1
|
Zhou Y, Xiong K, Feng T, Wu X, Liang J, Chen Y, Chao H. A Nucleus-Targeting Ruthenium(II) Complex Induces DNA Condensation in Cisplatin-Resistant Tumor Cells. Angew Chem Int Ed Engl 2025; 64:e202504970. [PMID: 40169373 DOI: 10.1002/anie.202504970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/03/2025]
Abstract
One of the conventional ways to eradicate tumor cells is to utilize chemotherapy agents, e.g., cisplatin, to induce DNA damage. However, DNA damage repair mechanisms can significantly limit the therapeutic efficacy of cisplatin. These mechanisms enable tumor cells to repair the DNA damage caused by the drug, leading to resistance. Cisplatin and similar drugs bind to specific DNA sites without significantly altering their conformation. As a result, DNA repair enzymes can still attach to and repair the damaged DNA. To address this issue, we designed four Ru(II) complexes (RuC3, RuC6, RuC9, and RuC12) with high positive charges of +8 valence and regulated their nuclear accumulation levels by adjusting the length of alkyl chains. RuC9 exhibits the highest nucleus accumulation level. DNA conformation was significantly altered by inducing DNA condensation through indiscriminately neutralizing the negative charge of the DNA backbone. This significant change prevents DNA-related enzymes from binding to DNA, ultimately leading to the efficient eradication of various tumor cell lines. To the best of our knowledge, it is the first work that kills tumor cells and overcomes cisplatin resistance through inducing DNA condensation.
Collapse
Affiliation(s)
- Ying Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianbo Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
2
|
Zhu H, Jiang W, Zhang Q, Yu C. The role of UPK1B in gastric cancer: multi-omics analysis and experimental validation. Discov Oncol 2025; 16:476. [PMID: 40189715 PMCID: PMC11973043 DOI: 10.1007/s12672-025-02263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND UPK1B has been implicated in various cancers; however, its mechanism of action in gastric cancer remains elusive. METHODS We utilized transcriptional data and clinical information, and mutation profiles from The Cancer Genome Atlas (TCGA) database to analyze UPK1B's expression and clinical relevance. Biological enrichment, immune microenvironment characterization, and drug sensitivity analyses were conducted. Functional assays, including proliferation, migration, invasion, and in vivo metastasis models, were used to validate UPK1B's role in gastric cancer. RESULTS UPK1B was significantly upregulated in gastric cancer and correlated with worse clinical outcomes, including advanced stages and reduced survival rates. Biological enrichment analysis revealed its involvement in cancer-related pathways such as DNA replication and immune regulation. UPK1B was negatively correlated with NK cells and M1 macrophages, indicating its role in immune evasion. Functional experiments demonstrated that knockdown of UPK1B significantly suppressed gastric cancer cell proliferation, invasion, and migration in vitro and reduced pulmonary metastases in vivo. Drug sensitivity analysis suggested that high UPK1B expression was associated with increased sensitivity to lapatinib and resistance to cisplatin. CONCLUSIONS UPK1B promotes tumor progression and modulates the immune microenvironment in gastric cancer, making it a potential therapeutic target for future research and clinical applications.
Collapse
Affiliation(s)
- Haixing Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Changjun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China.
| |
Collapse
|
3
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Zeng YH, Yin ZN, Luo H, Gao F. DeOri 10.0: An Updated Database of Experimentally Identified Eukaryotic Replication Origins. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae076. [PMID: 39404857 DOI: 10.1093/gpbjnl/qzae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 12/19/2024]
Abstract
DNA replication is a complex and crucial biological process in eukaryotes. To facilitate the study of eukaryotic replication events, we present a database of eukaryotic DNA replication origins (DeOri), which collects genome-wide data on eukaryotic DNA replication origins currently available. With the rapid development of high-throughput experimental technology in recent years, the number of datasets in the new release of DeOri 10.0 increased from 10 to 151 and the number of sequences increased from 16,145 to 9,742,396. Besides nucleotide sequences and browser extensible data (BED) files, corresponding annotation files, such as coding sequences (CDSs), mRNAs, and other biological elements within replication origins, are also provided. The experimental techniques used for each dataset, as well as related statistical data, are also presented on web page. Differences in experimental methods, cell lines, and sequencing technologies have resulted in distinct replication origins, making it challenging to differentiate between cell-specific and non-specific replication origins. Based on multiple replication origin datasets at the species level, we scored and screened replication origins in Homo sapiens, Gallus gallus, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans. The screened regions with high scores were considered as species-conservative origins, which are integrated and presented as reference replication origins (rORIs). Additionally, we analyzed the distribution of relevant genomic elements associated with replication origins at the genome level, such as CpG island (CGI), transcription start site (TSS), and G-quadruplex (G4). These analysis results can be browsed and downloaded as needed at http://tubic.tju.edu.cn/deori/.
Collapse
Affiliation(s)
- Yu-Hao Zeng
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Zhen-Ning Yin
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
5
|
Li Z, Bao X, Liu X, Wang Y, Zhu X, Zhang Y, Wang Z, Maslennikov S, Whiteside M, Wang W, Xu X, Li B, Luo Q, Li Y, Wang S, Hu B, Yang J. Transcriptome analysis provides preliminary insights into the response of Sepia esculenta to high salinity stress. AGRICULTURE COMMUNICATIONS 2024; 2:100064. [DOI: 10.1016/j.agrcom.2024.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Song G, Yang Z, Huang Y, Bai H, Lv F, Wang S. Chemically engineered exogenous organic reactions in living cells for in situ fluorescence imaging and biomedical applications. J Mater Chem B 2024; 12:11852-11866. [PMID: 39485083 DOI: 10.1039/d4tb01925c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The unique microenvironment within living cells, characterized by high glutathione levels, reactive oxygen species concentrations, and active enzymes, facilitates the execution of chemical reactions. Recent advances in organic chemistry and chemical biology have leveraged living cells as reactors for chemical synthesis. This review summarizes recent reports on key intracellular in situ synthesis processes, including the synthesis of near-infrared fluorescent dyes, intracellular oxidative cross-linking, bioorthogonal reactions, and intracellular polymerization reactions. These methods have been applied to fluorescence imaging, tumor treatment, and the enhancement of biological functions. Finally, we discuss the challenges and opportunities in the field of in situ intracellular synthesis. We aim to guide the design of chemical molecules for in situ synthesis, improving the efficiency and control of artificial reactions in living cells, and ultimately achieving cell factory-like exogenous biological synthesis, biological function enhancement, and biomedical applications.
