1
|
Zhou M, Xu Y, Li J, Han Y, Yu H, Qi L, Chen J, Xiang H, Han J. Promoter engineering for enhanced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production in Haloferax mediterranei. Int J Biol Macromol 2025; 310:143237. [PMID: 40250665 DOI: 10.1016/j.ijbiomac.2025.143237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are linear polyesters synthesized by various microorganisms. Due to their excellent physicochemical and material properties, PHAs are considered as a promising and sustainable alternative to petroleum-based plastics. Haloferax mediterranei is a promising and cost-effective producer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this study, we aimed to improve PHBV yield of H. mediterranei via promoter engineering. Differential RNA-seq (dRNA-seq) was firstly used to examine the genome-wide transcription start sites (TSSs) of H. mediterranei. Based on the TSS profile, 26 constitutive promoters with expression strength spanning ~103-fold dynamic range were quantitatively characterized using GFP fluorescence reporting system. Furthermore, it was found that the 5' untranslated region (5'-UTR) of phaR encoding PHA synthesis regulatory protein reduced the activity of the promoters derived from phaR, and this regulation occurred at the transcription level. Finally, several suitable promoters were selected to regulate the expression of cimA and bktB to improve the PHBV accumulation and 3HV molar fraction in H. mediterranei, ultimately leading to an increase of 35 % and of 18.4 %, respectively. Taken together, this work established a constitutive promoter library of haloarchaea, which would provide abundant genetic elements for the construction of ideal haloarchaeal chassis cells contributing in biosynthetic biology of extremophiles.
Collapse
Affiliation(s)
- Mengkai Zhou
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yang Xu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Jie Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yiran Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Haiying Yu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lei Qi
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Junyu Chen
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
2
|
Wang K, Guo G, Bai S, Ma J, Zhang Z, Xing Z, Wang W, Li H, Liang H, Li Z, Si X, Wang J, Liu Q, Xu W, Yang C, Song RF, Li J, He T, Li J, Zeng X, Liang J, Zhang F, Qiu X, Li Y, Bu T, Liu WC, Zhao Y, Huang J, Zhou Y, Song CP. Horizontally acquired CSP genes contribute to wheat adaptation and improvement. NATURE PLANTS 2025; 11:761-774. [PMID: 40148598 DOI: 10.1038/s41477-025-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Although horizontal gene transfer (HGT) often facilitates environmental adaptation of recipient organisms, whether and how they might affect crop evolution and domestication is unclear. Here we show that three genes encoding cold-shock proteins (CSPs) were transferred from bacteria to Triticeae, a tribe of the grass family that includes several major staple crops such as wheat, barley and rye. The acquired CSP genes in wheat (TaCSPs) are functionally conserved in their bacterial homologues by encoding a nucleic acid-binding protein. Experimental evidence indicates that TaCSP genes positively regulate drought response and improve photosynthetic efficiency under water-deficient conditions by directly targeting a type 1 metallothionein gene to increase reactive oxygen species scavenging, which in turn contributed to the geographic expansion of wheat. We identified an elite CSP haplotype in Aegilops tauschii, introduction of which to wheat significantly increased drought tolerance, photosynthetic efficiency and grain yields. These findings not only provide major insights into the role of HGT in crop adaptation and domestication, but also demonstrate that novel microbial genes introduced through HGT offer a stable and naturally optimized resource for transgenic crop breeding and improvement.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zeyu Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaomin Si
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jinjin Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenyao Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Cuicui Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Junrong Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tiantian He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaoyu Zeng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingge Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tiantian Bu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yusheng Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
- Department of Biology, East Carolina University, Greenville, NC, USA.
