1
|
Ren P, Ma Z, Liu Q, Xia X, Zhu G, Tang J, Li R, Lu G. Xanthomonas oryzae Orphan Response Regulator EmvR Is Involved in Virulence, Extracellular Polysaccharide Production and Cell Motility. MOLECULAR PLANT PATHOLOGY 2025; 26:e70083. [PMID: 40189917 PMCID: PMC11973254 DOI: 10.1111/mpp.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Bacteria have evolved a large number of two-component signalling systems (TCSs), which are typically composed of a histidine sensor kinase (HK) and a response regulator (RR), to sense environmental changes and modulate subsequent adaptive responses. Here, we describe the involvement of an orphan single-domain RR named EmvR in the virulence, extracellular polysaccharide (EPS) production and cell motilities of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc), which infects rice leaves mainly via stomata and wounds. Deletion of emvR in Xoc reduced virulence when using spraying inoculation but not when using infiltration inoculation. The emvR deletion mutant displayed weakened spreading and enhanced twitching. Additionally, although deletion of emvR did not significantly affect EPS production, overexpression of emvR significantly increased EPS production. Several standard assays revealed that EmvR physically interacts with PilB and represses its ATPase activity. Combining our data with previous findings that PilB provides the energy for type IV pilus (T4P) biogenesis, we conclude that EmvR plays a vital role in modulating Xoc T4P synthesis and in the early stage of Xoc infection through rice stomata. Moreover, our data reveal that EmvR can also interact with the HK of the TCS ColSXOCgx_4036/ColRXOCgx_4037, which positively and negatively affects Xoc spreading and twitching, respectively. We propose a 'one-to-two' TCS working model for the role of ColSXOCgx_4036, ColRXOCgx_4037, and EmvR in modulating Xoc motility.
Collapse
Affiliation(s)
- Pei‐Dong Ren
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Zeng‐Feng Ma
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanningChina
| | - Qing‐Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xin‐Qi Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Gui‐Ning Zhu
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Rui‐Fang Li
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
2
|
Zhang J, Luo Y, Zong Y, Lu S, Shi Y, Jin F, Zhao K. The role of PilU in the surface behaviors of Pseudomonas aeruginosa. MLIFE 2025; 4:83-95. [PMID: 40026580 PMCID: PMC11868832 DOI: 10.1002/mlf2.12165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
In Pseudomonas aeruginosa, the dynamic activity of type IV pilus (TFP) is essential for various bacterial behaviors. While PilU is considered a homolog of the TFP disassembling motor PilT, its specific roles remain unclear. Using pilus visualization and single-cell tracking techniques, we characterized TFP dynamics and surface behaviors in wild-type and ΔpilU mutants. We found that ΔpilU cells displayed increased TFP numbers but reduced cell movement and delayed microcolony formation. Interestingly, beyond affecting the twitching motility, ΔpilU cells formed a thick multilayered colony edge on semi-solid surfaces, slowing colony expansion. Cell-cell collision responses changed from touch-turn dominance in wild type to touch-upright dominance in ΔpilU, affecting colony morphology and expansion. These findings expand our understanding of PilU's physiological roles and provide potential targets for developing strategies to control P. aeruginosa biofilm formation and virulence.
Collapse
Affiliation(s)
- Jingchao Zhang
- Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yan Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic BiologyTianjin UniversityTianjinChina
- Guangzhou General Institute of Medical ResearchGuangzhouChina
| | - Yiwu Zong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic BiologyTianjin UniversityTianjinChina
| | - Shangping Lu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Institute of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Kun Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Institute of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
3
|
Shimozono TM, Vogelaar NJ, O'Hara MT, Yang Z. A Phage-Based Approach to Identify Antivirulence Inhibitors of Bacterial Type IV Pili. Microb Biotechnol 2025; 18:e70081. [PMID: 39822166 PMCID: PMC11739798 DOI: 10.1111/1751-7915.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes. The bacterial type IV pilus (T4P), an extracellular protein filament that depends on the T4P machinery (T4PM) for its biogenesis, dynamics and function, is a key virulence factor in many significant bacterial pathogens. While the T4PM presents a promising antivirulence target, the systematic identification of inhibitors for its multiple protein constituents remains a considerable challenge. Here we report a novel high-throughput screening (HTS) approach for discovering T4P inhibitors. It uses Pseudomonas aeruginosa, a high-priority pathogen, in combination with its T4P-targeting phage, φKMV. Screening of a library of 2168 compounds using an optimised protocol led to the identification of tuspetinib, based on its deterrence of the lysis of P. aeruginosa by φKMV. Our findings show that tuspetinib also inhibits two additional T4P-targeting phages, while having no effect on a phage that recognises lipopolysaccharides as its receptor. Additionally, tuspetinib impedes T4P-mediated motility in P. aeruginosa and Acinetobacter species without impacting growth or flagellar motility. This bacterium-phage pairing approach is applicable to a broad range of virulence factors that are required for phage infection, paving ways for the development of advanced chemotherapeutics against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Nancy J. Vogelaar
- Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginiaUSA
| | - Megan T. O'Hara
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Zhaomin Yang
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
- Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
4
|
Roberge NA, Burrows LL. Building permits-control of type IV pilus assembly by PilB and its cofactors. J Bacteriol 2024; 206:e0035924. [PMID: 39508682 PMCID: PMC11656802 DOI: 10.1128/jb.00359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Many bacteria produce type IV pili (T4P), surfaced-exposed protein filaments that enable cells to interact with their environment and transition from planktonic to surface-adapted states. T4P are dynamic, undergoing rapid cycles of filament extension and retraction facilitated by a complex protein nanomachine powered by cytoplasmic motor ATPases. Dedicated assembly motors drive the extension of the pilus fiber into the extracellular space, but like any machine, this process is tightly organized. These motors are coordinated by various ligands and binding partners, which control or optimize their functional associations with T4P machinery before cells commit to the crucial first step of building a pilus. This review focuses on the molecular mechanisms that regulate T4P extension motor function. We discuss secondary messenger-dependent transcriptional or post-translational regulation acting both directly on the motor and through protein effectors. We also discuss the recent discoveries of naturally occurring extension inhibitors as well as alternative mechanisms of pilus assembly and motor-dependent signaling pathways. Given that T4P are important virulence factors for many bacterial pathogens, studying these motor regulatory systems will provide new insights into T4P-dependent physiology and efficient strategies to disable them.