Collapse
Affiliation(s)
- Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Priyamvada P, Ashok G, Mathpal S, Anbarasu A, Ramaiah S. Marine Compound-Carpatamide D as a Potential Inhibitor Against TOP2A and Its Mutant D1021Y in Colorectal Cancer: Insights from DFT, MEP and Molecular Dynamics Simulation. Mol Biotechnol 2024:10.1007/s12033-024-01265-9. [PMID: 39264528 DOI: 10.1007/s12033-024-01265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, hence there is an urgent need for new and effective therapeutic options. DNA topoisomerase 2A (TOP2A) plays a crucial role in the cell cycle and is involved in CRC progression, making it essential to identify structural and functional relevant alterations. Among the 24 mutations, our findings indicated that mutation D1021Y has the most deleterious effect on the TOP2A protein. Based on virtual screening of 31,561 compounds, we identified three lead candidates: 17683 (nigrospoxydon C), 28461 (carpatamide D), and 28853 (6'-O-acetyl-isohomaarbutin), which showed promising inhibitory effect against TOP2A and its mutant form. These compounds were assessed for their stability using density functional theory (DFT) analysis, where carpatamide D possessed the least energy gap of 4.398 eV showing its high reactivity among all. Further, molecular docking also shows the carpatamide D as the top candidate, which exhibited favourable docking energy against the TOP2A wild type (- 7.47 kcal/mol) and with D1021Y mutant (- 7.62 kcal/mol) as compared to reference compound PK1, which showed - 6.11 kcal/mol TOP2A wild type and - 6.24 kcal/mol against mutant type. The molecular dynamics simulation was performed to analyse the dynamics and stability of complex, which revealed TOP2A_28641 and D1021Y_28641 complexes to be stable with least root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF). Molecular mechanics/Poisson-Boltzmann surface area calculations indicated that TOP2A_28641 and D1021Y_28641 complexes exhibited the lowest binding energy of - 23.55 kcal/mol and - 25.03 kcal/mol, respectively. Our findings suggest carpatamide D as a promising lead compound for the TOP2A_D1021Y targeted cancer therapies, which needs further experimental validation.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Shalini Mathpal
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Wang Y, Liang J. Pioneer factors for DNA replication initiation in metazoans. Bioessays 2024; 46:e2400002. [PMID: 38881154 DOI: 10.1002/bies.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Precise DNA replication is fundamental for genetic inheritance. In eukaryotes, replication initiates at multiple origins that are first "licensed" and subsequently "fired" to activate DNA synthesis. Despite the success in identifying origins with specific DNA motifs in Saccharomyces cerevisiae, no consensus sequence or sequences with a predictive value of replication origins have been recognized in metazoan genomes. Rather, epigenetic rules and chromatin structures are believed to play important roles in governing the selection and activation of replication origins. We propose that replication initiation is facilitated by a group of sequence-specific "replication pioneer factors," which function to increase chromatin accessibility and foster a chromatin environment that is conducive to the loading of the prereplication complex. Dysregulation of the function of these factors may lead to gene duplication, genomic instability, and ultimately the occurrence of pathological conditions such as cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
9
|
Zeng Y, Ren X, Jin P, Fan Z, Liu M, Zhang Y, Li L, Zhuo M, Wang J, Li Z, Wu M. Inhibitors and PROTACs of CDK2: challenges and opportunities. Expert Opin Drug Discov 2024; 19:1125-1148. [PMID: 38994606 DOI: 10.1080/17460441.2024.2376655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Abundant evidence suggests that the overexpression of CDK2-cyclin A/E complex disrupts normal cell cycle regulation, leading to uncontrolled proliferation of cancer cells. Thus, CDK2 has become a promising therapeutic target for cancer treatment. In recent years, insights into the structures of the CDK2 catalytic site and allosteric pockets have provided notable opportunities for developing more effective clinical candidates of CDK2 inhibitors. AREA COVERED This article reviews the latest CDK2 inhibitors that have entered clinical trials and discusses the design and discovery of the most promising new preclinical CDK2 inhibitors in recent years. Additionally, it summarizes the development of allosteric CDK2 inhibitors and CDK2-targeting PROTACs. The review encompasses strategies for inhibitor and PROTAC design, structure-activity relationships, as well as in vitro and in vivo biological assessments. EXPERT OPINION Despite considerable effort, no CDK2 inhibitor has yet received FDA approval for marketing due to poor selectivity and observed toxicity in clinical settings. Future research must prioritize the optimization of the selectivity, potency, and pharmacokinetics of CDK2 inhibitors and PROTACs. Moreover, exploring combination therapies incorporating CDK2 inhibitors with other targeted agents, or the design of multi-target inhibitors, presents significant promise for advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, China
| | - Zhida Fan
- Medical College, Guizhou University, Guiyang, China
| | | | - Yali Zhang
- Medical College, Guizhou University, Guiyang, China
| | - Linzhao Li
- Medical College, Guizhou University, Guiyang, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Min Wu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
10
|
Wagner M, Döhlemann J, Geisel D, Sobetzko P, Serrania J, Lenz P, Becker A. Engineering a Sinorhizobium meliloti Chassis with Monopartite, Single Replicon Genome Configuration. ACS Synth Biol 2024; 13:2515-2532. [PMID: 39109796 DOI: 10.1021/acssynbio.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.
Collapse
Affiliation(s)
- Marcel Wagner
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Johannes Döhlemann
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - David Geisel
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Patrick Sobetzko
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Peter Lenz
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
11
|
Kadibalban AS, Landan G, Dagan T. The extent and characteristics of DNA transfer between plasmids and chromosomes. Curr Biol 2024; 34:3189-3200.e5. [PMID: 38964320 DOI: 10.1016/j.cub.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Plasmids are extrachromosomal genetic elements that reside in prokaryotes. The acquisition of plasmids encoding beneficial traits can facilitate short-term survival in harsh environmental conditions or long-term adaptation of new ecological niches. Due to their ability to transfer between cells, plasmids are considered agents of gene transfer. Nonetheless, the frequency of DNA transfer between plasmids and chromosomes remains understudied. Using a novel approach for detection of homologous loci between genome pairs, we uncover gene sharing with the chromosome in 1,974 (66%) plasmids residing in 1,016 (78%) taxonomically diverse isolates. The majority of homologous loci correspond to mobile elements, which may be duplicated in the host chromosomes in tens of copies. Neighboring shared genes often encode similar functional categories, indicating the transfer of multigene functional units. Rare transfer events of antibiotics resistance genes are observed mainly with mobile elements. The frequent erosion of sequence similarity in homologous regions indicates that the transferred DNA is often devoid of function. DNA transfer between plasmids and chromosomes thus generates genetic variation that is akin to workings of endosymbiotic gene transfer in eukaryotic evolution. Our findings imply that plasmid contribution to gene transfer most often corresponds to transfer of the plasmid entity rather than transfer of protein-coding genes between plasmids and chromosomes.
Collapse
Affiliation(s)
- A Samer Kadibalban
- Institute of General Microbiology, Kiel University, Am Botanischen Garten 11, Kiel 24118, Germany
| | - Giddy Landan
- Institute of General Microbiology, Kiel University, Am Botanischen Garten 11, Kiel 24118, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Am Botanischen Garten 11, Kiel 24118, Germany.