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Du Q, Wei Y, Zhang L, Ren D, Gao J, Dong X, Bai L, Li J. An improved CRISPR and CRISPR interference (CRISPRi) toolkit for engineering the model methanogenic archaeon Methanococcus maripaludis. Microb Cell Fact 2024; 23:239. [PMID: 39227830 PMCID: PMC11373211 DOI: 10.1186/s12934-024-02492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The type II based CRISPR-Cas system remains restrictedly utilized in archaea, a featured domain of life that ranks parallelly with Bacteria and Eukaryotes. Methanococcus maripaludis, known for rapid growth and genetic tractability, serves as an exemplary model for studying archaeal biology and exploring CO2-based biotechnological applications. However, tools for controlled gene regulation remain deficient and CRISPR-Cas tools still need improved in this archaeon, limiting its application as an archaeal model cellular factory. RESULTS This study not only improved the CRISPR-Cas9 system for optimizing multiplex genome editing and CRISPR plasmid construction efficiencies but also pioneered an effective CRISPR interference (CRISPRi) system for controlled gene regulation in M. maripaludis. We developed two novel strategies for balanced expression of multiple sgRNAs, facilitating efficient multiplex genome editing. We also engineered a strain expressing Cas9 genomically, which simplified the CRISPR plasmid construction and facilitated more efficient genome modifications, including markerless and scarless gene knock-in. Importantly, we established a CRISPRi system using catalytic inactive dCas9, achieving up to 100-fold repression on target gene. Here, sgRNAs targeting near and downstream regions of the transcription start site and the 5'end ORF achieved the highest repression efficacy. Furthermore, we developed an inducible CRISPRi-dCas9 system based on TetR/tetO platform. This facilitated the inducible gene repression, especially for essential genes. CONCLUSIONS Therefore, these advancements not only expand the toolkit for genetic manipulation but also bridge methodological gaps for controlled gene regulation, especially for essential genes, in M. maripaludis. The robust toolkit developed here paves the way for applying M. maripaludis as a vital model archaeal cell factory, facilitating fundamental biological studies and applied biotechnology development of archaea.
Collapse
Affiliation(s)
- Qing Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Yufei Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
| | - Derong Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jian Gao
- School of Basic Medical Sciences, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China.
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
4
|
Myers T, Dykstra CM. Teaching old dogs new tricks: genetic engineering methanogens. Appl Environ Microbiol 2024; 90:e0224723. [PMID: 38856201 PMCID: PMC11267900 DOI: 10.1128/aem.02247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Methanogenic archaea, which are integral to global carbon and nitrogen cycling, currently face challenges in genetic manipulation due to unique physiology and limited genetic tools. This review provides a survey of current and past developments in the genetic engineering of methanogens, including selection and counterselection markers, reporter systems, shuttle vectors, mutagenesis methods, markerless genetic exchange, and gene expression control. This review discusses genetic tools and emphasizes challenges tied to tool scarcity for specific methanogenic species. Mutagenesis techniques for methanogens, including physicochemical, transposon-mediated, liposome-mediated mutagenesis, and natural transformation, are outlined, along with achievements and challenges. Markerless genetic exchange strategies, such as homologous recombination and CRISPR/Cas-mediated genome editing, are also detailed. Finally, the review concludes by examining the control of gene expression in methanogens. The information presented underscores the urgent need for refined genetic tools in archaeal research. Despite historical challenges, recent advancements, notably CRISPR-based systems, hold promise for overcoming obstacles, with implications for global health, agriculture, climate change, and environmental engineering. This comprehensive review aims to bridge existing gaps in the literature, guiding future research in the expanding field of archaeal genetic engineering.
Collapse
Affiliation(s)
- Tyler Myers
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Christy M. Dykstra
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, California, USA
| |
Collapse
|
5
|
Xu Q, Du Q, Gao J, Chen L, Dong X, Li J. A robust genetic toolbox for fine-tuning gene expression in the CO 2-Fixing methanogenic archaeon Methanococcus maripaludis. Metab Eng 2023; 79:130-145. [PMID: 37495072 DOI: 10.1016/j.ymben.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Libraries of well-characterized genetic elements for fine-tuning gene expression are essential for biological and biotechnological research and applications. The fast-growing and genetically tractable methanogen, Methanococcus maripaludis, is a promising host organism for biotechnological conversion of carbon dioxide and renewable hydrogen into fuels and value-added products, as well as fundamental biological studies of archaea. However, the lack of molecular tools for gene expression has hindered its application as a workhorse to fine-tune gene and metabolic pathway expressions. In this study, we developed a genetic toolbox, including libraries of promoters, ribosome binding sites (RBS), and neutral sites for chromosomal integration, to facilitate precise gene expression in M. maripaludis. We generated a promoter library consisting of 81 constitutive promoters with expression strengths spanning a ∼104-fold dynamic range. Importantly, we identified a base composition rule for strong archaeal promoters and successfully remodeled weak promoters, enhancing their activities by up to 120-fold. We also established an RBS library containing 42 diverse RBS sequences with translation strengths covering a ∼100-fold dynamic range. Additionally, we identified eight neutral sites and developed a one-step, Cas9-based marker-less knock-in approach for chromosomal integration. We successfully applied the characterized promoter and RBS elements to significantly improve recombinant protein expression by 41-fold and modulate essential gene expression to generate corresponding physiological changes in M. maripaludis. Therefore, this work establishes a solid foundation for utilizing this autotrophic methanogen as an ideal workhorse for archaeal biology and biotechnological studies and applications.