Collapse
Affiliation(s)
- Nathan A. Roberge
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024; 12:eesp00032023. [PMID: 38294234 PMCID: PMC11636386 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I. Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K. Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
6
|
Harkova LG, de Dios R, Rubio-Valle A, Pérez-Pulido AJ, McCarthy RR. Cyclic AMP is a global virulence regulator governing inter and intrabacterial signalling in Acinetobacter baumannii. PLoS Pathog 2024; 20:e1012529. [PMID: 39241032 PMCID: PMC11410210 DOI: 10.1371/journal.ppat.1012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic nosocomial pathogen with high morbidity and mortality rates. Current treatment options for this pathogen are limited due to its increasing resistance to last-resort antibiotics. Despite A. baumannii's leading position in the World Health Organisations priority pathogens list, little is known about its virulence regulation. Through a high-throughput screening approach to identify novel biofilm regulators, we identified a previously uncharacterised predicted adenylate cyclase (AC), CavA, as a central regulator of this phenotype. cAMP is a crucial mediator of various aspects of bacterial physiology in other species but information about its role in A. baumannii is limited. We confirm that CavA AC is functional and synthesizes cAMP in A. baumannii. Using dRNA-seq, we verify that CavA is a negative biofilm formation regulator affecting Csu pili and exopolysaccharide production. We demonstrate for the first time that in A. baumannii, cAMP is atop of a hierarchical signalling cascade controlling inter- and intrabacterial signalling by modulating quorum sensing and cyclic di-GMP systems, ultimately governing virulence in vivo and adaptive antibiotic resistance. In contrast to the well-established paradigm in other bacteria where cAMP and cyclic di-GMP levels are inversely regulated, we uncover that the levels of these second messengers are directly proportional in A. baumannii. Overall, this study uncovers the central role of CavA and cAMP in the pathogenic success of A. baumannii and highlights this signalling cascade as a high potential target for novel therapeutic development.
Collapse
Affiliation(s)
- Lyuboslava G Harkova
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rubén de Dios
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Alejandro Rubio-Valle
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-JA), Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-JA), Universidad Pablo de Olavide, Sevilla, Spain
| | - Ronan R McCarthy
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
7
|
Geiger CJ, Wong GCL, O'Toole GA. A bacterial sense of touch: T4P retraction motor as a means of surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2024; 206:e0044223. [PMID: 38832786 PMCID: PMC11270903 DOI: 10.1128/jb.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
8
|
Rao W, Yue Q, Gao S, Lei M, Lin T, Pan X, Hu J, Fan G. Visible-light-driven water-soluble zinc oxide quantum dots for efficient control of citrus canker. PEST MANAGEMENT SCIENCE 2024; 80:3022-3034. [PMID: 38318944 DOI: 10.1002/ps.8010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a devastating bacterial disease that reduces citrus yield and quality, posing a serious threat to the citrus industry. Several conventional chemicals have been used to control citrus canker. However, this approach often leads to the excessive use of chemical agents, can exacerbate environmental pollution and promotes the development of resistant Xcc. Therefore, there is significant interest in the development of efficient and environmentally friendly technologies to control citrus canker. RESULTS In this study, water-soluble ZnO quantum dots (ZnO QDs) were synthesised as an efficient nanopesticide against Xcc. The results showed that the antibacterial activity of ZnO QDs irradiated with visible light [half-maximal effective concentration (EC50) = 33.18 μg mL-1] was ~3.5 times higher than that of the dark-treated group (EC50 = 114.80 μg mL-1). ZnO QDs induced the generation of reactive oxygen species (•OH, •O- 2 and 1O2) under light irradiation, resulting in DNA damage, cytoplasmic destruction, and decreased catalase and superoxide dismutase activities. Transcription analysis showed downregulation of Xcc genes related to 'biofilms, virulence, adhesion' and 'DNA transfer' exposure to ZnO QDs. More importantly, ZnO QDs also promoted the growth of citrus. CONCLUSION This research provides new insights into the photocatalytic antibacterial mechanisms of ZnO QDs and supports the development of more efficient and safer ZnO QDs-based nanopesticides to control citrus canker. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Qi Yue
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Shang Gao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Meiling Lei
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Xiaohong Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| |
Collapse
|
9
|
Rhodes KA, Rendón MA, Ma MC, Agellon A, Johnson AC, So M. Type IV pilus retraction is required for Neisseria musculi colonization and persistence in a natural mouse model of infection. mBio 2024; 15:e0279223. [PMID: 38084997 PMCID: PMC10790696 DOI: 10.1128/mbio.02792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE We describe the importance of Type IV pilus retraction to colonization and persistence by a mouse commensal Neisseria, N. musculi, in its native host. Our findings have implications for the role of Tfp retraction in mediating interactions of human-adapted pathogenic and commensal Neisseria with their human host due to the relatedness of these species.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - María A. Rendón
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew C.E. Johnson
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Magdalene So
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Palalay JJS, Simsek AN, Reed JL, Koch MD, Sabass B, Sanfilippo JE. Shear force enhances adhesion of Pseudomonas aeruginosa by counteracting pilus-driven surface departure. Proc Natl Acad Sci U S A 2023; 120:e2307718120. [PMID: 37788310 PMCID: PMC10576114 DOI: 10.1073/pnas.2307718120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Fluid flow is thought to prevent bacterial adhesion, but some bacteria use adhesins with catch bond properties to enhance adhesion under high shear forces. However, many studies on bacterial adhesion either neglect the influence of shear force or use shear forces that are not typically found in natural systems. In this study, we use microfluidics and single-cell imaging to examine how the human pathogen Pseudomonas aeruginosa interacts with surfaces when exposed to shear forces typically found in the human body (0.1 pN to 10 pN). Through cell tracking, we demonstrate that the angle between the cell and the surface predicts if a cell will depart the surface. We discover that at lower shear forces, type IV pilus retraction tilts cells away from the surface, promoting surface departure. Conversely, we show that higher shear forces counterintuitively enhance adhesion by counteracting type IV pilus retraction-dependent cell tilting. Thus, our results reveal that P. aeruginosa exhibits behavior reminiscent of a catch bond, without having a specific adhesin that is enhanced by force. Instead, P. aeruginosa couples type IV pilus dynamics and cell geometry to tune adhesion to its mechanical environment, which likely provides a benefit in dynamic host environments.