| |
Collapse
|
12
|
Zhang S, Zhou N, Chen J, Li Q, Wang Y, Sun W, Lv C. DNA Polymerase-Endonuclease Efficiently Synthesizes DNA to Prepare DNA Materials and Develop Novel Signal Amplification System. Anal Chem 2024; 96:9285-9293. [PMID: 38768388 DOI: 10.1021/acs.analchem.4c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
DNA biosynthesis, a focus of fundamental and applied research, typically involves DNA polymerases by using templates, primers, and dNTPs. Some polymerases can polymerize dNTPs for DNA de novo synthesis, although this is generally to occur randomly. This novel synthesis method has garnered our attention and practical use. Herein, we observed that the addition of endonuclease significantly enhances the efficiency of the de novo synthesis reaction catalyzed by the DNA polymerase. We further investigated the reaction conditions that influence this efficiency. Building on the optimal reaction conditions, we developed a rapid and efficient strategy for preparing DNA hydrogel. Further, coupled with the CRISPR-Cas system, we developed a nucleic acid signal amplification system characterized by versatility, sensitivity, specificity, and no risk of aerosol contamination. We successfully detected viral nucleic acids in clinical samples. In summary, our study demonstrates the significant potential of DNA polymerase- and endonuclease-catalyzed DNA de novo synthesis in diverse applications.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| | - Ning Zhou
- Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524045, P. R. China
| | - Jiao Chen
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| | - Quan Li
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| | - Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| | - Wen Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610000, P. R. China
| | - ChuanZhu Lv
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| |
Collapse
|
13
|
Zhou T, Meng Q, Sun R, Xu D, Zhu F, Jia C, Zhou S, Chen S, Yang Y. Structure and gene expression changes of the gill and liver in juvenile black porgy (Acanthopagrus schlegelii) under different salinities. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101228. [PMID: 38547756 DOI: 10.1016/j.cbd.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/27/2024]
Abstract
Black porgy (Acanthopagrus schlegelii) is an important marine aquaculture species in China. It is an ideal object for the cultivation of low-salinity aquaculture strains in marine fish and the study of salinity tolerance mechanisms in fish because of its strong low-salinity tolerance ability. Gill is the main osmoregulatory organ in fish, and the liver plays an important role in the adaptation of the organism to stressful environments. In order to understand the coping mechanisms of the gills and livers of black porgy in different salinity environments, this study explored these organs after 30 days of culture in hypoosmotic (0.5 ppt), isosmotic (12 ppt), and normal seawater (28 ppt) at histologic, physiologic, and transcriptomic levels. The findings indicated that gill exhibited a higher number of differentially expressed genes than the liver, emphasizing the gill's heightened sensitivity to salinity changes. Protein interaction networks and enrichment analyses highlighted energy metabolism as a key regulatory focus at both 0.5 ppt and 12 ppt salinity in gills. Additionally, gills showed enrichment in ions, substance transport, and other metabolic pathways, suggesting a more direct regulatory response to salinity stress. The liver's regulatory patterns at different salinities exhibited significant distinctions, with pathways and genes related to metabolism, immunity, and antioxidants predominantly activated at 0.5 ppt, and molecular processes linked to cell proliferation taking precedence at 12 ppt salinity. Furthermore, the study revealed a reduction in the volume of the interlamellar cell mass (ILCM) of the gills, enhancing the contact area of the gill lamellae with water. At 0.5 ppt salinity, hepatic antioxidant enzyme activity increased, accompanied by oxidative stress damage. Conversely, at 12 ppt salinity, gill NKA activity significantly decreased without notable changes in liver structure. These results underscore the profound impact of salinity on gill structure and function, highlighting the crucial role of the liver in adapting to salinity environments.
Collapse
Affiliation(s)
- Tangjian Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Meng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Ruijian Sun
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Dafeng Xu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Shimiao Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Yunxia Yang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
14
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
15
|
Chen L, Chen S, Li Y, Qiu Y, Chen X, Wu Y, Deng X, Chen M, Wang C, Hong Z, Qiu C. Upregulation of GOLPH3 mediated by Bisphenol a promotes colorectal cancer proliferation and migration: evidence based on integrated analysis. Front Pharmacol 2024; 15:1337883. [PMID: 38828452 PMCID: PMC11143881 DOI: 10.3389/fphar.2024.1337883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background The interaction between environmental endocrine-disrupting chemicals, such as Bisphenol A (BPA), and their influence on cancer progression, particularly regarding the GOLPH3 gene in colorectal cancer, remains unclear. Methods We performed an integrated analysis of transcriptional profiling, clinical data, and bioinformatics analyses utilizing data from the Comparative Toxicogenomics Database and The Cancer Genome Atlas. The study employed ClueGO, Gene Set Enrichment Analysis, and Gene Set Variation Analysis for functional enrichment analysis, alongside experimental assays to examine the effects of BPA exposure on colorectal cancer cell lines, focusing on GOLPH3 expression and its implications for cancer progression. Results Our findings demonstrated that BPA exposure significantly promoted the progression of colorectal cancer by upregulating GOLPH3, which in turn enhanced the malignant phenotype of colorectal cancer cells. Comparative analysis revealed elevated GOLPH3 protein levels in cancerous tissues versus normal tissues, with single-cell analysis indicating widespread GOLPH3 presence across various cell types in the cancer microenvironment. GOLPH3 was also associated with multiple carcinogenic pathways, including the G2M checkpoint. Furthermore, our investigation into the colorectal cancer microenvironment and genomic mutation signature underscored the oncogenic potential of GOLPH3, exacerbated by BPA exposure. Conclusion This study provides novel insights into the complex interactions between BPA exposure and GOLPH3 in the context of colorectal cancer, emphasizing the need for heightened awareness and measures to mitigate BPA exposure risks. Our findings advocate for further research to validate these observations in clinical and epidemiological settings and explore potential therapeutic targets within these pathways.
Collapse
Affiliation(s)
- Lihua Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- The 2nd Clinical College of Fujian Medical University, Quanzhou, China
| | - Shaojian Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yachen Li
- Medical Department of the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaojing Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuze Wu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xian Deng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mingliang Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunxiao Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
16
|
Aldaihani R, Heath LS. Investigating the nature of prokaryotic genomic island locations within a genome. PLoS One 2024; 19:e0301172. [PMID: 38696408 PMCID: PMC11065298 DOI: 10.1371/journal.pone.0301172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/12/2024] [Indexed: 05/04/2024] Open
Abstract
Horizontal gene transfer (HGT) is a powerful evolutionary force that considerably shapes the structure of prokaryotic genomes and is associated with genomic islands (GIs). A GI is a DNA segment composed of transferred genes that can be found within a prokaryotic genome, obtained through HGT. Much research has focused on detecting GIs in genomes, but here we pursue a new course, which is identifying possible preferred locations of GIs in the prokaryotic genome. Here, we identify the locations of the GIs within prokaryotic genomes to examine patterns in those locations. Prokaryotic GIs were analyzed according to the genome structure that they are located in, whether it be a circular or a linear genome. The analytical investigations employed are: (1) studying the GI locations in relation to the origin of replication (oriC); (2) exploring the distances between GIs; and (3) determining the distribution of GIs across the genomes. For each of the investigations, the analysis was performed on all of the GIs in the data set. Moreover, to void bias caused by the distribution of the genomes represented, the GIs in one genome from each species and the GIs of the most frequent species are also analyzed. Overall, the results showed that there are preferred sites for the GIs in the genome. In the linear genomes, these sites are usually located in the oriC region and terminus region, while in the circular genomes, they are located solely in the terminus region. These results also showed that the distance distribution between the GIs is almost exponential, which proves that GIs have preferred sites within genomes. The oriC and termniuns are preferred sites for the GIs and a possible natural explanation for this could be connected to the content of the oriC region. Moreover, the content of the GIs in terms of its protein families was studied and the results demonstrated that the majority of frequent protein families are close to identical in each section.
Collapse
Affiliation(s)
- Reem Aldaihani
- Department of Computer Science, Kuwait University, Kuwait City, State of Kuwait, Kuwait
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
17
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple pathways for licensing human replication origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588796. [PMID: 38645015 PMCID: PMC11030351 DOI: 10.1101/2024.04.10.588796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.
Collapse
Affiliation(s)
| | | | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Wegrzyn K, Konieczny I. Toward an understanding of the DNA replication initiation in bacteria. Front Microbiol 2024; 14:1328842. [PMID: 38249469 PMCID: PMC10797057 DOI: 10.3389/fmicb.2023.1328842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Although the mechanism of DNA replication initiation has been investigated for over 50 years, many important discoveries have been made related to this process in recent years. In this mini-review, we discuss the current state of knowledge concerning the structure of the origin region in bacterial chromosomes and plasmids, recently discovered motifs recognized by replication initiator proteins, and proposed in the literature models describing initial origin opening. We review structures of nucleoprotein complexes formed by replication initiators at chromosomal and plasmid replication origins and discuss their functional implications. We also discuss future research challenges in this field.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
20
|
González-Acosta D, Lopes M. DNA replication and replication stress response in the context of nuclear architecture. Chromosoma 2024; 133:57-75. [PMID: 38055079 PMCID: PMC10904558 DOI: 10.1007/s00412-023-00813-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
The DNA replication process needs to be coordinated with other DNA metabolism transactions and must eventually extend to the full genome, regardless of chromatin status, gene expression, secondary structures and DNA lesions. Completeness and accuracy of DNA replication are crucial to maintain genome integrity, limiting transformation in normal cells and offering targeting opportunities for proliferating cancer cells. DNA replication is thus tightly coordinated with chromatin dynamics and 3D genome architecture, and we are only beginning to understand the underlying molecular mechanisms. While much has recently been discovered on how DNA replication initiation is organised and modulated in different genomic regions and nuclear territories-the so-called "DNA replication program"-we know much less on how the elongation of ongoing replication forks and particularly the response to replication obstacles is affected by the local nuclear organisation. Also, it is still elusive how specific components of nuclear architecture participate in the replication stress response. Here, we review known mechanisms and factors orchestrating replication initiation, and replication fork progression upon stress, focusing on recent evidence linking genome organisation and nuclear architecture with the cellular responses to replication interference, and highlighting open questions and future challenges to explore this exciting new avenue of research.
