1
|
Alum EU, Udechukwu CD, Obasi DC. RNA signaling in medicinal plants: An overlooked mechanism for phytochemical regulation. Biochem Biophys Rep 2025; 42:102032. [PMID: 40342531 PMCID: PMC12059694 DOI: 10.1016/j.bbrep.2025.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/11/2025] Open
Abstract
Background/objective Medicinal plants are invaluable sources of bioactive phytochemicals critical for global health. This mini review explores the role of RNA signaling in regulating phytochemical production in medicinal plants, highlighting its potential for optimizing their therapeutic potential. Methods This mini review integrates insights from recent studies published in Scopus and Web of Science (2019-2025) on RNA-mediated signaling, including small RNAs (sRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). Results RNA signaling is revealed as a pivotal mechanism in secondary metabolite regulation, mediating stress-induced compound synthesis and environmental interactions. Notable findings include the role of siRNAs in activating alkaloid pathways and lncRNAs in regulating phenolic compound biosynthesis. RNA-directed DNA methylation and systemic RNA signaling further highlight its versatility in phytochemical regulation. Conclusion RNA signaling enhances medicinal plant research, unlocking therapeutic potential through bioactive compound production. The study calls for focused research to bridge knowledge gaps and translate laboratory findings into field applications.
Collapse
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, P. O. Box 20000, Kampala, Uganda
| | - Chidozie Dennis Udechukwu
- Department of Biology, Faculty of Biological Sciences, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Ebonyi State, Nigeria
| | - David Chukwu Obasi
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State, Nigeria
| |
Collapse
|
2
|
Hajheidari M, Sunyaev S, de Meaux J. Are complex traits underpinned by polygenic molecular traits? A reflection on the complexity of gene expression. PLANT & CELL PHYSIOLOGY 2025; 66:444-460. [PMID: 39626022 PMCID: PMC12085094 DOI: 10.1093/pcp/pcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 05/18/2025]
Abstract
Variation in complex traits is controlled by multiple genes. The prevailing assumption is that such polygenic complex traits are underpinned by variation in elementary molecular traits, such as gene expression, which themselves have a simple genetic basis. Here, we review recent advances that reveal the captivating complexity of gene regulation: the cell type, time point, and magnitude of gene expression are not merely dependent on a couple of regulators; rather, they result from a probabilistic process shaped by cis- and trans-regulatory elements collaboratively integrating internal and external cues with the tightly regulated dynamics of DNA. In addition, the finding that genetic variants linked to complex diseases in humans often do not co-localize with quantitative trait loci modulating gene expression, along with the role of nonfunctional transcription factor (TF) binding sites, suggests that some of the genetic effects influencing gene expression variation may be indirect. If the number of genomic positions responsible for TF binding, TF binding site search time, DNA conformation and accessibility as well as regulation of all trans-acting factors is indeed vast, is it plausible that the complexity of elementary molecular traits approaches the complexity of higher-level organismal traits? Although it is hard to know the answer to this question, we motivate it by reviewing the complexity of the molecular machinery further.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Juliette de Meaux
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| |
Collapse
|
3
|
Bubb KL, Hamm MO, Tullius TW, Min JK, Ramirez-Corona B, Mueth NA, Ranchalis J, Mao Y, Bergstrom EJ, Vollger MR, Trapnell C, Cuperus JT, Stergachis AB, Queitsch C. The regulatory potential of transposable elements in maize. NATURE PLANTS 2025:10.1038/s41477-025-02002-z. [PMID: 40360747 DOI: 10.1038/s41477-025-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
The genomes of flowering plants consist largely of transposable elements (TEs), some of which modulate gene regulation and function. However, the repetitive nature of TEs and difficulty of mapping individual TEs by short-read sequencing have hindered our understanding of their regulatory potential. Here we show that long-read chromatin fibre sequencing (Fiber-seq) comprehensively identifies accessible chromatin regions (ACRs) and CpG methylation across the maize genome. We uncover stereotypical ACR patterns at young TEs that degenerate with evolutionary age, resulting in TE enhancers preferentially marked by a novel plant-specific epigenetic feature: simultaneous hyper-CpG methylation and chromatin accessibility. We show that TE ACRs are co-opted as gene promoters and that ACR-containing TEs can facilitate gene amplification. Lastly, we uncover a pervasive epigenetic signature-hypo-5mCpG methylation and diffuse chromatin accessibility-directing TEs to specific loci, including the loci that sparked McClintock's discovery of TEs.
Collapse
Affiliation(s)
- Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Morgan O Hamm
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Thomas W Tullius
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joseph K Min
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Nicholas A Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Erik J Bergstrom
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Mitchell R Vollger
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Yang H, Yu G, Lv Z, Li T, Wang X, Fu Y, Zhu Z, Guo G, He H, Wang M, Qin G, Liu F, Zhong Z, Xue Y. Epigenome profiling reveals distinctive regulatory features and cis-regulatory elements in pepper. Genome Biol 2025; 26:121. [PMID: 40341060 PMCID: PMC12063414 DOI: 10.1186/s13059-025-03595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Pepper (Capsicum annuum) is one of the earliest and most widely cultivated vegetable crops worldwide. While the large and complex genome of pepper severely hampered the understanding of its functional genome, it also indicates a rich yet unexplored reservoir of regulatory elements (REs). In fact, variations in the REs represent a major driving force in evolution and domestication in both plants and animals. However, identification of the REs remains difficult especially for plants with complex genomes. RESULTS Here, we present a comprehensive epigenomic landscape of Capsicum annuum, Zhangshugang (ST-8), including chromatin accessibility, histone modifications, DNA methylation, and transcriptome. We also develop comparative crosslinked immunoprecipitation mass spectrometry to reveal the proteome associated with certain chromatin features. Through integrated analysis of these epigenetic features, we profile promoters and enhancers involved in development, heat stress and cucumber mosaic virus challenges. We generate stress responsive expression networks composed of potential transcription activators and their target genes. Through population genetics analysis, we demonstrate that some regulatory elements show lower nucleotide diversity compare to other genomic regions during evolution. CONCLUSIONS We demonstrate that variations in the REs may contribute to more diversified and agronomically desired phenotypes. Our study provides a foundation not only for studying gene regulation, but also for targeted genetic and epigenetic manipulation for pepper improvement.
Collapse
Affiliation(s)
- Hongji Yang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Guorong Yu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhidong Lv
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Tonghui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Xi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Hunan, China
| | - Ying Fu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhangsheng Zhu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Guangjun Guo
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hang He
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Ming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guochen Qin
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Hunan, China.
- Yuelushan Laboratory, Hunan, China.
| | - Zhenhui Zhong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China.
| |
Collapse
|
5
|
Pawlowska E, Szczepanska J, Derwich M, Sobczuk P, Düzgüneş N, Blasiak J. DNA Methylation in Periodontal Disease: A Focus on Folate, Folic Acid, Mitochondria, and Dietary Intervention. Int J Mol Sci 2025; 26:3225. [PMID: 40244046 PMCID: PMC11990040 DOI: 10.3390/ijms26073225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Although periodontal disease (PD) is reported to be associated with changes in various genes and proteins in both invading bacteria and the host, its molecular mechanism of pathogenesis remains unclear. Changes in immune and inflammatory genes play a significant role in PD pathogenesis. Some reports relate alterations in cellular epigenetic patterns to PD characteristics, while several high-throughput analyses indicate thousands of differentially methylated genes in both PD patients and controls. Furthermore, changes in DNA methylation patterns in inflammation-related genes have been linked to the efficacy of periodontal therapy, as demonstrated by findings related to the cytochrome C oxidase II gene. Distinct DNA methylation patterns in mesenchymal stem cells from PD patients and controls persisted despite the reversal of phenotypic PD. Methyl groups for DNA methylation are supplied by S-adenosylmethionine, which is synthesized with the involvement of folate, an essential nutrient known to play a role in maintaining mitochondrial homeostasis, reported to be compromised in PD. Folate may benefit PD through its antioxidant action against reactive oxygen and nitrogen species that are overproduced by dysfunctional mitochondria. As such, DNA methylation, dietary folate, and mitochondrial quality control may interact in PD pathogenesis. In this narrative/hypothesis review, we demonstrate how PD is associated with changes in mitochondrial homeostasis, which may, in turn, be improved by folate, potentially altering the epigenetic patterns of immune and inflammatory genes in both the nucleus and mitochondria. Therefore, a folate-based dietary intervention is recommended for PD prevention and as an adjunct therapy. At the same time, further research is needed on the involvement of epigenetic mechanisms in the beneficial effects of folate on PD studies.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (E.P.); (J.S.); (M.D.)
| | - Joanna Szczepanska
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland;
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (E.P.); (J.S.); (M.D.)