Collapse
Affiliation(s)
| | - Ahmet N. Simsek
- Department of Veterinary Sciences, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich80752, Germany
| | - Jessie L. Reed
- Department of Biology, Texas A&M University, College Station, TX77843
| | - Matthias D. Koch
- Department of Biology, Texas A&M University, College Station, TX77843
| | - Benedikt Sabass
- Department of Veterinary Sciences, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich80752, Germany
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
11
|
Geiger CJ, O’Toole GA. Evidence for the Type IV Pilus Retraction Motor PilT as a Component of the Surface Sensing System in Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0017923. [PMID: 37382531 PMCID: PMC10367593 DOI: 10.1128/jb.00179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Biofilm formation begins when bacteria contacting a surface induce cellular changes to become better adapted for surface growth. One of the first changes to occur for Pseudomonas aeruginosa after surface contact is an increase in the nucleotide second messenger 3',5'-cyclic AMP (cAMP). It has been demonstrated that this increase in intracellular cAMP is dependent on functional type IV pili (T4P) relaying a signal to the Pil-Chp system, but the mechanism by which this signal is transduced remains poorly understood. Here, we investigate the role of the type IV pilus retraction motor PilT in sensing a surface and relaying that signal to cAMP production. We show that mutations in PilT, and in particular those impacting the ATPase activity of this motor protein, reduce surface-dependent cAMP production. We identify a novel interaction between PilT and PilJ, a member of the Pil-Chp system, and propose a new model whereby P. aeruginosa uses its PilT retraction motor to sense a surface and to relay that signal via PilJ to increased production of cAMP. We discuss these findings in light of current T4P-dependent surface sensing models for P. aeruginosa. IMPORTANCE T4P are cellular appendages that allow P. aeruginosa to sense a surface, leading to the production of cAMP. This second messenger not only activates virulence pathways but leads to further surface adaptation and irreversible attachment of cells. Here, we demonstrate the importance of the retraction motor PilT in surface sensing. We also present a new surface sensing model in P. aeruginosa whereby the T4P retraction motor PilT senses and transmits the surface signal, likely via its ATPase domain and interaction with PilJ, to mediate production of the second messenger cAMP.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
12
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
13
|
Palalay JJS, Simsek AN, Sabass B, Sanfilippo JE. Shear force enhances adhesion of Pseudomonas aeruginosa by counteracting pilus-driven surface departure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539440. [PMID: 37215027 PMCID: PMC10197566 DOI: 10.1101/2023.05.08.539440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fluid flow is thought to prevent bacterial adhesion, but some bacteria use adhesins with catch bond properties to enhance adhesion under high shear forces. However, many studies on bacterial adhesion either neglect the influence of shear force or use shear forces that are not typically found in natural systems. In this study, we use microfluidics and single-cell imaging to examine how the human pathogen Pseudomonas aeruginosa interacts with surfaces when exposed to shear forces typically found in the human body (0.1 pN to 10 pN). Through cell tracking, we demonstrate that the angle between the cell and the surface predicts if a cell will depart the surface. We discover that at lower shear forces, type IV pilus retraction tilts cells away from the surface, promoting surface departure. Conversely, we show that higher shear forces counterintuitively enhance adhesion by counteracting type IV pilus retraction-dependent cell tilting. Thus, our results reveal that P. aeruginosa exhibits behavior reminiscent of a catch bond, without having a specific adhesin that is enhanced by force. Instead, P. aeruginosa couples type IV pilus dynamics and cell geometry to tune adhesion to its mechanical environment, which likely provides a benefit in dynamic host environments.
Collapse
Affiliation(s)
- Jessica-Jae S. Palalay
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 61801
| | - Ahmet N. Simsek
- Department of Veterinary Sciences, Faculty of Veterinary Medicine and Faculty of Physics, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany, 80752
| | - Benedikt Sabass
- Department of Veterinary Sciences, Faculty of Veterinary Medicine and Faculty of Physics, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany, 80752
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 61801
| |
Collapse
|
14
|
Geiger CJ, O'Toole GA. Evidence for the Type IV Pili Retraction Motor PilT as a Component of the Surface Sensing System in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539127. [PMID: 37205505 PMCID: PMC10187167 DOI: 10.1101/2023.05.02.539127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biofilm formation begins when bacteria contacting a surface induce cellular changes to become better adapted for surface growth. One of the first changes to occur for Pseudomonas aeruginosa after surface contact is an increase in the nucleotide second messenger 3',5'-cyclic adenosine monophosphate (cAMP). It has been demonstrated that this increase in intracellular cAMP is dependent on functional Type IV pili (T4P) relaying a signal to the Pil-Chp system, but the mechanism by which this signal is transduced remains poorly understood. Here, we investigate the role of the Type IV pili retraction motor PilT in sensing a surface and relaying that signal to cAMP production. We show that mutations affecting the structure of PilT and in particular ATPase activity of this motor protein, reduce surface-dependent cAMP production. We identify a novel interaction between PilT and PilJ, a member of the Pil-Chp system, and propose a new model whereby P. aeruginosa uses its retraction motor to sense a surface and to relay that signal via PilJ to increased production of cAMP. We discuss these findings in light of current TFP-dependent surface sensing models for P. aeruginosa . Importance T4P are cellular appendages that allow P. aeruginosa to sense a surface leading to the production of cAMP. This second messenger not only activates virulence pathways but leads to further surface adaptation and irreversible attachment of cells. Here, we demonstrate the importance of the retraction motor PilT in surface sensing. We also present a new surface sensing model in P. aeruginosa whereby the T4P retraction motor PilT senses and transmits the surface signal, likely via its ATPase domain and interaction with PilJ, to mediate production of the second messenger cAMP.
Collapse
Affiliation(s)
- C J Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - G A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| |
Collapse
|
15
|
Daveri A, Benigno V, van der Meer JR. Characterization of an atypical but widespread type IV secretion system for transfer of the integrative and conjugative element (ICEclc) in Pseudomonas putida. Nucleic Acids Res 2023; 51:2345-2362. [PMID: 36727472 PMCID: PMC10018362 DOI: 10.1093/nar/gkad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.