Collapse
Affiliation(s)
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Niault T, Czarnecki J, Lambérioux M, Mazel D, Val ME. Cell cycle-coordinated maintenance of the Vibrio bipartite genome. EcoSal Plus 2023; 11:eesp00082022. [PMID: 38277776 PMCID: PMC10729929 DOI: 10.1128/ecosalplus.esp-0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.
Collapse
Affiliation(s)
- Théophile Niault
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Jakub Czarnecki
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Morgan Lambérioux
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Mazel
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
22
|
Chanou A, Weiβ M, Holler K, Sajid A, Straub T, Krietsch J, Sanchi A, Ummethum H, Lee CSK, Kruse E, Trauner M, Werner M, Lalonde M, Lopes M, Scialdone A, Hamperl S. Single molecule MATAC-seq reveals key determinants of DNA replication origin efficiency. Nucleic Acids Res 2023; 51:12303-12324. [PMID: 37956271 PMCID: PMC10711542 DOI: 10.1093/nar/gkad1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Stochastic origin activation gives rise to significant cell-to-cell variability in the pattern of genome replication. The molecular basis for heterogeneity in efficiency and timing of individual origins is a long-standing question. Here, we developed Methylation Accessibility of TArgeted Chromatin domain Sequencing (MATAC-Seq) to determine single-molecule chromatin accessibility of four specific genomic loci. MATAC-Seq relies on preferential modification of accessible DNA by methyltransferases combined with Nanopore-Sequencing for direct readout of methylated DNA-bases. Applying MATAC-Seq to selected early-efficient and late-inefficient yeast replication origins revealed large heterogeneity of chromatin states. Disruption of INO80 or ISW2 chromatin remodeling complexes leads to changes at individual nucleosomal positions that correlate with changes in their replication efficiency. We found a chromatin state with an accessible nucleosome-free region in combination with well-positioned +1 and +2 nucleosomes as a strong predictor for efficient origin activation. Thus, MATAC-Seq identifies the large spectrum of alternative chromatin states that co-exist on a given locus previously masked in population-based experiments and provides a mechanistic basis for origin activation heterogeneity during eukaryotic DNA replication. Consequently, our single-molecule chromatin accessibility assay will be ideal to define single-molecule heterogeneity across many fundamental biological processes such as transcription, replication, or DNA repair in vitro and ex vivo.
Collapse
Affiliation(s)
- Anna Chanou
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Karoline Holler
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Atiqa Sajid
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Henning Ummethum
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Clare S K Lee
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Elisabeth Kruse
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Manuel Trauner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Marcel Werner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Maxime Lalonde
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
23
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
24
|
Wegrzyn K, Oliwa M, Nowacka M, Zabrocka E, Bury K, Purzycki P, Czaplewska P, Pipka J, Giraldo R, Konieczny I. Rep protein accommodates together dsDNA and ssDNA which enables a loop-back mechanism to plasmid DNA replication initiation. Nucleic Acids Res 2023; 51:10551-10567. [PMID: 37713613 PMCID: PMC10602881 DOI: 10.1093/nar/gkad740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand β1, helices α1 and α2 and in the WH2 domain in loops preceding strands β1' and β2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Monika Oliwa
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marzena Nowacka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Justyna Pipka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
25
|
Seel A, Padovani F, Mayer M, Finster A, Bureik D, Thoma F, Osman C, Klecker T, Schmoller KM. Regulation with cell size ensures mitochondrial DNA homeostasis during cell growth. Nat Struct Mol Biol 2023; 30:1549-1560. [PMID: 37679564 PMCID: PMC10584693 DOI: 10.1038/s41594-023-01091-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
To maintain stable DNA concentrations, proliferating cells need to coordinate DNA replication with cell growth. For nuclear DNA, eukaryotic cells achieve this by coupling DNA replication to cell-cycle progression, ensuring that DNA is doubled exactly once per cell cycle. By contrast, mitochondrial DNA replication is typically not strictly coupled to the cell cycle, leaving the open question of how cells maintain the correct amount of mitochondrial DNA during cell growth. Here, we show that in budding yeast, mitochondrial DNA copy number increases with cell volume, both in asynchronously cycling populations and during G1 arrest. Our findings suggest that cell-volume-dependent mitochondrial DNA maintenance is achieved through nuclear-encoded limiting factors, including the mitochondrial DNA polymerase Mip1 and the packaging factor Abf2, whose amount increases in proportion to cell volume. By directly linking mitochondrial DNA maintenance to nuclear protein synthesis and thus cell growth, constant mitochondrial DNA concentrations can be robustly maintained without a need for cell-cycle-dependent regulation.
Collapse
Affiliation(s)
- Anika Seel
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Mayer
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Alissa Finster
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
26
|
Sahu S, Ekundayo BE, Kumar A, Bleichert F. A dual role for the chromatin reader ORCA/LRWD1 in targeting the origin recognition complex to chromatin. EMBO J 2023; 42:e114654. [PMID: 37551430 PMCID: PMC10505921 DOI: 10.15252/embj.2023114654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Eukaryotic cells use chromatin marks to regulate the initiation of DNA replication. The origin recognition complex (ORC)-associated protein ORCA plays a critical role in heterochromatin replication in mammalian cells by recruiting the initiator ORC, but the underlying mechanisms remain unclear. Here, we report crystal and cryo-electron microscopy structures of ORCA in complex with ORC's Orc2 subunit and nucleosomes, establishing that ORCA orchestrates ternary complex assembly by simultaneously recognizing a highly conserved peptide sequence in Orc2, nucleosomal DNA, and repressive histone trimethylation marks through an aromatic cage. Unexpectedly, binding of ORCA to nucleosomes prevents chromatin array compaction in a manner that relies on H4K20 trimethylation, a histone modification critical for heterochromatin replication. We further show that ORCA is necessary and sufficient to specifically recruit ORC into chromatin condensates marked by H4K20 trimethylation, providing a paradigm for studying replication initiation in specific chromatin contexts. Collectively, our findings support a model in which ORCA not only serves as a platform for ORC recruitment to nucleosomes bearing specific histone marks but also helps establish a local chromatin environment conducive to subsequent MCM2-7 loading.