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland;
- Department of Orthopaedics and Traumatology, Polish Mothers’ Memorial Hospital—Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, University of the Pacific—San Francisco Campus, San Francisco, CA 94103, USA;
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, The Mazovian University in Plock, 04-920 Plock, Poland
| |
Collapse
|
6
|
Feng Y, Wang Y, Wang T, Liu L. NUCLEAR RNA POLYMERASE D1 is essential for tomato embryogenesis and desiccation tolerance in seeds. Cell Rep 2025; 44:115345. [PMID: 39982816 DOI: 10.1016/j.celrep.2025.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Plant-unique RNA polymerase IV (RNA Pol IV) governs the establishment of small RNA (sRNA)-directed DNA methylation (RdDM). In dicotyledon, elevated RdDM activity is often associated with embryogenesis; however, the loss of RdDM frequently results in indiscernible phenotypes. Here, we report that the absence of SlNRPD1, encoding the largest subunit of RNA Pol IV, leads to diminished RdDM and abnormal embryogenesis in tomato (Solanum lycopersicum). Hypermethylation at pericentric transposable elements (TEs) and a burst of 21/22-nt siRNA from the distal and pericentric genes are observed in slnrpd1 embryos. The specific activation of endoribonuclease Dicer-like 2 (SlDCL2b/c/d) is correlated with 21/22-nt sRNA accumulation. Auxin and WUSCHEL-related homeobox (WOX) signaling gene expression is altered by mCHH hypomethylation, which may lead to defective embryos. Due to improper maturation, the slnrpd1 embryos cannot withstand post-harvest desiccation. This study provides insights into how DNA methylation regulates plant embryogenesis.
Collapse
Affiliation(s)
- Yixuan Feng
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China
| | - Yiming Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China
| | - Tai Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China.
| | - Lingtong Liu
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
7
|
Dombey R, Buendía-Ávila D, Barragán-Borrero V, Diezma-Navas L, Ponce-Mañe A, Vargas-Guerrero JM, Elias R, Marí-Ordóñez A. Atypical epigenetic and small RNA control of degenerated transposons and their fragments in clonally reproducing Spirodela polyrhiza. Genome Res 2025; 35:522-544. [PMID: 40037843 PMCID: PMC11960707 DOI: 10.1101/gr.279532.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
A handful of model plants have provided insight into silencing of transposable elements (TEs) through RNA-directed DNA methylation (RdDM). Guided by 24 nt long small-interfering RNAs (siRNAs), this epigenetic regulation installs DNA methylation and histone modifications like H3K9me2, which can be subsequently maintained independently of siRNAs. However, the genome of the clonally propagating duckweed Spirodela polyrhiza (Lemnaceae) has low levels of DNA methylation, very low expression of RdDM components, and near absence of 24 nt siRNAs. Moreover, some genes encoding RdDM factors, DNA methylation maintenance, and RNA silencing mechanisms are missing from the genome. Here, we investigated the distribution of TEs and their epigenetic marks in the Spirodela genome. Although abundant degenerated TEs have largely lost DNA methylation and H3K9me2 is low, they remain marked by the heterochromatin-associated H3K9me1 and H3K27me1 modifications. In contrast, we find high levels of DNA methylation and H3K9me2 in the relatively few intact TEs, which are source of 24 nt siRNAs, like RdDM-controlled TEs in other angiosperms. The data suggest that, potentially as adaptation to vegetative propagation, RdDM extent, silencing components, and targets are different from other angiosperms, preferentially focused on potentially intact TEs. It also provides evidence for heterochromatin maintenance independently of DNA methylation in flowering plants. These discoveries highlight the diversity of silencing mechanisms that exist in plants and the importance of using disparate model species to discover these mechanisms.
Collapse
Affiliation(s)
- Rodolphe Dombey
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Daniel Buendía-Ávila
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna 1030, Austria
| | - Verónica Barragán-Borrero
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Laura Diezma-Navas
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Arturo Ponce-Mañe
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - José Mario Vargas-Guerrero
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Rana Elias
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Arturo Marí-Ordóñez
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria;
| |
Collapse
|
8
|
Bai Y, Wang X, Ali S, Liu Y, Zhou J, Liu M, Liu S, Tang Y. A 24-nt miR9560 modulates the transporter gene BrpHMA2 expression in Brassica parachinensis. THE PLANT GENOME 2025; 18:e70013. [PMID: 40107853 PMCID: PMC11922684 DOI: 10.1002/tpg2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/09/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
MicroRNAs (miRNAs) control gene expression in plant through transcript cleavage and translation inhibition. Recently, 24-nt miRNAs have been shown to direct DNA methylation at target sites, regulating the neighboring gene expression. Our study focused on miR9560, a 24-nt miRNA induced by cadmium (Cd) stress in Brassica rapa ssp. parachinensis (B. parachinensis). Phylogenetic analysis revealed miR9560 predominantly emerged in the Rosanae superorder and was conserved in Brassicaceae, with potential target sites adjacent to transporter family genes HMAs. RNA gel blotting showed that mature miR9560 was only detected in various Brassica crops roots after Cd stress. In B. parachinensis, miR9560's putative target site is upstream of BrpHMA2, an afflux-type Cd transporter. In a transient expression system of B. parachinensis protoplasts, the expression of miR9560 increased the DNA methylation upstream of BrpHMA2, reducing the transcription of BrpHMA2. This regulation was also observed in Arabidopsis wild-type protoplasts but not in the mutants dcl234 and ago4 with impairments in the RNA-dependent DNA methylation (RdDM) pathway. We deduced that miR9560 modulates BrpHMA2 expression via the RdDM pathway, potentially regulating Cd uptake and movement in B. parachinensis. Furthermore, this regulatory mechanism may extend to other Brassica plants. This study enhances our comprehension of 24-nt miRNAs role in regulating Cd accumulation within Brassica plants.
Collapse
Affiliation(s)
- Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Xiaoting Wang
- Shaanxi Academy of Traditional Chinese MedicineXi'anChina
| | - Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese MedicineXi'anChina
- Guangdong Academy of ForestryGuangzhouChina
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research InstituteChinese Academy of Tropical Agricultural SciencesZhanjiangChina
| | - Meiting Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Shuai Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Shaanxi Academy of Traditional Chinese MedicineXi'anChina
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Public Service Platform of Collaborative Innovation for Marine Algae Industry, Longhua Institute of Innovative Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| |
Collapse
|
9
|
Pereira JP, Bevilacqua I, Santos RB, Varotto S, Chitarra W, Nerva L, Figueiredo A. Epigenetic regulation and beyond in grapevine-pathogen interactions: a biotechnological perspective. PHYSIOLOGIA PLANTARUM 2025; 177:e70216. [PMID: 40234103 PMCID: PMC11999821 DOI: 10.1111/ppl.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/12/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
As one of the most important crop plants worldwide, understanding the mechanisms underlying grapevine response to pathogen attacks is key to achieving a productive and sustainable viticulture. Recently, epigenetic regulation in plant immunity has gained significant traction in the scientific community, not only for its role in gene expression regulation but also for its heritability, giving it enormous biotechnological potential. Epigenetic marks have been shown to be dynamically modulated in key genomic regions upon infection, with some being maintained after such, being responsible for priming defense genes. In grapevine, however, knowledge of epigenetic mechanisms is still limited, especially regarding biotic stress responses, representing a glaring gap in knowledge in this important crop plant. Here, we report and integrate current knowledge on grapevine epigenetic regulation as well as non-epigenetic non-coding RNAs in the response to biotic stress. We also explore how epigenetic marks may be useful in grapevine breeding for resistance, considering different approaches, from uncovering and exploiting natural variation to inducing it through different means.
Collapse
Affiliation(s)
- João Proença Pereira
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
| | - Ivan Bevilacqua
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE)University of PadovaLegnaro(PD)Italy
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Rita B. Santos
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
- Plant Biology Department, Faculty of SciencesBioISI, University of LisbonLisboaPortugal
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE)University of PadovaLegnaro(PD)Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Andreia Figueiredo
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
- Plant Biology Department, Faculty of SciencesBioISI, University of LisbonLisboaPortugal
| |
Collapse
|
10
|
Puchta-Jasińska M, Bolc P, Pietrusińska-Radzio A, Motor A, Boczkowska M. Small Interfering RNAs as Critical Regulators of Plant Life Process: New Perspectives on Regulating the Transcriptomic Machinery. Int J Mol Sci 2025; 26:1624. [PMID: 40004087 PMCID: PMC11855876 DOI: 10.3390/ijms26041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Small interfering RNAs (siRNAs) are a distinct class of regulatory RNAs in plants and animals. Gene silencing by small interfering RNAs is one of the fundamental mechanisms for regulating gene expression. siRNAs are critical regulators during developmental processes. siRNAs have similar structures and functions to small RNAs but are derived from double-stranded RNA and may be involved in directing DNA methylation of target sequences. siRNAs are a less well-studied class than the miRNA group, and researchers continue to identify new classes of siRNAs that appear at specific developmental stages and in particular tissues, revealing a more complex mode of siRNA action than previously thought. This review characterizes the siRNA classes and their biogenesis process and focuses on presenting their known functions in the regulation of plant development and responses to biotic and abiotic stresses. The review also highlights the exciting potential for future research in this field, proposing methods for detecting plant siRNAs and a bioinformatic pathway for identifying siRNAs and their functions.