Collapse
Affiliation(s)
- Andrea Daveri
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
16
|
Shadan A, Pathak A, Ma Y, Pathania R, Singh RP. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front Cell Infect Microbiol 2023; 13:1053968. [PMID: 36968113 PMCID: PMC10038080 DOI: 10.3389/fcimb.2023.1053968] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infectionAcinetobacter baumannii is a gram-negative multidrug-resistant nosocomial pathogen and a major cause of hospital acquired infetions. Carbapenem resistant A. baumannii has been categorised as a Priority1 critial pathogen by the World Health Organisation. A. baumannii is responsible for infections in hospital settings, clinical sectors, ventilator-associated pneumonia, and bloodstream infections with a mortality rates up to 35%. With the development of advanced genome sequencing, molecular mechanisms of manipulating bacterial genomes, and animal infection studies, it has become more convenient to identify the factors that play a major role in A. baumannii infection and its persistence. In the present review, we have explored the mechanism of infection, virulence factors, and various other factors associated with the pathogenesis of this organism. Additionally, the role of the innate and adaptive immune response, and the current progress in the development of innovative strategies to combat this multidrug-resistant pathogen is also discussed.
Collapse
Affiliation(s)
- Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| |
Collapse
|
17
|
de Dios R, Proctor CR, Maslova E, Dzalbe S, Rudolph CJ, McCarthy RR. Artificial sweeteners inhibit multidrug-resistant pathogen growth and potentiate antibiotic activity. EMBO Mol Med 2023; 15:e16397. [PMID: 36412260 PMCID: PMC9832836 DOI: 10.15252/emmm.202216397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance is one of the most pressing concerns of our time. The human diet is rich with compounds that alter bacterial gut communities and virulence-associated behaviours, suggesting food additives may be a niche for the discovery of novel anti-virulence compounds. Here, we identify three artificial sweeteners, saccharin, cyclamate and acesulfame-K (ace-K), that have a major growth inhibitory effect on priority pathogens. We further characterise the impact of ace-K on multidrug-resistant Acinetobacter baumannii, demonstrating that it can disable virulence behaviours such as biofilm formation, motility and the ability to acquire exogenous antibiotic-resistant genes. Further analysis revealed the mechanism of growth inhibition is through bulge-mediated cell lysis and that cells can be rescued by cation supplementation. Antibiotic sensitivity assays demonstrated that at sub-lethal concentrations, ace-K can resensitise A. baumannii to last resort antibiotics, including carbapenems. Using a novel ex vivo porcine skin wound model, we show that ace-K antimicrobial activity is maintained in the wound microenvironment. Our findings demonstrate the influence of artificial sweeteners on pathogen behaviour and uncover their therapeutic potential.
Collapse
Affiliation(s)
- Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Chris R Proctor
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Sindija Dzalbe
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Christian J Rudolph
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
18
|
Hughes HQ, Christman ND, Dalia TN, Ellison CK, Dalia AB. The PilT retraction ATPase promotes both extension and retraction of the MSHA type IVa pilus in Vibrio cholerae. PLoS Genet 2022; 18:e1010561. [PMID: 36542674 DOI: 10.1371/journal.pgen.1010561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/05/2023] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Diverse bacterial species use type IVa pili (T4aP) to interact with their environments. The dynamic extension and retraction of T4aP is critical for their function, but the mechanisms that regulate this dynamic activity remain poorly understood. T4aP are typically extended via the activity of a dedicated extension motor ATPase and retracted via the action of an antagonistic retraction motor ATPase called PilT. These motors are generally functionally independent, and loss of PilT commonly results in T4aP hyperpiliation due to undeterred pilus extension. However, for the mannose-sensitive hemagglutinin (MSHA) T4aP of Vibrio cholerae, the loss of PilT unexpectedly results in a loss of surface piliation. Here, we employ a combination of genetic and cell biological approaches to dissect the underlying mechanism. Our results demonstrate that PilT is necessary for MSHA pilus extension in addition to its well-established role in promoting MSHA pilus retraction. Through a suppressor screen, we also provide genetic evidence that the MshA major pilin impacts pilus extension. Together, these findings contribute to our understanding of the factors that regulate pilus extension and describe a previously uncharacterized function for the PilT motor ATPase.
Collapse
Affiliation(s)
- Hannah Q Hughes
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Nicholas D Christman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Courtney K Ellison
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
19
|
Ellison CK, Fei C, Dalia TN, Wingreen NS, Dalia AB, Shaevitz JW, Gitai Z. Subcellular localization of type IV pili regulates bacterial multicellular development. Nat Commun 2022; 13:6334. [PMID: 36284096 PMCID: PMC9596432 DOI: 10.1038/s41467-022-33564-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/22/2022] [Indexed: 12/25/2022] Open
Abstract
In mammals, subcellular protein localization of factors like planar cell polarity proteins is a key driver of the multicellular organization of tissues. Bacteria also form organized multicellular communities, but these patterns are largely thought to emerge from regulation of whole-cell processes like growth, motility, cell shape, and differentiation. Here we show that a unique intracellular patterning of appendages known as type IV pili (T4P) can drive multicellular development of complex bacterial communities. Specifically, dynamic T4P appendages localize in a line along the long axis of the cell in the bacterium Acinetobacter baylyi. This long-axis localization is regulated by a functionally divergent chemosensory Pil-Chp system, and an atypical T4P protein homologue (FimV) bridges Pil-Chp signaling and T4P positioning. We further demonstrate through modeling and empirical approaches that subcellular T4P localization controls how individual cells interact with one another, independently of T4P dynamics, with different patterns of localization giving rise to distinct multicellular architectures. Our results reveal how subcellular patterning of single cells regulates the development of multicellular bacterial communities.
Collapse
Affiliation(s)
- Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
20
|
Surface-Induced cAMP Signaling Requires Multiple Features of the Pseudomonas aeruginosa Type IV Pili. J Bacteriol 2022; 204:e0018622. [PMID: 36073942 PMCID: PMC9578403 DOI: 10.1128/jb.00186-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa type IV pili (TFP) are important for twitching motility and biofilm formation. TFP have been implicated in surface sensing, a process whereby surface-engaged cells upregulate the synthesis of the second messenger cAMP to propagate a signaling cascade leading to biofilm initiation and repression of motility. Here, we showed that mutations in PilA impairing proteolytic processing of the prepilin into mature pilin as well as the disruption of essential TFP components, including the PilC platform protein and PilB assembly motor protein, fail to induce surface-dependent cAMP signaling. We showed that TFP retraction by surface-engaged cells was required to induce signaling and that the retractile motor PilT was both necessary and sufficient to power surface-specific induction of cAMP. Furthermore, full TFP function required to support twitching motility is not required for robust cAMP signalling. The PilU retraction motor, in contrast, was unable to support full signaling in the absence of PilT. Finally, while we confirmed that PilA and PilJ interacted by bacterial two-hybrid analysis, our data do not support the current model that PilJ-PilA interaction drives cAMP signaling. IMPORTANCE Surface sensing by P. aeruginosa requires TFP. TFP plays a critical role in the induction of the second messenger cAMP upon surface contact; this second messenger is part of a larger cascade involved in the transition from a planktonic to a biofilm lifestyle. Here, we showed that TFP must be deployed and actively retracted by the PilT motor for the full induction of cAMP signaling. Furthermore, the mechanism whereby TFP retraction triggers cAMP induction is not well understood, and our data argue against one of the current models in the field proposed to address this knowledge gap.
