBCA operon. Here, we investigate regulation of the hpdBCA operon and directly compare three independent reporter systems; SNAP-tag, glucuronidase gusA, and alkaline phosphatase phoZ reporters to detect basal and inducible expression. We show that expression of hpdBCA is upregulated in response to elevated p-HPA. In silico analysis identified three putative promoters upstream of hpdBCA operon-P1, P2, and Pσ54; only the P1 promoter was responsible for both basal and p-HPA-inducible expression of hpdBCA We demonstrated that turnover of tyrosine, a precursor for p-HPA, is insufficient to induce expression of the hpdBCA operon above basal levels because it is inefficiently converted to p-HPA in minimal media. We show that induction of the hpdBCA operon in response to p-HPA occurs in a dose-dependent manner. We also identified an inverted palindromic repeat (AAAAAG-N13-CTTTTT) upstream of the hpdBCA start codon (ATG) that is essential for inducing transcription of the hpdBCA operon in response to p-HPA, which drives the production of p-cresol. This provides insights into the regulatory control of p-cresol production, which affords a competitive advantage for C. difficile over other intestinal bacteria, promoting dysbiosis.IMPORTANCE Clostridioides difficile infection results from antibiotic-associated dysbiosis. para-Cresol, a phenolic compound produced by C. difficile, selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. Here, we demonstrate that expression of the hpdBCA operon, encoding the HpdBCA decarboxylase which converts p-HPA to p-cresol, is upregulated in response to elevated exogenous p-HPA, with induction occurring between >0.1 and ≤0.25 mg/ml. We determined a single promoter and an inverted palindromic repeat responsible for basal and p-HPA-inducible hpdBCA expression. We identified turnover of tyrosine, a p-HPA precursor, does not induce hpdBCA expression above basal level, indicating that exogenous p-HPA was required for p-cresol production. Identifying regulatory controls of p-cresol production will provide novel therapeutic targets to prevent p-cresol production, reducing C. difficile's competitive advantage.
Collapse
|
33
|
Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination. Biochem J 2020; 477:1459-1478. [PMID: 32242623 PMCID: PMC7200643 DOI: 10.1042/bcj20190875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023]
Abstract
Clostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently solved crystal structure of CspC revealed that its pseudoactive site residues align closely with the catalytic triad of CspB, suggesting that it might be possible to ‘resurrect' the ancestral protease activity of the CspC and CspA pseudoproteases. Here, we demonstrate that restoring the catalytic triad to these pseudoproteases fails to resurrect their protease activity. We further show that the pseudoactive site substitutions differentially affect the stability and function of the CspC and CspA pseudoproteases: the substitutions destabilized CspC and impaired spore germination without affecting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results indicate that bioinformatic predictions of enzyme activity may underestimate pseudoenzymes in rare cases.
Collapse
|