Collapse
Affiliation(s)
- Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | | | | | | |
Collapse
|
11
|
Liu YJ, Lu JF, Peng X, Yang GJ. Editorial: The emerging role of protein methylation/demethylation modification in disease and homeostasis. Front Mol Biosci 2025; 12:1565598. [PMID: 39995569 PMCID: PMC11847662 DOI: 10.3389/fmolb.2025.1565598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Affiliation(s)
- Yan-Jun Liu
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jian-Fei Lu
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Guan-Jun Yang
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Huang KY, Feng YY, Du H, Ma CW, Xie D, Wan T, Feng XY, Dai XG, Yin TM, Wang XQ, Ran JH. DNA methylation dynamics in gymnosperm duplicate genes: implications for genome evolution and stress adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70006. [PMID: 39982811 DOI: 10.1111/tpj.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025]
Abstract
Duplicate genes are pivotal in driving evolutionary innovation, often exhibiting expression divergence that offers a system to investigate the role of DNA methylation in transcriptional regulation. However, previous studies have predominantly focused on angiosperms, leaving the methylation patterns in major lineages of land plants still unclear. This study explores DNA methylation evolution in duplicate genes across representative gymnosperm species with large genomes, spanning over 300 million years, using genomic, transcriptomic, and high-depth DNA methylomic data. We observed variations in DNA methylation levels along gene bodies, flanking regions, and methylation statuses of coding regions across different duplication types. Biased divergences in DNA methylation and gene expression frequently occurred between duplicate copies. Specifically, methylation divergences in the 2-kb downstream regions negatively correlated with gene expression. Both CG and CHG DNA methylation in gene bodies were positively correlated with gene length, suggesting these methylation types may function as an epigenomic buffer to mitigate the adverse impact of gene length on expression. Duplicate genes exhibiting both methylation and expression divergences were notably enriched in adaptation-related biological processes, suggesting that DNA methylation may aid adaptive evolution in gymnosperms by regulating stress response genes. Changes in expression levels correlated with switches in methylation status within coding regions of transposed duplicates. Specifically, depletion for CG methylation or enrichment for non-CG methylation significantly reduced the expression of translocated copies. This correlation suggests that DNA methylation may reduce genetic redundancy by silencing translocated copies. Our study highlights the significance of DNA methylation in plant genome evolution and stress adaptation.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 510650, China
| | - Hong Du
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Chang-Wang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Dan Xie
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiu-Yan Feng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Gang Dai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tong-Ming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Bubb KL, Hamm MO, Tullius TW, Min JK, Ramirez-Corona B, Mueth NA, Ranchalis J, Mao Y, Bergstrom EJ, Vollger MR, Trapnell C, Cuperus JT, Stergachis AB, Queitsch C. The regulatory potential of transposable elements in maize. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.10.602892. [PMID: 39026747 PMCID: PMC11257541 DOI: 10.1101/2024.07.10.602892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The genomes of flowering plants consist largely of transposable elements (TEs), some of which modulate gene regulation and function. However, the repetitive nature of TEs and difficulty of mapping individual TEs by short-read-sequencing have hindered our understanding of their regulatory potential. We demonstrate that long-read chromatin fiber sequencing (Fiber-seq) comprehensively identifies accessible chromatin regions (ACRs) and CpG methylation across the maize genome. We uncover stereotypical ACR patterns at young TEs that degenerate with evolutionary age, resulting in TE-enhancers preferentially marked by a novel plant-specific epigenetic feature: simultaneous hyper-CpG methylation and chromatin accessibility. We show that TE ACRs are co-opted as gene promoters and that ACR-containing TEs can facilitate gene amplification. Lastly, we uncover a pervasive epigenetic signature - hypo-5mCpG methylation and diffuse chromatin accessibility - directing TEs to specific loci, including the loci that sparked McClintock's discovery of TEs.
Collapse
Affiliation(s)
- Kerry L. Bubb
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Morgan O. Hamm
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Thomas W. Tullius
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joseph K. Min
- Department of Genome Sciences, University of Washington, Seattle, USA
| | | | - Nicholas A. Mueth
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Jane Ranchalis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Yizi Mao
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Erik J. Bergstrom
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Mitchell R. Vollger
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, USA
- Molecular & Cellular Biology Program, University of Washington, Seattle, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
| | - Andrew B. Stergachis
- Department of Genome Sciences, University of Washington, Seattle, USA
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
- Molecular & Cellular Biology Program, University of Washington, Seattle, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, USA
- Molecular & Cellular Biology Program, University of Washington, Seattle, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
| |
Collapse
|
14
|
Mustafin RN. Role of Retroelements in Frontotemporal Dementia Development. Front Biosci (Schol Ed) 2025; 17:25922. [PMID: 40150869 DOI: 10.31083/fbs25922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 03/29/2025]
Abstract
Frontotemporal dementia (FTD) develops in proteinopathies involving TDP-43 (transactive response DNA-binding protein 43 kDa), tau, and FUS (fused in sarcoma) proteins, which possess antiviral properties and exert inhibitory effects on human transposable elements. Viruses and aging have been suggested to trigger FTD by activating specific retroelements. FTD is associated with multiple single nucleotide polymorphisms (SNPs), most located in intergenic and regulatory regions where many transposable element genes are found. Therefore, genetic predisposition to FTD may influence the interaction between retroelements and the TDP-43, tau, and FUS proteins, causing pathological conformation changes and aggregate formation. Subsequently, these aggregates lose their ability to inhibit retroelements, leading to the activation of transposable elements. This creates a harmful negative feedback loop in which TDP-43, tau, and FUS protein expressions are further enhanced by retroelement transcripts and proteins, resulting in protein aggregate accumulation and pathological disease progression. Hence, epigenetic inhibition of pathologically activated retroelements using micro-ribonucleic acids (microRNAs) derived from transposable elements has been proposed as a potential treatment for FTD. Finally, a review of the current scientific literature identified 13 appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p, -708-3p, -887).
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
15
|
Chen L, Li X, Liu H, He F, Li M, Long R, Wang X, Kang J, Yang Q. Comprehensive analysis of epigenetic modifications in alfalfa under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136545. [PMID: 39577281 DOI: 10.1016/j.jhazmat.2024.136545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Epigenetics plays an important role in plant growth and development and in environmental adaptation. Alfalfa, an important forage crop, is rich in nutrients. However, little is known about the molecular regulatory mechanisms underlying the response of alfalfa to cadmium (Cd) stress. Here, we performed DNA methylation (5mC), RNA methylation (m6A) and transcriptomic sequencing analyses of alfalfa roots under Cd stress. Whole-genome methylation sequencing and transcriptomic sequencing revealed that Cd stress reduced DNA methylation levels. Moreover, a reduced 5mC methylation level was associated with decreased expression of several DNA methyltransferase genes. Compared with those under normal (CK) conditions, the m6A modification levels under Cd stress were greater and were positively correlated with gene expression in alfalfa roots. We also found a negative correlation between the 5mC level and the m6A level, especially in CG and CHG contexts. In yeast, the overexpression of MsNARMP5 (natural resistance-associated macrophage protein) and MsPCR2 (plant cadmium resistance 2), which are modified by 5mC or m6A, significantly increased Cd stress tolerance. These results provide candidate genes for future studies on the mechanism of Cd stress tolerance in alfalfa roots and valuable information for studying heavy metal stress in alfalfa breeding.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xianyang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
17
|
Blumenstiel JP. From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements. Semin Cell Dev Biol 2025; 164:1-12. [PMID: 38823219 DOI: 10.1016/j.semcdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
18
|
Berger MMJ, Garcia V, Lacrampe N, Rubio B, Decros G, Pétriacq P, Flandin A, Cassan C, Hilbert-Masson G, Colombié S, Atanassova R, Gallusci P. Grapevine cell response to carbon deficiency requires transcriptome and methylome reprogramming. HORTICULTURE RESEARCH 2025; 12:uhae277. [PMID: 39845645 PMCID: PMC11750959 DOI: 10.1093/hr/uhae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/21/2024] [Indexed: 01/24/2025]
Abstract
Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (Vitis vinifera, cv Cabernet Sauvignon) cultured in vitro with contrasted glucose concentrations. Sugar depletion in the culture medium led to a rapid cell growth arrest and a major metabolic shift that include the depletion in soluble sugar and total amino acids and modulation of the cell redox status. Consistently, flux modeling showed a dramatic slowdown of many pathways required for biomass accumulation such as cell wall and protein synthesis. Sugar depletion also resulted in a major transcriptional reprogramming, characterized by the induction of genes involved in photosynthesis, and the repression of those related to sucrose mobilization or cell cycle control. Similarly, the epigenetic landscape was deeply modified. Glucose-depleted cells showed a higher global DNA methylation level than those grown with glucose. Changes in DNA methylation mainly occurred at transposable elements, and at genes including some of those differentially expressed, consistent with an important role for methylation to the adaptation of cells to limited sugar availability. In addition, genes encoding histone modifiers were differentially expressed suggesting that additional epigenetic mechanisms may be at work in plant cells under carbon shortage.