Collapse
Affiliation(s)
- Sumon Sahu
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Babatunde E Ekundayo
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
- Present address:
Laboratory of Biological Electron MicroscopyEPFLLausanneSwitzerland
| | - Ashish Kumar
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Franziska Bleichert
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| |
Collapse
|
27
|
Varadi M, Velankar S. The impact of AlphaFold Protein Structure Database on the fields of life sciences. Proteomics 2023; 23:e2200128. [PMID: 36382391 DOI: 10.1002/pmic.202200128] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/06/2023]
Abstract
Arguably, 2020 was the year of high-accuracy protein structure predictions, with AlphaFold 2.0 achieving previously unseen accuracy in the Critical Assessment of Protein Structure Prediction (CASP). In 2021, DeepMind and EMBL-EBI developed the AlphaFold Protein Structure Database to make an unprecedented number of reliable protein structure predictions easily accessible to the broad scientific community. We provide a brief overview and describe the latest developments in the AlphaFold database. We highlight how the fields of data services, bioinformatics, structural biology, and drug discovery are directly affected by the influx of protein structure data. We also show examples of cutting-edge research that took advantage of the AlphaFold database. It is apparent that connections between various fields through protein structures are now possible, but the amount of data poses new challenges. Finally, we give an outlook regarding the future direction of the database, both in terms of data sets and new functionalities.
Collapse
Affiliation(s)
- Mihaly Varadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| |
Collapse
|
28
|
Zerbib A, Simon I. Characterization of Unidirectional Replication Forks in the Mouse Genome. Int J Mol Sci 2023; 24:9611. [PMID: 37298562 PMCID: PMC10253849 DOI: 10.3390/ijms24119611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Origins of replication are genomic regions in which replication initiates in a bidirectional manner. Recently, a new methodology (origin-derived single-stranded DNA sequencing; ori-SSDS) was developed that allows the detection of replication initiation in a strand-specific manner. Reanalysis of the strand-specific data revealed that 18-33% of the peaks are non-symmetrical, suggesting a single direction of replication. Analysis of replication fork direction data revealed that these are origins of replication in which the replication is paused in one of the directions, probably due to the existence of a replication fork barrier. Analysis of the unidirectional origins revealed a preference of G4 quadruplexes for the blocked leading strand. Taken together, our analysis identified hundreds of genomic locations in which the replication initiates only in one direction, and suggests that G4 quadruplexes may serve as replication fork barriers in such places.
Collapse
Affiliation(s)
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| |
Collapse
|
29
|
Pouresmaeil M, Azizi-Dargahlou S. Factors involved in heterologous expression of proteins in E. coli host. Arch Microbiol 2023; 205:212. [PMID: 37120438 PMCID: PMC10148705 DOI: 10.1007/s00203-023-03541-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
The production of recombinant proteins is one of the most significant achievements of biotechnology in the last century. These proteins are produced in the eukaryotic or prokaryotic heterologous hosts. By increasing the omics data especially related to different heterologous hosts as well as the presence of new amenable genetic engineering tools, we can artificially engineer heterologous hosts to produce recombinant proteins in sufficient quantities. Numerous recombinant proteins have been produced and applied in various industries, and the global recombinant proteins market size is expected to be cast to reach USD 2.4 billion by 2027. Therefore, identifying the weakness and strengths of heterologous hosts is critical to optimize the large-scale biosynthesis of recombinant proteins. E. coli is one of the popular hosts to produce recombinant proteins. Scientists reported some bottlenecks in this host, and due to the increasing demand for the production of recombinant proteins, there is an urgent need to improve this host. In this review, we first provide general information about the E. coli host and compare it with other hosts. In the next step, we describe the factors involved in the expression of the recombinant proteins in E. coli. Successful expression of recombinant proteins in E. coli requires a complete elucidation of these factors. Here, the characteristics of each factor will be fully described, and this information can help to improve the heterologous expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
30
|
Prorok P, Forouzanfar F, Murugarren N, Peiffer I, Charton R, Akerman I, Méchali M. Loss of Ezh2 function remodels the DNA replication initiation landscape. Cell Rep 2023; 42:112280. [PMID: 36995935 DOI: 10.1016/j.celrep.2023.112280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
In metazoan cells, DNA replication initiates from thousands of genomic loci scattered throughout the genome called DNA replication origins. Origins are strongly associated with euchromatin, particularly open genomic regions such as promoters and enhancers. However, over a third of transcriptionally silent genes are associated with DNA replication initiation. Most of these genes are bound and repressed by the Polycomb repressive complex-2 (PRC2) through the repressive H3K27me3 mark. This is the strongest overlap observed for a chromatin regulator with replication origin activity. Here, we asked whether Polycomb-mediated gene repression is functionally involved in recruiting DNA replication origins to transcriptionally silent genes. We show that the absence of EZH2, the catalytic subunit of PRC2, results in increased DNA replication initiation, specifically in the vicinity of EZH2 binding sites. The increase in DNA replication initiation does not correlate with transcriptional de-repression or the acquisition of activating histone marks but does correlate with loss of H3K27me3 from bivalent promoters.
Collapse
Affiliation(s)
- Paulina Prorok
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France.
| | - Faezeh Forouzanfar
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France
| | - Nerea Murugarren
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B152TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B152TT, UK
| | - Isabelle Peiffer
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France
| | - Romain Charton
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B152TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B152TT, UK.
| | - Marcel Méchali
- Institute of Human Genetics, CNRS-University of Montpellier, Montpellier 34090, France.
| |
Collapse
|
31
|
Moon J, Kitty I, Renata K, Qin S, Zhao F, Kim W. DNA Damage and Its Role in Cancer Therapeutics. Int J Mol Sci 2023; 24:4741. [PMID: 36902170 PMCID: PMC10003233 DOI: 10.3390/ijms24054741] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
DNA damage is a double-edged sword in cancer cells. On the one hand, DNA damage exacerbates gene mutation frequency and cancer risk. Mutations in key DNA repair genes, such as breast cancer 1 (BRCA1) and/or breast cancer 2 (BRCA2), induce genomic instability and promote tumorigenesis. On the other hand, the induction of DNA damage using chemical reagents or radiation kills cancer cells effectively. Cancer-burdening mutations in key DNA repair-related genes imply relatively high sensitivity to chemotherapy or radiotherapy because of reduced DNA repair efficiency. Therefore, designing specific inhibitors targeting key enzymes in the DNA repair pathway is an effective way to induce synthetic lethality with chemotherapy or radiotherapy in cancer therapeutics. This study reviews the general pathways involved in DNA repair in cancer cells and the potential proteins that could be targeted for cancer therapeutics.