Collapse
|
21
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
22
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
23
|
Ortega D, Beeby M. How Did the Archaellum Get Its Rotation? Front Microbiol 2022; 12:803720. [PMID: 35558523 PMCID: PMC9087265 DOI: 10.3389/fmicb.2021.803720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
How new functions evolve fascinates many evolutionary biologists. Particularly captivating is the evolution of rotation in molecular machines, as it evokes familiar machines that we have made ourselves. The archaellum, an archaeal analog of the bacterial flagellum, is one of the simplest rotary motors. It features a long helical propeller attached to a cell envelope-embedded rotary motor. Satisfyingly, the archaellum is one of many members of the large type IV filament superfamily, which includes pili, secretion systems, and adhesins, relationships that promise clues as to how the rotating archaellum evolved from a non-rotary ancestor. Nevertheless, determining exactly how the archaellum got its rotation remains frustratingly elusive. Here we review what is known about how the archaellum got its rotation, what clues exist, and what more is needed to address this question.
Collapse
Affiliation(s)
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Retraction ATPase Motors from Three Orthologous Type IVa Pilus Systems Support Promiscuous Retraction of the Vibrio cholerae Competence Pilus. J Bacteriol 2022; 204:e0012622. [PMID: 35506694 DOI: 10.1128/jb.00126-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial surface appendages called type IVa pili (T4aP) promote diverse activities, including DNA uptake, twitching motility, and virulence. These activities rely on the ability of T4aP to dynamically extend and retract from the cell surface. Dynamic extension relies on a motor ATPase commonly called PilB. Most T4aP also rely on specific motor ATPases, commonly called PilT and PilU, to dynamically and forcefully retract. Here, we systematically assess whether motor ATPases from three orthologous T4aP can functionally complement Vibrio cholerae mutants that lack their endogenous motors. We found that the PilT and PilU retraction ATPases from the three T4aP systems tested are promiscuous and promote the retraction of the V. cholerae competence T4aP despite a high degree of sequence divergence. In contrast, the orthologous extension ATPases from the same T4aP systems were not able to mediate the extension of the V. cholerae competence T4aP despite exhibiting a similar degree of sequence divergence. Also, we show that one of the PilT orthologs characterized does not support PilU-dependent retraction and provide some data to indicate that the C terminus of PilT is important for PilU-dependent retraction. Together, our data suggest that retraction ATPases may have maintained a high degree of promiscuity for promoting the retraction of T4aP, while extension ATPases may have evolved to become specific for their cognate systems. IMPORTANCE One way in which bacteria interact with their environments is via hair-like appendages called type IVa pili (T4aP). These appendages dynamically extend and retract from the cell surface via the action of distinct ATPase motors. T4aP are present in diverse bacterial species. Here, we demonstrate that retraction motors from three T4aP are promiscuous and capable of promoting the retraction of a heterologous T4aP system. In contrast, the extension ATPase motors from these same T4aP systems are specific and cannot promote the extension of a heterologous T4aP. Thus, these results suggest that T4aP extension may be more tightly regulated than T4aP retraction.
Collapse
|
25
|
Guo Y, Gao J, Cui Y, Wang Z, Li Z, Duan W, Wang Y, Wu Z. Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151599. [PMID: 34774958 DOI: 10.1016/j.scitotenv.2021.151599] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/31/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
The intergeneric conjugative transfer of antibiotic resistance genes (ARGs) is recognized as an important way to the dissemination of antibiotic resistance. However, it is unknown whether the extensive use of chloroxylenol (para-chloro-meta-xylenol, PCMX) in many pharmaceutical personal care products will lead to the spread of ARGs. In this study, the abilities and mechanisms of PCMX to accelerate the intergeneric conjugative transfer were investigated. Results showed that exposure of bacteria to environmental concentrations of PCMX (0.20-1.00 mg/L) can significantly stimulate the increase of conjugative transfer by 8.45-9.51 fold. The phenotypic experiments and genome-wide RNA sequencing revealed that 0.02-5.00 mg/L PCMX exposure could increase the content of alkaline phosphatase and malondialdehyde, which are characteristic products of cell wall and membrane damage. In addition, PCMX could lead to excessive production of reactive oxygen species (ROS) by 1.26-2.00 times, the superoxide dismutase and catalase produced by bacteria in response to oxidative stress were not enough to neutralize the damage of ROS, thus promoting the conjugative transfer. Gene Ontology enrichment analysis indicated that cell membrane permeability, pili, some chemical compounds transport and energy metabolism affected conjugative transfer. This study deepened the understanding of PCMX in promoting propagation of ARGs, and provided new perspectives for use and treatment of personal care products.
Collapse
Affiliation(s)
- Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ziqiao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Wanjun Duan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuwei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
26
|
Nitric oxide stimulates type IV MSHA pilus retraction in Vibrio cholerae via activation of the phosphodiesterase CdpA. Proc Natl Acad Sci U S A 2022; 119:2108349119. [PMID: 35135874 PMCID: PMC8851539 DOI: 10.1073/pnas.2108349119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 01/30/2023] Open
Abstract
All organisms sense and respond to their environments. One way bacteria interact with their surroundings is by dynamically extending and retracting filamentous appendages from their surface called pili. While pili are critical for many functions, such as attachment, motility, and DNA uptake, the factors that regulate their dynamic activity are poorly understood. Here, we describe how an environmental signal induces a signaling pathway to promote the retraction of mannose-sensitive hemagglutinin pili in Vibrio cholerae. The retraction of these pili promotes the detachment of V. cholerae from a surface and may provide a means by which V. cholerae can respond to changes in its environment. Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)–sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.