Collapse
Affiliation(s)
- Qing Xu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Du
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Jian Gao
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
6
|
Zhang W, Ren D, Li Z, Yue L, Whitman WB, Dong X, Li J. Internal transcription termination widely regulates differential expression of operon-organized genes including ribosomal protein and RNA polymerase genes in an archaeon. Nucleic Acids Res 2023; 51:7851-7867. [PMID: 37439380 PMCID: PMC10450193 DOI: 10.1093/nar/gkad575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Genes organized within operons in prokaryotes benefit from coordinated expression. However, within many operons, genes are expressed at different levels, and the mechanisms for this remain obscure. By integrating PacBio-seq, dRNA-seq, Term-seq and Illumina-seq data of a representative archaeon Methanococcus maripaludis, internal transcription termination sites (ioTTSs) were identified within 38% of operons. Higher transcript and protein abundances were found for genes upstream than downstream of ioTTSs. For representative operons, these differences were confirmed by northern blotting, qRT-PCR and western blotting, demonstrating that these ioTTS terminations were functional. Of special interest, mutation of ioTTSs in ribosomal protein (RP)-RNA polymerase (RNAP) operons not only elevated expression of the downstream RNAP genes but also decreased production of the assembled RNAP complex, slowed whole cell transcription and translation, and inhibited growth. Overexpression of the RNAP subunits with a shuttle vector generated the similar physiological effects. Therefore, ioTTS termination is a general and physiologically significant regulatory mechanism of the operon gene expression. Because the RP-RNAP operons are found to be widely distributed in archaeal species, this regulatory mechanism could be commonly employed in archaea.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Derong Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
7
|
Van Gundy T, Patel D, Bowler BE, Rothfuss MT, Hall AJ, Davies C, Hall LS, Drecktrah D, Marconi RT, Samuels DS, Lybecker MC. c-di-GMP regulates activity of the PlzA RNA chaperone from the Lyme disease spirochete. Mol Microbiol 2023; 119:711-727. [PMID: 37086029 PMCID: PMC10330241 DOI: 10.1111/mmi.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Taylor Van Gundy
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Dhara Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Allie J. Hall
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, University of Southern Alabama, Mobile, AL 36688, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - D. Scott Samuels
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C. Lybecker
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Department of Biology, University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs CO 80917, USA
| |
Collapse
|
8
|
Qi L, Liu H, Gao J, Deng K, Wang X, Dong X, Li J. Endonucleolytic processing plays a critical role in the maturation of ribosomal RNA in Methanococcus maripaludis. RNA Biol 2023; 20:760-773. [PMID: 37731260 PMCID: PMC10515664 DOI: 10.1080/15476286.2023.2258035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Ribosomal RNA (rRNA) processing and maturation are fundamentally important for ribosome biogenesis, but the mechanisms in archaea, the third form of life, remains largely elusive. This study aimed to investigate the rRNA maturation process in Methanococcus maripaludis, a representative archaeon lacking known 3'-5' exonucleases. Through cleavage site identification and enzymatic assays, the splicing endonuclease EndA was determined to process the bulge-helix-bulge (BHB) motifs in 16S and 23S rRNA precursors. After splicing, the circular processing intermediates were formed and this was confirmed by quantitative RT-PCR and Northern blot. Ribonuclease assay revealed a specific cleavage at a 10-nt A/U-rich motif at the mature 5' end of pre-16S rRNA, which linearized circular pre-16S rRNA intermediate. Further 3'-RACE and ribonuclease assays determined that the endonuclease Nob1 cleaved the 3' extension of pre-16S rRNA, and so generated the mature 3' end. Circularized RT-PCR (cRT-PCR) and 5'-RACE identified two cleavage sites near helix 1 at the 5' end of 23S rRNA, indicating that an RNA structure-based endonucleolytic processing linearized the circular pre-23S rRNA intermediate. In the maturation of pre-5S rRNA, multiple endonucleolytic processing sites were determined at the 10-nt A/U-rich motif in the leader and trailer sequence. This study demonstrates that endonucleolytic processing, particularly at the 10-nt A/U-rich motifs play an essential role in the pre-rRNA maturation of M. maripaludis, indicating diverse pathways of rRNA maturation in archaeal species.