Collapse
Affiliation(s)
- Margot M J Berger
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Virginie Garcia
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Nathalie Lacrampe
- Plantes et Système de culture horticoles (PSH), INRAE, UMR Qualisud, Université Avignon, Avignon, France
| | - Bernadette Rubio
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Guillaume Decros
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Amélie Flandin
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Cédric Cassan
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
| | - Ghislaine Hilbert-Masson
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Sophie Colombié
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Rossitza Atanassova
- UMR CNRS 7267 EBI-Ecologie et Biologie des Interactions (EBI), Equipe Sucres et Echanges Végétaux-Environnement (SEVE), University of Poitiers, Poitiers, France
| | - Philippe Gallusci
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| |
Collapse
|
19
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
20
|
Dawar P, Adhikari I, Mandal SN, Jayee B. RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism. Noncoding RNA 2024; 11:1. [PMID: 39846679 PMCID: PMC11755482 DOI: 10.3390/ncrna11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis. In eukaryotes, sRNAs, typically 20-31 nucleotides in length, are a class of ncRNAs found to function as nodes in various gene regulatory networks. sRNAs are known to play significant roles in regulating RNA population at the transcriptional, post-transcriptional, and translational levels. Along with sRNAs, such as miRNAs, siRNAs, and piRNAs, new categories of ncRNAs, i.e., lncRNAs and circRNAs, also contribute to RNA metabolism regulation in eukaryotes. In plants, various genetic screens have demonstrated that sRNA biogenesis mutants, as well as RNA metabolism pathway mutants, exhibit similar growth and development defects, misregulated primary and secondary metabolism, as well as impaired stress response. In addition, sRNAs are both the "products" and the "regulators" in broad RNA metabolism networks; gene regulatory networks involving sRNAs form autoregulatory loops that affect the expression of both sRNA and the respective target. This review examines the interconnected aspects of RNA metabolism with sRNA regulatory pathways in plants. It also explores the potential conservation of these pathways across different kingdoms, particularly in plants and animals. Additionally, the review highlights how cellular RNA homeostasis directly impacts adaptive responses to environmental changes as well as different developmental aspects in plants.
Collapse
Affiliation(s)
- Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Indra Adhikari
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Bhumika Jayee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
21
|
Trasser M, Bohl-Viallefond G, Barragán-Borrero V, Diezma-Navas L, Loncsek L, Nordborg M, Marí-Ordóñez A. PTGS is dispensable for the initiation of epigenetic silencing of an active transposon in Arabidopsis. EMBO Rep 2024; 25:5780-5809. [PMID: 39511423 PMCID: PMC11624286 DOI: 10.1038/s44319-024-00304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Transposable elements (TEs) are repressed in plants through transcriptional gene silencing (TGS), maintained epigenetic silencing marks such as DNA methylation. However, the mechanisms by which silencing is first installed remain poorly understood in plants. Small interfering (si)RNAs and post-transcriptional gene silencing (PTGS) are believed to mediate the initiation of TGS by guiding the first deposition of DNA methylation. To determine how this silencing installation works, we took advantage of ÉVADÉ (EVD), an endogenous retroelement in Arabidopsis, able to recapitulate true de novo silencing with a sequence of PTGS followed by a TGS. To test whether PTGS is required for TGS, we introduce active EVD into RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6) mutants, an essential PTGS component. EVD activity and silencing are monitored across several generations. In the absence of PTGS, silencing of EVD is still achieved through installation of RNA-directed DNA methylation (RdDM). Our study shows that PTGS is dispensable for de novo EVD silencing. Although we cannot rule out that PTGS might facilitate TGS, or control TE activity, initiation of epigenetic silencing can take place in its absence.
Collapse
Affiliation(s)
- Marieke Trasser
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Grégoire Bohl-Viallefond
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Verónica Barragán-Borrero
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Laura Diezma-Navas
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Lukas Loncsek
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Arturo Marí-Ordóñez
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria.
| |
Collapse
|
22
|
Yung WS, Wang Q, Chan LY, Wang Z, Huang M, Li MW, Wong FL, Lam HM. DNA Hypomethylation Is One of the Epigenetic Mechanisms Involved in Salt-Stress Priming in Soybean Seedlings. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39601237 DOI: 10.1111/pce.15297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Salt-stress priming enhances the tolerance of plants against subsequent exposure to a similar stress. Priming-induced transcriptomic reprogramming is mediated by multiple epigenetic mechanisms, the best known of which is histone modifications. However, not much is known about other epigenetic responses. In this study, salt-stress priming resulted in global DNA hypomethylation in the leaves of soybean seedlings. The DNA methyltransferase activities in primed seedlings were reduced, contributing to the overall DNA hypomethylation. Genes associated with the hypomethylated DNA regions in primed seedlings also showed a higher mean level of the active histone mark, histone 3 lysine 4 trimethylation (H3K4me3), and a lower mean level of the repressive histone mark, H3K4me2. Transcriptomic analyses supported that DNA hypomethylation played a role in fine-tuning the chromatin status in primed seedlings to potentiate gene expressions. Motif and transcriptional network analyses revealed that DNA hypomethylation may facilitate the responses mediated by key transcription factors in the abscisic acid (ABA)-dependent pathway. A pre-treatment using a DNA methyltransferase inhibitor, 5-azacytidine, could enhance salt tolerance in non-primed soybean seedlings, similar to the priming effect, suggesting the role of DNA hypomethylation in salt-stress priming. Overall, this research furthers our understanding of the epigenetic mechanisms involved in salt-stress priming in soybean.
Collapse
Affiliation(s)
- Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qianwen Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Long-Yiu Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mingkun Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
23
|
Haseltine WA, Patarca R. The RNA Revolution in the Central Molecular Biology Dogma Evolution. Int J Mol Sci 2024; 25:12695. [PMID: 39684407 DOI: 10.3390/ijms252312695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human genome projects in the 1990s identified about 20,000 protein-coding sequences. We are now in the RNA revolution, propelled by the realization that genes determine phenotype beyond the foundational central molecular biology dogma, stating that inherited linear pieces of DNA are transcribed to RNAs and translated into proteins. Crucially, over 95% of the genome, initially considered junk DNA between protein-coding genes, encodes essential, functionally diverse non-protein-coding RNAs, raising the gene count by at least one order of magnitude. Most inherited phenotype-determining changes in DNA are in regulatory areas that control RNA and regulatory sequences. RNAs can directly or indirectly determine phenotypes by regulating protein and RNA function, transferring information within and between organisms, and generating DNA. RNAs also exhibit high structural, functional, and biomolecular interaction plasticity and are modified via editing, methylation, glycosylation, and other mechanisms, which bestow them with diverse intra- and extracellular functions without altering the underlying DNA. RNA is, therefore, currently considered the primary determinant of cellular to populational functional diversity, disease-linked and biomolecular structural variations, and cell function regulation. As demonstrated by RNA-based coronavirus vaccines' success, RNA technology is transforming medicine, agriculture, and industry, as did the advent of recombinant DNA technology in the 1980s.
Collapse
Affiliation(s)
- William A Haseltine
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - Roberto Patarca
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
24
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Du X, Zhang Y, Zhang M, Sun Y. Variations in DNA methylation and the role of regulatory factors in rice ( Oryza sativa) response to lunar orbit stressors. FRONTIERS IN PLANT SCIENCE 2024; 15:1427578. [PMID: 39610890 PMCID: PMC11603183 DOI: 10.3389/fpls.2024.1427578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Deep space flight imposes higher levels of damage on biological organisms; however, its specific effects on rice remain unclear. To investigate the variations in DNA methylation under deep space flight conditions, this study examined rice seeds carried by Chang'e-5. After 23 days of lunar orbital flight, the samples were planted in an artificial climate chamber and subjected to transcriptome and DNA methylation sequencing during the tillering and heading stages. The methylation patterns in the rice genome exhibited variability in response to lunar orbital stressors. DNA methylation alters the expression and interaction patterns of functional genes, involving biological processes such as metabolism and defense. Furthermore, we employed single-sample analysis methods to assess the gene expression and interaction patterns of different rice individuals. The genes exhibiting changes at the transcriptional and methylation levels varied among the different plants; however, these genes regulate consistent biological functions, primarily emphasizing metabolic processes. Finally, through single-sample analysis, we identified a set of miRNAs induced by lunar orbital stressors that potentially target DNA methylation regulatory factors. The findings of this study broaden the understanding of space biological effects and lay a foundation for further exploration of the mechanisms by which deep space flight impacts plants.