Collapse
Affiliation(s)
- Jaeyoung Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Kusuma Renata
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
- Magister of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
32
|
Yu H, He Y, Zhang J, Zhang Z, Zhang X. Hepatic transcriptome analysis reveals the metabolic strategies of largemouth bass (Micropterus salmoides) under different dissolved oxygen condition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101032. [PMID: 36371883 DOI: 10.1016/j.cbd.2022.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Dissolved oxygen (DO) affects aquatic animals at a fundamental level so that the differences in its metabolic strategies under prolonged hypoxic conditions need an urgent exploration. In this experiment, largemouth bass (Micropterus salmoides) were chronically exposed (6 weeks) to severe hypoxia (S-HYP, DO: 2.0 ± 0.4 mg/L) and mild hypoxia (M-HYP, DO: 5.1 ± 0.4 mg/L). Compared to the control group (CON, DO:8.4 ± 0.4 mg/L), 1196 and 232 differentially expressed genes (DEGs) were obtained in S-HYP and M-HPY groups via transcriptome analysis, respectively. In S-HYP, lipolysis was promoted while anabolism was blocked. Meanwhile, significantly less fat droplet area was observed in the liver histology of S-HYP. Additionally, the cell cycle also responded to hypoxia, being blocked in the G1 phase with the suspension of DNA replication process. In M-HYP, the processing of protein in the endoplasmic reticulum and the synthesis of various aminoacyl t-RNA were inhibited, and a novel balance of the urea cycle might be established in the biosynthesis of arginine. The key DEGs involved in the above metabolic pathways, such as atgl, cpt1, arg1, etc., were validated by Q-PCR yielding results consistent with transcriptome data. This study indicates that the largemouth bass is prone to increase the proportion of lipid as an energy supply to adapt to the reprogramming of energy metabolism, while reducing the rate of cell proliferation to adapt to chronic severe hypoxia. This is also an undescribed observation in fish liver metabolism that largemouth bass may transform the synthesis and processing strategies of protein when exposed to chronic mild hypoxia.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jinying Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ziyi Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
33
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
34
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
35
|
Zhang S, Tang L, Zhang J, Sun W, Liu D, Chen J, Hu B, Huang Z. Single-Atom-Directed Inhibition of De Novo DNA Synthesis in Isothermal Amplifications. Anal Chem 2022; 94:15763-15771. [DOI: 10.1021/acs.analchem.2c03489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan 610095, China
| | - Ling Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Wen Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Dan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jiuyi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Bei Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan 610095, China
| |
Collapse
|
36
|
Dong MJ, Luo H, Gao F. DoriC 12.0: an updated database of replication origins in both complete and draft prokaryotic genomes. Nucleic Acids Res 2022; 51:D117-D120. [PMID: 36305822 PMCID: PMC9825612 DOI: 10.1093/nar/gkac964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 01/29/2023] Open
Abstract
DoriC was first launched in 2007 as a database of replication origins (oriCs) in bacterial genomes and has since been constantly updated to integrate the latest research progress in this field. The database was subsequently extended to include the oriCs in archaeal genomes as well as those in plasmids. This latest release, DoriC 12.0, includes the oriCs in both draft and complete prokaryotic genomes. At the same time, the number of oriCs in the database has also increased significantly and currently contains over 200 000 bacterial entries distributed in more than 40 phyla. Among them, a large number are from bacteria in new phyla whose oriCs were not explored before. Additionally, new oriC features and improvements have been introduced, especially in the visualization and analysis of oriCs. Currently, DoriC is considered as an important database in the fields of bioinformatics, microbial genomics, and even synthetic biology, providing a valuable resource as well as a comprehensive platform for the research on oriCs. DoriC 12.0 can be accessed at https://tubic.org/doric/ and http://tubic.tju.edu.cn/doric/.
Collapse
Affiliation(s)
| | | | - Feng Gao
- To whom correspondence should be addressed. Tel: +86 22 27404118; Fax: +86 22 27404118;
| |
Collapse
|
37
|
Dong MJ, Luo H, Gao F. Ori-Finder 2022: A Comprehensive Web Server for Prediction and Analysis of Bacterial Replication Origins. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1207-1213. [PMID: 36257484 DOI: 10.1016/j.gpb.2022.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022]
Abstract
The replication of DNA is a complex biological process that is essential for life. Bacterial DNA replication is initiated at genomic loci referred to as replication origins (oriCs). Integrating the Z-curve method, DnaA box distribution, and comparative genomic analysis, we developed a web server to predict bacterial oriCs in 2008 called Ori-Finder, which contributes to clarify the characteristics of bacterial oriCs. The oriCs of hundreds of sequenced bacterial genomes have been annotated in the genome reports using Ori-Finder and the predicted results have been deposited in DoriC, a manually curated database of oriCs. This has facilitated large-scale data mining of functional elements in oriCs and strand-biased analysis. Here, we describe Ori-Finder 2022 with updated prediction framework, interactive visualization module, new analysis module, and user-friendly interface. More species-specific indicator genes and functional elements of oriCs are integrated into the updated framework, which has also been redesigned to predict oriCs in draft genomes. The interactive visualization module displays more genomic information related to oriCs and their functional elements. The analysis module includes regulatory protein annotation, repeat sequence discovery, homologous oriC search, and strand-biased analyses. The redesigned interface provides additional customization options for oriC prediction. Ori-Finder 2022 is freely available at http://tubic.tju.edu.cn/Ori-Finder/ and https://tubic.org/Ori-Finder/.
Collapse
Affiliation(s)
- Mei-Jing Dong
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
38
|
Thomsen J, Schmitz RA. Generating a Small Shuttle Vector for Effective Genetic Engineering of Methanosarcina mazei Allowed First Insights in Plasmid Replication Mechanism in the Methanoarchaeon. Int J Mol Sci 2022; 23:ijms231911910. [PMID: 36233214 PMCID: PMC9569500 DOI: 10.3390/ijms231911910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their role in methane production, methanoarchaea are of high ecological relevance and genetic systems have been ever more established in the last two decades. The system for protein expression in Methanosarcina using a comprehensive shuttle vector is established; however, details about its replication mechanism in methanoarchaea remain unknown. Here, we report on a significant optimisation of the rather large shuttle vector pWM321 (8.9 kbp) generated by Metcalf through a decrease in its size by about 35% by means of the deletion of several non-coding regions and the ssrA gene. The resulting plasmid (pRS1595) still stably replicates in M. mazei and—most likely due to its reduced size—shows a significantly higher transformation efficiency compared to pWM321. In addition, we investigate the essential gene repA, coding for a rep type protein. RepA was heterologously expressed in Escherichia coli, purified and characterised, demonstrating the significant binding and nicking activity of supercoiled plasmid DNA. Based on our findings we propose that the optimised shuttle vector replicates via a rolling circle mechanism with RepA as the initial replication protein in Methanosarcina. On the basis of bioinformatic comparisons, we propose the presence and location of a double-strand and a single-strand origin, which need to be further verified.
Collapse
|
39
|
Goswami S, Gowrishankar J. Role for DNA double strand end-resection activity of RecBCD in control of aberrant chromosomal replication initiation in Escherichia coli. Nucleic Acids Res 2022; 50:8643-8657. [PMID: 35929028 PMCID: PMC9410895 DOI: 10.1093/nar/gkac670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Replication of the circular bacterial chromosome is initiated from a locus oriC with the aid of an essential protein DnaA. One approach to identify factors acting to prevent aberrant oriC-independent replication initiation in Escherichia coli has been that to obtain mutants which survive loss of DnaA. Here, we show that a ΔrecD mutation, associated with attenuation of RecBCD’s DNA double strand end-resection activity, provokes abnormal replication and rescues ΔdnaA lethality in two situations: (i) in absence of 5′-3′ single-strand DNA exonuclease RecJ, or (ii) when multiple two-ended DNA double strand breaks (DSBs) are generated either by I-SceI endonucleolytic cleavages or by radiomimetic agents phleomycin or bleomycin. One-ended DSBs in the ΔrecD mutant did not rescue ΔdnaA lethality. With two-ended DSBs in the ΔrecD strain, ΔdnaA viability was retained even after linearization of the chromosome. Data from genome-wide DNA copy number determinations in ΔdnaA-rescued cells lead us to propose a model that nuclease-mediated DNA resection activity of RecBCD is critical for prevention of a σ-mode of rolling-circle over-replication when convergent replication forks merge and fuse, as may be expected to occur during normal replication at the chromosomal terminus region or during repair of two-ended DSBs following ‘ends-in’ replication.