Collapse
Affiliation(s)
- Lei Qi
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Jian Gao
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Kai Deng
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Xiaoyan Wang
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Li J, Akinyemi TS, Shao N, Chen C, Dong X, Liu Y, Whitman WB. Genetic and Metabolic Engineering of Methanococcus spp. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Li J, Zhang L, Xu Q, Zhang W, Li Z, Chen L, Dong X. CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO 2-Fixing Methanogenic Archaeon. Microbiol Spectr 2022; 10:e0116522. [PMID: 35766512 PMCID: PMC9430280 DOI: 10.1128/spectrum.01165-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
The CRISPR-Cas9 system is a robust genome editing tool that is widely applied in eukaryotes and bacteria. However, use of this technique has only been developed for one species of Archaea, a domain of life ranking in parallel with Eukarya and Bacteria. In this study, we applied the CRISPR-Cas9 genome editing technique to Methanococcus maripaludis, an autotrophic and hydrogenotrophic methanogenic archaeon with a remarkably polyploid genome comprising up to ~55 chromosomal copies per cell. An editing plasmid was designed that encodes small guide RNA (sgRNA), Cas9 protein and an ~1-kb repair template (donor). Highly efficient (75% to 100%) and precise genome editing was achieved following one-step transformation. Significantly, the Cas9-based system efficiently deleted one or two genes and a large DNA fragment (~9 kb) and even synchronously deleted 13 genes located at three loci in all chromosomal copies of M. maripaludis. Moreover, precise in situ genome modifications, such as gene tagging and multiple- and even single-nucleotide mutagenesis, were also introduced with high efficiency. Further, as a proof of concept, precise mutagenesis at the nucleotide level allowed the engineering of both transcriptional and translational activities. Mutations were introduced into an archaeal promoter BRE (transcription factor B [TFB] recognition element), a terminator U-tract region, and a gene coding region. Stop codon introduction into a gene through single-nucleotide substitution shut down its expression, providing an alternative strategy for gene inactivation. In conclusion, the robust CRISPR-Cas9 genetic toolkit developed in this investigation greatly facilitates the application of M. maripaludis as a model system in the study of archaeal biology and biotechnology development, particularly CO2-based biotechnologies. IMPORTANCE Archaea are prokaryotes with intriguing biological characteristics. They possess bacterial cell structures but eukaryotic homologous information processing machinery and eukaryotic featured proteins. Archaea also display excellent adaptability to extreme environments and play pivotal roles in ecological processes, thus exhibiting valuable biotechnological potential. However, the in-depth understanding and practical application of archaea are much lagging, because only a minority of pure cultures are available, and even worse, very few can be genetically manipulated. This work developed CRISPR-Cas9-based genome editing technology in Methanococcus maripaludis, a CO2-fixing methanogenic archaeon. The CRISPR-Cas9 approach developed in this study provides an elegant and efficient genome editing toolkit that can be applied in the knockout of single or multiple genes, in situ gene tagging, multiple- or single-nucleotide mutagenesis, and inactivation of gene expression by introduction of stop codons. The successful development of the CRISPR-Cas9 toolkit will facilitate the application of M. maripaludis in archaeal biology research and biotechnology development, particularly CO2-derived biotechnologies.