Collapse
Affiliation(s)
| | | | | | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and
Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
26
|
Gu C, Xu H, Yuan Q, Huang J, Yuan K, Zhao Y, Liu G, Zhang Q, Jiang J. Epigenetic Regulation of Anthocyanin Biosynthesis in Betula pendula 'Purple Rain'. Int J Mol Sci 2024; 25:12030. [PMID: 39596099 PMCID: PMC11593655 DOI: 10.3390/ijms252212030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Betula pendula 'Purple Rain' is characterized by its purple leaves and has ornamental applications. A green mutant line NL, which was mutated by line NZ of B. pendula 'Purple Rain' during tissue culture, shows green leaves instead of the typical purple color of B. pendula 'Purple Rain'. This study quantified the leaf color traits of NL and a normal B. pendula 'Purple Rain' line NZ, and uncovered differentially expressed genes involved in flavonoid biosynthesis pathway genes in NL through RNA-Seq analysis. Compared to NZ, reduced levels of six anthocyanins contained in NL were revealed via flavonoids-targeted metabolomics. Sequence mutations in transcription factors that could explain NL's phenotype failed to be screened via whole-genome resequencing, suggesting an epigenetic basis for this variant. Therefore, a key gene, BpMYB113, was identified in NL via the combined analysis of small RNA sequencing, whole-genome methylation sequencing, and transcriptomics. In NL, this gene features a hyper CHH context methylation site and a lower transcription level compared to NZ, disrupting the expression of downstream genes in the phenylalanine metabolism pathway, and thereby reducing flavonoid biosynthesis. Our study elucidates an epigenetic mechanism underlying color variation in variegated trees, providing pivotal insights for the breeding and propagation of colored-leaf tree species.
Collapse
Affiliation(s)
- Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
| | - Huan Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
| | - Qihang Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
| | - Jinbo Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
| | - Kunying Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
| | - Yihan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Northeast Forestry University, Harbin 150040, China; (C.G.); (H.X.); (Q.Y.); (J.H.); (K.Y.); (Y.Z.); (G.L.)
| |
Collapse
|
27
|
Dale R, Mosher R. Mathematical model of RNA-directed DNA methylation predicts tuning of negative feedback required for stable maintenance. Open Biol 2024; 14:240159. [PMID: 39532148 PMCID: PMC11557233 DOI: 10.1098/rsob.240159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
RNA-directed DNA methylation (RdDM) is a plant-specific de novo methylation pathway that is responsible for maintenance of asymmetric methylation (CHH, H = A, T or G) in euchromatin. Loci with CHH methylation produce 24 nucleotide (nt) short interfering (si) RNAs. These siRNAs direct additional CHH methylation to the locus, maintaining methylation states through DNA replication. To understand the necessary conditions to produce stable methylation, we developed a stochastic mathematical model of RdDM. The model describes DNA target search by siRNAs derived from CHH methylated loci bound by an Argonaute. Methylation reinforcement occurs either throughout the cell cycle (steady) or immediately following replication (bursty). We compare initial and final methylation distributions to determine simulation conditions that produce stable methylation. We apply this method to the low CHH methylation case. The resulting model predicts that siRNA production must be linearly proportional to methylation levels, that bursty reinforcement is more stable and that slightly higher levels of siRNA production are required for searching DNA, compared to RNA. Unlike CG methylation, which typically exhibits bi-modality with loci having either 100% or 0% methylation, CHH methylation exists across a range. Our model predicts that careful tuning of the negative feedback in the system is required to enable stable maintenance.
Collapse
Affiliation(s)
- Renee Dale
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - Rebecca Mosher
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
- Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
28
|
Kandpal P, Kaur K, Dhariwal R, Kaur S, Brar GK, Randhawa H, Singh J. Utilizing Short Interspersed Nuclear Element as a Genetic Marker for Pre-Harvest Sprouting in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:2981. [PMID: 39519902 PMCID: PMC11548262 DOI: 10.3390/plants13212981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Pre-harvest sprouting (PHS) is a complex abiotic stress caused by multiple exogenous and endogenous variables that results in random but significant quality and yield loss at the terminal crop stage in more than half of the wheat-producing areas of the world. Systematic research over more than five decades suggests that addressing this challenge requires tools beyond the traditional genetic manipulation approach. Previous molecular studies indicate a possible role of epigenetics in the regulation of seed dormancy and PHS in crops, especially through RNA-directed DNA methylation (RdDM) pathways mediated by Argonaute (AGO) proteins. In this study, we explore the role of the AGO802B gene associated with PHS resistance in wheat, through the presence of a SINE retrotransposon insertion. The current study found the SINE insertion at 3'UTR of the TaAGO802B present in 73.2% of 41 cultivars analyzed and in 92.6% of the resistant cultivar subset. The average expression of TaAGO802B in cultivars with the SINE insertion was 73.3% lower than in cultivars without insertion. This study also indicated a significant positive correlation between the PHS score and methylation levels in the cultivars. The resistant cultivars with the SINE insertion recorded 54.7% lower methylation levels than susceptible cultivars. Further analysis of a DH population (Sadash × P2711) reveals that SINE insertion co-segregates with PHS resistance. This sets forth the SINE insertion in TaAGO802B as a genetic marker for screening wheat germplasm and as an efficient tool for breeding PHS-resistant wheat cultivars.
Collapse
Affiliation(s)
- Purnima Kandpal
- Department of Plant Science, McGill University, 21111 Rue Lakeshore, Montreal, QC H9X 3V9, Canada; (P.K.); (K.K.)
| | - Karminderbir Kaur
- Department of Plant Science, McGill University, 21111 Rue Lakeshore, Montreal, QC H9X 3V9, Canada; (P.K.); (K.K.)
| | - Raman Dhariwal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (R.D.); (S.K.); (G.K.B.); (H.R.)
| | - Simranjeet Kaur
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (R.D.); (S.K.); (G.K.B.); (H.R.)
| | - Gagandeep Kaur Brar
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (R.D.); (S.K.); (G.K.B.); (H.R.)
| | - Harpinder Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (R.D.); (S.K.); (G.K.B.); (H.R.)
| | - Jaswinder Singh
- Department of Plant Science, McGill University, 21111 Rue Lakeshore, Montreal, QC H9X 3V9, Canada; (P.K.); (K.K.)
| |
Collapse
|
29
|
DiBiase CN, Cheng X, Lee G, Moore RC, McCoy AG, Chilvers MI, Sun L, Wang D, Lin F, Zhao M. DNA methylation analysis reveals local changes in resistant and susceptible soybean lines in response to Phytophthora sansomeana. G3 (BETHESDA, MD.) 2024; 14:jkae191. [PMID: 39141590 PMCID: PMC11457093 DOI: 10.1093/g3journal/jkae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Phytophthora sansomeana is an emerging oomycete pathogen causing root rot in many agricultural species including soybean. However, as of now, only one potential resistance gene has been identified in soybean, and our understanding of how genetic and epigenetic regulation in soybean contributes to responses against this pathogen remains largely unknown. In this study, we performed whole genome bisulfite sequencing (WGBS) on two soybean lines, Colfax (resistant) and Williams 82 (susceptible), in response to P. sansomeana at two time points: 4 and 16 hours post-inoculation to compare their methylation changes. Our findings revealed that there were no significant changes in genome-wide CG, CHG (H = A, T, or C), and CHH methylation. However, we observed local methylation changes, specially an increase in CHH methylation around genes and transposable elements (TEs) after inoculation, which occurred earlier in the susceptible line and later in the resistant line. After inoculation, we identified differentially methylated regions (DMRs) in both Colfax and Williams 82, with a predominant presence in TEs. Notably, our data also indicated that more TEs exhibited changes in their methylomes in the susceptible line compared to the resistant line. Furthermore, we discovered 837 DMRs within or flanking 772 differentially expressed genes (DEGs) in Colfax and 166 DMRs within or flanking 138 DEGs in Williams 82. These DEGs had diverse functions, with Colfax primarily showing involvement in metabolic process, defense response, plant and pathogen interaction, anion and nucleotide binding, and catalytic activity, while Williams 82 exhibited a significant association with photosynthesis. These findings suggest distinct molecular responses to P. sansomeana infection in the resistant and susceptible soybean lines.