Collapse
|
27
|
Motor-independent retraction of type IV pili is governed by an inherent property of the pilus filament. Proc Natl Acad Sci U S A 2021; 118:2102780118. [PMID: 34789573 DOI: 10.1073/pnas.2102780118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
Type IV pili (T4P) are dynamic surface appendages that promote virulence, biofilm formation, horizontal gene transfer, and motility in diverse bacterial species. Pilus dynamic activity is best characterized in T4P that use distinct ATPase motors for pilus extension and retraction. Many T4P systems, however, lack a dedicated retraction motor, and the mechanism underlying this motor-independent retraction remains a mystery. Using the Vibrio cholerae competence pilus as a model system, we identify mutations in the major pilin gene that enhance motor-independent retraction. These mutants likely diminish pilin-pilin interactions within the filament to produce less-stable pili. One mutation adds a bulky residue to α1C, a universally conserved feature of T4P. We found that inserting a bulky residue into α1C of the retraction motor-dependent Acinetobacter baylyi competence T4P enhances motor-independent retraction. Conversely, removing bulky residues from α1C of the retraction motor-independent, V. cholerae toxin-coregulated T4P stabilizes the filament and diminishes pilus retraction. Furthermore, alignment of pilins from the broader type IV filament (T4F) family indicated that retraction motor-independent T4P, gram-positive Com pili, and type II secretion systems generally encode larger residues within α1C oriented toward the pilus core compared to retraction motor-dependent T4P. Together, our data demonstrate that motor-independent retraction relies, in part, on the inherent instability of the pilus filament, which may be a conserved feature of diverse T4Fs. This provides evidence for a long-standing yet previously untested model in which pili retract in the absence of a motor by spontaneous depolymerization.
Collapse
|
28
|
Ellison CK, Whitfield GB, Brun YV. Type IV Pili: Dynamic Bacterial Nanomachines. FEMS Microbiol Rev 2021; 46:6425739. [PMID: 34788436 DOI: 10.1093/femsre/fuab053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria and archaea rely on appendages called type IV pili (T4P) to participate in diverse behaviors including surface sensing, biofilm formation, virulence, protein secretion, and motility across surfaces. T4P are broadly distributed fibers that dynamically extend and retract, and this dynamic activity is essential for their function in broad processes. Despite the essentiality of dynamics in T4P function, little is known about the role of these dynamics and molecular mechanisms controlling them. Recent advances in microscopy have yielded insight into the role of T4P dynamics in their diverse functions and recent structural work has expanded what is known about the inner workings of the T4P motor. This review discusses recent progress in understanding the function, regulation, and mechanisms of T4P dynamics.
Collapse
Affiliation(s)
- Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Gregory B Whitfield
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
29
|
Corral J, Pérez-Varela M, Sánchez-Osuna M, Cortés P, Barbé J, Aranda J. Importance of twitching and surface-associated motility in the virulence of Acinetobacter baumannii. Virulence 2021; 12:2201-2213. [PMID: 34515614 PMCID: PMC8451467 DOI: 10.1080/21505594.2021.1950268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter baumannii is a pathogen of increasing clinical importance worldwide, especially given its ability to readily acquire resistance determinants. Motile strains of this bacterium can move by either or both of two types of motility: (i) twitching, driven by type IV pili, and (ii) surface-associated motility, an appendage-independent form of movement. A. baumannii strain MAR002 possesses both twitching and surface-associated motility. In this study, we isolated spontaneous rifampin-resistant mutants of strain MAR002 in which point mutations in the rpoB gene were identified that resulted in an altered motility pattern. Transcriptomic analysis of mutants lacking twitching, surface-associated motility, or both led to the identification of deregulated genes within each motility phenotype, based on their level of expression and their biological function. Investigations of the corresponding knockout mutants revealed several genes involved in the motility of A. baumannii strain MAR002, including two involved in twitching (encoding a minor pilin subunit and an RND [resistance nodulation division] component), one in surface-associated motility (encoding an amino acid permease), and eight in both (encoding RND and ABC components, the energy transducer TonB, the porin OprD, the T6SS component TagF, an IclR transcriptional regulator, a PQQ-dependent sugar dehydrogenase, and a putative pectate lyase). Virulence assays showed the reduced pathogenicity of mutants with impairments in both types of motility or in surface-associated motility alone. By contrast, the virulence of twitching-affected mutants was not affected. These results shed light on the key role of surface-associated motility and the limited role of twitching in the pathogenicity of A. baumannii.
Collapse
Affiliation(s)
- Jordi Corral
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - María Pérez-Varela
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Miquel Sánchez-Osuna
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Pilar Cortés
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Jordi Barbé
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Jesús Aranda
- Departament De Genètica I Microbiologia, Facultat De Biociènces, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Llontop EE, Cenens W, Favaro DC, Sgro GG, Salinas RK, Guzzo CR, Farah CS. The PilB-PilZ-FimX regulatory complex of the Type IV pilus from Xanthomonas citri. PLoS Pathog 2021; 17:e1009808. [PMID: 34398935 PMCID: PMC8389850 DOI: 10.1371/journal.ppat.1009808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/26/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
Type IV pili (T4P) are thin and flexible filaments found on the surface of a wide range of Gram-negative bacteria that undergo cycles of extension and retraction and participate in a variety of important functions related to lifestyle, defense and pathogenesis. During pilus extensions, the PilB ATPase energizes the polymerization of pilin monomers from the inner membrane. In Xanthomonas citri, two cytosolic proteins, PilZ and the c-di-GMP receptor FimX, are involved in the regulation of T4P biogenesis through interactions with PilB. In vivo fluorescence microscopy studies show that PilB, PilZ and FimX all colocalize to the leading poles of X. citri cells during twitching motility and that this colocalization is dependent on the presence of all three proteins. We demonstrate that full-length PilB, PilZ and FimX can interact to form a stable complex as can PilB N-terminal, PilZ and FimX C-terminal fragments. We present the crystal structures of two binary complexes: i) that of the PilB N-terminal domain, encompassing sub-domains ND0 and ND1, bound to PilZ and ii) PilZ bound to the FimX EAL domain within a larger fragment containing both GGDEF and EAL domains. Evaluation of PilZ interactions with PilB and the FimX EAL domain in these and previously published structures, in conjunction with mutagenesis studies and functional assays, allow us to propose an internally consistent model for the PilB-PilZ-FimX complex and its interactions with the PilM-PilN complex in the context of the inner membrane platform of the X. citri Type IV pilus.