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liuyang Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qing Xu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Li J, Yue L, Li Z, Zhang W, Zhang B, Zhao F, Dong X. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. eLife 2021; 10:70464. [PMID: 34964713 PMCID: PMC8716108 DOI: 10.7554/elife.70464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, aCPSF1 was reported to function as the long-sought global transcription termination factor of archaea; however, the working mechanism remains elusive. This work, through analyzing transcript-3′end-sequencing data of Methanococcus maripaludis, found genome-wide positive correlations of both the terminator uridine(U)-tract and aCPSF1 with hierarchical transcription termination efficacies (TTEs). In vitro assays determined that aCPSF1 specifically binds to the terminator U-tract with U-tract number-related binding affinity, and in vivo assays demonstrated the two elements are indispensable in dictating high TTEs, revealing that aCPSF1 and the terminator U-tract cooperatively determine high TTEs. The N-terminal KH domains equip aCPSF1 with specific-binding capacity to terminator U-tract and the aCPSF1-terminator U-tract cooperation; while the nuclease activity of aCPSF1 was also required for TTEs. aCPSF1 also guarantees the terminations of transcripts with weak intrinsic terminator signals. aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota exhibited similar U-tract cooperation in dictating TTEs. Therefore, aCPSF1 and the intrinsic U-rich terminator could work in a noteworthy two-in-one termination mode in archaea, which may be widely employed by archaeal phyla; using one trans-action factor to recognize U-rich terminator signal and cleave transcript 3′-end, the archaeal aCPSF1-dependent transcription termination may represent a simplified archetypal mode of the eukaryotic RNA polymerase II termination machinery.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Akinyemi TS, Shao N, Lyu Z, Drake IJ, Liu Y, Whitman WB. Tuning Gene Expression by Phosphate in the Methanogenic Archaeon Methanococcus maripaludis. ACS Synth Biol 2021; 10:3028-3039. [PMID: 34665610 DOI: 10.1021/acssynbio.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methanococcus maripaludis is a rapidly growing, hydrogenotrophic, and genetically tractable methanogen with unique capabilities to convert formate and CO2 to CH4. The existence of genome-scale metabolic models and an established, robust system for both large-scale and continuous cultivation make it amenable for industrial applications. However, the lack of molecular tools for differential gene expression has hindered its application as a microbial cell factory to produce biocatalysts and biochemicals. In this study, a library of differentially regulated promoters was designed and characterized based on the pst promoter, which responds to the inorganic phosphate concentration in the growth medium. Gene expression increases by 4- to 6-fold when the medium phosphate drops to growth-limiting concentrations. Hence, this regulated system decouples growth from heterologous gene expression without the need for adding an inducer. The minimal pst promoter is identified and contains a conserved AT-rich region, a factor B recognition element, and a TATA box for phosphate-dependent regulation. Rational changes to the factor B recognition element and start codon had no significant impact on expression; however, changes to the transcription start site and the 5' untranslated region resulted in the differential protein production with regulation remaining intact. Compared to a previous expression system based upon the histone promoter, this regulated expression system resulted in significant improvements in the expression of a key methanogenic enzyme complex, methyl-coenzyme M reductase, and the potentially toxic arginine methyltransferase MmpX.