Collapse
Affiliation(s)
| | - Xi Cheng
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Gwonjin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Richard C Moore
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Fisher Delta Research, Extension, and Education Center, Division of Plant Sciences and Technology, University of Missouri, Portageville, MO 63873, USA
| | - Meixia Zhao
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
30
|
Lesur I, Rogier O, Sow MD, Boury C, Duplan A, Garnier A, Senhaji-Rachik A, Civan P, Daron J, Delaunay A, Duvaux L, Benoit V, Guichoux E, Le Provost G, Sanou E, Ambroise C, Plomion C, Salse J, Segura V, Tost J, Maury S. A strategy for studying epigenetic diversity in natural populations: proof of concept in poplar and oak. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5568-5584. [PMID: 38889253 DOI: 10.1093/jxb/erae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
In the last 20 years, several techniques have been developed for quantifying DNA methylation, the most studied epigenetic marks in eukaryotes, including the gold standard method, whole-genome bisulfite sequencing (WGBS). WGBS quantifies genome-wide DNA methylation but has several inconveniences rendering it less suitable for population-scale epigenetic studies. The high cost of deep sequencing and the large amounts of data generated prompted us to seek an alternative approach. Restricting studies to parts of the genome would be a satisfactory alternative had there not been a major limitation: the need to select upstream targets corresponding to differentially methylated regions as targets. Given the need to study large numbers of samples, we propose a strategy for investigating DNA methylation variation in natural populations, taking into account the structural complexity of genomes, their size, and their content in unique coding regions versus repeated regions as transposable elements. We first identified regions of highly variable DNA methylation in a subset of genotypes representative of the biological diversity in the population by WGBS. We then analysed the variations of DNA methylation in these targeted regions at the population level by sequencing capture bisulfite (SeqCapBis). The entire strategy was then validated by applying it to another species. Our strategy was developed as a proof of concept on natural populations of two forest species: Populus nigra and Quercus petraea.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRAE, Univ. Bordeaux, BIOGECO, F-33610 Cestas, France
- HelixVenture, F-33700 Mérignac, France
| | | | - Mamadou Dia Sow
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | | | - Alexandre Duplan
- INRAE, ONF, BioForA, F-45075 Orléans, France
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | - Abel Garnier
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie, François Jacob, Université Paris-Saclay, F-91000 Evry, France
| | | | - Peter Civan
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
| | - Josquin Daron
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, F-75724 Paris, France
| | - Alain Delaunay
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | | | | | | | | | - Edmond Sanou
- LaMME, 23 Bd. de France, F-91037 Évry Cedex, France
| | | | | | - Jérôme Salse
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
| | - Vincent Segura
- INRAE, ONF, BioForA, F-45075 Orléans, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, F-34398 Montpellier, France
| | - Jörg Tost
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie, François Jacob, Université Paris-Saclay, F-91000 Evry, France
| | - Stéphane Maury
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| |
Collapse
|
31
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
32
|
Zhang D, Jue D, Smith N, Zhong C, Finnegan EJ, de Feyter R, Wang MB, Greaves I. Asymmetric bulges within hairpin RNA transgenes influence small RNA size, secondary siRNA production and viral defence. Nucleic Acids Res 2024; 52:9904-9916. [PMID: 38967001 PMCID: PMC11381321 DOI: 10.1093/nar/gkae573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Small RNAs (sRNAs) are essential for normal plant development and range in size classes of 21-24 nucleotides. The 22nt small interfering RNAs (siRNAs) and miRNAs are processed by Dicer-like 2 (DCL2) and DCL1 respectively and can initiate secondary siRNA production from the target transcript. 22nt siRNAs are under-represented due to competition between DCL2 and DCL4, while only a small number of 22nt miRNAs exist. Here we produce abundant 22nt siRNAs and other siRNA size classes using long hairpin RNA (hpRNA) transgenes. By introducing asymmetric bulges into the antisense strand of hpRNA, we shifted the dominant siRNA size class from 21nt of the traditional hpRNA to 22, 23 and 24nt of the asymmetric hpRNAs. The asymmetric hpRNAs effectively silenced a β-glucuronidase (GUS) reporter transgene and the endogenous ethylene insensitive-2 (EIN2) and chalcone synthase (CHS) genes. Furthermore, plants containing the asymmetric hpRNA transgenes showed increased amounts of 21nt siRNAs downstream of the hpRNA target site compared to plants with the traditional hpRNA transgenes. This indicates that these asymmetric hpRNAs are more effective at inducing secondary siRNA production to amplify silencing signals. The 22nt asymmetric hpRNA constructs enhanced virus resistance in plants compared to the traditional hpRNA constructs.
Collapse
Affiliation(s)
- Daai Zhang
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Dengwei Jue
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Neil Smith
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Chengcheng Zhong
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - E Jean Finnegan
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Robert de Feyter
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Ming-Bo Wang
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Ian Greaves
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| |
Collapse
|
33
|
Kulikova DA, Bespalova AV, Zelentsova ES, Evgen'ev MB, Funikov SY. Epigenetic Phenomenon of Paramutation in Plants and Animals. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1429-1450. [PMID: 39245454 DOI: 10.1134/s0006297924080054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Collapse
Affiliation(s)
- Dina A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alina V Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
34
|
Yue Z, Deng C, Zeng Y, Shang H, Wang S, Liu S, Liu H. Phyllostachys edulis argonaute genes function in the shoot architecture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112114. [PMID: 38735397 DOI: 10.1016/j.plantsci.2024.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Argonaute (AGO) proteins are the core components of the RNA-induced silencing complexes (RISC) in the cytoplasm and nucleus, and are necessary for the development of plant shoot meristem, which gives rise to the above-ground plant body. In this study, we identified 23 Phyllostachys edulis AGO genes (PhAGOs) that were distributed unequally on the 14 unmapped scaffolds. Gene collinearity and phylogeny analysis showed that the innovation of PhAGO genes was mainly due to dispersed duplication and whole-genome duplication, which resulted in the enlarged PhAGO family. PhAGO genes were expressed in a temporal-spatial expression pattern, and they encoded proteins differently localized in the cytoplasm and/or nucleus. Overexpression of the PhAGO2 and PhAGO4 genes increased the number of tillers or leaves in Oryza sativa and affected the shoot architecture of Arabidopsis thaliana. These results provided insight into the fact that PhAGO genes play important roles in plant development.
Collapse
Affiliation(s)
- Zhiqiang Yue
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Chu Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Yuxue Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Hongna Shang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China.
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, China.
| |
Collapse
|
35
|
Rao X, Yang S, Lü S, Yang P. DNA Methylation Dynamics in Response to Drought Stress in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1977. [PMID: 39065503 PMCID: PMC11280950 DOI: 10.3390/plants13141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Drought is one of the most hazardous environmental factors due to its severe damage on plant growth, development and productivity. Plants have evolved complex regulatory networks and resistance strategies for adaptation to drought stress. As a conserved epigenetic regulation, DNA methylation dynamically alters gene expression and chromosome interactions in plants' response to abiotic stresses. The development of omics technologies on genomics, epigenomics and transcriptomics has led to a rapid increase in research on epigenetic variation in non-model crop species. In this review, we summarize the most recent findings on the roles of DNA methylation under drought stress in crops, including methylating and demethylating enzymes, the global methylation dynamics, the dual regulation of DNA methylation on gene expression, the RNA-dependent DNA methylation (RdDM) pathway, alternative splicing (AS) events and long non-coding RNAs (lnc RNAs). We also discuss drought-induced stress memory. These epigenomic findings provide valuable potential for developing strategies to improve crop drought tolerance.
Collapse
Affiliation(s)
| | | | | | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.R.); (S.Y.); (S.L.)
| |
Collapse
|
36
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
37
|
Briffa A, Menon G, Movilla Miangolarra A, Howard M. Dissecting Mechanisms of Epigenetic Memory Through Computational Modeling. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:265-290. [PMID: 38424070 DOI: 10.1146/annurev-arplant-070523-041445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Understanding the mechanistic basis of epigenetic memory has proven to be a difficult task due to the underlying complexity of the systems involved in its establishment and maintenance. Here, we review the role of computational modeling in helping to unlock this complexity, allowing the dissection of intricate feedback dynamics. We focus on three forms of epigenetic memory encoded in gene regulatory networks, DNA methylation, and histone modifications and discuss the important advantages offered by plant systems in their dissection. We summarize the main modeling approaches involved and highlight the principal conceptual advances that the modeling has enabled through iterative cycles of predictive modeling and experiments. Lastly, we discuss remaining gaps in our understanding and how intertwined theory and experimental approaches might help in their resolution.
Collapse
Affiliation(s)
- Amy Briffa
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| | - Ander Movilla Miangolarra
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| |
Collapse
|
38
|
Wang Z, Xia A, Wang Q, Cui Z, Lu M, Ye Y, Wang Y, He Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. PLANT PHYSIOLOGY 2024; 195:2129-2142. [PMID: 38431291 PMCID: PMC11213254 DOI: 10.1093/plphys/kiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
DNA methylation affects agronomic traits and the environmental adaptability of crops, but the natural polymorphisms in DNA methylation-related genes and their contributions to phenotypic variation in maize (Zea mays) remain elusive. Here, we show that a polymorphic 10-bp insertion/deletion variant in the 3'UTR of Zea methyltransferase2 (ZMET2) alters its transcript level and accounts for variation in the number of maize husk layers. ZMET2 encodes a chromomethylase and is required for maintaining genome-wide DNA methylation in the CHG sequence context. Disruption of ZMET2 increased the number of husk layers and resulted in thousands of differentially methylated regions, a proportion of which were also distinguishable in natural ZMET2 alleles. Population genetic analyses indicated that ZMET2 was a target of selection and might play a role in the spread of maize from tropical to temperate regions. Our results provide important insights into the natural variation of ZMET2 that confers both global and locus-specific effects on DNA methylation, which contribute to phenotypic diversity in maize.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Qi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Zhenhai Cui
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yusheng Ye
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yan He
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
39
|
Iwakawa HO. The clade-specific target recognition mechanisms of plant RISCs. Nucleic Acids Res 2024; 52:6662-6673. [PMID: 38621714 PMCID: PMC11194062 DOI: 10.1093/nar/gkae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Eukaryotic Argonaut proteins (AGOs) assemble RNA-induced silencing complexes (RISCs) with guide RNAs that allow binding to complementary RNA sequences and subsequent silencing of target genes. The model plant Arabidopsis thaliana encodes 10 different AGOs, categorized into three distinct clades based on amino acid sequence similarity. While clade 1 and 2 RISCs are known for their roles in post-transcriptional gene silencing, and clade 3 RISCs are associated with transcriptional gene silencing in the nucleus, the specific mechanisms of how RISCs from each clade recognize their targets remain unclear. In this study, I conducted quantitative binding analyses between RISCs and target nucleic acids with mismatches at various positions, unveiling distinct target binding characteristics unique to each clade. Clade 1 and 2 RISCs require base pairing not only in the seed region but also in the 3' supplementary region for stable target RNA binding, with clade 1 exhibiting a higher stringency. Conversely, clade 3 RISCs tolerate dinucleotide mismatches beyond the seed region. Strikingly, they bind to DNA targets with an affinity equal to or surpassing that of RNA, like prokaryotic AGO complexes. These insights challenge existing views on plant RNA silencing and open avenues for exploring new functions of eukaryotic AGOs.