Collapse
Affiliation(s)
- Edgar E. Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - William Cenens
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Denize C. Favaro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Química Orgânica, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Germán G. Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto K. Salinas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiane R. Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Chlebek JL, Dalia TN, Biais N, Dalia AB. Fresh Extension of Vibrio cholerae Competence Type IV Pili Predisposes Them for Motor-Independent Retraction. Appl Environ Microbiol 2021; 87:e0047821. [PMID: 33990308 PMCID: PMC8231728 DOI: 10.1128/aem.00478-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
Bacteria utilize dynamic appendages, called type IV pili (T4P), to interact with their environment and mediate a wide variety of functions. Pilus extension is mediated by an extension ATPase motor, commonly called PilB, in all T4P. Pilus retraction, however, can occur with the aid of an ATPase motor or in the absence of a retraction motor. While much effort has been devoted to studying motor-dependent retraction, the mechanism and regulation of motor-independent retraction remain poorly characterized. We have previously demonstrated that Vibrio cholerae competence T4P undergo motor-independent retraction in the absence of the dedicated retraction ATPases PilT and PilU. Here, we utilize this model system to characterize the factors that influence motor-independent retraction. We find that freshly extended pili frequently undergo motor-independent retraction, but if these pili fail to retract immediately, they remain statically extended on the cell surface. Importantly, we show that these static pili can still undergo motor-dependent retraction via tightly regulated ectopic expression of PilT, suggesting that these T4P are not broken but simply cannot undergo motor-independent retraction. Through additional genetic and biophysical characterization of pili, we suggest that pilus filaments undergo conformational changes during dynamic extension and retraction. We propose that only some conformations, like those adopted by freshly extended pili, are capable of undergoing motor-independent retraction. Together, these data highlight the versatile mechanisms that regulate T4P dynamic activity and provide additional support for the long-standing hypothesis that motor-independent retraction occurs via spontaneous depolymerization. IMPORTANCE Extracellular pilus fibers are critical to the virulence and persistence of many pathogenic bacteria. A crucial function for most pili is the dynamic ability to extend and retract from the cell surface. Inhibiting this dynamic pilus activity represents an attractive approach for therapeutic interventions; however, a detailed mechanistic understanding of this process is currently lacking. Here, we use the competence pilus of Vibrio cholerae to study how pili retract in the absence of dedicated retraction motors. Our results reveal a novel regulatory mechanism of pilus retraction that is an inherent property of the pilus filament. Thus, understanding the conformational changes that pili adopt under different conditions may be critical for the development of novel therapeutics that aim to target the dynamic activity of these structures.
Collapse
Affiliation(s)
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Nicolas Biais
- Biology Department and Graduate Center, City University of New York, Brooklyn, New York, USA
- Laboratoire Jean Perrin, UMR 8237 Sorbonne Université/CNRS, Paris, France
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
32
|
Acinetobacter baylyi regulates type IV pilus synthesis by employing two extension motors and a motor protein inhibitor. Nat Commun 2021; 12:3744. [PMID: 34145281 PMCID: PMC8213720 DOI: 10.1038/s41467-021-24124-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/02/2021] [Indexed: 11/08/2022] Open
Abstract
Bacteria use extracellular appendages called type IV pili (T4P) for diverse behaviors including DNA uptake, surface sensing, virulence, protein secretion, and twitching motility. Dynamic extension and retraction of T4P is essential for their function, and T4P extension is thought to occur through the action of a single, highly conserved motor, PilB. Here, we develop Acinetobacter baylyi as a model to study T4P by employing a recently developed pilus labeling method. By contrast to previous studies of other bacterial species, we find that T4P synthesis in A. baylyi is dependent not only on PilB but also on an additional, phylogenetically distinct motor, TfpB. Furthermore, we identify a protein (CpiA) that inhibits T4P extension by specifically binding and inhibiting PilB but not TfpB. These results expand our understanding of T4P regulation and highlight how inhibitors might be exploited to disrupt T4P synthesis. Type IV pili (T4P) are retractile appendages used by bacteria for DNA uptake and other purposes. T4P extension is thought to occur through the action of a single motor protein, PilB. Here, Ellison et al. show that T4P synthesis in Acinetobacter baylyi depends not only on PilB but also on an additional, distinct motor, TfpB.
Collapse
|
33
|
Lam T, Ellison CK, Eddington DT, Brun YV, Dalia AB, Morrison DA. Competence pili in Streptococcus pneumoniae are highly dynamic structures that retract to promote DNA uptake. Mol Microbiol 2021; 116:381-396. [PMID: 33754381 DOI: 10.1111/mmi.14718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
Pilus Production in Acinetobacter baumannii Is Growth Phase Dependent and Essential for Natural Transformation. J Bacteriol 2021; 203:JB.00034-21. [PMID: 33495250 PMCID: PMC8088505 DOI: 10.1128/jb.00034-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Rapid bacterial evolution has alarming negative impacts on animal and human health which can occur when pathogens acquire antimicrobial resistance traits. As a major cause of antibiotic-resistant opportunistic infections, A. baumannii is a high-priority health threat which has motivated renewed interest in studying how this pathogen acquires new, dangerous traits. Acinetobacter baumannii is a severe threat to human health as a frequently multidrug-resistant hospital-acquired pathogen. Part of the danger from this bacterium comes from its genome plasticity and ability to evolve quickly by taking up and recombining external DNA into its own genome in a process called natural competence for transformation. This mode of horizontal gene transfer is one of the major ways that bacteria can acquire new antimicrobial resistances and toxic traits. Because these processes in A. baumannii are not well studied, we herein characterized new aspects of natural transformability in this species that include the species’ competence window. We uncovered a strong correlation with a growth phase-dependent synthesis of a type IV pilus (TFP), which constitutes the central part of competence-induced DNA uptake machinery. We used bacterial genetics and microscopy to demonstrate that the TFP is essential for the natural transformability and surface motility of A. baumannii, whereas pilus-unrelated proteins of the DNA uptake complex do not affect the motility phenotype. Furthermore, TFP biogenesis and assembly is subject to input from two regulatory systems that are homologous to Pseudomonas aeruginosa, namely, the PilSR two-component system and the Pil-Chp chemosensory system. We demonstrated that these systems affect not only the piliation status of cells but also their ability to take up DNA for transformation. Importantly, we report on discrepancies between TFP biogenesis and natural transformability within the same genus by comparing data for our work on A. baumannii to data reported for Acinetobacter baylyi, the latter of which served for decades as a model for natural competence. IMPORTANCE Rapid bacterial evolution has alarming negative impacts on animal and human health which can occur when pathogens acquire antimicrobial resistance traits. As a major cause of antibiotic-resistant opportunistic infections, A. baumannii is a high-priority health threat which has motivated renewed interest in studying how this pathogen acquires new, dangerous traits. In this study, we deciphered a specific time window in which these bacteria can acquire new DNA and correlated that with its ability to produce the external appendages that contribute to the DNA acquisition process. These cell appendages function doubly for motility on surfaces and for DNA uptake. Collectively, we showed that A. baumannii is similar in its TFP production to Pseudomonas aeruginosa, though it differs from the well-studied species A. baylyi.