Collapse
Affiliation(s)
- Taiwo S. Akinyemi
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States
| | - Nana Shao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States
| | - Zhe Lyu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ian J. Drake
- Corporate Strategic Research, ExxonMobil Research & Engineering Company, Annandale, New Jersey 08801, United States
| | - Yuchen Liu
- Corporate Strategic Research, ExxonMobil Research & Engineering Company, Annandale, New Jersey 08801, United States
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
13
|
Schramm F, Borst A, Linne U, Soppa J. Elucidation of the Translation Initiation Factor Interaction Network of Haloferax volcanii Reveals Coupling of Transcription and Translation in Haloarchaea. Front Microbiol 2021; 12:742806. [PMID: 34764944 PMCID: PMC8576121 DOI: 10.3389/fmicb.2021.742806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023] Open
Abstract
Translation is an important step in gene expression. Initiation of translation is rate-limiting, and it is phylogenetically more diverse than elongation or termination. Bacteria contain only three initiation factors. In stark contrast, eukaryotes contain more than 10 (subunits of) initiation factors (eIFs). The genomes of archaea contain many genes that are annotated to encode archaeal homologs of eukaryotic initiation factors (aIFs). However, experimental characterization of aIFs is scarce and mostly restricted to very few species. To broaden the view, the protein-protein interaction network of aIFs in the halophilic archaeon Haloferax volcanii has been characterized. To this end, tagged versions of 14 aIFs were overproduced, affinity isolated, and the co-isolated binding partners were identified by peptide mass fingerprinting and MS/MS analyses. The aIF-aIF interaction network was resolved, and it was found to contain two interaction hubs, (1) the universally conserved factor aIF5B, and (2) a protein that has been annotated as the enzyme ribose-1,5-bisphosphate isomerase, which we propose to rename to aIF2Bα. Affinity isolation of aIFs also led to the co-isolation of many ribosomal proteins, but also transcription factors and subunits of the RNA polymerase (Rpo). To analyze a possible coupling of transcription and translation, seven tagged Rpo subunits were overproduced, affinity isolated, and co-isolated proteins were identified. The Rpo interaction network contained many transcription factors, but also many ribosomal proteins as well as the initiation factors aIF5B and aIF2Bα. These results showed that transcription and translation are coupled in haloarchaea, like in Escherichia coli. It seems that aIF5B and aIF2Bα are not only interaction hubs in the translation initiation network, but also key players in the transcription-translation coupling.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Andreas Borst
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Phillipps University Marburg, Marburg, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| |
Collapse
|
14
|
Schwarz TS, Berkemer SJ, Bernhart SH, Weiß M, Ferreira-Cerca S, Stadler PF, Marchfelder A. Splicing Endonuclease Is an Important Player in rRNA and tRNA Maturation in Archaea. Front Microbiol 2020; 11:594838. [PMID: 33329479 PMCID: PMC7714728 DOI: 10.3389/fmicb.2020.594838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
In all three domains of life, tRNA genes contain introns that must be removed to yield functional tRNA. In archaea and eukarya, the first step of this process is catalyzed by a splicing endonuclease. The consensus structure recognized by the splicing endonuclease is a bulge-helix-bulge (BHB) motif which is also found in rRNA precursors. So far, a systematic analysis to identify all biological substrates of the splicing endonuclease has not been carried out. In this study, we employed CRISPRi to repress expression of the splicing endonuclease in the archaeon Haloferax volcanii to identify all substrates of this enzyme. Expression of the splicing endonuclease was reduced to 1% of its normal level, resulting in a significant extension of lag phase in H. volcanii growth. In the repression strain, 41 genes were down-regulated and 102 were up-regulated. As an additional approach in identifying new substrates of the splicing endonuclease, we isolated and sequenced circular RNAs, which identified excised introns removed from tRNA and rRNA precursors as well as from the 5' UTR of the gene HVO_1309. In vitro processing assays showed that the BHB sites in the 5' UTR of HVO_1309 and in a 16S rRNA-like precursor are processed by the recombinant splicing endonuclease. The splicing endonuclease is therefore an important player in RNA maturation in archaea.
Collapse
Affiliation(s)
| | - Sarah J Berkemer
- Bioinformatics, Department of Computer Science, Leipzig University, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Competence Center for Scalable Data Services and Solutions, Leipzig University, Leipzig, Germany
| | - Stephan H Bernhart
- Bioinformatics, Department of Computer Science, Leipzig University, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Matthias Weiß
- Regensburg Center for Biochemistry, Biochemistry III - Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III - Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Peter F Stadler
- Bioinformatics, Department of Computer Science, Leipzig University, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany.,Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.,Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.,Center for RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.,Santa Fe Institute, Santa Fe, NM, United States
| | | |
Collapse
|
15
|
Yue L, Li J, Zhang B, Qi L, Li Z, Zhao F, Li L, Zheng X, Dong X. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3'-end cleavage mode. Nucleic Acids Res 2020; 48:9589-9605. [PMID: 32857850 PMCID: PMC7515710 DOI: 10.1093/nar/gkaa702] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023] Open
Abstract
Transcription termination defines accurate transcript 3′-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3′-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3′end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3′-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.
Collapse
Affiliation(s)
- Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingyan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|