Collapse
Affiliation(s)
- Sayantan Goswami
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India.,Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Jayaraman Gowrishankar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
40
|
Fang F, Liu C, Li Q, Xu R, Zhang T, Shen X. The Role of SETBP1 in Gastric Cancer: Friend or Foe. Front Oncol 2022; 12:908943. [PMID: 35898891 PMCID: PMC9309353 DOI: 10.3389/fonc.2022.908943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGastric cancer (GC) remains a common disease with a poor prognosis worldwide. The SET binding protein 1 (SETBP1) has been implicated in the pathogenesis of several cancers and plays a dual role as an oncogene and a tumor suppressor gene. However, the role and underlying mechanism of SETBP1 in GC remain unclear.Materials and MethodsWe used next-generation RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) to explore the correlation between SETBP1 expression and tumor progression. We then quantified SETBP1 expression in GC cells with real-time quantitative polymerase chain reactions (RT-qPCR). The chi-square test and logistic regression were used to assess the correlation between SETBP1 expression and clinicopathological features. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to assess the relationship between SETBP1 expression and survival. Finally, gene set enrichment analyses (GSEA) were used to examine GC-related signaling pathways in low and high SETBP1 expressing samples.ResultsWe found SETBP1 expression levels in GC tissues to be significantly lower than in adjacent non-tumor tissues in the TCGA database. In addition, SETBP1 expression differed significantly between groups classified by tumor differentiation. Furthermore, SETBP1 expression in diffuse-type GC was significantly higher than in intestinal-type GC. However, it did not differ significantly across pathological- or T-stage groups. RT-qPCR and comprehensive meta-analysis showed that SETBP1 expression is downregulated in GC cells and tissues. Interestingly, SETBP1 expression in poorly- or un-differentiated GC cells was higher than in well-differentiated GC cells. Moreover, the chi-square test and logistic regression analyses showed that SETBP1 expression correlates significantly with tumor differentiation. Kaplan–Meier curves indicated that patients with relatively high SETBP1 expression had a poor prognosis. Multivariate analyses indicated that SETBP1 expression might be an important predictor of poor overall survival in GC patients. GSEA indicated that 20 signaling pathways were significantly enriched in samples with high and low SETBP1 expression.ConclusionSETBP1 may play a dual role in GC progression.
Collapse
Affiliation(s)
- Fujin Fang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Chengyou Liu
- Department of Medical Engineering, Nanjing First Hospital, Nanjing, China
| | - Qiong Li
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Rui Xu
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Tiantian Zhang
- Department of Clinical Laboratory, The Third People’s Hospital of Bengbu, Bengbu, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
- *Correspondence: Xiaobing Shen,
| |
Collapse
|
41
|
Odiba AS, Ezechukwu CS, Liao G, Li S, Chen Z, Liu X, Fang W, Jin C, Wang B. Loss of NSE-4 Perturbs Genome Stability and DNA Repair in Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23137202. [PMID: 35806213 PMCID: PMC9266361 DOI: 10.3390/ijms23137202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The Structural Maintenance of Chromosomes (SMC) complex plays an important role in maintaining chromosome integrity, in which the SMC5/6 complex occupies a central position by facilitating mitotic and meiotic processes as well as DNA repair. NSE-4 Kleisin is critical for both the organization and function of the SMC5/6 complex, bridging NSE1 and NSE3 (MAGE related) with the head domains of the SMC5 and SMC6 proteins. Despite the conservation in protein sequence, no functional relevance of the NSE-4 homologous protein (NSE-4) in Caenorhabditis elegans has been reported. Here, we demonstrated the essential role of C. elegans NSE-4 in genome maintenance and DNA repair. Our results showed that NSE-4 is essential for the maintenance of chromosomal structure and repair of a range of chemically induced DNA damage. Furthermore, NSE-4 is involved in inter-sister repair during meiosis. NSE-4 localizes on the chromosome and is indispensable for the localization of NSE-1. Collectively, our data from this study provide further insight into the evolutionary conservation and diversification of NSE-4 function in the SMC-5/6 complex.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Genetics and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria
| | - Chiemekam Samuel Ezechukwu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Guiyan Liao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Correspondence: (G.L.); (B.W.)
| | - Siqiao Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
| | - Zhongliang Chen
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
| | - Xihui Liu
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
- Correspondence: (G.L.); (B.W.)
| |
Collapse
|
42
|
Escherichia coli cell factories with altered chromosomal replication scenarios exhibit accelerated growth and rapid biomass production. Microb Cell Fact 2022; 21:125. [PMID: 35729580 PMCID: PMC9210752 DOI: 10.1186/s12934-022-01851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background Generally, bacteria have a circular genome with a single replication origin for each replicon, whereas archaea and eukaryotes can have multiple replication origins in a single chromosome. In Escherichia coli, bidirectional DNA replication is initiated at the origin of replication (oriC) and arrested by the 10 termination sites (terA–J). Results We constructed E. coli derivatives with additional or ectopic replication origins, which demonstrate the relationship between DNA replication and cell physiology. The cultures of E. coli derivatives with multiple replication origins contained an increased fraction of replicating chromosomes and the cells varied in size. Without the original oriC, E. coli derivatives with double ectopic replication origins manifested impaired growth irrespective of growth conditions and enhanced cell size, and exhibited excessive and asynchronous replication initiation. The generation time of an E. coli strain with three replication origins decreased in a minimal medium supplemented with glucose as the sole carbon source. As well as cell growth, the introduction of additional replication origins promoted increased biomass production. Conclusions Balanced cell growth and physiological stability of E. coli under rapid growth condition are affected by changes in the position and number of replication origins. Additionally, we show that, for the first time to our knowledge, the introduction of replication initiation sites to the chromosome promotes cell growth and increases protein production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01851-z.
Collapse
|
43
|
Thakur BL, Baris AM, Fu H, Redon CE, Pongor L, Mosavarpour S, Gross J, Jang SM, Sebastian R, Utani K, Jenkins L, Indig F, Aladjem M. Convergence of SIRT1 and ATR signaling to modulate replication origin dormancy. Nucleic Acids Res 2022; 50:5111-5128. [PMID: 35524559 PMCID: PMC9122590 DOI: 10.1093/nar/gkac299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2023] Open
Abstract
During routine genome duplication, many potential replication origins remain inactive or 'dormant'. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Adrian M Baris
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Sara Mosavarpour
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Jacob M Gross
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| |
Collapse
|
44
|
Shahid M, Ilyas M, Hussain W, Khan YD. ORI-Deep: improving the accuracy for predicting origin of replication sites by using a blend of features and long short-term memory network. Brief Bioinform 2022; 23:bbac001. [PMID: 35048955 DOI: 10.1093/bib/bbac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 11/14/2022] Open
Abstract
Replication of DNA is an important process for the cell division cycle, gene expression regulation and other biological evolution processes. It also has a crucial role in a living organism's physical growth and structure. Replication of DNA comprises of three stages known as initiation, elongation and termination, whereas the origin of replication sites (ORI) is the location of initiation of the DNA replication process. There exist various methodologies to identify ORIs in the genomic sequences, however, these methods have used either extensive computations for execution, or have limited optimization for the large datasets. Herein, a model called ORI-Deep is proposed to identify ORIs from the multiple cell type genomic sequence benchmark data. An efficient method is proposed using a deep neural network to identify ORIs for four different eukaryotic species. For better representation of data, a feature vector is constructed using statistical moments for the training and testing of data and is further fed to a long short-term memory (LSTM) network. To prove the effectiveness of the proposed model, we applied several validation techniques at different levels to obtain seven accuracy metrics, and the accuracy score for self-consistency, 10-fold cross-validation, jackknife and the independent set test is observed to be 0.977, 0.948, 0.976 and 0.977, respectively. Based on the results, it can be concluded that ORI-Deep can efficiently predict the sites of origin replication in DNA sequence with high accuracy. Webserver for ORI-Deep is available at (https://share.streamlit.io/waqarhusain/orideep/main/app.py), whereas source code is available at (https://github.com/WaqarHusain/OriDeep).