Collapse
Affiliation(s)
- Hiro-oki Iwakawa
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
40
|
Karaca M, Ince AG. Grafting based DNA methylation alteration of snoRNAs in upland cotton ( Gossypium L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:893-907. [PMID: 38974361 PMCID: PMC11222342 DOI: 10.1007/s12298-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
The effects of grafting in response to various biotic and abiotic stressors have been studied, however, the methylation status of small nucleolar RNA (snoRNA) genes in heterograft and homograft cotton needs investigation. This study was undertaken to determine grafting effects on DNA methylation of snoRNA genes in Upland cotton. Rootstocks used were Pima 3-79 (Gossypium barbadense acc. Pima 3-79) and Texas Marker-1 (G. hirsutum acc. TM-1), representing two different species with different fiber properties, adaptations, and morphologies. The methylation ratio and differently methylated cytosines (DMCs) of 10935 snoRNA genes in mature seeds of heterograft and homograft cotton samples were studied using the whole genome bisulfite sequencing method. Seedling vigor and seed weight were studied to investigate phenotype alterations that might be associated with altered methylation levels among grafts. Statistically significant DMC differences among gene elements of snoRNA genes and between homograft and heterograft cotton samples were identified in the absence of DNA sequence alterations. DNA methylation alterations of snoRNA genes associated with seedling vigor and 100 seed weight. The majority of snoRNA genes showed higher numbers of mCG + mCHG-DMCs with increased methylation levels in heterograft, while there were higher numbers of mCG + mCHG-DMCs with decreased methylation levels in homograft. Since snoRNAs regulate essential genes for plant growth and development and plant adaptation to different habitats or extreme environments, their altered methylation levels should be related with plant physiology.
Collapse
Affiliation(s)
- Mehmet Karaca
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Ayse Gul Ince
- Vocational School of Technical Sciences, Akdeniz University, 07059 Antalya, Turkey
| |
Collapse
|
41
|
Takei T, Tsukada M, Tamura K, Hara-Nishimura I, Fukao Y, Kurihara Y, Matsui M, Saze H, Tsuzuki M, Watanabe Y, Hamada T. ARGONAUTE1-binding Tudor domain proteins function in small interfering RNA production for RNA-directed DNA methylation. PLANT PHYSIOLOGY 2024; 195:1333-1346. [PMID: 38446745 DOI: 10.1093/plphys/kiae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Transposable elements (TEs) contribute to plant evolution, development, and adaptation to environmental changes, but the regulatory mechanisms are largely unknown. RNA-directed DNA methylation (RdDM) is 1 TE regulatory mechanism in plants. Here, we identified that novel ARGONAUTE 1 (AGO1)-binding Tudor domain proteins Precocious dissociation of sisters C/E (PDS5C/E) are involved in 24-nt siRNA production to establish RdDM on TEs in Arabidopsis thaliana. PDS5 family proteins are subunits of the eukaryote-conserved cohesin complex. However, the double mutant lacking angiosperm-specific subfamily PDS5C and PDS5E (pds5c/e) exhibited different developmental phenotypes and transcriptome compared with those of the double mutant lacking eukaryote-conserved subfamily PDS5A and PDS5B (pds5a/b), suggesting that the angiosperm-specific PDS5C/E subfamily has a unique function in angiosperm plants. Proteome and imaging analyses revealed that PDS5C/E interact with AGO1. The pds5c/e double mutant had defects in 24-nt siRNA accumulation and CHH DNA methylation on TEs. In addition, some lncRNAs that accumulated in the pds5c/e mutant were targeted by AGO1-loading 21-nt miRNAs and 21-nt siRNAs. These results indicate that PDS5C/E and AGO1 participate in 24-nt siRNA production for RdDM in the cytoplasm. These findings indicate that angiosperm plants evolved a new regulator, the PDS5C/E subfamily, to control the increase in TEs during angiosperm evolution.
Collapse
Affiliation(s)
- Takahito Takei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Michio Tsukada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukio Kurihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Nanobioscience, Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takahiro Hamada
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
42
|
Harris CJ, Zhong Z, Ichino L, Feng S, Jacobsen SE. H1 restricts euchromatin-associated methylation pathways from heterochromatic encroachment. eLife 2024; 12:RP89353. [PMID: 38814684 PMCID: PMC11139477 DOI: 10.7554/elife.89353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Silencing pathways prevent transposable element (TE) proliferation and help to maintain genome integrity through cell division. Silenced genomic regions can be classified as either euchromatic or heterochromatic, and are targeted by genetically separable epigenetic pathways. In plants, the RNA-directed DNA methylation (RdDM) pathway targets mostly euchromatic regions, while CMT DNA methyltransferases are mainly associated with heterochromatin. However, many epigenetic features - including DNA methylation patterning - are largely indistinguishable between these regions, so how the functional separation is maintained is unclear. The linker histone H1 is preferentially localized to heterochromatin and has been proposed to restrict RdDM from encroachment. To test this hypothesis, we followed RdDM genomic localization in an h1 mutant by performing ChIP-seq on the largest subunit, NRPE1, of the central RdDM polymerase, Pol V. Loss of H1 resulted in NRPE1 enrichment predominantly in heterochromatic TEs. Increased NRPE1 binding was associated with increased chromatin accessibility in h1, suggesting that H1 restricts NRPE1 occupancy by compacting chromatin. However, RdDM occupancy did not impact H1 localization, demonstrating that H1 hierarchically restricts RdDM positioning. H1 mutants experience major symmetric (CG and CHG) DNA methylation gains, and by generating an h1/nrpe1 double mutant, we demonstrate these gains are largely independent of RdDM. However, loss of NRPE1 occupancy from a subset of euchromatic regions in h1 corresponded to the loss of methylation in all sequence contexts, while at ectopically bound heterochromatic loci, NRPE1 deposition correlated with increased methylation specifically in the CHH context. Additionally, we found that H1 similarly restricts the occupancy of the methylation reader, SUVH1, and polycomb-mediated H3K27me3. Together, the results support a model whereby H1 helps maintain the exclusivity of heterochromatin by preventing encroachment from other competing pathways.
Collapse
Affiliation(s)
- C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Lucia Ichino
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
43
|
Liu Y, Shu J, Zhang Z, Ding N, Liu J, Liu J, Cui Y, Wang C, Chen C. A conserved Pol II elongator SPT6L mediates Pol V transcription to regulate RNA-directed DNA methylation in Arabidopsis. Nat Commun 2024; 15:4460. [PMID: 38796517 PMCID: PMC11127964 DOI: 10.1038/s41467-024-48940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
In plants, the plant-specific RNA polymerase V (Pol V) transcripts non-coding RNAs and provides a docking platform for the association of accessory proteins in the RNA-directed DNA methylation (RdDM) pathway. Various components have been uncovered that are involved in the process of DNA methylation, but it is still not clear how the transcription of Pol V is regulated. Here, we report that the conserved RNA polymerase II (Pol II) elongator, SPT6L, binds to thousands of intergenic regions in a Pol II-independent manner. The intergenic enrichment of SPT6L, interestingly, co-occupies with the largest subunit of Pol V (NRPE1) and mutation of SPT6L leads to the reduction of DNA methylation but not Pol V enrichment. Furthermore, the association of SPT6L at Pol V loci is dependent on the Pol V associated factor, SPT5L, rather than the presence of Pol V, and the interaction between SPT6L and NRPE1 is compromised in spt5l. Finally, Pol V RIP-seq reveals that SPT6L is required to maintain the amount and length of Pol V transcripts. Our findings thus uncover the critical role of a Pol II conserved elongator in Pol V mediated DNA methylation and transcription, and shed light on the mutual regulation between Pol V and II in plants.