Collapse
|
35
|
Koch MD, Fei C, Wingreen NS, Shaevitz JW, Gitai Z. Competitive binding of independent extension and retraction motors explains the quantitative dynamics of type IV pili. Proc Natl Acad Sci U S A 2021; 118:e2014926118. [PMID: 33593905 PMCID: PMC7923367 DOI: 10.1073/pnas.2014926118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type IV pili (TFP) function through cycles of extension and retraction. The coordination of these cycles remains mysterious due to a lack of quantitative measurements of multiple features of TFP dynamics. Here, we fluorescently label TFP in the pathogen Pseudomonas aeruginosa and track full extension and retraction cycles of individual filaments. Polymerization and depolymerization dynamics are stochastic; TFP are made at random times and extend, pause, and retract for random lengths of time. TFP can also pause for extended periods between two extension or two retraction events in both wild-type cells and a slowly retracting PilT mutant. We developed a biophysical model based on the stochastic binding of two dedicated extension and retraction motors to the same pilus machine that predicts the observed features of the data with no free parameters. We show that only a model in which both motors stochastically bind and unbind to the pilus machine independent of the piliation state of the machine quantitatively explains the experimentally observed pilus production rate. In experimental support of this model, we show that the abundance of the retraction motor dictates the pilus production rate and that PilT is bound to pilus machines even in their unpiliated state. Together, the strong quantitative agreement of our model with a variety of experiments suggests that the entire repetitive cycle of pilus extension and retraction is coordinated by the competition of stochastic motor binding to the pilus machine, and that the retraction motor is the major throttle for pilus production.
Collapse
Affiliation(s)
- Matthias D Koch
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540;
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08540
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540;
| |
Collapse
|
36
|
Graham KJ, Burrows LL. More than a feeling: microscopy approaches to understanding surface-sensing mechanisms. J Bacteriol 2020; 203:JB.00492-20. [PMID: 33077631 PMCID: PMC8095462 DOI: 10.1128/jb.00492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms by which bacteria sense and respond to surface attachment have long been a mystery. Our understanding of the structure and dynamics of bacterial appendages, notably type IV pili (T4P), provided new insights into the potential ways that bacteria sense surfaces. T4P are ubiquitous, retractable hair-like adhesins that until recently were difficult to image in the absence of fixation due to their nanoscale size. This review focuses on recent microscopy innovations used to visualize T4P in live cells to reveal the dynamics of their retraction and extension. We discuss recently proposed mechanisms by which T4P facilitate bacterial surface sensing, including the role of surface-exposed PilY1, two-component signal transduction pathways, force-induced structural modifications of the major pilin, and altered dynamics of the T4P motor complex.
Collapse
Affiliation(s)
- Katherine J Graham
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| |
Collapse
|
37
|
A modular chromosomally integrated toolkit for ectopic gene expression in Vibrio cholerae. Sci Rep 2020; 10:15398. [PMID: 32958839 PMCID: PMC7505983 DOI: 10.1038/s41598-020-72387-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
The ability to express genes ectopically in bacteria is essential for diverse academic and industrial applications. Two major considerations when utilizing regulated promoter systems for ectopic gene expression are (1) the ability to titrate gene expression by addition of an exogenous inducer and (2) the leakiness of the promoter element in the absence of the inducer. Here, we describe a modular chromosomally integrated platform for ectopic gene expression in Vibrio cholerae. We compare the broadly used promoter elements Ptac and PBAD to versions that have an additional theophylline-responsive riboswitch (Ptac-riboswitch and PBAD-riboswitch). These constructs all exhibited unimodal titratable induction of gene expression, however, max induction varied with Ptac > PBAD > PBAD-riboswitch > Ptac-riboswitch. We also developed a sensitive reporter system to quantify promoter leakiness and show that leakiness for Ptac > Ptac-riboswitch > PBAD; while the newly developed PBAD-riboswitch exhibited no detectable leakiness. We demonstrate the utility of the tightly inducible PBAD-riboswitch construct using the dynamic activity of type IV competence pili in V. cholerae as a model system. The modular chromosomally integrated toolkit for ectopic gene expression described here should be valuable for the genetic study of V. cholerae and could be adapted for use in other species.
Collapse
|
38
|
The Evolution of Protein Secretion Systems by Co-option and Tinkering of Cellular Machineries. Trends Microbiol 2020; 28:372-386. [DOI: 10.1016/j.tim.2020.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
39
|
Floyd KA, Lee CK, Xian W, Nametalla M, Valentine A, Crair B, Zhu S, Hughes HQ, Chlebek JL, Wu DC, Hwan Park J, Farhat AM, Lomba CJ, Ellison CK, Brun YV, Campos-Gomez J, Dalia AB, Liu J, Biais N, Wong GCL, Yildiz FH. c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nat Commun 2020; 11:1549. [PMID: 32214098 PMCID: PMC7096442 DOI: 10.1038/s41467-020-15331-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization.
Collapse
Affiliation(s)
- Kyle A Floyd
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Calvin K Lee
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Wujing Xian
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Mahmoud Nametalla
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Aneesa Valentine
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Benjamin Crair
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Hannah Q Hughes
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Jennifer L Chlebek
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Daniel C Wu
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Jin Hwan Park
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Ali M Farhat
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Charles J Lomba
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Courtney K Ellison
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, 355 Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Yves V Brun
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, University of Montreal, Pavillon Roger-Gaudry, 2900, boulevard Édouard-Montpetit, C.P. 6128, Succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Javier Campos-Gomez
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1918 University Blvd., MCLM 702, Birmingham, AL, 35233, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Nicolas Biais
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Gerard C L Wong
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA.
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
40
|
Mechanomicrobiology: how bacteria sense and respond to forces. Nat Rev Microbiol 2020; 18:227-240. [DOI: 10.1038/s41579-019-0314-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
|