Collapse
Affiliation(s)
- Mahwish Shahid
- School of Systems and Technologies, University of Management and Technology, Lahore, Pakistan
| | - Maham Ilyas
- University of Management and Technology, Lahore, Pakistan
| | - Waqar Hussain
- University of Management and Technology, Lahore, Pakistan
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
45
|
Mei L, Kedziora KM, Song EA, Purvis JE, Cook J. The consequences of differential origin licensing dynamics in distinct chromatin environments. Nucleic Acids Res 2022; 50:9601-9620. [PMID: 35079814 PMCID: PMC9508807 DOI: 10.1093/nar/gkac003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic chromosomes contain regions of varying accessibility, yet DNA replication factors must access all regions. The first replication step is loading MCM complexes to license replication origins during the G1 cell cycle phase. It is not yet known how mammalian MCM complexes are adequately distributed to both accessible euchromatin regions and less accessible heterochromatin regions. To address this question, we combined time-lapse live-cell imaging with immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in euchromatin and heterochromatin throughout G1. We report here that MCM loading in euchromatin is faster than that in heterochromatin in early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. This differential acceleration allows both chromatin types to begin S phase with similar concentrations of loaded MCM. The different loading dynamics require ORCA-dependent differences in origin recognition complex distribution. A consequence of heterochromatin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus, G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.
Collapse
Affiliation(s)
- Liu Mei
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eun-Ah Song
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Mo C, Xie L, Chen C, Ma J, Huang Y, Wu Y, Xu Y, Peng H, Chen Z, Mao R. The Clinical Significance and Potential Molecular Mechanism of Upregulated CDC28 Protein Kinase Regulatory Subunit 1B in Osteosarcoma. JOURNAL OF ONCOLOGY 2021; 2021:7228584. [PMID: 34925510 PMCID: PMC8683182 DOI: 10.1155/2021/7228584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND CDC28 Protein Kinase Regulatory Subunit 1B (CKS1B) is a member of cyclin-dependent kinase subfamily and the relationship between CKS1B and osteosarcoma (OS) remains to be explored. METHODS 80 OS and 41 nontumor tissue samples were arranged to conduct immunohistochemistry (IHC) to evaluate CKS1B expression between OS and nontumor samples. The standard mean deviation (SMD) was calculated based on in-house IHC and tissue microarrays and exterior high-throughput datasets for further verification of CKS1B expression in OS. The effect of CKS1B expression on clinicopathological and overall survival of OS patients was measured through public high-throughput datasets, and analysis of immune infiltration and single-cell RNA-seq was applied to ascertain molecular mechanism of CKS1B in OS. RESULTS A total of 197 OS samples and 83 nontumor samples (including tissue and cell line) were obtained from in-house IHC, microarrays, and exterior high-throughput datasets. The analysis of integrated expression status demonstrated upregulation of CKS1B in OS (SMD = 1.38, 95% CI [0.52-2.25]) and the significant power of CKS1B expression in distinguishing OS samples from nontumor samples (Area under the Curve (AUC) = 0.89, 95% CI [0.86-0.91]). Clinicopathological and prognosis analysis indicated no remarkable significance but inference of immune infiltration and single-cell RNA-seq prompted that OS patients with overexpressed CKS1B were more likely to suffer OS metastasis while MYC Protooncogene may be the upstream regulon of CKS1B in proliferating osteoblastic OS cells. CONCLUSIONS In this study, sufficient evidence was provided for upregulation of CKS1B in OS. The advanced effect of CKS1B on OS progression indicates a foreground of CKS1B as a biomarker for OS.
Collapse
Affiliation(s)
- Chaohua Mo
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Le Xie
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Chang Chen
- Department of Pathology, Wuzhou Res Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region 543100, China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yingxin Huang
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yanxing Wu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yuanyuan Xu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Huizhi Peng
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Zengwei Chen
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Rongjun Mao
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| |
Collapse
|
47
|
Efficiency and equity in origin licensing to ensure complete DNA replication. Biochem Soc Trans 2021; 49:2133-2141. [PMID: 34545932 DOI: 10.1042/bst20210161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.
Collapse
|
48
|
Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis and clinical data from The Cancer Genome Atlas. Biosci Rep 2021; 41:229248. [PMID: 34308980 PMCID: PMC8314434 DOI: 10.1042/bsr20211280] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified 4832 genes differentially expressed between CRC and normal samples (1562 up-regulated and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan–Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.
Collapse
|
49
|
Archaeal Orc1 protein interacts with T-rich single-stranded DNA. BMC Res Notes 2021; 14:275. [PMID: 34281605 PMCID: PMC8287685 DOI: 10.1186/s13104-021-05690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Objective The ability to form nucleoprotein complexes is a fundamental activity of DNA replication initiation proteins. They bind within or nearby the region of replication origin what results in melting of a double-stranded DNA (dsDNA) and formation of single-stranded DNA (ssDNA) region where the replication machinery can assemble. For prokaryotic initiators it was shown that they interact with the formed ssDNA and that this interaction is required for the replication activity. The ability to interact with ssDNA was also shown for Saccharomyces cerevisiae replication initiation protein complex ORC. For Archaea, which combine features of both prokaryotic and eukaryotic organisms, there was no evidence whether DNA replication initiators can interact with ssDNA. We address this issue in this study. Results Using purified Orc1 protein from Aeropyrum pernix (ApOrc1) we analyzed its ability to interact with ssDNA containing sequence of an AT-rich region of the A. pernix origin Ori1 as well as with homopolymers of thymidine (polyT) and adenosine (polyA). The Bio-layer interferometry, surface plasmon resonance and microscale thermophoresis showed that the ApOrc1 can interact with ssDNA and it binds preferentially to T-rich ssDNA. The hydrolysis of ATP is not required for this interaction. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05690-w.
Collapse
|
50
|
Dineen RL, Penno C, Kelleher P, Bourin MJB, O'Connell‐Motherway M, van Sinderen D. Molecular analysis of the replication functions of the bifidobacterial conjugative megaplasmid pMP7017. Microb Biotechnol 2021; 14:1494-1511. [PMID: 33939264 PMCID: PMC8313286 DOI: 10.1111/1751-7915.13810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
pMP7017 is a conjugative megaplasmid isolated from the gut commensal Bifidobacterium breve JCM7017 and was shown to encode two putative replicases, designated here as RepA and RepB. In the current work, RepB was identified as the pMP7017 replicative initiator, as the repB gene, and its surrounding region was shown to be sufficient to allow autonomous replication in two bifidobacterial species, B. breve and Bifidobacterium longum subsp. longum. RepB was shown to bind to repeat sequence downstream of its coding sequence and this region was determined to be essential for efficient replication. Based on our results, we hypothesize that pMP7017 is an iteron-regulated plasmid (IRP) under strict auto-regulatory control. Recombinantly produced and purified RepB was determined to exist as a dimer in solution, differing from replicases of other IRPs, which exist as a mix of dimers and monomers. Furthermore, a stable low-copy Bifidobacterium-E. coli shuttle vector, pRD1.3, was created which can be employed for cloning and expression of large genes, as was demonstrated by the cloning and heterologous expression of the 5.1 kb apuB gene encoding the extracellular amylopullulanase from B. breve UCC2003 into B. longum subsp. longum NCIMB8809.
Collapse
Affiliation(s)
- Rebecca L. Dineen
- APC Microbiome IrelandUniversity College CorkWestern RoadCorkIreland
- School of MicrobiologyUniversity College CorkWestern RoadCorkIreland
| | - Christophe Penno
- CNRS UMR 6553 EcoBioUniversite de Rennes 1Campus de Beaulieu, Bat. 14ARennes cedex35042France
| | - Philip Kelleher
- APC Microbiome IrelandUniversity College CorkWestern RoadCorkIreland
- School of MicrobiologyUniversity College CorkWestern RoadCorkIreland
| | - Maxence J. B. Bourin
- APC Microbiome IrelandUniversity College CorkWestern RoadCorkIreland
- School of MicrobiologyUniversity College CorkWestern RoadCorkIreland
| | | | - Douwe van Sinderen
- APC Microbiome IrelandUniversity College CorkWestern RoadCorkIreland
- School of MicrobiologyUniversity College CorkWestern RoadCorkIreland
| |
Collapse
|