Collapse
Affiliation(s)
- Yujuan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Shu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Ding
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinyuan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Changhu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chen Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Imaduwage I, Hewadikaram M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. MOLECULAR HORTICULTURE 2024; 4:20. [PMID: 38745264 PMCID: PMC11094901 DOI: 10.1186/s43897-024-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
Collapse
Affiliation(s)
- Iuh Imaduwage
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka
| | - Madhavi Hewadikaram
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
45
|
Barro-Trastoy D, Köhler C. Helitrons: genomic parasites that generate developmental novelties. Trends Genet 2024; 40:437-448. [PMID: 38429198 DOI: 10.1016/j.tig.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Helitrons, classified as DNA transposons, employ rolling-circle intermediates for transposition. Distinguishing themselves from other DNA transposons, they leave the original template element unaltered during transposition, which has led to their characterization as 'peel-and-paste elements'. Helitrons possess the ability to capture and mobilize host genome fragments, with enormous consequences for host genomes. This review discusses the current understanding of Helitrons, exploring their origins, transposition mechanism, and the extensive repercussions of their activity on genome structure and function. We also explore the evolutionary conflicts stemming from Helitron-transposed gene fragments and elucidate their domestication for regulating responses to environmental challenges. Looking ahead, further research in this evolving field promises to bring interesting discoveries on the role of Helitrons in shaping genomic landscapes.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden.
| |
Collapse
|
46
|
Roychowdhury R, Mishra S, Anand G, Dalal D, Gupta R, Kumar A, Gupta R. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: an integrated overview from its biosynthesis to the mode of action. PHYSIOLOGIA PLANTARUM 2024; 176:e14399. [PMID: 38894599 DOI: 10.1111/ppl.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Sapna Mishra
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Debalika Dalal
- Department of Botany, Visva-Bharati Central University, Santiniketan, West Bengal, India
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
47
|
Harkess A, Bewick AJ, Lu Z, Fourounjian P, Michael TP, Schmitz RJ, Meyers BC. The unusual predominance of maintenance DNA methylation in Spirodela polyrhiza. G3 (BETHESDA, MD.) 2024; 14:jkae004. [PMID: 38190722 PMCID: PMC10989885 DOI: 10.1093/g3journal/jkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
Duckweeds are among the fastest reproducing plants, able to clonally divide at exponential rates. However, the genetic and epigenetic impact of clonality on plant genomes is poorly understood. 5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of certain genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here we analyzed DNA methylomes, small RNAs, mRNA-seq, and H3K9me2 histone modification for Spirodela polyrhiza. S. polyrhiza has lost highly conserved genes involved in de novo methylation of DNA at sites often associated with repetitive DNA, and within genes, however, symmetrical DNA methylation and heterochromatin are maintained during cell division at certain transposons and repeats. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.
Collapse
Affiliation(s)
- Alex Harkess
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Adam J Bewick
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Todd P Michael
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri—Columbia, Columbia, MO 65211, USA
| |
Collapse
|
48
|
Doddavarapu B, Lata C, Shah JM. Epigenetic regulation influenced by soil microbiota and nutrients: Paving road to epigenome editing in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130580. [PMID: 38325761 DOI: 10.1016/j.bbagen.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/25/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Soil is a complex ecosystem that houses microbes and nutrients that are necessary for plant development. Edaphic properties of the soil and environmental conditions influence microbial growth and nutrient accessibility. Various environmental stimuli largely affect the soil microbes and ionic balance, in turn influencing plants. Soil microflora helps decompose organic matter and is involved in mineral uptake. The combination of soil microbes and mineral nutrients notably affects plant growth. Recent advancements have enabled a deeper understanding of plant genetic/molecular regulators. Deficiencies/sufficiencies of soil minerals and microbes also alter plant gene regulation. Gene regulation mediated by epigenetic mechanisms comprises conformational alterations in chromatin structure, DNA/histone modifications, or involvement of small RNAs. Epigenetic regulation is unique due to its potential to inherit without involving alteration of the DNA sequence. Thus, the compilation study of heritable epigenetic changes driven by nutrient imbalances and soil microbes would facilitate understanding this molecular phenomenon in plants. This information can aid in epigenome editing, which has recently emerged as a promising technology for plant non-transgenic/non-mutagenic modification. Potential epigenetic marks induced by biotic and abiotic stresses in plants could be explored as target sites for epigenome editing. This review discusses novel ways of epigenome editing to create epigenome edited plants with desirable and heritable phenotypes. As plants are sessile and in constant exposure to the soil microbiome and nutrients, epigenetic changes induced by these factors could provide more effective, stable and a sustainable molecular solution for crop improvement.
Collapse
Affiliation(s)
- Bhavya Doddavarapu
- Department of Plant Science, Central University of Kerala, Kerala, India
| | - Charu Lata
- Inclusive Health & Traditional Knowledge Studies Division, CSIR- National Institute of Science Communication and Policy Research, New Delhi, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Kerala, India.
| |
Collapse
|
49
|
McEvoy SL, Grady PGS, Pauloski N, O'Neill RJ, Wegrzyn JL. Profiling genome-wide methylation in two maples: Fine-scale approaches to detection with nanopore technology. Evol Appl 2024; 17:e13669. [PMID: 38633133 PMCID: PMC11022628 DOI: 10.1111/eva.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
DNA methylation is critical to the regulation of transposable elements and gene expression and can play an important role in the adaptation of stress response mechanisms in plants. Traditional methods of methylation quantification rely on bisulfite conversion that can compromise accuracy. Recent advances in long-read sequencing technologies allow for methylation detection in real time. The associated algorithms that interpret these modifications have evolved from strictly statistical approaches to Hidden Markov Models and, recently, deep learning approaches. Much of the existing software focuses on methylation in the CG context, but methylation in other contexts is important to quantify, as it is extensively leveraged in plants. Here, we present methylation profiles for two maple species across the full range of 5mC sequence contexts using Oxford Nanopore Technologies (ONT) long-reads. Hybrid and reference-guided assemblies were generated for two new Acer accessions: Acer negundo (box elder; 65x ONT and 111X Illumina) and Acer saccharum (sugar maple; 93x ONT and 148X Illumina). The ONT reads generated for these assemblies were re-basecalled, and methylation detection was conducted in a custom pipeline with the published Acer references (PacBio assemblies) and hybrid assemblies reported herein to generate four epigenomes. Examination of the transposable element landscape revealed the dominance of LTR Copia elements and patterns of methylation associated with different classes of TEs. Methylation distributions were examined at high resolution across gene and repeat density and described within the broader angiosperm context, and more narrowly in the context of gene family dynamics and candidate nutrient stress genes.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Patrick G. S. Grady
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Nicole Pauloski
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Rachel J. O'Neill
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
50
|
Nabi Z, Manzoor S, Nabi SU, Wani TA, Gulzar H, Farooq M, Arya VM, Baloch FS, Vlădulescu C, Popescu SM, Mansoor S. Pattern-Triggered Immunity and Effector-Triggered Immunity: crosstalk and cooperation of PRR and NLR-mediated plant defense pathways during host-pathogen interactions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:587-604. [PMID: 38737322 PMCID: PMC11087456 DOI: 10.1007/s12298-024-01452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
The elucidation of the molecular basis underlying plant-pathogen interactions is imperative for the development of sustainable resistance strategies against pathogens. Plants employ a dual-layered immunological detection and response system wherein cell surface-localized Pattern Recognition Receptors (PRRs) and intracellular Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs) play pivotal roles in initiating downstream signalling cascades in response to pathogen-derived chemicals. Pattern-Triggered Immunity (PTI) is associated with PRRs and is activated by the recognition of conserved molecular structures, known as Pathogen-Associated Molecular Patterns. When PTI proves ineffective due to pathogenic effectors, Effector-Triggered Immunity (ETI) frequently confers resistance. In ETI, host plants utilize NLRs to detect pathogen effectors directly or indirectly, prompting a rapid and more robust defense response. Additionally epigenetic mechanisms are participating in plant immune memory. Recently developed technologies like CRISPR/Cas9 helps in exposing novel prospects in plant pathogen interactions. In this review we explore the fascinating crosstalk and cooperation between PRRs and NLRs. We discuss epigenomic processes and CRISPR/Cas9 regulating immune response in plants and recent findings that shed light on the coordination of these defense layers. Furthermore, we also have discussed the intricate interactions between the salicylic acid and jasmonic acid signalling pathways in plants, offering insights into potential synergistic interactions that would be harnessed for the development of novel and sustainable resistance strategies against diverse group of pathogens.
Collapse
Affiliation(s)
- Zarka Nabi
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132 India
| | | | - Humira Gulzar
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Mehreena Farooq
- Division of Plant Pathology, FOH-SKUAST-K, Shalimar, Srinagar, 190025 India
| | - Vivak M. Arya
- Division of Soil Science and Agriculture Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33100 Yenişehir, Mersin Turkey
| | - Carmen Vlădulescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I. Cuza 13, 200585 Craiova, Romania
| | - Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I. Cuza 13, 200585 Craiova, Romania
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243 Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243 Republic of Korea
| |
Collapse
|